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an interconnected suspension system is developed (Section 2) to be included into a high-fidelity

motorcycle model (Section 3). This model is used to carry out several simulations in which the

motorcycle is forced to pass through a bump to obtain the response of the system (Section 4). An

automatic optimization process is performed in order to obtain those values of the interconnection

coefficients that better improve the suspension precision. The evolution of the eigenvalues and the

eigenvectors corresponding to the in-plane normal modes are analysed (Section 5) to understand

the effects of the interconnection arrangement on the oscillating dynamics of the motorcycle.

2 INTERCONNECTED SUSPENSION SYSTEM

In order to illustrate the interconnection concept in an intuitive manner, Figure 1 shows a sketch

of an interconnected suspension system. In the actual motorcycle the front suspension system

consists of a telescopic fork whilst the rear suspension system consists of a swinging arm reacting

into the main frame. In order to follow this arrangement, a linear variable (z f ) is assigned to

the front suspension compression whilst an angular variable (θr) is used for the rear suspension

deflection.

Figure 1: Diagram showing an schematic interconnection layout and its relevant pa-

rameters. The system can be divided in two rigid bodies, front (blue) and rear (red),

connected through a spring-damper unit. In this figure only the springs are shown in

order to provide a clearer view.

Considering small angles and linear approximations in Fig. 1, the stiffness reaction of the indepen-

dent suspension systems are defined, on one hand, by Eq. 1 as a force applied to the front wheel

depending linearly on its displacement with a stiffness constant k1. On the other hand, the reac-

tion of the rear suspension is defined by Eq. 2 as a torque applied in the swinging arm depending

linearly on its angular displacement with a rotational stiffness constant k2.

F1z =−k1 · z f (1)

M2 =−k2 ·θr (2)

Once interconnection is considered, the total force and moment apearing on the front and rear

suspension systems respectively become the addition of the independent force and moment and

those equivalent force and moment due to the central spring (k3): F3 f z and M3r respectively.
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Ff k = F1z +F3 f z (3)

M f k = M2 +M3r (4)

The resultant interconnection force and moment applied to the front and rear wheels respectively

are obtained, through the geometrical ratios, from the force exerted by the central spring on its

tips.

F3 f z = ρ f ·F3 f x (5)

M3r = ρr ·F3rx (6)

The geometrical ratios will depend on the interconnection system’s kinematics. For the sketch

in Fig. 1 they can be defined considering small angles and the reference frame’s sign criterion as

follows:

ρ f =−
l f 1

l f 2

; ρr = lr1

The forces exerted by the central spring depend on the relative displacements of its tips as follows:

F3 f x =−k3 · (x f − xr) (7)

F3rx =−k3 · (xr− x f ) (8)

The front (x f ) and the rear (xr) displacements of the strut tips are related to the front wheel’s

vertical displacement and the swinging arm’s rotation angle by the same geometrical ratios:

x f = ρ f · z f ; xr = ρr ·θr (9)

Substituting in eq. 3 and eq. 4, the resultant front force and rear moment can be written as:

Ff k =−(k1 +ρ2
f k3) · z f +(ρ f ρrk3) ·θr (10)

M f k = (ρ f ρrk3) · z f − (k2 +ρ2
r k3) ·θr (11)

A similar analysis can be done for the damping force and moment. If the geometric ratios for

the damping system are named as µ f and µr for the front and rear ends respectively, the resultant

damping reactions can be written as:

Ff c =−(c1 +µ2
f c3) · ż f +(µ f µrc3) · θ̇r (12)

M f c = (µ f µrc3) · ż f − (c2 +µ2
r c3) · θ̇r (13)
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Finally, the resultant force and moment corresponding to the whole interconnected suspension

system can be written as:

Ff =−k f · z f − c f · ż f − ks ·θr− cs · θ̇ (14)

Mr =−ks · z f − cs · ż f − kr ·θr− cr · θ̇r (15)

Within the interconnection approach, the total reaction force applied by the front telescopic fork

is divided between the suspension and interconnection forces, which are defined independently.

