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Abstract

This note is commenting on Hasbrouck (2018). The paper investigates the problem of price discovery on

markets with trades recorded at sub-millisecond frequencies. The application of the popular information share

measure of Hasbrouck (1995) to such data faces several difficulties, as the underlying VECM would need a

huge number of lags to capture dynamics at different time-scales. The problem is handled by imposing a set of

restrictions on parameters inspired by the Heterogeneous Autoregressive model for realized volatility. We illustrate

some potential drawbacks of the information share measure adopted in the paper and propose a modelling strategy

aimed at dealing with such limitations. In particular, we introduce a structural multi-market model with a lagged

adjustment mechanism describing lagged absorption of information across markets. The advantages of the method

are shown in simulations.
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1 Motivation and main contributions

Modern financial markets are heavily driven by algorithms which operate at very short time scales. To allow for

such high speed strategies, new trading venues record quotes and trades up to the microsecond or nanosecond

precision. The econometric analysis of these ultra-high-frequency data is challenging, since models need to capture

both the fast dynamics of algorithms and the slower dynamics of human agents. In this high resolution framework,

Hasbrouck (2018) examines the traditional problem of determining the contribution of an individual market to the

price formation of homogeneous or closely-linked securities. The methodology is based on the pioneering work of

Hasbrouck (1995), who introduced the notion of Information Share (IS) and employed vector error correction models

(VECM) to investigate price discovery on fragmented markets.

The application of the methodology of Hasbrouck (1995) to data recorded at sub-millisecond frequencies faces

several difficulties. Apart from the standard issue of non-uniqueness of information share, for which only lower and

upper bounds are available, traditional VECM analysis requires a large number of lags to describe dynamics at

different time-scales and thus a huge number of parameters to be estimated.

The paper provides two main contributions to the market microstructure literature on price discovery at ultra-

high-frequencies. First, the problem of dealing with a large number of lags is handled by imposing a set of restrictions

on VECM coefficients inspired by the Heterogeneous Market Hypothesis of Muller et al. (1993) and the Heterogeneous

Autoregressive (HAR) model of Corsi (2009). These restrictions follow a step-function scheme, with coefficients being

equal on predetermined time-scales. The resulting VECM specification remains parsimonious in presence of many

lags (from 10 up to 106 in the applications reported in the paper) and provides a unified approach to modelling price

dynamics across a wide range of frequencies.

Second, the paper shows that increasing the resolution at which data are analyzed is essential to determine in which

market price discovery occurs. To illustrate this interesting result, three different empirical analysis are performed.

The first analysis studies the information content of the traditional source of market data, the consolidated tape,

and that of prices known to market participants who directly subscribe to feeds of individual exchanges. The second

analysis is related to price formation in listing and non-listing exchanges. Finally, the third investigates information

in quotes, lit trades and dark trades. The main advantage of the method is that IS bounds progressively shrink as

the resolution increases. At the time scale of one second, information shares are indeterminate. As the resolution

increases (up to 10 microseconds in the empirical application), a clearer picture emerges: (i) the information content

of direct subscribers is substantially larger than that available from the consolidated tape; (ii) listing exchanges are

slightly more informative than non-listing exchanges; (iii) quotes and lit trades are substantially more informative

than dark trades. Results from the impulse response function (IRF) analysis are also reported.

1.1 VECM with heterogeneous structure

In this section we briefly illustrate the information share measure introduced by Hasbrouck (1995) and the method-

ology adopted by Hasbrouck (2018) to deal with high resolution data. Let pt ∈ Rn be a vector of log-prices

related to a single security (e.g. transaction prices in n markets or bid and ask quotes in n/2 markets). The

fact that the prices in pt pertain the same security implies that they are cointegrated, meaning that they can-

not move “too far away” from each other. Let ιn denote an n-dimensional vector of ones. Formally, the vector

[p
(1)
t − p

(2)
t , p

(1)
t − p

(3)
t , . . . , p

(1)
t − p

(n)
t ]′ ∈ Rn−1 is covariance stationary and the dynamics of first differences of pt can
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be represented by the VECM model:

