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Abstract

We introduce a discrete-time model for log-return dynamics with observable volatility

and jumps. Our proposal extends the class of Realized Volatility heterogeneous auto-

regressive gamma (HARG) processes adding a jump component with time-varying in-

tensity. The model is able to reproduce the temporary increase in the probability of

occurrence of a jump immediately after an abrupt large movement of the asset price. Be-

longing to the class of exponentially affine models, the moment generating function under

the physical measure is available in closed-form. Thanks to a flexible specification of the

pricing kernel compensating for equity, volatility, and jump risks, the generating function
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under the risk-neutral measure inherits analytical tractability too. An application of the

leveraged HARG model with dynamic jump intensity to the pricing of a large sample of

S&P500 index options assesses its superior performances with respect to state-of-the-art

benchmark models.

Keywords: High-frequency, Realized volatility, HARG, Option pricing, Variance risk premium,

Jumps

JEL Classification: G12, G13

1 Introduction

It has been well documented that even in the most liquid financial markets, assets feature abrupt

price movements. Whether these events are true jump events attributed to the discontinuous

component of the price semi-martingale process could be debated at length, see for instance

Aı̈t-Sahalia (2004); Cont and Tankov (2004); Maheu and McCurdy (2004); Barndorff-Nielsen

and Shephard (2007); Bollerslev et al. (2008); Lee and Mykland (2008); Aı̈t-Sahalia and Jacod

(2009); Bollerslev et al. (2009). Recent achievements suggest alternative hypotheses. Chris-

tensen et al. (2014) argue that jump events are often spurious detections resulting from the

aggregation of returns at larger time scales. Christensen et al. (2016) show that historical

time series does not rule out continuous-time models with no discontinuous component but

where the drift coefficient may exhibit local bursts. Whatever the origin of extreme movements

and despite their infrequent appearance, a typical observed phenomenon is their clustering be-

haviour. An unexpected jump event triggers subsequent jumps for a given asset as discussed

in Christoffersen et al. (2012); Chen and Poon (2013); Christoffersen et al. (2015); Bormetti

et al. (2015) or sparks a contagion-like spreading across different assets, see among others Ding

et al. (2009); Aı̈t-Sahalia et al. (2015); Fic̆ura (2015); Azizpour et al. (2018); Calcagnile et al.

(2018). As a consequence, widespread models describing jumps as processes with independent

occurrences are not suited to accurately describe the empirical properties of asset returns.

2



In this paper we propose a new discrete-time model with observable volatility and jumps

whose intensity is time-varying and persistent. Precisely, the local intensity follows an autore-

gressive process of order one where the realized number of jumps detected each day plays the

role of an idiosyncratic shock. Formally, we extend the LHARG-RV class of models in Majewski

et al. (2015) by adding to log-returns a jump component. The inclusion of jumps with persistent

intensity is adequate to reproduce the clustering of extreme events in the physical process and

to contemporary increase the short time-to-maturity implied volatility extracted from option

quotes. These features improve both the likelihood of the process under the physical measure

and the pricing performances under the risk-neutral measure.

The model we present widens the literature combining realized volatility measures with

option pricing initiated by Stentoft (2008) and later extended by Corsi et al. (2013), Christof-

fersen et al. (2014) and Majewski et al. (2015). Specifically, we assume that the log-return

dynamics is determined by the sum of two independent random processes accounting for the

diffusive and discontinuous components of the price. The former corresponds to a sequence of

random shocks which are normally distributed, with observable conditional variance given by

the realized measure of the diffusive quadratic variation. The Realized Variance term follows an

autoregressive gamma process (see Gourieroux and Jasiak (2006)) whose conditional mean is a

linear function of the past realized variances and leverage terms aggregated over different time

scales (daily, weekly, and monthly). The discontinuous component corresponds to a compound

non homogeneous Poisson process whose intensity linearly depends on its first-order lagged

value. The number of jump events detected in the preceding day provides the idiosyncratic

shock to the intensity dynamics. Besides, the jump size is sampled from a normal distribution.

The new model is dubbed Heterogeneous Auto-Regressive Gamma model for Realized Volatil-

ity with Leverage and Auto-Regressive Jumps, LHARG-ARJ for short. This model belongs to

the class of exponentially affine processes, for which the recursive expression of the log-return

moment generating function (MGF) under the physical measure is available in closed-form.

To price options, we compute recursively the MGF under the risk neutral measure. The
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change of measure is performed adopting the same approach of Gerber and Shiu (1994);

Christoffersen et al. (2009); Gagliardini et al. (2011); Corsi et al. (2013); Christoffersen et al.

(2012, 2014, 2015) based on the specification of a discrete-time exponential affine stochastic

discount factor (SDF) incorporating multiple risk premia. The SDF depends on four different

risk premia in order to account for the different sources of risk entering our model: Two for the

directional continuous and discontinuous movements of returns, and two for the non directional

risk, i.e. the continuous and jump components of the Realized Volatility. Our specification of

the multi-dimensional SDF improves the flexibility of the option pricing model under the risk

neutral measure while preserving the analytical tractability. Indeed, we are able to derive the

risk-neutral MGF and to show that the risk-neutral dynamics still belongs to the LHARG-ARJ

model class. The latter result is achieved proving the existence of a one-to-one relation which

maps each parameter describing the physical dynamics to the corresponding parameter for the

risk-neutral dynamics.

Belonging to the class of models with observable variance components, LHARG-ARJ inherits

the advantage of ease of estimation. In fact, the RV process is directly built from high-frequency

log-returns, without the need of any filtering procedure. We compute the RV time series from

tick-by-tick returns for the Standard and S&P500 Index Futures, from July 3, 1990 to June 28,

2011. In order to separate the continuous from the jump contributions of the log-return time

series, we exploit the methodology introduced in Corsi et al. (2010). The test is based on the

Threshold Bipower Variation and allows to detect the presence of at least one jump in a given

trading day. In our model, this information is not sufficient since we need to recover the exact

number of jumps occurring each day. Following the iterative procedure proposed by Andersen

et al. (2010), we identify every jump occurring at intra-day level. With the time series for the

continuous and discontinuous RV components, the number of jumps, and their size, we finally

estimate the parameters of the LHARG-ARJ process by means of the Maximum Likelihood

Estimator (MLE). The introduction of the jump intensity dynamics improves the likelihood of

the model with respect to the benchmark LHARG model by Majewski et al. (2015).
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Applying our analytically tractable model to a large sample of index options, we demonstrate

its superior ability to price options. As benchmark models, we choose the LHARG-RV model

by Majewski et al. (2015) and the model with Realized Volatility and realized jump variation

of Christoffersen et al. (2015). We perform our analysis on plain vanilla options written on

S&P500 Index whose valuation is given each Wednesday from January 1, 1996 to June 28,

2011. We calibrate the premia on the whole implied volatility surfaces and compute the option

prices using the effective numerical COS method introduced by Fang and Oosterlee (2008). The

results show that the LHARG-ARJ model represents a valid competitor class to state-of-the-art

discrete-time models.

Our approach has several aspects in common with Christoffersen et al. (2012, 2014, 2015).

Christoffersen et al. (2012) introduce a model for log-returns with latent conditional variance

and a jump component with dynamic intensity. The two dimensional affine specification of

the pricing kernel compensates for the continuous and jump directional shocks and allows to

obtain closed-form recursive relations for the MGF under both physical and risk-neutral mea-

sures. However, the paper does not exploit any information coming from high frequency data,

and the joint estimation-calibration is performed by means of Quasi Maximum Likelihood Esti-

mation (QMLE). The economic value of including high-frequency information from tick-by-tick

log-returns is investigated in Christoffersen et al. (2014). The paper does not consider any

discontinuous component, but the inference on the latent two-component variance process is

improved by the introduction of an observation equation which exploits the observable Real-

ized Variance. Recently, Christoffersen et al. (2015) combine the insights gained from the two

previous works, and present a model with daily realized BiPower and Jump Variation mea-

sures which is flexible and analytically tractable, dubbed BPJVM. Among the three, the latter

work is the most similar to our approach but a closer look reveals several important differences

(commented in more detail in the next sections). The first relevant difference is the method

employed to identify and separate the continuous and jump components of the integrated vari-

ance. Christoffersen et al. (2015) compute a proxy of the continuous component of volatility by

5



means of the Bipower Variation from 5-minute returns and the jump contribution corresponds

to the difference, when positive, between the Realized Variance and the Bipower Variation.

The methodology does not consider any statistical test in order to assess the significance of the

jump contribution. The literature – see for example Barndorff-Nielsen and Shephard (2004),

Barndorff-Nielsen and Shephard (2006), Andersen et al. (2007), Corsi et al. (2010) – warns

about the bias in the estimation of the continuous component of the integrated variance in fi-

nite sample, especially in presence of successive jump events. A second major difference is that

the approach by Christoffersen and co-authors may be viewed as an improved and extended

version of the Realized GARCH approach of Hansen et al. (2012), while the LHARG-ARJ ex-

tends the class of RV gamma models Corsi et al. (2013); Majewski et al. (2015). The role played

by the observable realized measures in the two classes is essentially different. In the former,

the conditional variance is a latent process with idiosyncratic shocks given by the RV measure

– in the same spirit of the Realized GARCH. The latter directly models the dynamics of the

RV components. The impact of the two modeling choices is relevant not only on the estimation

methodology – which is based on QMLE for the BPJVM and on MLE for the LHARG-ARJ –

but also, and more importantly, on the level of persistence of the conditional variance in the two

models. The persistence of the BPJVM latent variance is nearly one, then a miss-specification

of the current level of the volatility may lead to miss-fit the term structure of at-the-money

(ATM) implied volatility, especially at longer maturities.

To summarize, the contribution of this paper is threefold. First, we introduce a model to

describe the dynamics of asset prices including a multi-component structure for volatility and

leverage and a novel observable jump component with persistent intensity. Second, we derive

analytical formulas for the MGF under both physical and risk-neutral measures, and the no-

arbitrage condition. This result is achieved by means of a flexible specification of the pricing

kernel which compensates for all directional and non directional random components appearing

in the return dynamics. Finally, we discuss the ability of our approach to price a large sample

of S&P500 index options and benchmark the result with the LHARG by Majewski et al. (2015)

6



and the state-of-the-art BPJVM model of Christoffersen et al. (2015). When compared with

the LHARG model, the LHARG-ARJ improves the pricing performances especially for short

time-to-maturity options and out-of-the-money regions. Concerning the BPJVM, the LHARG-

ARJ model fares much better than the benchmark model at longer maturities and for deep

out-of-the-money options.

The rest of the paper is organized as follows. In Section 2 we introduce the LHARG-

ARJ model of asset price dynamics and we derive the log-return MGF. We propose a change

of measure based on a four-dimensional pricing kernel which takes into account both equity,

volatility, and jump risk premia. Consistently, we derive the no-arbitrage condition and we show

that risk-neutral dynamics still belongs to the LHARG-ARJ class of models. Section 3 discusses

estimation of the model parameters. In Section 4, we describe the results of a comparative

assessment of option pricing performances using the LHARG-ARJ model along with concurrent

benchmarks. Section 5 draws the relevant conclusions.

