

City, University of London Institutional Repository

Citation: Karakostas, B. & Katsoulakos, T. (2013). A DSL For Logistics Clouds. Paper

presented at the The Fourth International Conference on Cloud Computing, GRIDs, and
Virtualization, 27 May - 01 June 2013, Valencia, Spain.

This is the unspecified version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/2316/

Link to published version:

Copyright: City Research Online aims to make research outputs of City,

University of London available to a wider audience. Copyright and Moral Rights

remain with the author(s) and/or copyright holders. URLs from City Research

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,

educational, or not-for-profit purposes without prior permission or charge.

Provided that the authors, title and full bibliographic details are credited, a

hyperlink and/or URL is given for the original metadata page and the content is

not changed in any way.

City Research Online

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

A DSL For Logistics Clouds

Bill Karakostas

School of Informatics, City University London

Northampton Square

London, UK

billk@soi.city.ac.uk

Takis Katsoulakos

Inlecom Ltd

Knowledge Dock Business Centre, 4-6 University Way

London, UK

takis@inlecom.com

Abstract— Cloud is a new area of specialization in the

computing world, and, as such, it has not been explicitly

addressed by traditional programming languages and

environments. Therefore, there is a need to create Domain

Specific Languages (DSLs) for it. This paper presents such a

DSL that targets logistics clouds, i.e. networked resources and

systems of logistics organisations. The DSL is implemented on

top of the functional concurrent language Erlang and its

distributed data management system Mnesia. The paper

presents features of the DSL that implement commonly

occurring use cases in the logistics cloud such as message

exchange, document sharing and notifications. We show how

program features in this DSL map to the underlying

Erlang/OTP runtime.

Keywords- DSL; Logistics Cloud; Erlang/OTP; Mnesia;
transport logistics; functional programming

I. INTRODUCTION

Community clouds are implementations of Clouds by a
community of organisations such as logistics companies that
agree to virtualise and share their computing resources. In
contrast to a generic, “horizontal cloud”, components of a
logistics cloud are custom tailored to the specific needs of
the logistics application area [7].

Effectively, a logistics cloud is a networked data and
computing infrastructure that virtualises resources
(documents, data, systems and applications) for a logistics
business network, to which nodes can dynamically be added
and removed. Physical resources in logistics (such as cargo)
are, by nature, mobile, and are handled and monitored by
multiple IT systems. For cooperative processes, it is
therefore important that the information about the state of
logistics resources remains independent from location and
physical formats of the systems that handle it. Resources
and operations on them must therefore be abstracted in an
implementation independent form, following the principles
of Representation State Transfer (REST). This allows the
participants of the logistics cloud to perform collaborative
processes without concern about the physical format and
location of data and applications, i.e. to work in a Cloud
environment. According to the iCargo project (http://i-
cargo.eu/), such a Cloud is a ‘parallel universe’ mirroring
logistics processes, resources and data, and offering
capabilities for co-operative synchronized and real-time
management of transport resources (i.e. intelligent planning
and controlling transport logistics chains) to optimise

efficiency, quality and environmental performance. The
paper presents a Domain Specific Language (DSL) for
developing cloud applications for logistics organizations.

The rest of the paper is structured as follows: Section 2
overviews Cloud DSLs and explains the rationale and design
objectives for the proposed DSL. Section 3 introduces the
main architectural concepts of the logistics cloud, while
Section 4 presents the main features of the language. Section
5 highlights the main use cases for the DSL as investigated
in the iCargo project. The last section highlights the plans for
further research and development.

II. DOMAIN SPECIFIC LANGUAGES AND CLOUDS

A DSL is a programming language or an executable
specification language that offers, through appropriate
notations and abstractions, expressive power focused on, and
usually restricted to, a particular problem domain [3]. DSLs
have been used in many domains, particularly due to their
expressiveness, runtime efficiency and reliability due to their
narrow focus. More recently, DSLs for clouds have been
proposed for high performance computing [2] business
process management [1] and business applications [8]. Data
cloud specific DSLs, such as Pig Latin from the Apache Pig
project, are employed for analyzing large data sets [10].

