
              

City, University of London Institutional Repository

Citation: Forini, V., Bianchi, L. & Hoare, B. (2015). Unitarity methods for scattering in two 

dimensions. Springer Proceedings in Physics, 170, pp. 169-177. doi: 10.1007/978-3-319-
20046-0_20 

This is the accepted version of the paper. 

This version of the publication may differ from the final published version. 

Permanent repository link:  https://openaccess.city.ac.uk/id/eprint/23197/

Link to published version: https://doi.org/10.1007/978-3-319-20046-0_20

Copyright: City Research Online aims to make research outputs of City, 

University of London available to a wider audience. Copyright and Moral Rights 

remain with the author(s) and/or copyright holders. URLs from City Research 

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study, 

educational, or not-for-profit purposes without prior permission or charge. 

Provided that the authors, title and full bibliographic details are credited, a 

hyperlink and/or URL is given for the original metadata page and the content is 

not changed in any way. 

City Research Online



City Research Online:            http://openaccess.city.ac.uk/            publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk


ar
X

iv
:1

40
1.

04
48

v1
  [

he
p-

th
]  

2 
Ja

n 
20

14

Unitarity methods for scattering in two
dimensions

Valentina Forini, Lorenzo Bianchi and Ben Hoare

Abstract The standard unitarity-cut method is applied to several massive two-
dimensional models, including the world-sheet AdS5×S5 superstring, to compute
2 → 2 scattering S-matrices at one loop from tree level amplitudes. Evidence is
found for the cut-constructibility of supersymmetric integrable models, while for
models without supersymmetry (but integrable) the missingrational terms can be
interpreted as a shift in the coupling.

1 Discussion

Unitarity-based methods, whose use in four dimensions has been crucial for an ef-
ficient evaluation of scattering amplitudes [1] in non-abelian gauge theories as well
as gravity theories [2], have never really been applied in two dimensions1. The aim
of our work [7] (we refer the reader to the independent results of [8]) has been to
initiate the use of unitarity methods in the perturbative study of the S-matrix for
massive two-dimensionalfield theories. Limiting ourselves to the use ofstandard
unitarity (therefore placing on shell only two internal lines2) we present a formula
for the one-loop 2→ 2 scattering amplitude built directly from the corresponding
on-shell tree-level amplitudes.

As reviewed below, we have applied our method to various models, finding
enough evidence to postulate thatsupersymmetric, integrable two-dimensional theo-
ries should be cut-constructible via standard unitarity methods. For bosonic theories
with integrability, we find agreement with perturbation theory up to a finite shift in
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Humboldt Universität zu Berlin, Newtonstrasse 15, 12489 Berlin, Germany
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1 For the three-dimensional case see [3, 4, 5, 6].
2 This is nothing but the application of the optical theorem. The case where the loop amplitude is
subdivided into more than two pieces is referred to asgeneralizedunitarity.
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the coupling3. We also successfully apply our method to the light-cone gauge-fixed
sigma-model for theAdS5×S5 superstring, where - importantly - standard pertur-
bation theory seems to fail in evaluating the S-matrix beyond the leading order due
to regularization issues.

Natural extensions of our analysis would be the generalization to both higher
loops4 and higher points, as well as the evaluation of rational contributions in the
case of scattering of particles with different masses, interesting for example for the
AdS3×S3×M4 world-sheet S-matrix5.

2 Two-particle S-matrix from unitarity cuts at one loop

In two dimensions, the two-body scattering process of a translational-invariant field
theory is described via the four-point amplitude

〈ΦP(p3)ΦQ(p4) |S|ΦM(p1)ΦN(p2)〉= A
PQ

MN(p1, p2, p3, p4)

≡ (2π)2δ (2)(p1+ p2− p3− p4)Ã
PQ

MN(p1, p2, p3, p4) , (1)

whereS is the scattering operator, the fieldsΦ have on-shell momentapi (for us,
all the particles have equal non-vanishing mass set to unity) and can carry flavor
indices. Importantly, the energy-momentum conservationδ -function satisfies

δ (2)(p1+ p2− p3− p4) = J(p1, p2)
(
δ (p1−p3)δ (p2−p4)+δ (p1−p4)δ (p2−p3)

)
,

(2)
which accounts for the fact that ind = 2 there is no phase space, and the only
thing particles can do is either preserve or exchange their momenta. Above, p is the
spatial momentum, the JacobianJ(p1, p2) = 1/(∂εp1/∂p1−∂εp2/∂p2) depends on
the dispersion relationεp (the on-shell energy associated to p) for the theory at hand,
and spatial momenta are assumed to be ordered p1 > p2. The S-matrix elements
relevant for the description of the 2→ 2 scattering in the two-dimensional case are
then defined6 as

SPQ
MN(p1, p2)≡

J(p1, p2)

4ε1ε2
Ã

PQ
MN(p1, p2, p1, p2) . (3)

3 It would be interesting to analyze models which are just supersymmetric and not integrable.
4 Two-loop logarithmic contributions to the world-sheet scattering matrix for several backgrounds
of interest were evaluated in [8].
5 This implies an extension to the case of different masses of the t-channel prescription we de-
scribe in the next section, and would complete the analysis of [8] where the logarithmic part was
computed up to two loops.
6 Without loss of generality, one can consider in (1) the amplitudes associated to the first product
of δ -functionsδ (p1−p3)δ (p2−p4). The denominator in (3) is required to make contact with the
standard definition of the S-matrix in two dimensions.
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In applying the standard unitarity rules (derived from the optical theorem) [9] to
the one-loop four point amplitude (1) one considerstwo-particle cuts, obtained by
putting two intermediate lines on-shell. The contributions that follow to the imagi-
nary part of the amplitude are therefore given by the sum ofs- t- andu- channel cuts
illustrated in Fig.1, explicitly