2 The model

2.1 The motivation

Let us assume that log-return dynamics is defined on some stochastic basis (Ω,F , (Ft) ,P) and

described by a jump-diffusion process

Y (t) = α(t) +

∫ t

0

σ(s)dW (s) +

N(t)∑
i=1

Xi, (2.1)

where W (t) is a Brownian motion, σ(t) is an Ft-measurable stochastic process corresponding to

the continuous part of price volatility, N(t) is an Ft-measurable stochastic process describing

the total number of jumps in price till time t and Xi are i.i.d. random variables capturing

the size and direction of jumps. At this point, we only assume that Xi ∼ N (Λ, δ2) without

specifying any particular distribution of N(t) or σ(t).
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The drift term process α(t) represents the reward that investors demand for bearing risks

related to the jump-diffusive nature of price. An investor faces two types of risks related to

price variation: One due to continuous, normal price movements, σ(s)dW (s) and another one

due to jumps, i.e. extreme market events, Xi, where i ∈ {1, . . . , N(t)}. Using Itô isometry and

assuming that Var [N(t)] = E [N(t)],1 the components of log-return variance can be represented

as

Var

[∫ t

0

σ(s)dW (s)

]
= E

[∫ t

0

σ2(s)ds

]
and Var

N(t)∑
i=1

Xi

 = E

N(t)∑
i=1

|Xi|2
 .

Since jump and diffusion processes are independent, we obtain that log-return variance condi-

tioned on α(t) can be written as a sum of expected integrated variance (IV) and jump variation

(JV)

IV(t) =

∫ t

0

σ2(s)ds and JV(t) =

N(t)∑
i=1

|Xi|2.

The expected jump variation is equal to

E [JV(t)] =
(
Λ2 + δ2

)
E [N(t)] .

Assuming that investors are risk-averse to both types of price variation, we can write the

drift process as

α(t) = rt+

(
λc −

1

2

)
IV(t) + (λj − η)

(
Λ2 + δ2

)
N(t), (2.2)

where r is the risk-free rate in the economy, λc and λj are the continuous and jump, respectively,

components of equity risk premium, and

η =
Λ + 1

2
δ2

Λ2 + δ2
.

The compensation of two equity premia λc and λj in (2.2) by 1
2

and η, respectively, ensures

1This assumption is satisfied by Poisson process.
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that the conditional expectation of price process S(t) = S(0)eY (t) reads

E [S(t)|IV(t), N(t)] = S(0) exp
(
rt+ λcIV(t) + λj

(
Λ2 + δ2

)
N(t)

)
.

If the market is neutral to the risk associated to continuous volatility and jumps (λc = λj = 0),

the discounted price process is a martingale.

Since diffusion part in equation (2.1) can be seen as time-changed Brownian motion (see

Ané and Geman (2000)), we can describe the dynamics of log-returns as

Y (t) = rt+

(
λc −

1

2

)
IV(t) + (λj − η)

(
Λ2 + δ2

)
N(t) +W (IV(t)) +

N(t)∑
i=1

Xi.

The major motivation of our work is that, exploiting the whole information from tick-by-

tick data, the risk factors driving the log-return dynamics are observable. In Section 3.1 we

describe the econometric procedure that enables us to measure the continuous component of

realized variance, CRV, on a daily scale. Furthermore, the proposed procedure enables us to

observe the number of jumps N(t) and their size and direction, Xi.

2.2 The model dynamics

Daily log-returns, yt, have the following dynamics

yt = r +

(
λc −

1

2

)
CRVt + (λj − η)

(
Λ2 + δ2

)
nt +

√
CRVtεt +

nt∑
i=1

Xt,i, (2.3)

where εt are i.i.d. with standard normal random variables. CRVt is the estimator of the

continuous component of integrated variance on day t, nt is the number of intra-day jumps at

day t and Xt,i are the jump sizes during day t, where i ∈ {1, . . . , nt}.

The continuous component of realized variance, CRVt, follows the LHARG dynamics intro-

duced by Majewski et al. (2015). CRVt+1 conditioned on information at day t is sampled from
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a non-centred gamma distribution

CRVt+1|Ft ∼ γ̄(κ,Θ(CRVt,Lt), θ) , (2.4)

with CRVt = (CRV0, . . . ,CRVt−1,CRVt), Lt =
(
`

(d)
0 , . . . , `

(d)
t−1, `

(d)
t

)
and

Θ(CRVt,Lt) = βdCRV
(d)
t + βwCRV

(w)
t + βmCRV

(m)
t + αd`

(d)
t + αw`

(w)
t + αm`

(m)
t . (2.5)

In the previous equation, the quantities

CRV
(d)
t = CRVt, `

(d)
t =

(
εt − γ

√
CRVt

)2 − 1− γ2CRVt,

CRV
(w)
t = 1

4

∑4
i=1 CRVt−i, `

(w)
t = 1

4

∑4
i=1

[(
εt−i − γ

√
CRVt−i

)2 − 1− γ2CRVt−i

]
,

CRV
(m)
t = 1

17

∑21
i=5 CRVt−i, `

(m)
t = 1

17

∑21
i=5

[(
εt−i − γ

√
CRVt−i

)2 − 1− γ2CRVt−i

]
,

correspond to the heterogeneous components associated with the short-term (daily), medium-

term (weekly), and long-term (monthly) volatility and leverage factors, on the left and right

columns respectively.

We model the jump component of daily log-return as a compound Poisson process with

i.i.d. normally distributed jumps

nt|ωt ∼ Poisson (ωt) and Xt,i ∼ N (Λ, δ2), (2.6)

where Λ ∈ R and δ ∈ R+ are parameters specifying the mean and standard deviation of the

jump size, respectively. The expected number of jumps depends on the time-varying intensity

ωt, whose dynamics is described by an auto-regressive process

ωt+1 = ω̄ + ξωt + ζnt , (2.7)

where ω̄, ξ, ζ are strictly positive parameters of the model. As follows from equation (2.7), the

10



jump intensity on day t+1 depends on the intensity ωt and on the number of intra-day jumps (nt)

occurred the day before. This structure allows an extreme event to increase locally the intensity

of the jump process in the following days. In the present setting, it is important to notice that

the shock nt is observable. This is similar in spirit to what has been proposed in Christoffersen

et al. (2015), where the jump intensity follows an autoregressive process of order one but shock

are represented by the jump component of the integrated daily volatility. In this way, the

intensity process is affected not only by the realized number of intra-day jumps on a given

day, but also by the square of their size. In our model, we disentangle the effect of realized

jump frequency from the realized jump size and direction, and only the former determines

the evolution of the intensity process. In this respect, our model mimics, in discrete time,

the continuous-time self-exciting dynamics associated with non-marked exponential processes

termed Hawkes processes, see Hawkes (1971); Daley and Vere-Jones (2003).

The model described by equations (2.3)-(2.7) has LHARG dynamics for the continuous

component of realized variance and Auto-Regressive Jump intensity. Let us stress once again

that all variables, apart from the innovation process εt, are observable. This property will

significantly simplify the estimation procedure in comparison to alternative models with latent

volatility and jump processes.

2.3 Statistical properties of the model

Firstly, let us observe that the conditionally expected daily return is given by

E [exp (yt+1) |CRVt+1, nt+1] = exp(r + λcCRVt+1 + λj
(
Λ2 + δ2

)
nt+1) , (2.8)

and if both equity risk premia are zero (λc = λj = 0), then, as for the continuous case, the

price process corrected by the risk-free rate is a martingale.

As we have observed in the previous section, the structure of the dynamics in (2.7) includes

the mechanism that increases the intensity of the jump process conditionally to the number of
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extreme events happened the day before. This translates into positive correlation between the

intensity and the number of jumps at the day before

Covt−1 (nt, ωt+1) = ζωt .

This mechanism introduces jump clustering in the model. Moreover, the covariance between

log-return and the next day jump intensity is given by

Covt−1 (yt, ωt+1) =
(
(λj − η)

(
Λ2 + δ2

)
+ Λ

)
ζωt,

=
(
λj
(
Λ2 + δ2

)
− 0.5δ2

)
ζωt .

(2.9)

By definition, the jump component of the market price of equity risk is non negative. If λj is

zero or sufficiently small, then the above covariation is expected to be negative. This means

that, on average, after a negative return the intensity is larger than after a positive return. Let

us define the jump variation as

JRVt
.
=

nt∑
i=1

|Xt,i|2. (2.10)

Then, as a consequence of (2.9) and for zero or small λj, the increase in jump variation is more

likely after a negative shock in log-returns rather than after a positive one. This mechanism

acts in a similar way to the leverage effect in the volatility modeling where the continuous

component of the variance determines the negative correlation between past log-returns and

future variances. Computing the formulae for the covariance between log-returns and variance

components in the LHARG-ARJ model, we obtain

Covt−1 (yt, JRVt+1) =
(
λj
(
Λ2 + δ2

)
− 0.5δ2

) (
Λ2 + δ2

)
ζωt,

Covt−1 (yt,CRVt+1) = −2θ2αdγ (δ + Θ(CRVt−1,Lt−1)) .
(2.11)

By construction, the continuous and jump components of realized variance are uncorrelated.

A great advantage of the LHARG-ARJ model is that it inherits the affine property from
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the LHARG class. Then, the conditional MGF takes an exponential-affine form, available in

closed-form through a set of recursive relations.

Proposition 1 (Moment Generating Function). The MGF of the log-return yt,T =
∑T−1

i=0 yt+i

for the LHARG-ARJ model conditioned on the information available at time t is of the form

EP [ezyt,T |Ft] = exp

(
at +

22∑
i=1

bt,iCRVt+1−i +
22∑
j=1

ct,j`t+1−j + dt+1 (ξωt + ζnt)

)
, (2.12)

where the coefficients at, bt,i for i = 1, . . . , 22, ct,j for j = 1, . . . , 22, and dt+1 satisfy the

recursive relations given in (A.2).

Proof: See Appendix A.

2.4 Risk-neutral dynamics

The standard problem of option pricing in incomplete markets is the specification of the stochas-

tic discount factor. The shape of the pricing kernel determines the form of the risk-neutral

measure. The latter then depends on the investor’s attitude to the risk associated with uncer-

tain future levels of returns, of variance, and possibility of large and sudden price variation.

In this study we perform the risk-neutralization of the objective measure introducing a four-

dimensional Esscher transform. This choice has three relevant advantages: It delivers a clear

financial interpretation of the parameters, the resulting dynamics corresponds to a LHARG-

ARJ process with risk-neutral parameters given by one-to-one mapping of the historical ones,

and, finally, it provides a semi-closed expression for the log-return MGF under the risk-neutral

measure.

We model the pricing kernel in terms of the Esscher transform

Mt−1,t =
e−νcCRVt−νjJRVt−µc

√
CRVtεt−µj

∑nt
i=1Xt,i

EP
[
e−νcCRVt−νjJRVt−µc

√
CRVtεt−µj

∑nt
i=1 Xt,i |Ft−1

] , (2.13)

with four parameters responsible for different risk premia. The value of νc and νj determines the
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level of variance risk premium. The former is associated to CRVt and, as it is also clear from the

decomposition of the drift term in the return equation (2.3), represents the compensation that

an investor requires from an investment with uncertain future level of the continuous component

of variance. The latter compensates for JRVt, i.e. the component of the integrated variance

attributed to the discontinuous part of the log-return process. The remaining two parameters,

µc and µj, determine the level of the equity risk premium. As before, the component µc
√

CRVtεt

remunerates the risk related to continuous directional changes in price, whereas the component

µj
∑nt

i=1Xt,i captures the risk related to abrupt and large directional price changes. It is worth

to comment that the pricing kernel is modelled in an apparently similar fashion in Christoffersen

et al. (2015) (please refer to equation (18) in their paper) . However, there are several relevant

differences which make non trivial a direct comparison between the two Esscher transforms. In

the present framework, the number of risk premia is four, while in Christoffersen et al. (2015)

it is equal to three. All the latter premia correspond to directional movements. Recalling the

notation of the paper, ν1,t and ν2,t compensate for two idiosyncratic exogenous shocks ε1,t and

ε2,t associated to the continuous component of the price process – the approach requires two

components to reproduce the leverage effect in a similar fashion to stochastic volatility models

– whereas ν3 remunerates large directional price changes. Stated differently, the pricing of the

uncertainty of future levels of volatility is not explicit but enters indirectly through the pricing

of all directional components. Finally, the premia are time-varying and to ensure the affinity of

the model under the Q measure the premium ν2,t depends deterministically on ν1,t and on the

latent process of the conditional volatility. This reduces effectively the number of premia to ν1,t

and ν3, and the number of free parameters to calibrate to two. In the LHARG-ARJ approach,

the no-arbitrage restrictions fix the level of the directional premia, while the non directional

ones, νc and νj, have to be calibrated on option quotes.