Currently, logistics applications are implemented in
general purpose languages (GPL) such as Java and C# and
Web languages such as Javascript and HTML. Message
exchanges are typically implemented in XML, while system
interfaces are specified as Web services. However, logistics
organisations and chains have become increasingly
distributed and virtualised. Current development
technologies fall short in realising the full potential of
RESTful architectures and of the Cloud. The aim of our
research has been to exploit the potential of concurrent
functional languages such as Erlang [5] and distributed data
management systems such as Mnesia [5] in developing
logistics applications that take advantage of the Cloud’s
potential. The use of Erlang to develop RESTful applications
has been proposed before by S. Vinoski [13], and the
potential of functional languages on the Cloud has also been
advocated by J. Epstein et al [4]. However, the learning
curve for such technologies can be steep. A DSL could help
towards easing the adoption of functional concurrent
languages, while maintaining their expressiveness and power
in developing business applications for the Cloud.

A. Rationale for the Design of the DSL

One of the design goals was to preserve the benefits of
Erlang such as the built-in, actor based, concurrency model,
while easing the learning curve for the typical logistics
application developer. Erlang programming has limitations
such as the unconventional syntax, the lack of types, and the
general lack of familiarity with functional programming
styles amongst developers.

At the same time, the design of the DSL had to address
an easier to read and understand syntax (i.e. by avoiding the
excessive use of parentheses and brackets) and support for
types. To avoid designing yet another GPL, however, only
predefined types, derived from a Common Reference Model
(Framework) for logistics domain were allowed. The
Common Framework used was developed in EU projects
such as e-Freight and iCargo [9] and provided the basis for
the main domain concepts of the logistics DSL.

III. MAIN CONCEPTS

Erlang is a functional programming language used to
build massively scalable soft real-time systems [5]. A
distributed Erlang system consists of a number of nodes
(Erlang runtime systems) communicating with each other. A
node is an executing Erlang runtime system which has been
given a name. Each such runtime system is called a node.
The distribution mechanism is implemented using TCP/IP
sockets. Mnesia is a multiuser distributed data management
system written in Erlang, which is also the intended target
language. In our prototype implementation, the execution of
a program written in the DSL results in several spawned
Erlang processes. These processes communicate with other
processes across the logistics cloud, and manipulate Mnesia
tables holding information about logistics resources. In a
logistics cloud, the physical implementation and address of
resources is virtualised. Resources are identified using
logical Uniform resource identifiers (URIs) constructed from
domain names of their owners and literals such as internal
identifiers. Our approach assumes that logistics cloud
participants have unique URIs (i.e. domain names in the
Domain Name System) and all other resources acquire their
unique identifiers relatively to the URIs of their owners. This
avoids the need to assume (and agree upon) resource
identifiers that are globally unique across the whole logistics
Cloud.

We implement RESTful (PUT and GET) operations in
our approach, but with functional semantics to maintain
consistency with the Erlang underpinnings.

The code written in the DSL is translated with the use of
a pre-processor (similar to Erlang’s pre-processor) to Erlang
modules that can be loaded and executed by the Erlang
emulator. A program in the DSL is therefore an Erlang
module containing function definitions that can be compiled
and executed by the Erlang emulator. A typical execution
spawns several Erlang processes. These can run on different
nodes of the logistics cloud. As with standard Erlang, inter-
process communication is via message exchanges.

IV. GENERAL SYNTACTIC CONVENTIONS

To reduce the learning curve, the DSL has a minimal set
of constructs and relies on predefined domain types that are
manipulated in a RESTful way to create and access
resources. To distinguish between the DSL and regular
Erlang language constructs, the former must begin with an
underscore and consist of all capitals letters. Tokens that are
not recognised by the pre-processor as reserved must be
valid Erlang terms.

Reserved keywords fall under the categories of:

 Logistic Roles e.g. _CONSIGNER,
_FREIGHTFORWARDER, _CONSGINEE

 Resource Types: Business documents,
e.g.:_TEP (transport execution plan exchanged
between logistics partners), administrative
forms, etc. notification types such as
_DISPATCH_NOTICE

 Resource read and modify operations using
_NEW and _GET commands.

 Control Flows such as _FOREACH for
iteratively applying a function to the members
of a list

 Some Erlang data types such as lists
constructors (‘[]’) and operators such as ! (for
sending messages to processes) are also
explicitly supported by the DSL.