∆pt = αβ′pt−1 + φ1∆pt−1 + φ2∆pt−2 + · · ·+ φk∆pt−k + εt (1)

where Cov[εt] = Ω, α ∈ Rn×(n−1) is a loading matrix, β′ = [ιn−1,−In−1] is a matrix of cointegrated vectors

and φi ∈ Rn×n, i = 1, . . . , k are autoregressive matrix coefficients. The Engle-Granger representation theorem

implies that the VECM has both a vector moving average (VMA) and a common trend representation. The VMA

representation is given by:

∆pt = θ(L)εt (2)

where θ(L) =
∑∞

t=0 θiL
i is a polynomial lag operator. The common trend representation can be written as:

pt = p0 + Ξ

t∑
i=1

εi + Ξ∗εt (3)

Here the second term is a random walk component common to all prices that can be regarded as the efficient price

process. The last term is a stationary process describing deviations of prices observed on different markets from the

efficient price process. The matrix Ξ coincides with the sum of VMA coefficients:

Ξ =

∞∑
t=0

θi (4)

It can also be computed explicitly as (see e.g. Kilian and Lütkepohl 2017):

Ξ = β⊥

[
α′⊥

(
In −

k∑
i=1

φi

)
β⊥

]−1
α′⊥ (5)

where α⊥, β⊥ ∈ Rn denote the orthogonal complement1 of α and β, respectively. The particular structure of β

implies that β⊥ is proportional to ιn and thus the rows of Ξ are identical.

The information share of the i-th market was defined by Hasbrouck (1995) as the fraction of variance of the

random walk component in eq. (3) that is explained by the i-th market. If Ω is diagonal, the latter can be computed

as:

Si =
ξ2i Ωii

ξΩξ′
(6)

where ξ denotes the common row of Ξ and ξi is the i-th component of ξ. If Ω is not diagonal, one can write the

innovations of the VECM as:

εt = Czt (7)

where C is the Cholesky decomposition of Ω and zt are orthogonal innovations. Si can therefore be computed based

on zt. However, the allocation of the total variance among markets depends on the particular order with which they

appear on the price vector pt. Consequently, only lower and upper bounds of Si can be computed by performing the

VECM analysis for all possible permutations of variables.

When studying ultra-high-frequency data, the VECM model in eq. (1) should contain a number k of lags sufficient

to incorporate dynamics at different time-scales, from the microsecond resolution of algorithms up to the scales of

human agents. Accounting for this wide variety of scales would lead to a huge number of parameters to be estimated.

The solution adopted by Hasbrouck (2018) is to impose an HAR structure (Corsi 2009) on the VECM coefficients.

The heterogeneous VECM reads:

∆pt = αβ′pt−1 + φ(1)∆pt−1|t−k1
+ φ(2)∆pt−k1−1|t−k2

+ · · ·+ φ(d)∆pt−kd−1−1|t−kd
+ εt (8)

1Given a matrix A ∈ Rp×q , p ≥ q, the orthogonal complement A⊥ is any p× (p− q) matrix such that A′A⊥ = 0.
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where ∆pp|q =
∑q

i=p ∆pi. Here d denotes the number of time-scales and the ki’s, i = 1, . . . , d establish the range of

each time-scale. The k coefficients φs appearing in eq. (1) are constrained to be equal to φ(i) for s ∈ [t−ki−1−1, t−ki].

For instance, at the frequency of 10 millisecond, Hasbrouck (2018) sets d = 4, k1 = 1, k2 = 10, k3 = 100, k4 = 1000,

corresponding to time-scales of [0.01, 0.01], [0.02, 0.1], [0.11, 1], [1.01, 10] seconds. The VECM with heterogeneous

structure thus provides a unified framework to model price dynamics across a wide range of time-scales.

2 Potential limitations of the methodology

The application of the VECM methodology to data recorded at sub-millisecond frequencies faces several difficulties.

First, as underlined by the author, at these frequencies trades are highly sparse and a lot of zero returns are produced

by previous-tick interpolation. A consequence of zero returns is that high-frequency prices strongly deviate from the

standard semimartingale assumption (Bandi et al. 2017). Neglecting this essential feature of data can lead to several

forms of distortions. For instance, zero-returns are the main determinant of the Epps effect (Epps 1979), i.e. the

downward bias of sample covariances as the sampling frequency increases (see e.g. Hayashi and Yoshida 2005 and

Buccheri et al. 2018b). Due to the high level of sparsity, the VECM is clearly misspecified and OLS estimates are

potentially biased.