In order to play the role of the stochastic discount factor in our economy, the transform

(2.13) has to guarantee absence of arbitrage opportunity. The following result holds.

Proposition 2 (No-arbitrage restriction). If the dynamics of the underlying price is described
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by (2.3)-(2.7), then the Esscher transform (2.13) is a stochastic discount factor if and only if

the following conditions are satisfied

µc = λ and µj =
1

2
+

Λ + (λj − η) (Λ2 + δ2) (1 + 2νjδ
2)

δ2
. (2.14)

Proof: See Appendix B.

From relation (2.14) one can see that the no-arbitrage condition fixes the value of the

parameters µc and µj, while parameters νc and νj remain free and they have to be calibrated

on the option data. The estimation of the model parameters, from daily returns and realized

measures of volatility, combined with the calibration of the premia parametrising the arbitrage-

restricted pricing kernel allows the model to reconcile the time series properties of stock returns

with the empirical properties of option panels.

Performing the change of measure by means of the Esscher transform (2.13) provides the

risk-neutral dynamics which governs the return process. Remarkably, the risk-neutral log-

returns follow a LHARG-ARJ process, whose parameters, denoted with a star, are readily

obtained from the historical counterparts through a simple one-to-one mapping relation.

Proposition 3. Under the risk-neutral measure Q - corresponding to the SDF specification

given by (2.13) - the log-return dynamics for the LHARG-ARJ model is governed by equations

(2.3)-(2.7) with parameters λ∗, κ∗, θ∗, β∗d, β∗w, β∗m, α∗d, α
∗
w, α∗m, γ∗, Λ∗, δ∗, ω̄∗, ξ∗ and ζ∗. The

mapping among the starred and the physical parameters is provided in Appendix C (equations

(C.4) and (C.7)).

Proof: See Appendix C.

Given the dynamics under Q, the risk-neutral MGF readily follows as a straightforward

consequence of Proposition 1.

Corollary 4. Under Q, the MGF for the LHARG-ARJ model has the same form as in (2.12)

and (A.2) with parameters as in (C.4) and (C.7).
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As we detail in the next section, the existence of an analytic expression for the MGF under

the risk-neutral measure allows to perform the calibration of the variance risk premia with very

effective and reliable numerical methods based on the Fourier transform.

3 Model estimation

This section is dedicated to the estimation of parameters of the LHARG-ARJ model. Since the

Realized Variance estimator is directly built from observed High-Frequency (HF) returns, it

prevents the use of filtering procedure for determining the latent volatility process. Moreover,

we introduce the state-of-the-art models by Majewski et al. (2015) and Christoffersen et al.

(2015). They will be used as benchmark models for the LHARG-ARJ.

3.1 Return variation measurement and jump detection procedure

Our data set consists of HF returns of the S&P500 Futures Index from 1 July 1990 to 31

June 2011 provided by TickData. To build the series of Realized Variance we adopt the Two-

Scale method proposed by Zhang et al. (2005) which has been proven to give an estimator

(TSRVt) of the quadratic variation of log-return process unbiased and robust to the presence

of microstructure noise.

It is known that the RV series consistently accounts for the sum of the continuous and

discontinuous components of the log-return variation. For our purposes, we need to disentangle

the two contributions. We choose as a proxy for the continuous variation the Threshold Bipower

Variation (TBPVt) defined in Corsi et al. (2010). In order to detect if on a given day there

has been a jump, we employ the Threshold-z (Tz) test statistics (see equation 3.5 in Corsi

et al. (2010) for a corrected version of the test statistics). It is proved that under the null

hypothesis of no-jumps, the Tz statistics is distributed according as a standard normal random

variable. Hence, for a given significance level α, we can assess the statistically significance

of the daily jump component looking at the deviation of the Tz variable from the quantile
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of the standard normal, Φ1−α. If Tzt > Φ1−α, then we reject the null hypothesis. If there

is statistical evidence for a jump, we attribute the difference TSRVt − TBPVt to the jump

component, i.e. JRVt = ITzt>Φ1−α (TSRVt − TBPVt). Coherently, the continuous component

is obtained by setting CRVt = TSRVt for those days in which we do not reject the null, and

CRVt = TBPVt for the remaining days in which the test detects a significant jump. The

CRVt series is eventually cleaned removing the most extreme observations, seemingly due to

volatility jumps, employing a threshold-based jump detection method as suggested by Corsi

et al. (2013). Finally, since our estimator for the volatility is computed by using the returns

during the trading period (from opening to closing of the market), we rescale it to match the

unconditional mean of squared daily returns (close-to-close), including the contribution coming

from overnight returns.

The Threshold Bipower Variation allows to identify the days on which at least one jump

occurs, but does not give information about how many intraday jumps have actually happened.

In order to identify these events we follow the approach of Andersen et al. (2010), considering

the series of intraday 5-min returns. Once we find a day with at least one jump, we remove

the largest 5-min return from the daily sample, and substitute it with the average return for

that day. Then, we repeat the Tz test for the adjusted intraday series. If the test does not

reject the null, we conclude that only one jump has occurred. If the test rejects the null, the

procedure is repeated. At every run, we identify a new intraday jump. Finally, when the

null hypothesis is not rejected anymore, we are left with the series of intraday 5-min jump

returns. By means of this procedure, the time series of number of jumps per day, nt, and of

jump sizes, Xt,i, are recovered in a non parametric way. For a given day, if the observable

quantity
∑nt

i=1 |Xt,i|2 does not coincide with ITzt>Φ1−α (TSRVt − TBPVt), then Xt,i is scaled

to ensure the matching. Given the number and size of intra-day jumps, their contribution to

the total daily return is readily obtained. The daily jump-adjusted return series can then be

computed by simply subtracting
∑nt

i=1 Xt,i from the daily returns. A clear advantage of the non

parametric procedure by Andersen et al. (2010) is that both nt and Xi,t are made observable
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and can be directly used in the estimation of the model parameters via maximum likelihood.

As it will be explained in the next section, this is especially useful in the construction of the

likelihood function of JRVt and for the filtering of the latent intensity process ωt.

In Figure 1 we present the time series of log-returns of the S&P500 Futures Index from July 3

1990 to June 28 2011 with the realized variance computed by the Two-Scale method by Zhang

et al. (2005). On the same figure we also report the decomposition of the realized variance

into the continuous and jump components. On Figure 2 we plot the auto-correlation function

computed from the data divided in two sub-periods, one from July 3 1990 to June 28 2007 and

the second from July 2 2007 to June 28 2011. The first sample ends before the spreading of the

news which has later led to the sub-prime crisis, and indeed the sample mean of the Realized

Variance increases by a factor three from the first to the second period. Consistently with

well-established stylized facts, the auto-correlation of returns is not significant, whereas the

auto-correlations of realized variances are statistically significant for all considered lag orders

(from 1 to 60).

3.2 Maximum Likelihood Estimation

After the separation of the continuous and the discontinuous components of the dynamics,

we estimate the parameters under the physical measure of the LHARG-ARJ process using

the Maximum Likelihood Estimator. According to the model, the log-likelihood function is

given by the sum of one term related to the daily log-return process and two terms related

to the continuous and discontinuous components of the Realized Variance process. As can be

seen from equation (2.3) the jump-adjusted log-return ỹt = yt −
∑nt

i=1 Xt,i is distributed as

N
(
r +

(
λc − 1

2

)
CRVt + (λj − η) (Λ2 + δ2)nt,CRVt

)
conditionally to CRVt and nt. Its contri-

bution to the log-likelihood is expressed by the following quantity

Ly (λc, λj,Λ, δ) = −
T∑
t=1

[(
ỹt −

(
r +

(
λc − 1

2

)
CRVt + (λj − η) (Λ2 + δ2)nt

))2

2CRVt

+ log
(√

2πCRVt

)]
.
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As concerns the continuous component of the Realized Variance, it is modelled as a random

variable sampled from the non-central gamma distribution γ̄(κ,Θ(CRVt,Lt), θ). The corre-

sponding log-likelihood has the form

LCRV (λc, λj,Λ, δ, κ, θ, βd, βw, βm, αd, αw, αm, γ) = −
T∑
t=1

(
CRVt

θ
+ Θ (CRVt−1,Lt−1)

)

+
T∑
t=1

log

(
∞∑
k=1

(CRVt)
κ+k−1

θκ+kΓ (κ+ k)

Θ (CRVt−1,Lt−1)k

k!

)
.

The last log-likelihood term takes into account the jump component of the Realized Variance.

As defined in equation (2.10), conditionally to the number of observed intra-day jumps nt,

the jump variation is distributed as a non-central chi-square. Since the variable nt is Poisson

distributed, the log-likelihood is given by the following expression

LJRV (ω̄, ξ, ζ,Λ, δ) =
T∑
t=1

log

e−ωt ωntt
nt!

∞∑
m=0

e−
ntΛ

2

2δ2

(
ntΛ2

2δ2

)m
m!

(
∑nt

i=1 |Xt,i|2)
nt+2m

2
−1
e−

1
2δ2

∑nt
i=1 |Xt,i|

2

Γ
(
nt+2m

2

)
(2δ2)

nt+2m
2

 .

(3.1)

It is important to notice that ωt enters the expression (3.1) as a latent process. So the opti-

mization of the likelihood function relies on the filtering of ωt. Since ωt obeys equation (2.7),

at each step of the optimization the latent intensity is filtered in a recursive way as a function

of the observed nt and intensity parameters ω̄, ξ, and ζ.

Finally, the estimation of the parameters characterizing the LHARG-ARJ process is performed

via maximization of the whole log-likelihood function L = Ly + LCRV + LJRV.

In order to slightly reduce the dimensionality of the parameter space, we restrict two of

them by means of variance targeting. In this way we force the exact matching of the observed

sample mean of the Realized Variance continuous and jump components. As target parameters,

we consider κ and ω̄ and compute them using the following expressions for the unconditional
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mean of CRVt and JRVt, respectively

E [CRVt] =
θκ

1− θ

( ∑
i=d,w,m

βi

) ,

E [JRVt] =
ω̄

1− (ξ + ζ)

(
Λ2 + δ2

)
.

In Table 1 we present the estimated parameters of the LHARG-ARJ model. Since λj is

not significantly different from zero neither for the first period nor for the second, according

to equation (2.9) we have that log-returns are negatively correlated with the future jump

intensity. Moreover, both covariances in (2.11) are negative. Then, for the LHARG-ARJ

model the leverage effect is not only due to the continuous component of returns through the

mechanism introduced by Heston and Nandi (2000), but it is also determined by the impact of

the discontinuous part of the price process.

3.3 Benchmark models

To assess the performance of the LHARG-ARJ model, we use the LHARG model by Majewski

et al. (2015) and the BPJVM model introduced by Christoffersen et al. (2015) as benchmarks.