Logistics roles are implemented as Mnesia transactional

queries, while business document types are implemented as
Mnesia tables and document instances as document records.
This is further explained in the following section.

V. USE CASES

Below we show some typical use cases for this DSL,
highlighting the syntax of the commands, the effect of the
operations and an explanation of their underlying
Erlang/Mnesia semantics.

A. Defining users and roles in the Logistic Cloud

Each organisations participating in the logistics cloud
implements a (distributed) Erlang network node, for example
the following set of nodes that correspond to 4 participating
logistics organizations is defined in a logistics cloud:

consigner1@org1.com,consignee1@org2.com
freightforwarder1@org3.com, carrier1@org4.com

The above logistic cloud participants, agree, for example,

to share data between them. A participant such as
freightforwarder1 may know all other participants (due to its
coordinating role), and can therefore, initiate the sharing of
the Mnesia database by executing the following command
locally:

mnesia:create_schema([consigner1@org1.com,
consignee1@org2.com, freightforwarder1@org3.com,
carrier1@org4.com]

More participants can be added to the logistics cloud at
any point, dynamically, by following this approach. Mnesia
tables are automatically created for each supported resource

type on every participant node, subject to sharing
declarations (explained below). A Mnesia table is a
collection (more precisely, a bag) of records. Records
(instances of resources) are created by participants as
explained below.

B. Sharing resources amongst participants

The general syntax for explicitly sharing resources
(tables) with other cloud participants is

<Resource type> _SHARE_WITH <list of
participants>_AS <Qualifications>

This results in changes to the corresponding table
replication properties in the underlying Mnesia database, so
that the table can be shared as read-only, read-write, and so
on.

C. Creating new resources

The general syntax for creating records (instances of
resources) is:

 _NEW <resource type> _WITH <key-value list>
For example, to create a new arrival notice, the following

command is used:
_NEW _ARRIVAL_NOTICE _WITH {ref="12345",

status= “OK”}
The result of the operation is to add a new arrival notice

record to the Mnesia table (bag) arrival_notice.
The internal record definition in Mnesia is

record(arrival_notice, {ref :: string(), status :: string()}).
Note that _NEW does not have to specify the location of

the target database, as the record is added to the local table
of the node where the command is executed and replicated
according to the policies defined for that table.

D. Querying Resources

The general syntax for retrieving resource records is:
_GET <Resource Type> _WITH <Qualifications>

This returns a list of instances (records) of type
‘Resource Type’ that match ‘Qualifications’. If the
Qualifications part is omitted, all records (up to a maximum
system imposed limit) are returned. This list of records can
then be accessed using the _FOREACH operator.

Qualifications are logical expressions that specify range
and other logical conditions on the properties of resources
being queried.

For example, to retrieve all consignments for consigner
with id consigner1@org1.com that have status ‘dispatched’,
the following query can be used:

 _GET _CONSIGNMENT _WITH {consigner =
“consigner1@org1.com”, status = “dispatched”}

Internally, the pre-processor converts queries like the
above to Erlang ‘list comprehension’ style of queries that are
then executed as Mnesia transactions.

E. Messaging

Messaging has been inspired by REST messaging
approaches such as RESTMS [11].

The general syntax for messaging is
<Recipient List> ! _MESSAGE_TYPE _WITH {key value

list} _AS <Message Format>

Where ‘Recipient List’ can be the result of a query that
returns the identifiers of recipients. The following code for
example, sends a message (formatted as XML) containing a
dispatch notice, to the owner (consigner) and the recipient
(consignee) of a consignment:

[consigner1@org1.com, consignee1@org2.com] !
_NEW _DISPATCH_NOTICE _WITH {ref= “12345”,
status= “dispatched”} _AS _XML

Additional parameters can be specified, for example,
regarding the exact time the message is to be sent, how to
handle errors such as no replies (timeout conditions) and so
on. Internally, this is converted into message sending
operations to the message listening processes of the recipient
nodes. Such processes are automatically spawned when the
nodes join the logistics Cloud. Messages can also be sent to
recipients outside the logistics cloud by using call-back
methods.