Second, market microstructure effects, which are relevant at ultra-high frequencies, are not included in the VECM

specification. This leads to a classical error-in-variables model and thus constitutes an additional source of bias for

OLS estimates. Nguenang (2016) and Dias et al. (2018) discussed different methods to account for microstructure

noise on information share measures. It would be interesting examining the impact of both sparsity and measurement

errors on OLS estimates, in order to exclude that the observed shrinkage of IS bounds is not due to spurious factors.

In this section we show that, even in absence of sparsity and microstructure noise, the information share measure

of Hasbrouck (1995) can be subject to other potential limitations. The possibility of retaining a parsimonious VECM

specification at high resolution is one of the main contributions of the paper. The matrix coefficients φ(i), i = 1, . . . , d,

in the heterogeneous VECM capture price dynamics on a wide range of time-scales and can easily be estimated by

OLS. However, they do not enter directly in the expression of information shares. This is shown by noticing that the

term:

α′⊥

(
In −

k∑
i=1

φi

)
β⊥ (9)

appearing in eq. (5) is scalar and thus it cancels out when taking the ratio in eq. (6). Thus, information share

depends on the loading parameters α, on the covariance matrix Ω of the efficient price innovations but not on VECM

coefficients φ(i). This implies that potentially relevant dynamic features captured by the long lag structure are not

reflected on information shares.

Autoregressive coefficients play a relevant role in determining the dynamics of the VECM process. Markets with

same loading parameters in α and same variances in Ω can behave very differently if a lag structure exists. Let us

consider a bivariate system of two markets obeying the VECM process in eq. (1) and, for simplicity, let us assume

k = 1, i.e. that only one lag exists. We set VECM parameters as:

α =

0.1

0.1

 , Ω =

0.1 0

0 0.1

 , φ1 =

−0.6 −0.8

0.4 0.1

 (10)

We generate T = 1000 observations of this VECM model. Figure 1 shows the paths of the two markets and their

common trend in the subsample comprising the first 200 observations. While the second market moves closely to
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Figure 1: Simulated paths of a bivariate VECM process with one lag and the associated common trend. The

coefficient matrix φ1 induces a significant delay on the dynamic of the first market.

the common trend, the first market exhibits a significant delay. The second market is clearly more informative, as

it quickly incorporates new information. However, as indicated by eq. (5) and (6), information share is the same in

the two markets, since they have identical loading parameters and variances. Indeed, replacing α and Ω with OLS

estimates, eq. (6) gives S1 = 0.503, S2 = 0.496. Note that the two information shares are uniquely defined, as Ω is

diagonal. Due to the fact that Si does not depend on φ1, we would find the same result for any choice of φ1. Even

adding further lags φ2, φ3, . . . ,φk would still provide S1 = S2, as their effect would cancel out when computing Si.

Yet, the new lags can further affect the dynamics of the two markets, determining e.g. a longer delay in the first

market or delays in both markets.

In some specific cases, information shares can lead to other counterintuitive conclusions. From eq. (5) and (6),

note that Si depends negatively on α, meaning that markets with small adjustments to the common trend are more

informative. At the same time, Si depends positively on the diagonal elements of Ω, meaning that markets with

larger variance are more informative. However, the dependence of Si on these two factors is such that a fast adapting

market with a small variance can be as informative as a slowly adapting market with a large variance. In order to

illustrate this effect, consider a bivariate VECM model with no lags. The elements of α, Ω are set as:

α =

0.01

0.1

 , Ω =

0.1 0

0 10

 (11)

Parameters with different magnitudes are intentionally chosen with the aim of emphasizing the effect. As in the

previous example, we generate T = 1000 observations of the VECM and report in fig. 2 the subsample comprising

the first 200 observations. The first market has a smaller loading parameter and thus it rapidly adjusts to the common

trend. The second market is slower but has a much larger variance. After estimating the VECM, we find S1 = 0.526,

S2 = 0.473, implying that the two markets have almost the same information content. However, one would expect

the first market being definitely more informative than the second. Note that nothing prevents increasing further

the variance of the second market to have S2 > S1.
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Figure 2: Simulated paths of a bivariate VECM process with no lags and the associated common trend. The second

market has a significantly larger variance but same information share as the first market.