These represent the state-of-the-art for the class of models based on realized measure of volatil-

ities. The former accounts only for the diffusive component of asset price dynamics. The latter

is based on an approach incorporating a GARCH structure for the latent volatility and jump

intensity where bipower and jump variations play the role of idiosyncratic components. In-

deed, the BPJVM can be seen as an extension of the Realized GARCH model by Hansen et al.

(2012); Huang et al. (2017) which includes jumps and provides a closed-form exact expression

for option prices. On one side, the comparison with the LHARG model allows to evaluate the

impact of the inclusion of a jump component to the heterogeneous structure of volatility and

leverage of the gamma models. On the other side, benchmarking with the BPJVM, we con-

sider a competitor model of comparable complexity, that, however, differs from ours in several
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respects – a different construction of the observable quantities, their role within the dynamics,

the impact of conditional variance filtering, and the estimation/calibration procedure.

For the discussion of the LHARG model, we refer to Majewski et al. (2015). We provide

here a short review of the model by Christoffersen et al. (2015). The dynamics of log-returns

in BPJVM is as follows

yt = r +

(
λc −

1

2

)
hz,t + (λj − η)hy,t +

√
hz,tε1,t +

nt∑
i=0

Xt,i, (3.2)

where ε1,t ∼ N (0, 1) are i.i.d innovations and jumps’ sizes Xt,i are pairwise independent with

normal distribution N (θ, δ2). The number of jumps nt has Poisson distribution with intensity

hy,t−1. To obtain a relation similar to (2.8), η is set to exp (θ + 0.5δ2)− 1. The value of factor

hz,t corresponds to the expected value of Realized Bipower Variation on the following day,

while the value of factor hy,t corresponds to the expected value of realized jump variation on

the following day multiplied by θ2 +σ2. Both realized variations are observable. The dynamics

of hz,t and hy,t is given by

hz,t+1 = ωz − azσ +
(
bz + az − azσγ2

)
hz,t + azσ

(
ε2,t+1 − γ

√
hz,t

)2

,

hy,t+1 = ωy + ayhy,t + by

nt+1∑
i=0

|Xt+1,i|2 ,

where ε2,t ∼ N (0, 1) are i.i.d. and have correlation ρ with the diffusive return shock, ε1,t defined

in equation (3.2).

For the reader’s convenience, Table 2 summarizes the main properties of the LHARG-ARJ,

LHARG, and BPJVM models.

As a major difference with the procedure described by Christoffersen and co-authors, we

consider the estimation problem – based on QMLE, as in the original paper – separately from

calibration. First, we perform parameter estimation from historical time series. Then, risk

premia are calibrated minimizing the pricing errors computed by means of the analytic mapping
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of the parameters from the objective to the risk-neutral dynamics. It is well-known that the

joint estimation-calibration achieves a higher statistical efficiency. Indeed, it exploits in a single

step all information from daily and tick-by-tick return time series and option quotes. However,

we believe that keeping estimation separate from calibration represents an alternative valuable

approach. It allows to disentangle the different role played by the historical measure from the

forward-looking information implied by option quotes and to better understand the impact of

risk premia in shaping the pricing kernel. Tables 3 and 4 present the parameter values estimated

for the LHARG and BPJVM models for the 1990–2007 and 2007-2011 periods.

In Figure 3 we compare the persistence of the Realized Volatility components CRVt and

JRVt and the latent intensity ωt of the LHARG-ARJ model with that for the RBVt and

RJVt time series and the filtered hz,t and hy,t processes from Christoffersen et al. (2015),

before and during the financial crisis. We note that the auto-correlation of the observable

continuous component is very high and significant for both models and periods, and that

during the period before 2007 it is slightly more persistent for the LHARG-ARJ. However, in

Christoffersen et al. (2015) the role of the conditional variance of the continuous component

of returns is played by the filtered process hz,t while RBVt enters the observation equation.

So, the persistence of the CRVt has to be compared with the persistence of hz,t. The latter

is extremely high and close to the unit value. We will comment more on the consequences

of this level of persistence in the section dedicated to the option pricing exercise. Finally, we

observe that the auto-correlation of the observable jump component of the Realized Variance

is statistically significant and persistent for both models and periods. Comparing the jump

intensity processes, we conclude that they are both strongly persistent, with a slightly larger

value for the persistence of ωt during the crisis period.

To check our modeling assumptions, we perform some model miss-specification tests. Com-

ments refer to the entire period spanned by the available data, i.e. from 3 July, 1990 to 28 June,

2011. We compare the mean, variance, skewness and kurtosis of the idiosyncratic components

εt in the LHARG-ARJ model, with that of the benchmark model LHARG. As far as the former
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model is concerned, mean equals 0.09, variance 1.11, skewness 0.33, and excess kurtosis 0.81.

For LHARG we estimate 0.12, 1.11, 0.40, and 1.07, respectively. In both cases the Jarque-Bera

test rejects normality at 1% significance level. Thus, some mild inadequacies of both models

survive. Nonetheless, when moving to the ARJ version of the LHARG class, there is a sizable

decrease of skewness and excess kurtosis. To test for the presence of residual serial dependence

in the idiosyncratic component, Figure 4 shows the autocorrelation of different powers of εt

for lags ranging from zero to fifty. Moving clockwise, panels report the auto-correlation of εt,

ε2t , ε
3
t , and ε4t , respectively, and the 95% confidence band. As it clearly emerges, there is no

evidence of serial dependence. Finally, Figure 5 investigates the ability of the LHARG and

LHARG-ARJ models to forecast one-day-ahead realized variance. The model predicted vari-

ance – CRVt for LHARG and CRVt + JRVt for LHARG-ARJ – is on the horizonal axis. The

ex-post realized variance is on the vertical axis. The regression R2 is 40% for LHARG and

41% for LHARG-ARJ, with coefficients equal to 1.58 and 1.56, respectively. The two models

performs in a comparable way, with a slightly better performance of the LHARG-ARJ model.

4 Option pricing

Our dataset consists of Plain Vanilla options on S&P500 Index for each Wednesday from Jan-

uary 1, 1996 to June 28, 2011. We first apply a standard filter removing options with maturity

less than 10 days or more than 365 days, implied volatility larger than 70% and prices less

than 0.05$ (see Barone-Adesi et al. (2008), Corsi et al. (2013) and Majewski et al. (2015)).

Defining the moneyness as K/St, we do not consider options with moneyness larger than 1.2

and with moneyness smaller than 0.8. We term options as deep out-of-the-money if the mon-

eyness is between 0.8 ≤ m ≤ 0.9 or 1.1 < m ≤ 1.2, as out-of-the-money if 0.9 < m ≤ 0.98

or 1.02 < m ≤ 1.1, and as at-the-money if 0.98 < m ≤ 1.02. As far as the time to maturity

τ is concerned, we identify options as short maturity (τ ≤ 50 days), short-medium maturity

(50 < τ ≤ 90 days), long-medium maturity (90 < τ ≤ 160 days), and long maturity (τ > 160

days).
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4.1 Model calibration and pricing method

In order to calibrate the model under the risk-neutral measure, the values for risk premium

parameters (µc, µj, νc, νj) need to be specified. As a consequence of Proposition 2, µc and µj

are fixed by the no-arbitrage condition, while νc and νj remain undetermined parameters to be

calibrated on the option data.

For the calibration procedure, we adopt a method based on the unconditional minimization

of the distance between the market implied and the model implied volatility surface. For this

reason, we divide our dataset in different intervals of moneyness and maturity – as previously

described – obtaining a 5×4 moneyness-maturity grid obtaining a 20-point discrete representa-

tion of the implied volatility surface. For each subset, we compute the unconditional average of

the market implied volatilities. Then, we calculate the corresponding model implied volatility

and obtain the optimal values of (νc, νj) as

arg min
(νc,νj)

{fobj(νc, νj)} .

The objective function fobj(νc, νj) reads

fobj(νc, νj) =

√√√√ 5∑
i=1

4∑
j=1

(
IVmod

ij (νc, νj)− IVmkt
ij

)2
,

and represents the quadratic distance between the model implied volatility surface and the

market one, whose elements are IVmod
ij (νc, νj) and IVmkt

ij , respectively. In order to compute

the option prices – and associated implied volatilities – we adopt the COS numerical approach

by Fang and Oosterlee (2008). This method, based on Fourier-cosine expansions, effectively

evaluates the price of Plain Vanilla options from the characteristic function of log-returns.

To summarize the whole numerical procedure, we proceed in four steps. First, we estimate

the model parameters under the physical measure via MLE and obtain the values given in Table

1 for LHARG-ARJ model. Second, the premia νc and νj appearing in the pricing kernel are
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calibrated on the option dataset. Since neither λc nor λj are statistically significant, calibration

is performed by fixing their values to zero. The results are reported in Table 1, too. In the

third step, we switch from the physical to the martingale measure using Proposition 3. Finally,

we compute option prices for each Wednesday in our dataset employing the COS method. Due

to significant differences in the statistics of the time series of Realized Volatilities arising across

the financial crisis which started in the summer of 2007 and reached its peak in the fall of

2008, we divide our option dataset in two periods too: A pre-crisis period going from July,

1990 to June, 2007 and a crisis/post-crisis period from July, 2007 to June, 2011. We repeat the

procedure described above for the two periods, separately.

Concerning the BPJVM model, risk-neutralization is achieved following two distinct ap-

proaches. In a first case, we apply a three-dimensional Esscher transform with (χ, ν3) as free

parameters to be calibrated on option data. This is the approach adopted in Christoffersen

et al. (2015) and we refer to the paper for further details. A second different strategy, ensuring

a fair comparison between the BPJVM and our model, employs the pricing kernel (2.13). In

this case, the SDF depends on four risk premia but the no-arbitrage constraints, detailed in

appendix D, fix two of them. As a result, only (νc, νj) survive as independent risk premia to

be calibrated on market prices.

The risk premia panels in Tables 3 and 4 report the values of premia calibrated on options

for the periods 1996–2007 and 2007-2011. As for the LHARG-ARJ model, estimated values for

the coefficients λc, λz, and λy are not statistically significant. Then, calibration of the premia

is performed by fixing the value of all λ’s equal to zero.
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4.2 Pricing performances

The pricing performance is evaluated with the percentage Implied Volatility Root Mean Square

Error (RMSEIV ) introduced by Renault (1997) and computed as

RMSEIV =

√√√√ 1

N

N∑
i=1

(
IV mkt

i − IV mod
i

)2 × 100 ,

where N is the number of options, IV mkt and IV mod represent the market and model implied

volatilities, respectively. Table 5 shows that LHARG-ARJ improves the pricing performance

with respect to LHARG and BPJVM for both region of moneyness, before and after financial

crisis of 2008. The improvement ranges from 8% − 9% of relative RMSE with respect to

LHARG for the pre-crisis period, while it reduces to 2% for the crisis/post-crisis period. This

difference suggests that in the 2007-2008 period of financial distress option prices are more

influenced by the high level of the diffusive component – a so-called volatility burst – than by

the discontinuous component of price dynamics. From a refined comparison, we observe that

for options belonging to the per-crisis period, the best performance of the LHARG-ARJ model

concentrates on pricing contracts with maturity less than 50 days. The RMSE is up to 15%

smaller than the error obtained for the LHARG (see Table 6). These results confirm the well

established fact that the inclusion of a jump component is essential for the correct description

of the volatility surface implied by short-term options. Moving towards longer maturities, in

the ATM region performances are in favor of the LHARG dynamics, with the exception of

the longest maturities. When pricing deep-out-of-the-money and out-of-the-money options, on

average the LHARG-ARJ performs better. Again, these results conform to the intuition that

extreme regions of the moneyness, especially deep-out-of-the-money put, are more sensitive to

extreme price events. The table referring to the crisis/post-crisis period (Table 7) shows results

in line with the previous period. In this case, the performances are more balanced between the

two models. Again, this is a plausible consequence of the unprecedented high level of volatility.