F. Event Notifications

Logistics cloud participants can publish and subscribe to
events in the logistics cloud. This is often a more flexible
approach than direct messaging as it decouples the senders
and consumers of event notifications.

A Consigner consigner1@org1.com, for example, can
subscribe to notifications when dispatch notices are created.
The general syntax for subscriptions is:

 _SUBSCRIBE_TO <Resource Type> _WITH
<Conditions>

Internally, this is implemented by an Erlang process on
node consigner1@org1.com that subscribes to update events
on table dispatch_notice, using the command
mnesia:subscribe({table, dispatch_notice, simple}).

If the monitoring process receives a message notification
such as {write, NewRecord, ActivityId}, it will check that the
conditions are satisfied, and if they are, the process will
notify the callback process on the consigner1@org1.com
node.

VI. CONCLUSIONS AND FUTURE WORK

Functional concurrent languages have a great potential
for building the next generation of Cloud applications, due to
scalability, side effect free code and ease of transformation to
multiple representation formats (XML, JSON,…) of Cloud
resources. Our approach is at the early stages of developing
an easy to use Cloud development environment for logistics
applications. We are currently investigating security features
(authentication, authorization at organization and user role
level) for the proposed DSL, and also support for
transactional rollback and error handling both at the pre-
processing stage and at runtime. We also plan to explore
alternative target Cloud environments that support functional
programming languages, such as Scala. After we complete
the development of the pre-processor, we plan to develop a
full blown transport logistic Cloud based collaborative
application within the iCargo project. This application will
demonstrate an implementation of the Common Framework
in the DSL and the use of associated interfaces to facilitate
the connection of logistics companies to the iCargo
ecosystem.

ACKNOWLEDGMENT

The iCargo project "iCargo - Intelligent Cargo in
Efficient and Sustainable Global Logistics Operations" is co-
funded by the EU FP7 Program.

REFERENCES

[1] B. Karlis, C. Grasmanis, A. Kalnins, S. Kozlovics, L. Lace, R.

Liepins, E. Rencis, A. Sprogis, and A. Zarins. “Domain Specific
Languages for Business Process Management: a Case Study”. Proc.
the 9th OOPSLA Workshop on Domain-Specific Modeling. 25-26
October 2009.

[2] C. Bunch, N. Chohan, and K. Shams. “Neptune: A Domain Specific
Language for Deploying HPC Software on Cloud Platforms” UCSB
Technical Report #2011-02 .

[3] A. van Deursen, P. Klint, and J. Visser. “Domain-specific languages:
an annotated bibliography”. SIGPLAN Not., 35(6):26--36, 2000.

[4] J. Epstein, AP Black, and S. Peyton-Jones. “Towards Haskell in the
cloud.” Proc. The 4th ACM symposium on Haskell, ser. Haskell.
ACM, New York, NY, USA, pp. 118–129.

[5] Ericsson AB. “Erlang/OTP System Documentation 5.8.3” March 14
2011.

[6] R. Fielding. “Architectural Styles and the Design of Network-based
Software Architectures”. Ph.D. Thesis. University of California,
Irvine, 2000.

[7] B. Holtkamp, S. Steinbuss, H. Gsell, T. Loeffeler, and U. Springer.
“Towards a Logistics Cloud” Proc. 2010 Sixth International
Conference on Semantics, Knowledge and Grids Beijing, China
November 2010.

[8] M. Kumar. “Domain Specific Language Based Approach for
Developing Complex Cloud Computing Applications.” Masters
thesis. Wright State University 2011.

[9] J. Pedersen. “Frameworks and Applications for Logistics”. Proc, 2nd
European Conference on ICT for Transport Logistics (ECITL),
Venice 2009,

[10] Pig Latin Basics. Available from
http://pig.apache.org/docs/r0.10.0/basic.html [retrieved March 2013]

[11] RESTMS. Available from http://www.restms.org/ [retrieved March
2013]

[12] D. Stieger, M. Farwick, B. Agreiter, and W. Messner. “DSLs to fully
generate Business Applications”. Available from
www.jetbrains.com/mps/docs/MPSShowcase.pdf [retrieved March
2013]

[13] S. Vinoski. “RESTful Services with Erlang and Yaws”. InfoQ, March
31, 2008.