The front suspension force depends linearly on the front fork position and speed, whilst the front

interconnection force does so on the rear swinging arm angle and rotational speed. For the rear end,

the force is modelled in a similar way. In this case the rear suspension moment depends linearly

on the swinging arm angle and rotational speed, whilst the rear interconnection moment does so

on the front fork position and speed. Equations (14) and (15) show the total front suspension force

and rear suspension moment.

Direct stiffness and damping equivalent coefficients (k f , c f , kr and cr) and cross stiffness and

damping equivalent coefficient (ks and cs) are defined as:

k f = k1 +ρ2
f k3 ; c f = c1 +µ2

f c3 (16)

kr = k2 +ρ2
r k3 ; cr = c2 +µ2

r c3 (17)

ks =−ρ f ρrk3 ; cs =−µ f µrc3 (18)

The units of the direct stiffness coefficients are Nm−1 and those of the direct damping coefficients

are Nsm−1. However, due to the geometrical ratio that convert forces into moments and vice versa,

the units of the cross stiffness coefficients are N and those of the cross damping coefficients are

Ns.

Note that the direct equivalent coefficients always take positive values whilst the cross equivalent

coefficients can take either positive or negative values depending on the sign of the geometrical

ratios. In Fig. 1, l f 1 and lr1 are negative whilst l f 2 is positive according to the sign criterion

of the reference frame. Thus, ρ f is positive and ρr is negative which results in ks > 0. The

cross coefficients represent the force/moment applied into the front/rear end due to the motion

of the contrary end. For instance, a positive stiffness equivalent coefficient (ks > 0) implies that

a compression of the rear suspension system (θ < 0), results in a force on the front suspension

system that tries to extend it (Z > 0). Conversely, a negative stiffness coefficient(ks < 0) would

produce a force in the front suspension system that tries to compress it (Z < 0) when the rear end

is compressed (θ < 0).

3 SOFTWARE TOOLS AND MATHEMATICAL MODEL

The motorcycle model is implemented taking advantage of the VehicleSim multi-body software

from Mechanical Simulation Corporation [8]. This suite consists of two separated tools: VS Lisp

and VS Browser. VS Lisp is the tool used to generate the equations of motions from a multi-body

description of any dynamical system. Making use of its own computer language (based on LISP)

it is designed to automatically generate computationally efficient simulation programs for those

multi-body systems. It can be configured to return either the corresponding non-linear equations

of motion or the linearised equations of motion. Both non-linear and linearised equations of motion

4



are symbolically described as functions of all the parameters defining the model dynamics, such

as suspensions or aerodynamics coefficients.

VS Browser is the front end of all the VehicleSim products. It provides a graphical context with a

standard graphical user interface from which the non-linear equation of motion can be integrated

using different built-in solvers. A compatibility Simulink module is provided by VehicleSim. This

module can be included into the Simulink environment as a dynamical system that returns those

outputs corresponding to the non-linear simulation carried out by VS Browser, which depend on

the inputs introduced in it from the Simulink model. So that, external Matlab function (such as

optimization ones) can iteratively run several dynamics simulations whilst motorcycle model’s

parameters are modified on-line.

On the other hand, the linearised equations of motion are returned in a Matlab file with the state

space description of the systems. The state space matrices obtained (A, B, C and D) depend on

both the system parameters and the state variables values. This feature becomes useful in the

stability analysis of complex non linear systems, which can be linearised about operating points

corresponding to quasi-equilibrium states. The frequency and damping coefficients associated to

the system’s normal modes are found through the eigenvalues of the state space matrix A.

The mathematical model used for this research is based on the model presented in [12]. This

mathematical model was built during several years of research underpinned by wide literature and

experimental data. This model has been extensively used in the past in numerous contributions

such as , [5], [10], [4], [3] or [11].