This effect, evident from Figure 1 (left panel on the second row), tends to decrease the modeling
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advantage of the ARJ model.

As far as the comparison between the LHARG-ARJ and the BPJVM model is concerned, we

observe that the former globally performs better than the latter in both periods (see Table 5, left

column numbers). The best performance is for contracts with moneyness between 0.9 and 1.1

(around 24%) in the pre-crisis period. LHARG-ARJ implied volatilities are more accurate by a

factor of 0.81 considering a wider range of moneyness (0.8 < m < 1.2), and the gain in relative

error is of order 16% for the 2007 – 2011 period. The result for the central region of the volatility

surface confirms that the heterogeneous structure of the LHARG-ARJ is a parsimonious and

effective way to provide a good description of the ATM implied volatility dynamics. These

results are rooted on the pricing kernel employed by Christoffersen et al. (2015). To ensure a

fair comparison with the BPJVM and to decipher whether the best performance derives from

a better specification of the historical dynamics or has to be attributed to the different pricing

kernel, the right column in Table 5 (rows referring to the BPJVM model) reports the result

from a second comparison. In this case, we employ the pricing kernel (2.13). It can be readily

recognized that performances of the BPJVM improve. For the pre-crisis period, the relative

error diminished from 24% to 9% ATM, and from 19% to 6% when including deep-out-of-the-

money options. The improvement is also evident for the crisis/post-crisis period, although in

this case the relative gain is smaller. Nonetheless, in both cases the global performance is still

clearly in favor of the LHARG-ARJ model.

By commenting the details of Tables 8 and 9, we only refer to Panels C and D. These

correspond to pricing results based on the SDF (2.13). The qualitative picture agrees with

that of Panels A and B, but numerical results decrease the gap between the LHARG-ARJ

and BPJVM models. In the pre-crisis period, for short to moderate maturities the RMSE are

balanced between the two models. They more evidently favorite the LHARG-ARJ model when

moving to longer horizons. As clear from Tables 1 and 4, the persistence of the latent intensity

is comparable for both LHARG-ARJ and BPJVM models. It reads 0.994 for the LHARG-ARJ

and 0.986 for the BPJVM in the 1990 – 2007 period. For the 2007 – 2011 period, it rises to
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0.999 for the LHARG-ARJ and 0.998 for the BPJVM. Then, such mild difference cannot be

responsible for the sizable difference in the pricing performance between the two models in the

long horizon. Moreover, the contribution of the jump variation to the total quadratic variation,

measured as the ratio between the historical unconditional mean of JRV and the average sum

of JRV and CRV, amounts to 18% in the 1990 – 2007 period and to 9% in the 2007 – 2011

period. The unconditional level of CRV increases by nearly a factor three – passing from

6.62e-05 to 1.91e-04, while the unconditional level of JRV increases from 1.21e-05 to 1.74e-05.

Then, the difference in performance can reasonably be attributed to the substantial difference

in persistence of the continuous component of the conditional volatility between the two models.

While for the LHARG-ARJ model it ranges between 0.812 – 0.831, it saturates to 0.999 for

the BPJVM model. Even though the latter model tracks adequately well the short term of

the implied volatility, it systematically over-prices the long term of the volatility surface. The

LHARG-ARJ seems to be more flexible than the BPJVM in reproducing the term structure

of implied volatilities, especially at longer maturities. Moving to the crisis/post-crisis period,

the previous features are confirmed by the relative errors. However, the performance of the

BPJVM deteriorates in the short maturity region and for all deep-out-of-the-money options,

irrespectively of the maturity.

5 Conclusions

In this paper, we present a heterogeneous autoregressive model for the asset log-return dynamics

with observable volatility and jump component with dynamic intensity. We devise our proposal

with the purpose to describe the empirical properties of financial returns and volatilities, as long

memory, leverage effect, jumps, and jump clustering. We present the analytical characterisation

of the log-return moment generating function under both the physical and the risk-neutral

measure. For the change of measure, we adopt a flexible exponential affine pricing kernel.

It is designed to differentiate among directional and non-directional sources of financial risk,

and to separately compensate for them, introducing separate premia for the continuous and
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discontinuous equity risk, and the continuous and discontinuous variance components. Finally,

we detail an application to option pricing, and show the improvements of the novel approach.

The model is able to reproduce successfully the different features of the implied volatility surface

and to provide better performances when compared with state-of-the-art discrete time pricing

models based on Realized Volatility measures.
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Corsi, F., Pirino, D., Renò, R., 2010. Threshold bipower variation and the impact of jumps on

volatility forecasting. Journal of Econometrics 159 (2), 276 – 288.

Daley, D. J., Vere-Jones, D., 2003. An Introduction to the Theory of Point Processes Volume

I: Elementary Theory and Methods. Springer, Heidelberg.

Ding, X., Giesecke, K., Tomecek, P. I., 2009. Time-changed birth processes and multiname

credit derivatives. Operations Research 57 (4), 990–1005.

Fang, F., Oosterlee, C. W., 2008. A novel pricing method for european options based on Fourier-

Cosine series expansions. SIAM Journal on Scientific Computing 31, 826–848.

31



Fic̆ura, M., 2015. Modelling jump clustering in the four major foreign exchange rates using

high-frequency returns and cross-exciting jump processes. Procedia Economics and Finance

25, 208 – 219.

Gagliardini, P., Gouriéroux, C., Renault, E., 2011. Efficient derivative pricing by the extended

method of moments. Econometrica 79 (4), 1181–1232.

Gerber, H. U., Shiu, E. S., 1994. Option pricing by esscher transforms. Transactions of the

Society of Actuaries 46 (99), 140.

Gourieroux, C., Jasiak, J., 2006. Autoregressive gamma process. Journal of Forecasting 25,

129–152.

Hansen, P. R., Huang, Z., Shek, H. H., 2012. Realized garch: a joint model for returns and

realized measures of volatility. Journal of Applied Econometrics 27 (6), 877–906.

Hawkes, A. G., 1971. Spectra of some self-exciting and mutually exciting point processes.

Biometrika 58, 83–90.

Heston, S., Nandi, S., 2000. A closed-form GARCH option valuation model. Review Financial

Studies 13 (3), 585–625.

Huang, Z., Wang, T., Hansen, P. R., 2017. Option pricing with the realized garch model: An

analytical approximation approach. Journal of Futures Markets 37 (4), 328–358.

Lee, S. S., Mykland, P. A., 2008. Jumps in financial markets: A new nonparametric test and

jump dynamics. Review of Financial Studies 21 (6), 2535–2563.

Maheu, J., McCurdy, T., 2004. News arrival, jump dynamics and volatility components for

individual stock returns. Journal of Finance 59, 755–793.

Majewski, A. A., Bormetti, G., Corsi, F., 2015. Smile from the past: A general option pricing

framework with multiple volatility and leverage components. Journal of Econometrics 187 (2),

521–531.

32



Renault, E., 1997. Econometric models of option pricing errors. Econometric Society Mono-

graphs 28, 223–278.

Stentoft, L., 2008. Option pricing using realized volatility, working Paper at CREATES, Uni-

versity of Copenhagen.

Zhang, L., Aı̈t-Sahalia, Y., Mykland, P. A., 2005. A tale of two time scales: Determining

integrated volatility with noisy high frequency data. Journal of the American Statistical

Association 100, 1394–1411.

A Computation of the Moment Generating Function

As starting point, we recall that a LHARG process with zero mean leverage can be mapped

in a LHARG process with parabolic leverage as shown in Majewski et al. (2015). We rewrite

Θ(CRVt,Lt) in (2.5), as

Θ(CRVt,Lt) = d+
22∑
i=1

βiCRVt+1−i +
22∑
j=1

αj`t+1−j ,

with d = − (αd + αw + αm), βd,w,m = βod,w,m − γ2αd,w,m, where βod,w,m refer to the original au-

toregressive parameters for LHARG with zero mean leverage in (2.5), and `t =
(
εt − γ

√
CRVt

)2

is the parabolic leverage. We further define

βi =


βd for i = 1

βw/4 for 2 ≤ i ≤ 5

βm/17 for 6 ≤ i ≤ 22

and αj =


αd for j = 1

αw/4 for 2 ≤ j ≤ 5

αm/17 for 6 ≤ j ≤ 22

.
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Then we compute the one-step-forward MGF by applying the tower law of conditional expec-

tation

EP [ezyt+bCRVt+c`t |Ft−1

]
= EP

[
ez(r+(λc− 1

2
)CRVt+(λj−η)(Λ2+δ2)nt+

√
CRVtεt+

∑nt
i=1Xt,i)+bCRVt+c`t |Ft−1

]

= EP

ez(r+(λc− 1
2

)CRVt+(λj−η)(Λ2+δ2)nt+
∑nt
i=1 Xt,i)+bCRVt

× EP
[
ez
√

CRVtεt+c(εt−γ
√

CRVt)2|CRVt

]
|Ft−1

 .
Applying the following property of normally distributed random variable Z ∼ N (0, 1),

E
[
exp

(
x(Z + y)2

)]
= exp

(
−1

2
ln(1− 2x) +

xy2

1− 2x

)
,

we obtain

EP [ezyt+bCRVt+c`t |Ft−1

]
= EP

ez(r+(λc− 1
2

)CRVt+(λj−η)(Λ2+δ2)nt+
∑nt
i=1Xt,i)+bCRVt

× e−
1
2

ln(1−2c)+
z2

2 +γ2c−2cγz

1−2c
CRVt

|Ft−1

 . (A.1)

Since nt and Xt,i ∼ N (Λ, δ) are independent we have

EP
[
ez(λj−η)(Λ2+δ2)nt+z

∑nt
i=1 Xt,i|nt

]
= exp

((
z2δ2

2
+ Λz + (λj − η)

(
Λ2 + δ2

)
z

)
nt

)
.

Introducing

v(z) =
z2δ2

2
+ Λz + (λj − η)

(
Λ2 + δ2

)
z

and

x(z, b, c) = z

(
λc −

1

2

)
+ b+

z2

2
+ γ2c− 2cγz

1− 2c
,

we can rewrite (A.1) as

EP [ezyt+bCRVt+c`t |Ft−1

]
= EP

[
ezr−

1
2

ln(1−2c)+x(z,b,c)CRVt+v(z)nt|Ft−1

]
.
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Using the independence of the random variables CRVt and nt, the previous expression factorizes

as

EP [ezyt+bCRVt+c`t |Ft−1

]
= ezr−

1
2

ln(1−2c)EP [ex(z,b,c)CRVt |Ft−1

]
EP [ev(z)nt |Ft−1

]
.

To shorten the notation, in the remaining part of the paper we write x for x(z, b, c) and v for

v(z). Using equations (8)-(9) from Gourieroux and Jasiak (2006) we obtain

EP [exCRVt |Ft−1

]
= exp

(
−κW (x, θ) + V (x, θ)

(
d+

22∑
i=1

βiCRVc
t−i +

22∑
j=1

αj`t−j

))
,

where

V(x, θ) =
θx

1− θx
, W(x, θ) = ln(1− xθ).

Since nt has Poisson distribution with intensity ωt, we have

EP [evnt |Ft−1] = exp (ωt (ev − 1)) .

Collecting all previous results, an exponentially affine form for the physical MGF follows

EP [ezyt+bCRVt+c`t |Ft−1

]
= exp


zr − 1

2
ln(1− 2c)− κW (x, θ) + dV (x, θ)

+ V (x, θ)

(
22∑
i=1

βiCRVt−i +
22∑
j=1

αj`t−j

)

+ ωt (ev − 1)


where ωt is Ft−1-measurable.