3 A multi-market lagged adjustment model

In this section we propose a method to deal with the difficulties underlined above. As in De Jong and Schotman (2010),

our information share measure is based on a structural model that can be cast in a state-space representation. In

the structural model, prices in different markets deviate from the efficient martingale process because of two factors:

(i) market microstructure effects, (ii) lagged absorption of information across markets. The latter is modeled by

extending to a multivariate framework the lagged adjustment mechanism of Hasbrouck and Ho (1987). Information

shares depend explicitly on lagged adjustments matrices and therefore account for lead-lag effects among markets.

Sparse trades arising at high frequencies can be handled as a typical missing values problem in the state-space

representation. We therefore avoid the introduction of artificial zero returns, which are a potential source of bias.

3.1 Model

Let us assume that the intraday dynamics of an asset log-price are driven by an efficient process p∗t evolving over

time as a random walk:

p∗t+1 = p∗t + ωt+1, Var[ωt] = σ2 (12)

Let Yt ∈ Rn be observations of the asset log-price on n different markets. We write Yt as:

Yt = Pt + εt, Cov[εt] = Σ (13)

where Pt is an “adjusted” price process and εt is a white noise describing market microstructure effects. The

adjusted price reflects lagged absorption of information across different markets. For instance, one market can react

very quickly to new information and thus the price observed in that market adjusts almost instantaneously. In

contrast, if a market reacts slowly, the adjustment process is delayed and the information is absorbed with a certain

lag.

6



In order to incorporate such mechanism into our microstructure model, we introduce a multivariate generalization

of the “lagged price adjustment” model of Hasbrouck and Ho (1987). We write:

Pt+1 = Pt + Ψ(ιnp
∗
t+1 − Pt) (14)

where Ψ ∈ Rn×n is a lagged adjustment matrix. In order to grasp the intuition behind eq. (14), let us assume

that Ψ = In, i.e. Ψ is equal to the n-dimensional identity matrix. In this particular case, eq. (14) reduces to

Pt+1 = ιnp
∗
t+1, meaning that the price instantaneously adjusts to new information in all the n markets. This is the

case of a “perfect” market, i.e. a market without frictions where the flow of information immediately reflects into

prices. Assume now that the lagged adjustment matrix is diagonal, but different from the identity matrix. In this

case, the adjustment process is not instantaneous, since prices adjust with a finite speed depending on the diagonal

elements of Ψ. Note that the adjustment processes in different markets are independent, meaning that the price in

one market does not affect the price in a different market. Finally, assume that Ψ has nonzero off-diagonal elements.

As before, the adjustment process is not instantaneous and the speed of adjustment of the price in one market

depends on the elements on the corresponding row of Ψ. However, the adjustment processes are not independent,

since the level of the price in one market can affect the price in a different market and the strength of such lead-lag

effects is characterized by the off-diagonal elements of Ψ.

This structural model shares some similarities with that of De Jong and Schotman (2010). The main difference

is that we introduce the lagged adjustment mechanism, which allows to describe lagged absorption of information

across different markets. The proposed model belongs to the class of “Multi-Asset Lagged Adjustment” (MLA)

models introduced by Buccheri et al. (2018a). However, while they considered the case of several assets traded in the

same market, we consider a different problem, namely the case of one asset traded on several markets. Compared to

a general MLA model, here prices are constrained to move “not too far” from their common trend, represented by

the unobserved efficient price p∗t .

In this structural representation, one can easily characterize the main determinants of price discovery. We will

say that one market is more informative than another if the price in that market is “closer” to the common trend.

Deviations from the latter are due to microstructure effects, described by the covariance matrix Σ, and to the lagged

adjustment mechanism, characterized by the matrix Ψ. As such, one market is informative if microstructure effects

are small and if it adjusts rapidly to new information. In Section 3.2, we will formalize this intuitive notion through

a measure of information share depending explicitly on both Σ and Ψ.