Figure 2: Motorcycle geometrical description. Blue circles with diameter propor-

tional to body mass are plotted around the centre of mass of each body.

The model was developed using real dynamic parameters of an existing Suzuki GSX-R1000 K1.

This machine is a good representative of contemporary commercial high performance motorcycles.

It weights 170 kg and its in-line four cylinder and four stroke engine with 988 cc is able to deliver

160 hp.

The motorcycle model consists of seven bodies: rear wheel, swinging arm, main frame (com-

prising rider’s lower body, engine and chassis), rider’s upper-body, steering frame, telescopic fork

suspension and front wheel. It involves 13 degrees of freedom: three rotational and three transla-

tional for the main frame, two rotational for the wheels spin, one rotational for the swinging arm,

one rotational for the rider’s upper body, one rotational for the frame flexibility, one rotational for

the steering body and one translational for the front suspension fork. Figure 2 represents the main

geometric points and axes in the motorcycle’s geometry. The centre of mass of each of the seven

5



Table 1: Points defining the motorcycle geometry.

Point Description

P1 Aerodynamic reference point.

P2 Twist body’s joint with rear frame.

P3 Steer body’s centre of mass.

P4 Front suspension body’s joint with steer body.

P5 Front suspension body’s centre of mass.

P6 Rear wheel’s centre of mass and attachment point.

P7 Front wheel’s centre of mass and attachment point.

P8 Main frame’s centre of mass.

P9 Rider’s Upper Body attachment point on rear frame

P10 Centre of mass of the rider’s upper body.

P11 Swinging arm’s attachment point on main frame.

P14 Swinging arm’s centre of mass.

constituent bodies is represented as a blue circle with a diameter proportional to its mass. Table 1

contains the indexes of these points. For modelling purposes, a parent-child structure is used, as

shown in Fig. 3.

The tires are treated as wide, flexible in compression and the migration of both contact points as

the machine rolls, pitches and steers is tracked dynamically. The tyre’s forces and moments are

generated from the tyre’s camber angle relative to the road, the normal load and the combined slip

using Magic Formulae models [9]. This model is applicable to motorcycle tires operating at roll

angles of up to 60◦.

The aerodynamic drag/lift forces and pitching moment are modelled as forces/moments applied to

the aerodynamic centre and they are proportional to the square of the motorcycle’s forward speed.

In order to maintain steady-state operating conditions, the model contains a number of control

systems, which mimic the rider’s control action. These systems control the throttle, the braking

and braking distribution between the front and rear wheels, and the vehicle’s steering.

Figure 3: Parental structure of the motorcycle model.

The forward speed is maintained by a driving torque applied to the rear wheel and reacting on the

main frame. This torque is derived from a proportional-integral (PI) controller on the speed error

with fixed gains.

For some manoeuvres, the motorcycle is not self-stable; in order to stabilise the machine in such

situations a roll angle feedback controller is implemented. This allows to obtain different steady

turning equilibrium states which would not be stable without the roll angle controller. The con-
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troller developed was a proportional-integral-derivative (PID) feedback of motorcycle lean angle

error to steering torque. The lean angle target is set by an initial value and a constant change rate.

Thus, the target lean angle is a ramp function of time which can be easily modified. The PID gains

are defined as speed adaptive in order to achieve an effective stabilisation of the motorcycle for

the difficult cases involving very low or very high speeds. Finally, the steering control torque is

applied to the steer body reacting on the rider’s upper body.

The front suspension system is defined as reacting force applied in the front fork’s travel direction

depending linearly on the compression of the fork. The rear suspension is described by a reacting

torque on the swinging arm and which depends on its angular position to emulate the behaviour of

the multi-lever rear suspension system of the actual motorcycle.