The computation of the MGF for the log-return yt,T =
∑T

i=t yi between t and T involves
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the iterated use of the tower law of expectation

EP [ezyt,T |Ft] = EP [ezyt,T−1EP [ezyT |FT−1] |Ft
]

= EP
[
ezyt,T−1+aT−1+

∑22
i=1 bT−1,iCRVT−i+

∑22
j=1 cT−1,j`T−j+dT (ξωT−1+ζnT−1)|Ft

]
,

where the coefficients are defined as follows

aT−1 = zr − 1

2
ln(1− 2c)− κW (x(z, 0, 0), θ) + dV (x(z, 0, 0), θ) + dT ω̄,

bT−1,i = βiV (x(z, 0, 0), θ) ,

cT−1,j = αjV (x(z, 0, 0), θ) ,

dT = ev − 1 .

Moving a time step backward, we isolate all the random variables at time T − 1 and compute

the expectation conditioning to information up to T − 2,

EP [ezyt,T |Ft] = EP

e
zyt,T−2+aT−1+

∑22
i=2 bT−1,iCRVT−i+

∑22
j=2 cT−1,j`T−j+dT ξωT−1

× EP [ezyT−1+bT−1,1CRVT−1+cT−1,1`T−1+dT ζnT−1|FT−2

] |Ft


= EP
[
ezyt,T−2+aT−2+

∑22
i=1 bT−2,iCRVT−1−i+

∑22
j=1 cT−2,j`T−1−j+dT−1(ξωT−2+ζnT−2)|Ft

]
.

Iterating the reasoning, the final expression of the conditional moment generating function

reads

EP [ezyt,T |Ft] = exp

(
at +

22∑
i=1

bt,iCRVt+1−i +
22∑
j=1

ct,j`t+1−j + dt+1 (ξωt + ζnt)

)
,
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where the coefficients satisfy the following recursive relations

as = as+1 + zr − 1

2
ln(1− 2cs+1,1)− κW (xs+1, θ) + dV (xs+1, θ) + ds+1ω̄,

bs,i =

bs+1,i + βiV (xs+1, θ) for 1 ≤ i < 22,

βiV (xs+1, θ) for i = 22,

cs,j =

cs+1,j + αjV (xs+1, θ) for 1 ≤ j < 22,

αjV (xs+1, θ) for j = 22,

ds = ev(z)+ζds+1 − 1 + ξds+1,

(A.2)

with

xs+1 = z

(
λc −

1

2

)
+ bs+1,1 +

z2

2
+ γ2cs+1,1 − 2cs+1,1γz

1− 2cs+1,1

,

and terminal conditions dT = ev − 1 and aT = bT,i = cT,j = 0 for i = 1, . . . , p and j = 1, . . . , q.

B No-arbitrage condition

The no-arbitrage constraint

EP [Mt−1,te
yt |Ft−1] = er

for transform (2.13) reads

EP
[
eyt−νcCRVt−νjJRVt−µc

√
CRVtεt−µj

∑nt
i=1Xt,i |Ft−1

]
EP
[
er−νcCRVt−νjJRVt−µc

√
CRVtεt−µj

∑nt
i=1Xt,i |Ft−1

] = 1. (B.1)
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Firstly, we compute the denominator of the expression above

EP
[
er−νcCRVt−νjJRVt−µc

√
CRVtεt−µj

∑nt
i=1Xt,i |Ft−1

]
=

= EP
[
er−νcCRVtEP

[
e−µc

√
CRVtεt|CRVt

]
EP
[
e−νjJRVt−µj

∑nt
i=1 Xt,i|nt

]
|Ft−1

]

= EP

[
e
r+

(
ν2
2
2
−νc

)
CRVtEP

[
e−νj

∑nt
i=1X

2
t,i−µj

∑nt
i=1 Xt,i|nt

]
|Ft−1

]

= exp

(
r − κW (x̄, θ) + V (x̄, θ)

(
d+

22∑
i=1

βiCRVt−i +
22∑
j=1

αj`t−j

)
+ ωt (ev̄ − 1)

)

where

x̄ = −νc +
µ2
c

2
,

v̄ = −1

2
ln(1 + 2νjδ

2) +
(µj + 2Λνj)

2 δ2

2(1 + 2νjδ2)
− Λ(µj + νjΛ).

(B.2)

Similar computations for the numerator give

EP
[
e−νcCRVt−νjJRVt−µc

√
CRVtεt−µj

∑nt
i=1Xt,i+yt |Ft−1

]
=

= EP
[
e−νcCRVt−νjJRVt−µc

√
CRVtεt−µj

∑nt
i=1 Xt,i+r+(λc− 1

2)CRVt+(λj−η)(Λ2+δ2)nt+
√

CRVtεt+
∑nt
i=1Xt,i |Ft−1

]

= exp

(
r − κW (x̃, θ) + V (x̃, θ)

(
d+

22∑
i=1

βiCRVt−i +
22∑
j=1

αj`t−j

)
+ ωt

(
eṽ − 1

))

where Putting together numerator and denominator, the no-arbitrage condition (B.1) becomes

(V (x̃, θ)− V (x̄, θ))

(
d+

22∑
i=1

βiCRVt−i +
22∑
j=1

αj`t−j

)
+ωt

(
eṽ − ev̄

)
−κ (W (x̃, θ)−W (x̄, θ)) = 0
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In order to be satisfied, the above equation implies the following relations

W (x̃, θ)−W (x̄, θ) = 0

V (x̃, θ)− V (x̄, θ) = 0

eṽ − ev̄ = 0,

which are satisfied if x̃ = x̄ and ṽ = v̄. From x̃ = x̄, we have

µc = λc ,

and ṽ = v̄ implies

µj =
1

2
+

Λ + (λj − η) (Λ2 + δ2) (1 + 2νjδ
2)

δ2
.

C Mapping of parameters from P− to Q−measure

Preliminary, we derive the moment generating function of (yt,CRVt, `t) conditioned on Ft−1under

risk-neutral measure Q

EQ [ezyt+b∗CRVt+c∗`t |Ft−1

]
= EP [Mt−1,te

zyt+b∗CRVt+c∗`t |Ft−1

]
=

= EP

[
e−νcCRVt−νjJRVt−µc

√
CRVtεt−µj

∑nt
i=1Xt,i+zyt+b

∗CRVt+c∗`t

EP
[
e−νcCRVt−νjJRVt−µc

√
CRVtεt−µj

∑nt
i=1Xt,i |Ft−1

] |Ft−1

]
.

Proceeding as in Appendix A we obtain

EQ [ezyt+b∗CRVt+c∗`t |Ft−1

]
=

= exp


zr − 1

2
ln(1− 2c∗)− κ (W (x̂, θ)−W (x̄, θ)) + d (V (x̂, θ)− V (x̄, θ))

+ (V (x̂, θ)− V (x̄, θ))

(
22∑
i=1

βiCRVt−i +
22∑
j=1

αj`t−j

)

+ ωte
v̄
(
ev̂−v̄ − 1

)


,

(C.1)
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where x̄, v̄ are given in (B.2) and

x̂ = z

(
λc −

1

2

)
+ b∗ +

(z−µc)2

2
+ γ2c∗ − 2c∗γ (z − µc)

1− 2c∗
,

v̂ = −1

2
ln
(
1 + 2νjδ

2
)

+
(z − µj − 2Λνj)

2 δ2

2(1 + 2νjδ2)
+ Λ(z − µj − νjΛ) + z (λj − η)

(
Λ2 + δ2

)
.

A comparison of (C.1) with the equivalent expression under physical measure P yields the

following relations

κ (W (x̂, θ)−W (x̄, θ)) = κ∗W (x∗, θ∗)

d (V (x̂, θ)− V (x̄, θ)) = d∗V (x∗, θ∗)

αj (V (x̂, θ)− V (x̄, θ)) = α∗jV (x∗, θ∗)

βi (V (x̂, θ)− V (x̄, θ)) = β∗i V (x∗, θ∗)

ωte
v̄ = ω∗t

v̂ − v̄ = v∗,

(C.2)

where

x∗ = z

(
λ∗ − 1

2

)
+ b∗ +

z2

2
+ (γ∗)2c∗ − 2c∗γ∗z

1− 2c∗

v∗ =
z2(δ∗)2

2
+ zΛ∗ + z

(
λ∗j − η∗

) (
(Λ∗)2 + (δ∗)2) . (C.3)

We observe that the parameters Λ∗ and δ∗ account for the mapping of the mean and the stan-

dard deviation of the jump size which is modelled by a normal distribution N (Λ, δ2) under

physical measure and is transformed to N (Λ∗, (δ∗)2) under risk-neutral measure.

The first four relations in (C.2) together with no-arbitrage condition imply the following
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mapping of the non-centered gamma process parameters

β∗d = 1
1−θy∗βd , β∗w = 1

1−θy∗βw , β∗m = 1
1−θy∗βm ,

α∗d = 1
1−θy∗αd , α∗w = 1

1−θy∗αw , α∗m = 1
1−θy∗αm ,

θ∗ = 1
1−θy∗ θ , δ∗ = δ , γ∗ = γ + λc ,

d∗ = 1
1−θy∗d , λ∗c = 0,

(C.4)

where y∗ = −νc + λ2/2.

The last two relations in (C.2) are related to the mapping of the jump component. However,

to get the complete characterisation of jumps under the risk-neutral measure we need to derive

the MGF of sum of jumps over two days

EQ
[
ez(λ

∗
j−η∗)((Λ∗)2+(δ∗)2)(nt+1+nt+2)+z

∑t+2
i=t+1

∑n∗i
k=1X

∗
i,k |Ft

]

= EQ
[
ez(λ

∗
j−η∗)((Λ∗)2+(δ∗)2)nt+1+z

∑n∗t+1
j=1 X∗

t+1,jEQ
[
ez(λ

∗
j−η∗)((Λ∗)2+(δ∗)2)nt+2+z

∑n∗t+2
k=1 X∗

t+2,k |Ft+1

]
|Ft
]

= EQ
[
ez(λ

∗
j−η∗)((Λ∗)2+(δ∗)2)nt+1+z

∑n∗t+1
k=1 X∗

t+1,k+ω∗
t+2(ev

∗−1)|Ft
]

,

where v∗ is given in (C.3). Assuming that the dynamics of ω∗ under Q is given by equation (2.7),

we can write

EQ
[
ez(λ

∗
j−η∗)((Λ∗)2+(δ∗)2)(nt+1+nt+2)+z

∑t+2
i=t+1

∑n∗i
k=1X

∗
i,k |Ft

]

= EQ

exp

z (λ∗j − η∗) ((Λ∗)2 + (δ∗)2)nt+1 +
(
ω̄∗ + ξ∗ω∗t+1 + ζ∗n∗t+1

) (
ev

∗ − 1
)

+ z

n∗
t+1∑
k=1

X∗t+1,k

 |Ft
 .

Finally, recalling that n∗t+1 is Poisson and X∗t+1,j are i.i.d. normally distributed random vari-
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ables, we obtain

EQ
[
ez(λ

∗
j−η∗)((Λ∗)2+(δ∗)2)(nt+1+nt+2)+z

∑t+2
i=t+1

∑n∗i
k=1X

∗
i,k |Ft

]
= exp

((
ω̄∗ + ξ∗ω∗t+1

) (
ev

∗ − 1
)

+ ω∗t+1

(
eu

∗ − 1
))
,

(C.5)

where

u∗ =
z2(δ∗)2

2
+ zΛ∗ + z

(
λ∗j − η∗

)
)
(
(Λ∗)2 + (δ∗)2)+ ζ∗

(
ev

∗ − 1
)
.