Note that eq. (12), (14) imply:

∆Pt+1 = (In −Ψ)∆Pt + Ψιnωt+1 (15)

where ∆Pt+1 = Pt+1 − Pt are log-returns. From this VAR(1) representation, it is evident that the returns of the

adjusted prices are driven by a common innovation, coinciding with that of the efficient price. Stability requires that

all the eigenvalues of In −Ψ lie inside the unit circle. As shown in Appendix A, the model

Yt = Pt + εt (16)

∆Pt+1 = (In −Ψ)∆Pt + Ψιnωt+1 (17)

has a linear state-space representation. It can thus be estimated through quasi-maximum likelihood using the Kalman

filter. This estimation method is particularly convenient when dealing with sparse high-frequency data, since the

Kalman filter can handle with missing observations. We can therefore treat sparsity and asynchronicity as a typical

7



missing value problem in linear-Gaussian state-space models, in a similar fashion to Corsi et al. (2015). Note that

adding further lags in the transitions equation (17) is possible at the expense of increasing the dimensionality of the

matrices appearing in the state-space representation in Appendix A.

3.2 Price discovery

In order to define a measure of information share in our structural model, we follow a logic similar to that of De

Jong and Schotman (2010). Let us consider the observed price innovations (computed with respect to the efficient

price):

Vt = Yt − ιnp∗t−1 (18)

In Appendix B, we prove the following:

Lemma 1. If all the eigenvalues of (In − Ψ) lie inside the unit circle, the observed price innovation Vt has the

following Wold representation:

Vt = −
∞∑
i=2

(In −Ψ)iιnωt−i+1 + Ψιnωt + εt

The main difference with the expression of Vt appearing in De Jong and Schotman (2010) is the presence of the

series
∑∞

i=2(In −Ψ)iιnωt−i+1 and the coefficient Ψ multiplying the efficient price innovations ωt. They arise as a

consequence of the lagged adjustment mechanism introduced through eq. (14). The unconditional covariance of Vt

is given by:

Υ = Cov[Vt] = σ2
∞∑
i=2

(In −Ψ)iιnι
′
n(In −Ψ)i′ + σ2Ψιnι

′
nΨ′ + Σ (19)

We now consider the linear regression of Vt onto the innovations of the efficient price:

ωt = Γ′Vt + ζt (20)

where Γ ∈ Rn is a vector of coefficients given by:

Γ = Υ−1Cov[Vt, ωt] = Υ−1Ψιnσ
2 (21)

The R2 of this regression quantifies the fraction of variance of the efficient log-price process p∗t explained by the n

observed log-prices. It can be written as:

R2 =
Γ′ΥΓ

σ2
= Γ′Ψιn (22)

Setting Ψιn = γ, we see that the R2 can be decomposed as the sum of n terms:

R2 = Γ′γ =

n∑
i=1

Γiγi (23)

In a similar fashion as De Jong and Schotman (2010), we define the information share of the i-th market as Si = Γiγi.

Each of these terms quantifies the contribution of the i-th market to the explained variance of the efficient price

process. Note that Si depends explicitly on both Σ, which is related to microstructure noise, and on Ψ, which

describes the lagged adjustment mechanism.

Figure (3) shows the case where one market is largely affected by microstructure noise and no lagged adjustments

are present. Parameters are set as:

Σ =

1 0

0 0.01

 (24)
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Figure 3: Simulated paths of a bivariate structural model with no lagged adjustment. The price observed in the

second market is affected by large measurement errors.

and Ψ = I2, σ2 = 0.1. The information shares computed through the structural model are S1 = 0.009 and S2 = 0.900,

consistently with the fact that the price in the second market is closer to the efficient price process. We then fit

a VECM model with one lag. Hasbrouck’s information share bounds are S1 = [0.010, 0.180], S2 = [0.819, 0.989].

Note that bounds are wide even in presence of a diagonal Σ. Indeed, the latter represents the measurement noise

covariance matrix in the structural model and is not related to the covariance matrix Ω of the VECM innovations.

We now consider a case with a lagged adjustment mechanism. The variance of the efficient price innovations is set

as before while the noise covariance matrix is chosen as Σ = 1×10−3I2. This means that the effect of microstructure

noise is similar in the two markets and is weak compared to efficient price innovations. The lagged adjustment matrix

is chosen as:

Ψ =

0.3 0

0 1

 (25)

As shown in figure 4, the price in the first market follows the common trend with a lag induced by the coefficient

0.3. The price in the second market has instead no lag, and stays close to the efficient price. The information shares

computed through the structural model are S1 = 0.001 and S2 = 0.988. Hasbrouck’s information share bounds are

instead very wide: S1 = [0.001, 0.909] and S2 = [0.090, 0.998] and hardly allow to distinguish the most informative

market. This is mainly due to the fact that the estimated covariance Ω12 = 0.0288(0.003) is statistically different

from zero. We conclude that the proposed information share measure consistently accounts for microstructure effects

and lagged adjustment, which are the two determinants of market informativeness in our structural model.