The scope of the present research is to study the effect of the interconnection itself on the motor-

cycle dynamics in comparison with the nominal suspension setting. For this reason, the nominal

suspension forces and moments corresponding to the direct equivalent coefficients k f , kr, c f and

cr are maintained unaffected in the model. Whilst the interconnection forces and moments are

included, through the cross equivalent coefficients ks and cs, as additional terms to these nominal

forces and moments. This means that the variation of the interconnection coefficient values will

not affect the direct forces and moments.

4 ROAD BUMP INPUT RESPONSE

The main functions of a sport motorcycle suspension system are to provide enough precision for

the wheels to follow the road profile as close as possible and to keep certain comfort levels for

the rider under road perturbation. The non-linear model considered for this study introduces a

discontinuity in the tires forces. As a result, these forces become zero when the tires take off from

the road.

(a) front tyre’s contact force (b) rear tyre’s contact force

(c) vertical acceleration (d) pitch acceleration

Figure 4: Precision and comfort variables responses at 80 m/s with interconnection

coefficients ks = 0 N and cs = -548 Ns. The dashed blue line represents the nominal

system response whilst the interconnected system response is plotted in solid green.

Wheels fly times (times during tyres loose contact with the road) have been considered as a mea-
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surement for the suspension system’s precision. Shorter fly times represent a greater precision.

On the other hand, the comfort is measured through the maximum vertical acceleration and the

maximum pitch angle acceleration perceived by the rider. Smaller values of these magnitudes for

a bump input represent better comfort results.

The effect of the interconnection in the above mentioned variables is illustrated in Fig. 4. It shows

the response of the motorcycle model to a step bump of height 0.05 m at a forward speed of 80 m/s.

The interconnection coefficients are ks = 0 N and cs = -548 Ns. It can be observed how both front

and rear wheels’ fly times are reduced after the bump (Fig. 4a and Fig. 4b). The maximum vertical

acceleration perceived by the rider is also reduced whilst the angular acceleration reaches similar

values (Fig. 4c and Fig. 4d). The response of the independent suspension system in the nominal

model is plotted in dashed blue line and the interconnected system’s response is represented with

a solid green line.

4.1 Suspension efficiency

In order to investigate the effects of the interconnection force and moment in the suspension re-

sponse, the behaviours of these four variables are studied under straight forward bump simulations

for a wide range of stiffness (ks) and damping (cs) interconnection coefficients. The focus of this

study is to understand the effects that the interconnection introduces in the suspension’s response.

Therefore, the front and rear suspension coefficients are kept constant at their nominal values.

(a) front wheel (b) rear wheel

(c) vertical acceleration (d) pitch acceleration

Figure 5: Efficiency maps of comfort and precision variables for different values of

cs with ks = 0 N for a 0.05m step input at forward speeds starting at 10 m/s up to 80

m/s.

The suspension efficiency on each variable is defined as the normalized difference between the

value achieved by the variable after a bump input with (ks 6= 0 N or cs 6= 0 Ns) and without
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(ks = 0 N and cs = 0 Ns) interconnection forces and moments. It is defined by the Eq. (19) as

follows:

η(x) = 100 ·
(x0− x)

x0

(19)

Where x is the variable under study (it can be the maximum acceleration, the maximum pitch angle

or the front/rear wheel fly times) and x0 is the value achieved by the variable with independent

suspensions. Efficiency is expressed as a percentage and it will be positive if the connection set-up

provides a reduction on the variable’s value.

Eight simulation scenarios have been created in VS Browser corresponding to eight forward speeds

starting at 10 m/s and reaching 80 m/s. In theses simulations the motorcycle is forced to pass

through a road bump of 0.05 m at a constant speed. These scenarios are called from a Simulink

model from where the stiffness and damping values are taken. The Simulink model is placed in a

loop where these coefficients are varied sequentially, performing all the simulations for values of

ks ranging from -12000 N to 12000 N and values of cs ranging from -1200 Ns to 1200 Ns. Figure 5

shows the results of varying the interconnection damping coefficient (cs) and the speed, whilst the

interconnection stiffness coefficient is ks = 0 N. In Fig. 6 the interconnection damping coefficient

is kept constant at zero (cs = 0 Ns) whilst the values of the interconnection stiffness coefficient ks

and the forward speed are varied.