We compare (C.5) with

EP

[
t+1∏
i=t

Mi,i+1ez(λj−η)(Λ2+δ2)ni+1+z
∑ni+1
k=1 Xi+1,k |Ft

]

= EP

 e−νcCRVt+2−µc
√

CRVt+2εt+2

EP
[
e−νcCRVt+2−µc

√
CRVt+2εt+2|Ft+1

] |Ft


× EP



Mt,t+1ez(λj−η)(Λ2+δ2)nt+1+z
∑nt+1
k=1 Xt+1,k

× EP

e
−νjJRVt+2−µj

∑nt+2
k=1 Xt+2,k+z(λj−η)(Λ2+δ2)nt+2+z

nt+2∑
k=1

Xt+2,k

EP
[
e−νjJRVt+2−µj

∑nt+2
k=1 Xt+2,k |Ft+1

] |Ft+1


|Ft



= EP

[
Mt,t+1 exp

(
z (λj − η)

(
Λ2 + δ2

)
nt+1 + z

nt+1∑
k=1

Xt+1,k + ωt+2 (ev − ev̄)

)
|Ft

]

where

v̄ = −1

2
ln(1 + 2νjδ

2) +
(µj + 2Λνj)

2 δ2

2(1 + 2νjδ2)
− Λ(µj + νjΛ),

v = −1

2
ln(1 + 2νjδ

2) +
(z − µj − 2Λνj)

2 δ2

2(1 + 2νjδ2)
+ Λ(z − µj − νjΛ) + z (λj − η)

(
Λ2 + δ2

)
.
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Plugging in the dynamics of the intensity ω provided by equation (2.7), we get

EP

[
t+1∏
i=t

Mi,i+1ez(λj−η)(Λ2+δ2)ni+1+z
∑ni+1
k=1 Xi+1,k |Ft

]
= exp

(
ev̄ (ω̄ + ξωt+1)

(
ev−v̄ − 1

)
+ ωt+1ev̄

(
eu−v̄ − 1

))
(C.6)

where

u = −1

2
ln(1+2νjδ

2)+
(z − µj − 2Λνj)

2 δ2

2(1 + 2νjδ2)
+Λ(z−µj−νjΛ)+z (λj − η)

(
Λ2 + δ2

)
+ζev̄

(
ev−v̄ − 1

)
.

Comparing (C.5) with (C.6) yields

ω̄ev̄
(
ev−v̄ − 1

)
= ω̄∗

(
ev

∗ − 1
)

ξωt+1e
v̄
(
ev−v̄ − 1

)
+ ωt+1e

v̄
(
eu−v̄ − 1

)
= ξ∗ω∗t+1

(
ev

∗ − 1
)

+ ω∗t+1

(
eu

∗ − 1
)
.

The above expressions yield the following relation between physical and risk-neutral jump

intensity

ω∗t+1 = ωt+1e
v̄ ,

and the following mapping of the parameters

Λ∗ = Λ− (µj + 2νjΛ)
δ2

(1 + 2νjδ2)
,

(δ∗)2 =
δ2

(1 + 2νjδ2)
,

λ∗j =
(λj − η) (Λ2 + δ2)

(Λ∗)2 + (δ∗)2 + η∗,

ω̄∗ = ev̄ω̄,

ξ∗ = ξ,

ζ∗ = ev̄ζ,

(C.7)

with η∗ =
Λ∗+ 1

2
(δ∗)2

(Λ∗)2+(δ∗)2 .
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D BPJVM risk-neutralization with a four-dimensional

SDF

D.1 No-arbitrage condition

We detail here the formal derivation of the no-arbitrage condition for the BPJVM model, when

the SDF (2.13) is employed. In order to ensure absence of arbitrage, the following condition

has to be satisfied

EP [Mt−1,te
yt |Ft−1] = er.

First, we compute the denominator of the SDF (2.13)

EP
[
e−νcRBVt−νjRJVt−µc

√
hz,t−1ε1,t−µj

∑nt
i=0Xt,i |Ft−1

]
,

by separating the continuous contribution given by

EP
[
e−νcσ(ε2,t−γ

√
hz,t−1)

2
−µc
√
hz,t−1ε1,t |Ft−1

]
= e

− 1
2

log(1+2νcσ)+

(
(µcρ−2νcσγ)2

2(1+2νcσ)
+ 1

2(1−ρ2)µ2
c−νcσγ2

)
hz,t−1

from the jump contribution corresponding to

EP
[
e−νj

∑nt
i=0X

2
t,i−µj

∑nt
i=0 Xt,i|Ft−1

]
=

exp


e− 1

2
log(1+2νjδ

2)−µjθ−νjθ2+
(µj+2νjθ)

2
δ2

2(1+2νjδ
2) − 1

hy,t−1

 .
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Collecting all terms, the following result holds

EP
[
e−νcRBVt−νjRJVt−µc

√
hz,t−1ε1,t−µj

∑nt
i=0Xt,i |Ft

]
=

exp



− 1

2
log(1 + 2νcσ) + νcσ +

(
(µcρ− 2νcσγ)2

2 (1 + 2νcσ)
+

1

2

(
1− ρ2

)
µ2
c − νc

)
hz,t−1

+

e− 1
2

log(1+2νjδ
2)−µjθ−νjθ2+

(µj+2νjθ)
2
δ2

2(1+2νjδ
2) − 1

hy,t−1


.

The numerator of the no-arbitrage condition can be expressed as

EP
[
e−νcRBVt−νjRJVt+r+(λc− 1

2)hz,t−1+(λj−eθ+
1
2 δ

2
+1)hy,t−1−(µc−1)

√
hz,t−1ε1,t−(µj−1)

∑nt
i=0Xt,i |Ft−1

]
,

which, neglecting for a moment the constant term er+(λc− 1
2)hz,t−1+(λj−eθ+

1
2 δ

2
+1)hy,t−1 , can be

computed by simply substituting µc → µc − 1 and µj → µj − 1 in the expression for the

denominator. After simple algebra, the no-arbitrage condition implies the following equality(
λc − µc

(
1− 2νcσρ

2

1 + 2νcσ

)
− νcσρ (ρ− 2γ)

1 + 2νcσ

)
hz,t−1

+
(
λj − eθ+

1
2
δ2

+ 1 + ev(µj−1,νj) − ev(µj ,νj)
)
hy,t−1 = 0

where

v(µ, νj) = −1

2
log(1 + 2νjδ

2)− µjθ − νjθ2 +
(µj + 2νjθ)

2 δ2

2 (1 + 2νjδ2)
.

This equation is equivalent to the two relations which follow

λc − µc
(

1− 2νcσρ
2

1 + 2νcσ

)
− νcσρ (ρ− 2γ)

1 + 2νcσ
= 0

λj − eθ+
1
2
δ2

+ 1 + ev(µj−1,νj) − ev(µj ,νj) = 0.
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The two relations determine the equity risk premia µc and µj as functions of νc and νj. The

latter two premia remain free parameters of the model to be calibrated on market option prices.

D.2 Risk-neutral MGF

For pricing purposes, we need to compute the MGF of the BPJVM

EQ [ezyt+1|Ft] = EP [Mt,t+1e
zyt+1|Ft] =

= EP

 e−νcRBVt+1−νjRJVt+1−µc
√
hz,tε1,t+1−µj

∑nt+1
i=0 Xt+1,i+zyt+1

EP
[
e−νcRBVt+1−νjRJVt+1−µc

√
hz,tε1,t+1−µj

∑nt+1
i=0 Xt+1,i|Ft

] |Ft
 =

= exp

C (z,−νc)− C (0,−νc) + (D (z,−µc,−νc)−D (0,−µc,−νc))hz,t

+ (F (z,−µj,−νj)−F (0,−µj,−νj))hy,t


= exp

(
ct + dthz,t + fthy,t

)
,

where the following quantities have been introduced

C (x, y) = rx− σy − 1

2
log (1− 2σy)

D (x, y, z) =

(
λc −

1

2

)
x+ z +

1

2

(
1− ρ2

)
(x− y)2 +

((x− y)ρ− 2σγz)2

2(1− 2σz)

F (x, y, z) = (λj − eθ+
1
2
δ2

+ 1)x+ e
− 1

2
log(1−2zδ2)+(x−y)θ+zθ2+

((x−y)+2zθ)2δ2

2(1−2zδ2) − 1 .
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Computing one step backward, we obtain

EP [Mt−1,te
zyt+ct+dthz,t+fthy,t|Ft−1

]
=

=
1

EP [e−νcRBVt−νjRJVt−µyt |Ft−1]
EP

e
−νcRBVt−νjRJVt−µc

√
hz,tε1,t+1−µj

∑nt
i=0 Xt,i+zyt×

ect+dt(ωz+bzhz,t−1+azRBVt)+ft(ωy+byhy,t−1+azRVJt)|Ft−1

 =

= exp



ct + ωzdt + ωyft + C (z, azdt − νc)− C (0,−νc)

+ (dtbz +D (z,−µc, azdt − νc)−D (0,−µc,−νc))hz,t−1

+ (ftby + F (z,−µj, ayft − νj)−F (0,−µj,−νj))hy,t−1


= exp

(
ct−1 + dt−1hz,t−1 + ft−1hy,t−1

)
.

The last equality allows to define the following backward recursive formulas for the coefficients

of the exponential affine risk-neutral MGF:

ct−1 = ct + ωzdt + ωyft + C (z, azdt − νc)− C (0,−νc)

dt−1 = dtbz +D (z,−µc, azdt − νc)−D (0,−µc,−νc)

ft−1 = ftby + F (z,−µj, ayft − νj)−F (0,−µj,−νj) .
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Figure 1: Daily returns and realized volatility time series for SP&500 Index Futures. Realized
Volatility is computed using the Two-Scale method by Zhang et al. (2005). The continuous
and the jump components are constructed following the procedure in Section 3. The sample
starts on 3 July, 1990 and ends on 28 June, 2011.
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Figure 2: Auto-correlations of daily returns and Realized Volatilities computed from two pe-
riods. The first sample (left column) starts on 3 July, 1990 and ends on 28 June, 2007. The
second sample (right column) starts on July 2 2007 and ends on June 28 2011.
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Figure 3: First row: Comparison among the auto-correlations of the Realized Volatility continu-
ous components CRVt and RBVt (see Christoffersen et al. (2015)), and of the latent conditional
volatility process hz,t. Second row: Comparison among the auto-correlations of the Realized
Volatility jump components JRVt and RJVt (see Christoffersen et al. (2015)), and of the latent
intensity processes ωt and hy,t.
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Figure 4: (Clockwise) Empirical autocorrelation of εt, ε
2
t , ε

3
t , and ε4t for the LHARG-ARJ model

and 95% confidence band for the period 3 July, 1990 – 28 June, 2011.
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Figure 5: Realized variance and predicted variance from LHARG model (left panel) and
LHARG-ARJ model (right panel). The sample starts on July 3, 1990 and ends on June 28,
2011.
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LHARG-ARJ

Parameter Data period 1990-2007 Data period 2007-2011

λc 1.3 (1.9) -2 (2)
λj 0.5 (1.6) 3 (10)
θ 8.7e-06 (5e-07) 2.6e-05 (2e-06)
κ 1.43 1.18
βd 4.2e+04 (4e+03) 1.9e+04 (3e+03)
βw 3.4e+04 (4e+03) 1.2e+04 (3e+03)
βm 1.7e+04 (3e+03) 9e+02 (1.5e+03)
αd 1.3e-01 (3e-02) 5.7e-02 (1.5e-02)
αw 1.1e-01 (2e-02) 6.7e-01 (1.8e-02)
αm 1.1e-01 (4e-02) 5e-03 (4e-02)
γ 3.5e+02 (6e+01) 4.2e+02 (9e+01)
ω̄ 2.9e-03 5.0e-04
ξ 9.7e-01 (1.0e-02) 9.80e-01 (1.9e-02)
ζ 2.4e-02 (7e-03) 2.0e-02 (1.5e-02)
Λ -4.4e-04 (1.6e-04) -1.5e-04 (4e-04)
δ 5.0e-03 (2e-04) 5.9e-03 (3e-04)

Risk premia
νc -8.11e+03 -1.29e+03
νj -8.28e+03 -2.39e+03

Log-likelihood
Ly 13908 2731
LCRV -22884 -6156
LJRV 5735 1637
Persistence CRVt 0.812 0.831
Persistence ωt 0.994 0.999

Table 1: Maximum likelihood estimates (standard errors in parenthesis) for LHARG-ARJ on
S&P500 Index for the two periods July 1990 – June 2007 and July 2007 – June 2011.