4 Conclusions

Hasbrouck (2018) proposes an interesting extension of the traditional VECM approach to deal with data recorded

at sub-millisecond frequencies. His approach retains a parsimonious VECM specification in presence of many lags,

allowing to model dynamics across a wide range of time-scales. Empirical results show that a clearer description of

9



0 50 100 150 200

-7

-6

-5

-4

-3

-2

-1

0

1

2

3

Common trend

Mkt 1

Mkt 2

Figure 4: Simulated paths of a bivariate structural model with lagged adjustment. Measurement errors are small in

both markets.

the price formation mechanism emerges as the resolution increases. However, the standard information share measure

can suffer from potential limitations, especially when many lags are present in the underlying VECM model. We

illustrated such limitations and proposed a structural model of price formation characterized by a lagged adjustment

mechanism, meaning that markets can have a lag with respect to the efficient price process. This structural model

includes microstructure effects and has a linear-Gaussian state-space representation. One of the advantages is that

sparse data can be handled as missing values in the state-space representation. Finally, we introduced an information

share measure that consistently accounts for both lagged adjustment and microstructure effects. The results obtained

in simulations are promising and show the ability of the proposed measure to discover the most informative market.
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Appendix

A State-space representation

Let us introduce the vector Xt = [P ′t , P
′
t−1]′ ∈ R2n and the matrix Z = [In,0n]′. We can re-write model (16), (17)

as:

Yt = ZXt + εt, Cov[εt] = Σ (A.1)

Xt+1 = TXt + Rηt+1, Cov[ηt] = Q (A.2)

where

T =

2In −Ψ −In + Ψ

In 0n


and

R =

Ψ 0n

0n 0n

 , Q =

σ2ιnι
′
n 0n

0n 0n


Under the additional assumption that εt, ηt are normal, model (A.1), (A.2) is a linear Gaussian state-space repre-

sentation and can be estimated as described by Harvey (1991) and Durbin and Koopman (2012).

B Proof of Lemma 1

We first prove that, for i ≥ 1:

Pt−i − ιnp∗t−i = (In −Ψ)(Pt−i−1 − ιnp∗t−i−1 − ιnωt−i) (A.3)

Indeed we have:

Pt−i − ιnp∗t−i = Pt−i−1 + Ψ(ιnp
∗
t−i − Pt−i−1)− ιnp∗t−i−1 − ιnωt−i

= (In −Ψ)Pt−i−1 + Ψιnp
∗
t−1 − ιnp∗t−i−1 − ιnωt−i

= (In −Ψ)Pt−i−1 + Ψιn(p∗t−i−1 + ωt−i)− ιnp∗t−i−1 − ιnωt−i

= (In −Ψ)(Pt−i−1 − ιnp∗t−i−1 − ιnωt−i)

We now compute Vt:

Vt = Yt − ιnp∗t−1

= Pt + εt − ιnp∗t−1

= Pt−1 + Ψ(ιnp
∗
t − Pt−1)− ιnp∗t−1 + εt

= (In −Ψ)Pt−1 + Ψιn(p∗t−1 + ωt)− ιnp∗t−1 + εt

= (In −Ψ)(Pt−1 − ιnp∗t−1) + Ψιnωt + εt

Applying now the result in eq. (A.3), we have:

Vt = (In −Ψ)[(In −Ψ)(Pt−2 − ιnp∗t−2 − ιnωt−1] + Ψιnωt + εt

= (In −Ψ)2(Pt−2 − ιnp∗t−2)− (In −Ψ)2ιnωt−1 + Ψιnωt + εt

12



which coincides with the expression in Lemma 1 for k = 2. Applying recursively eq. (A.3), one obtains:

Vt = (In −Ψ)k(Pt−k − ιnp∗t−k)−
k∑

i=2

(In −Ψ)iιnωt−i+1 + Ψιnωt + εt

Provided that all the eigenvalues of (In−Ψ) lie inside the unit circle, the above sum converges in mean square error

and in the limit k →∞ we can write:

Vt = −
∞∑
i=2

(In −Ψ)iιnωt−i+1 + Ψιnωt + εt

Q.E.D.
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