(a) front wheel (b) rear wheel

(c) vertical acceleration (d) pitch acceleration

Figure 6: Efficiency maps of comfort and precision variables for different values of

ks with cs = 0 Ns for a 0.05 m step input at forward speeds starting at 10 m/s up to

80 m/s.

The combination of stiffness and damping coefficients in the interconnected suspension system

makes difficult to find those coefficients that could improve the efficiency of the variables under
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study simultaneously. However, an automatic optimization processes can be implemented in order

to find these optimal coefficients.

4.2 Optimization of the stiffness and damping coefficients

Two optimal values of the interconnection parameters ks and cs are sought for the full speed range.

Considering that the model under study corresponds to a high performance racing motorcycle, the

optimization process is now focused in obtaining a greater suspension precision.

For each of the eight considered forward speeds, the target function to be maximized is defined as

the front wheel fly time efficiency. This is, to minimize the front wheel’s fly time. Matlab opti-

mization toolbox is a good framework to find satisfying results within a reasonable computational

time. The optimization process takes advantage of ’fminsearch’ function which is feed with the

corresponding target function. The target function calls sequentially eight Simulink models that

contain the different VehicleSim Blocks for the eight forward speeds under study. The sum of all

the efficiencies is established as the function’s target to be maximized.

Figure 7: Efficiencies of the precision and comfort variables obtained for the optimal

interconnection parameters’ values.

The optimal configuration found for the speed range is ks ≈ 0 N and cs = -548 Ns. The results

of the optimization processes are presented in Fig. 7. The efficiencies on the front wheel (FW),

rear wheel (RW), vertical acceleration (ACC) and pitch angle acceleration (PTC) are shown for

the entire speed range. The improvement percentage of the suspension response of the front wheel

starts around 5 % at low speeds and rises up to 17 % at high speeds. The rear suspension response

is improved for high speeds and slightly worsened for very low speeds, but its efficiency never

decays bellow the −7 %. Considering that the front wheel is relevant in terms of rider’s control

and that the rear wheel fly time is only increased for very low speeds, this can be considered a

good result for a simple interconnection system. Although the optimization processes have not

taken the comfort into account, it is not worsened in a substantial manner and, in some cases, it is

improved.

5 OSCILLATING DYNAMICS

As it has been previously explained, VehicleSim returns a state space representation of the pro-

grammed model. This is an automatically generated Matlab file containing the state matrices A,

B, C and D. The terms of these matrices are expressed as functions of the state variables (positions

and velocities) as well as the different dynamical parameters of the motorcycle model (masses,

inertias, etc.). The parameters are numerically set in the Matlab file according to the values de-

fined in the model programmed in VS-Lisp, in contrast to the state variables that are free to be set

depending on the trim state to be studied.

10



In order to study the evolution of the normal modes with respect to the speed variation, several

simulations are run. On each simulation, the speed is increased from 10 m/s up to 80 m/s with

a very low ratio (0.001 m/s2) in order to obtain quasi-equilibrium trim states. Once a simulation

is finished, the values of the state variables for each forward speed are taken from those of the

corresponding simulation time step. The state matrices are then fed with these values, resulting in

a high fidelity state space representation for each trim state and from which its normal modes can

be obtained.

Figure 8: Root loci for the motorcycle nominal suspension system showing the main

normal modes affected by the suspension dynamics. Speed is increased from 10 m/s

(�) up to 80 m/s (∗) in straight running conditions.

The eigenvalues of the state space matrix A provide information on the normal modes’ frequency

and damping for a given trim state and can be represented as a root locus. Figure 8 shows a root

locus for the motorcycle nominal configuration in which no connection exists between the front

and rear suspension systems, for speed ranging from 10 m/s (�) up to 80 m/s (∗) in straight running

conditions.