LHARG LHARG-ARJ BPJVM
Majewski et al. (2015) Christoffersen et al. (2015)

Observable conditional variance • •
Heterogeneous variance structure • •
Heterogeneous leverage structure • •
Jumps • •
Latent jump intensity with AR(1) dynamics • •

Table 2: Review of the main features of the LHARG-ARJ, LHARG, and BPJVM models.

LHARG

Parameter Data period 1990-2007 Data period 2007-2011

λc 3.8 (2.5) -1.6 (3.3)
θ 8.5e-06 (4e-07) 2.6e-05 (2e-06)
κ 1.37 1.16
βd 4.3e+04 (4e+03) 1.9e+04 (3e+03)
βw 3.6e+04 (4e+03) 1.2e+04 (3e+03)
βm 1.7e+04 (3e+03) 1.0e+03 (1.7e+03
αd 1.6e-01 (3e-02) 4e-02 (1e-02)
αw 1.0e-01 (2e-02) 5.3e-02 (1.9e-02)
αm 8e-03 (1.3e-02) 5e-03 (1.3e-02)
γ 3.0e+02 (5e+01) 4.7e+02 (1.1e+02)

Risk premium
νc -9.27e+03 -1.58e+03

Log-likelihood
Ly 13401 2634
LCRV -22866 -6160
Persistence CRVt 0.824 0.834

Table 3: Maximum likelihood estimates (standard errors in parenthesis) for LHARG on
S&P500 Index for the two periods July 1990 – June 2007 and July 2007 – June 2011.
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BPJVM

Parameter Data period 1990-2007 Data period 2007-2011

λz 1 (4) -6 (5)
λy 4e-05 (8e-05) 2.7e-04 (1.9e-04)
γ 1.44e+04 (1.7e+02) 1.45e+04 (3e+02)
ωz 2.48e-08 1.79e-09
ωy 4.23e-02 8.53e-02
σ 1.86e-07 (2e-09) 2.43e-07 (5e-09)
θ 1e-05 (5e-05) 1.6e-04 (1.2e-04)
δ 1.278e-03 (1.5e-05) 2.01e-03 (6e-05)
ρ 3.3e-01 (2e-02) 3e-01 (4e-02)
bz 6.50e-01 (3e-02) 6.1e-01 (5e-02)
by 9.51e-01 (1.2e-02) 9.09e-01 (1.7e-02)
az 3.5e-01 (3e-02) 3.9e-01 (4e-02)
ay 2.2e+04 (5e+03) 2.2e+04 (5e+03)

Risk premia
χ -5.16 νc -779 χ -2.01 νc -249
ν3 2.59 νj -6.25e+04 ν3 1.70 νj -2.02e+03

Quasi-log-likelihood 96343 21181
Persistence hz 0.999 0.999
Persistence hy 0.986 0.998

Table 4: Quasi maximum likelihood estimates (standard errors in parenthesis) for BPJVM on
S&P500 Index for the two periods July 1990 – June 2007 and July 2007 – June 2011.

RMSEIV

1996-2007 2007-2011

Model \ Moneyness 0.9 < m < 1.1 0.8 < m < 1.2 0.9 < m < 1.1 0.8 < m < 1.2
LHARG 5.61 7.00 6.24 7.84
LHARG-ARJ/LHARG 0.91 0.92 0.98 0.98
BPJVM 6.77 5.61 7.96 6.90 7.34 6.92 9.17 8.87
LHARG-ARJ/BPJVM 0.76 0.91 0.81 0.94 0.84 0.89 0.84 0.87

Table 5: Comparison of global option pricing performance on S&P500 Index options for models
LHARG-ARJ, LHARG and BPJVM during two periods: from 1996 to 2007 and from 2007 to
2011. Rows referring to the BPJVM model: (left column) pricing kernel as in Christoffersen
et al. (2015); (right column) pricing kernel as in equation (2.13).
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Maturity

Moneyness τ ≤ 50 50 < τ ≤ 90 90 < τ ≤ 160 160 < τ

Panel A LHARG Implied Volatility RMSE

0.8 ≤ m ≤ 0.9 15.60 8.81 6.05 5.03
0.9 < m ≤ 0.98 7.51 4.24 3.83 6.21
0.98 < m ≤ 1.02 4.16 3.56 4.11 7.17
1.02 < m ≤ 1.1 6.76 3.51 4.03 7.14
1.1 < m ≤ 1.2 22.76 6.18 3.24 6.01

Panel B LHARG-ARJ/LHARG Implied Volatility RMSE

0.8 ≤ m ≤ 0.9 0.94 0.90 0.92 0.92
0.9 < m ≤ 0.98 0.85 0.88 0.98 0.92
0.98 < m ≤ 1.02 0.85 1.09 1.08 0.94
1.02 < m ≤ 1.1 0.86 1.10 1.11 0.96
1.1 < m ≤ 1.2 0.93 0.86 1.05 0.99

Table 6: Detailed comparison of option pricing performance on S&P500 Index options for
models LHARG and LHARG-ARJ before the financial crisis from July 1996 to June 2007.
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Maturity

Moneyness τ ≤ 50 50 < τ ≤ 90 90 < τ ≤ 160 160 < τ

Panel A LHARG Implied Volatility RMSE

0.8 ≤ m ≤ 0.9 14.56 7.85 6.03 5.50
0.9 < m ≤ 0.98 7.72 5.44 5.56 5.74
0.98 < m ≤ 1.02 5.32 5.58 6.09 6.53
1.02 < m ≤ 1.1 5.96 6.26 6.78 7.05
1.1 < m ≤ 1.2 10.84 5.92 6.59 7.60

Panel B LHARG-ARJ/LHARG Implied Volatility RMSE

0.8 ≤ m ≤ 0.9 0.97 0.99 1.00 0.99
0.9 < m ≤ 0.98 0.93 1.00 0.99 0.96
0.98 < m ≤ 1.02 0.98 1.05 1.00 0.96
1.02 < m ≤ 1.1 1.02 1.08 1.03 0.99
1.1 < m ≤ 1.2 0.97 1.08 1.05 0.99

Table 7: Detailed comparison of option pricing performance on S&P500 Index options for
models LHARG and LHARG-ARJ during and after the financial crisis from July 2007 to June
2011.
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Maturity

Moneyness τ ≤ 50 50 < τ ≤ 90 90 < τ ≤ 160 160 < τ

Panel A BPJVM Implied Volatility RMSE

0.8 ≤ m ≤ 0.9 12.99 5.51 4.71 11.61
0.9 < m ≤ 0.98 6.33 4.01 4.83 11.18
0.98 < m ≤ 1.02 3.58 3.95 5.25 11.61
1.02 < m ≤ 1.1 5.69 4.94 6.78 14.21
1.1 < m ≤ 1.2 18.49 8.05 10.41 21.19

Panel B LHARG-ARJ/BPJVM Implied Volatility RMSE

0.8 ≤ m ≤ 0.9 1.01 1.15 0.95 0.41
0.9 < m ≤ 0.98 0.91 0.91 0.87 0.56
0.98 < m ≤ 1.02 1.00 1.09 0.99 0.62
1.02 < m ≤ 1.1 0.93 0.86 0.77 0.52
1.1 < m ≤ 1.2 1.00 0.45 0.42 0.30

Panel C BPJVM RMSE Implied Volatility RMSE

0.8 ≤ m ≤ 0.9 12.96 5.63 4.25 7.81
0.9 < m ≤ 0.98 6.22 3.82 4.09 7.75
0.98 < m ≤ 1.02 3.39 3.52 4.35 8.21
1.02 < m ≤ 1.1 5.55 4.52 5.74 10.23
1.1 < m ≤ 1.2 18.30 7.34 8.64 14.83

Panel D LHARG-ARJ/BPJVM Implied Volatility RMSE

0.8 ≤ m ≤ 0.9 1.02 1.13 1.05 0.61
0.9 < m ≤ 0.98 0.93 0.96 1.03 0.80
0.98 < m ≤ 1.02 1.05 1.22 1.19 0.88
1.02 < m ≤ 1.1 0.95 0.94 0.92 0.72
1.1 < m ≤ 1.2 1.00 0.50 0.51 0.43

Table 8: Detailed comparison of option pricing performance on S&P500 Index options for
models BPJVM and LHARG-ARJ before the financial crisis from July 1996 to June 2007.
Panels A and B: pricing kernel as in Christoffersen et al. (2015); Panels C and D: pricing kernel
as in equation (2.13).
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Maturity

Moneyness τ ≤ 50 50 < τ ≤ 90 90 < τ ≤ 160 160 < τ

Panel A BPJVM Implied Volatility RMSE

0.8 ≤ m ≤ 0.9 14.41 8.15 7.58 9.06
0.9 < m ≤ 0.98 8.06 7.05 7.53 9.20
0.98 < m ≤ 1.02 5.40 6.36 7.20 9.37
1.02 < m ≤ 1.1 5.33 6.64 7.89 12.46
1.1 < m ≤ 1.2 9.50 9.40 10.85 14.27

Panel B LHARG-ARJ/BPJVM Implied Volatility RMSE

0.8 ≤ m ≤ 0.9 0.87 0.79 0.79 0.56
0.9 < m ≤ 0.98 0.84 0.76 0.73 0.60
0.98 < m ≤ 1.02 1.00 1.07 0.87 0.67
1.02 < m ≤ 1.1 1.18 1.05 0.90 0.55
1.1 < m ≤ 1.2 0.97 0.72 0.69 0.53

Panel C BPJVM Implied Volatility RMSE

0.8 ≤ m ≤ 0.9 14.41 8.07 7.24 7.64
0.9 < m ≤ 0.98 8.00 6.75 6.87 7.62
0.98 < m ≤ 1.02 5.26 5.93 6.46 7.85
1.02 < m ≤ 1.1 5.26 6.34 7.31 10.89
1.1 < m ≤ 1.2 9.42 8.99 10.16 12.76

Panel D LHARG-ARJ/BPJVM Implied Volatility RMSE

0.8 ≤ m ≤ 0.9 0.88 0.80 0.83 0.66
0.9 < m ≤ 0.98 0.84 0.79 0.79 0.72
0.98 < m ≤ 1.02 1.03 1.02 0.97 0.81
1.02 < m ≤ 1.1 1.19 1.10 0.97 0.63
1.1 < m ≤ 1.2 0.98 0.75 0.73 0.60

Table 9: Detailed comparison of option pricing performance on S&P500 Index options for
models BPJVM and LHARG-ARJ during and after the financial crisis from July 2007 to June
2011. Panels A and B: pricing kernel as in Christoffersen et al. (2015); Panels C and D: pricing
kernel as in equation (2.13).
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