Table 2: Eigenvectors’ components of the motorcycle multi-body system.

DOF Description

XT, YT, ZT Motorcycle’s chassis x, y and z translation.

ZR, YR, XR Motorcycle’s chassis yaw, pitch and roll rotations.

SWA Swinging arm rotation about the main frame’s y axis.

UBR Rider’s upper-body rotation about the main frame x axis.

TWS Front frame rotation about the twist axis.

STR Front frame rotation about the steering axis.

SUS Front fork compression/extension.

This root locus shows a wide area where highly damped normal modes are visible. Clearly, these

modes do not imply stability risks for the motorcycle nominal configuration. They hardly could

be excited and, thus, appreciated in the motorcycle dynamics. However, once the front and rear

suspension systems are connected, these modes change its damping properties in a substantial

manner approaching the unstable region.

The normal modes shown in this plot are divided into in-plane and out-of-plane modes. The

in-plane modes are those in which only the degrees of freedom that imply a motion inside the
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(a) pitch (ks = 0 N ; cs = 0 Ns) (b) bounce (ks = 0 N ; cs = 0 Ns)

(c) front hop (ks = 0 N ; cs = 0 Ns)

Figure 9: In-plane normal modes’ components at straight running conditions for the

motorcycle nominal configuration. The speed evolution of each component’s weight

and phase is represented by the bars profile, varying the speed from left (10 m/s) to

right hand side (80 m/s).

motorcycle’s symmetry plane are involved. They are pitch, bounce and front hop. On the other

hand, the out-of-plane modes only involve the degrees of freedom that represent a motion out of

the motorcycle’s symmetry plane. The out-of-plane modes are wobble, weave, rider lean and rider

shake.

The interconnected suspension system mostly affects the in-plane dynamics of the motorcycle.

Thus, it has a higher impact on in-plane normal modes. In order to understand its effects on the

pattern of motion of these normal modes, the weights and the phase angles of the different degrees

of freedom involved in such modes are obtained from the components of the eigenvectors of the

state space matrix A associated to them. In this paper, normal modes are represented by two bar

diagrams. In the first of them, the bars heights represent normalized weights of the normal mode’s

degrees of freedom. In the second diagram, the bars heights represent the relative phase angle of

each degree of freedom. The degrees of freedom in the x coordinates of the normal mode figures

are all related to the motorcycle’s reference frame and they are presented in Table 2.

The eigenvector of the in-plane modes for the nominal model without interconnected suspensions

are presented in Fig. 9. The pitch mode’s components are shown in Fig. 9a. They are characterized

by the main body pitching (YR) with large oscillations of the front (SUS) and rear (SWA) suspen-

sion. The phase angle presented by the pitching of the motorcycle’s main frame with respect to

the front suspension and the swinging arm is close to−90◦ and 90◦ respectively. For a motorcycle

model with a perfect symmetry about its centre of masses there would not be other components

involved and the phase angle between the front suspension and the rear swinging arm would be
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exactly 180◦, producing a pure pitch motion. However, this model presents differences in terms

of masses, suspensions, etc. of the front and rear sides of the motorcycle, these other components

such as the vertical (ZT) or the horizontal (XT) displacements are present in the mode motion, and

the phase angles are smaller than 180◦. This normal mode is well damped and its frequencies are

constricted between 40 rad/s and 45 rad/s.

The components of the bounce mode are plotted in Fig. 9b. It consists in the vertical oscillation of

the main frame (ZT) almost in phase opposition with the front (SUS) and rear (SWA) suspensions.

Similarly than what happens with pitch mode, other degrees of freedom are involved on the bounce

mode which presents these phase angles smaller than 180◦. Once again, this is due to the model

asymmetry around its centre of masses. For a symmetrical model, this mode would present a pure

bounce motion pattern. It is also well damped and its frequencies are in the range of 15 rad/s to

20 rad/s.

The front hop mode corresponds to the front wheel resonance whilst the rest of motorcycle assem-

bly remains slightly affected. Figure 9c shows how the main component of its eigenvector is the

front suspension (SUS) oscillation with minor lower oscillation of the rest of the in-plane degrees

of freedom. For this motorcycle model, and with no interconnection established between front and

rear suspensions, it is a highly damped mode with a large frequency variation with the speed. It

can reach values up to 45 rad/s at medium-high speeds and becomes overcritical for low-medium

speed range.

In previous section was found that the optimal value of the interconnection stiffness coefficient

is very close to ks = 0 and that for the interconnection damping coefficient is cs = −548 Ns. In

order to understand the effect of these optimal values on the normal modes, the eigenvalues and

eigenvectors of matrix A are calculated with these values. Also, cs is varied from 0 Ns up to−1500

Ns to observe the evolution of the normal modes in terms of natural frequency and damping ratio

introduced by this kind of negative interconnection. Figure 10 represents the evolution of the

motorcycle’s root locus when the interconnection damping coefficients are varied within these

limits.

Figure 10: Root loci showing the main normal modes evolution for values of the

interconnection damping coefficient ranging from cs =−1500 Ns (magenta) to cs =
0 Ns (green). The root locus for the optimal interconnection damping coefficient

cs =−548 Ns is plotted in red. Speed is increased from 10 m/s (�) up to 80 m/s (∗).
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The optimal configuration is plotted in red. As expected, out-of-plane modes remain unaffected.

On the other hand, pitch, bounce and front hop damping ratio are reduced although they stay stable

for this configuration. However, if the negative interconnection coefficient is increased in absolute

value all the three modes get much closer to the positive area of the real axis, thus, to the stability

limit. The normal mode which is affected the most is the front hop. In order to observe possible

variation on their pattern of motion Fig. 11 shows the eigenvector components of these modes.

(a) pitch (ks = 0 N ; cs =−1500 Ns) (b) bounce (ks = 0 N ; cs =−1500 Ns)

(c) front hop (ks = 0 N ; cs =−1500 Ns)

Figure 11: In-plane normal modes’ components at straight running conditions for an

interconnection damping coefficient of cs =−1500 Ns. The speed evolution of each

component’s weight and phase is represented by the bars profile, varying the speed

from left (10 m/s) to right hand side (80 m/s).

For the bounce and pitch normal mode, their pattern of motion remain recognizable. Although

small changes on the phases of some of their less relevant degrees of freedom appear, the most

significant variations are observed in their main degrees of freedom.

On one hand, for the pitch mode, those degrees of freedom associated to the suspension motion

(SUS and SWA) decrease their relative weights with respect to the main degree of freedom for this

mode, the pitch rotation (YR).

On the other hand, the opposite happens for the bounce mode. The degrees of freedom associated

to the suspension motion (SUS and SWA) increase their relative weights with respect to the vertical

displacement (ZT) which is the main degree of freedom for this mode.

However, the pattern of motion related to the front hop mode has drastically changed. For the

nominal configuration (cs = 06 Ns) the main degree of freedom was the front suspension (SUS).

Nevertheless, as the interconnection negative damping coefficient is increased (in absolute value),

the relative weight of this degree of freedom is reduced whilst the degree of freedom associated to
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the rear suspension (SWA) increases its weight taking higher relevance than the front suspension

degree of freedom.

Once the interconnection is set between the front and the rear suspension systems, there exists a

transfer of energy between these to systems that modifies their behaviour. As it has been stated

before, negative interconnection coefficients imply that a compression of one of the two systems

will result in a force that tries to compress the other one and vice versa. This fact is consistent with

what it is observed in the evolution of the pattens of motion of the in-plane normal modes. Firstly,

in the front hope mode, the interconnection increases the rear suspension (SWA) motion whilst

keeps the phase of both front and rear suspension degrees of freedom close to zero. Secondly, such

interconnection favours the front (SUS) and rear (SWA) suspension motion (which are in phase)

in the bounce mode with respect to the vertical displacement (ZT). Whilst in the case of the pitch

mode, the interconnection penalizes those suspension motions (which are in phase opposition)

with respect to the pitch rotation (YR).

6 CONCLUSIONS AND FURTHER WORK

This research presents the potential benefits in terms of performance that an interconnected sus-

pensions system could introduce in a motorcycle, if adequately implemented.

For the motorcycle model under study, it has been shown that satisfactory results are achieved in

terms of tyres fly time reduction by the connection of the front and rear suspension, just by means

of a simple damper unit. After an optimization process which looks for improve the suspension

precision in a wide speed range, it has been found that negative values of interconnection damping

coefficients are suitable whilst interconnection stiffness coefficients can be neglected.

Nevertheless, the study of the eigenvalues and eigenvectors related to the in-plane normal modes

predicts a destabilization and an increase of the frequency of some modes that, in the nominal

configuration (without interconnection), are very well damped. This is the case of the front hop

mode. Further more, this mode also changes its pattern of motion increasing drastically the rear

suspension oscillation when high values of interconnection damping coefficient are set.

Further research on the effect of interconnected suspension coefficients on the motorcycle’s dy-

namics and oscillating modes is been carried out in order to obtain a wider view on the overall

impact of including an interconnected suspension on sport motorcycles. The present research is

being extended to study the effects of negative and positive interconnection coefficients, no only on

the motorcycle in-plane dynamics but also on the out-of-plane dynamics, considering the impact

of the interconnection on both the in-plane and out-of-plane normal modes when the motorcycle

is leaning at different roll angles.

REFERENCES

[1] Creuat. url: http://www.creuat.com. Accessed: 2017-11-07.

[2] Hydropneumatic suspension systems LTT-Creuat.

url: http://www.lleidatracciotechnology.com/productos.php. Accessed: 2018-10-20.

[3] EVANGELOU, S., LIMEBEER, D., AND TOMAS-RODRIGUEZ, M. Suppression of burst

oscillations in racing motorcycles. In 2010 49th IEEE Conference on Decision and Control

(CDC) (2010), pp. 5578–5585.

15



[4] EVANGELOU, S., LIMEBEER, D. J., AND TOMAS RODRIGUEZ, M. Influence of road

camber on motorcycle stability. Journal of Applied Mechanics 75, 6 (2008), pp. 061020–

061020.

[5] EVANGELOU, S., LIMEBEER, D. J. N., SHARP, R. S., AND SMITH, M. C. Mechanical

steering compensators for high-performance motorcycles. Journal of Applied Mechanics 74,

2 (2006), pp. 332–346.

[6] FONTDECABA I BUJ, J. Integral suspension system for motor vehicles based on passive

components. SAE Technical Paper 2002-01-3105, SAE International, 2002.

[7] GRIFFITHS, A. The Toptrail interconnected suspension bicycle project.

url: www.toptrail.co.uk. Accessed: 2018-10-20.

[8] MECHANICAL SIMULATION CORPORATION. Vehiclesim technology.

url: www.carsim.com. Accessed: 2018-10-20.

[9] PACEJKA, H. B., AND BAKKER, E. The magic formula tyre model. Vehicle System

Dynamics 21 (1992), pp. 1–18.

[10] SHARP, R. S. Motorcycle steering control by road preview. Journal of Dynamic Systems,

Measurement, and Control 129, 4 (2007), pp. 373–382.

[11] SHARP, R. S. Rider control of a motorcycle near to its cornering limits. Vehicle System

Dynamics 50, 8 (2012), pp. 1–16.

[12] SHARP, R. S., EVANGELOU, S., AND LIMEBEER, D. J. N. Advances in the modelling of

motorcycle dynamics. Multibody System Dynamics 12, 3 (2004), pp. 251–283.

16