A
(1)PQ

MN(p1, p2, p3, p4)|s−cut =

∫
d2l1
(2π)2

∫
d2l2
(2π)2 iπδ+(l1

2−1) iπδ+(l22 −1)

×A
(0)RS

MN(p1, p2, l1, l2)A
(0)PQ

SR(l2, l1, p3, p4)(4)

A
(1)PQ

MN(p1, p2, p3, p4)|t−cut =

∫
d2l1
(2π)2

∫
d2l2
(2π)2 iπδ+(l1

2−1) iπδ+(l2
2−1)

×A
(0)SP

MR(p1, l1, l2, p3)A
(0)RQ

SN(l2, p2, l1, p4)(5)

A
(1)PQ

MN(p1, p2, p3, p4)|u−cut =

∫
d2l1
(2π)2

∫
d2l2
(2π)2 iπδ+(l1

2−1) iπδ+(l2
2−1)

×A
(0)SQ

MR(p1, l1, l2, p4)A
(0)RP

SN(l2, p2, l1, p3)(6)

whereA (0) are tree-level amplitudes and a sum over the complete set of interme-
diate statesR,S (all allowed particles for the cut lines) is understood. Notice that
tadpole graphs, having no physical two-particle cuts, are by definition ignored in
this procedure.
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N P

Q
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p2 p4
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p1 p4
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N P
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A (0)

A (0)

Fig. 1 Diagrams representing s-, t- and u-channel cuts contributing to the four-point one-loop
amplitude.
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To proceed, in each case one uses (1) and the momentum conservation at the
vertex involving the momentump1 to integrate overl2, e.g. for thes-channel

Ã
(1)PQ

MN(p1, p2, p3, p4)|s−cut =

∫
d2l1
(2π)2 iπδ+(l1

2−1) iπδ+((l1− p1− p2)
2−1)

× Ã
(0)RS

MN(p1, p2, l1,−l1+ p1+ p2)Ã
(0)PQ

SR(−l1+ p1+ p2, l1, p3, p4) ,(7)

The simplicity of the two-dimensional kinematics and of being at one loop plays
now its role, since in each of the integrals the set of zeroes of the δ -functions is a
discrete set, and the cut loop-momenta are frozen to specificvalues7. This allows
us to pull out the tree-level amplitudes with the loop-momenta evaluated at those
zeroes8. In what remains, following standard unitarity computations [9], we apply
the replacementiπδ+(l2 − 1) −→ 1

l2−1
(i.e. the Cutkowsky rule in reverse order)

which sets loop momenta back off-shell, thus reconstructing scalar bubbles. This
allows us to rebuild, from its imaginary part, the cut-constructible piece of the am-
plitude and, via (3) 9, of the S-matrix. It then follows that a candidate expression for
the one-loop S-matrix elements is given by the following simple sum of products of
two tree-level amplitudes10

S(1)PQ
MN(p1, p2) =

1
4(ε2p1− ε1p2)

[
S̃(0)RS

MN(p1, p2)S̃
(0)PQ

RS(p1, p2) Ip1+p2 (8)

+S̃(0)SP
MR(p1, p1)S̃

(0)RQ
SN(p1, p2) I0+ S̃(0)SQ

MR(p1, p2)S̃
(0)PR

SN(p1, p2) Ip1−p2

]

where the coefficients are given in terms of the bubble integral

Ip =

∫
d2q
(2π)2

1
(q2−1+ iε)((q− p)2−1+ iε)

(9)

and read explicitly

Ip1+p2 =
iπ −arsinh(ε2 p1− ε1p2)

4π i (ε2p1− ε1p2)
, I0 =

1
4π i

, Ip1−p2 =
arsinh(ε2 p1− ε1p2)

4π i (ε2p1− ε1p2)
.

A few importants remarks are in order:

(a) Since the unitarity-cut procedure only ensures the correctness of logarith-
mic terms (in general, of those terms associated to branch-cut singularities, typ-

7 At two loops, to constrain completely the four components ofthe two momenta circulating in the
loops one needs four cuts, each one giving an on-shellδ -function. Two-particle cuts at two loops
would result in a manifold of conditions for the loop momenta.
8 This is like usingf (x)δ (x−x0) = f (x0)δ (x−x0), where f (x) are the tree-level amplitudes in the
integrals.
9 This corresponds to the choicep3 = p1, p4 = p2.
10 In (8), S̃(0)(p1, p2) = 4(ε2 p1 − ε1 p2)S(0)(p1, p2) and the denominator on the right-hand side
comes from the JacobianJ(p1, p2) assuming a standard relativistic dispersion relation (forthe
theories we consider, at one-loop this is indeed the case).
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ically logarithms or polylogarithms), the proposal (8) and its fermionic general-
ization [7] crucially need to be tested on known examples11.
(b) Thet-channel cut requires a prescription, since if one first usestheδ -function
identity (2) to fix, for example,p1 = p3 andp2 = p4 the corresponding integral
is ill-defined. To avoid this ambiguity we follow the prescription that we should
only impose theδ -function identity at the end12. Furthermore, if we choose the
alternative solution of the conservationδ -function in (5), namelyℓ2 = ℓ1+ p4−
p2, the coefficient ofI(0) in (8) would be different, which leads to the consistency
condition on the tree-level S-matrix13

S̃(0)SP
MR(p1, p1) S̃(0)RQ

SN(p1, p2) = S̃(0)PS
MR(p1, p2) S̃(0)QR

SN(p2, p2) . (10)

We have checked this for the tree-level S-matrices of all thefield theory models
treated below.
(c) As they only involve the scalar bubble integral in two dimensions, the re-
sult (8) following from our procedure is inherentlyfinite. No additional regular-
ization is required and the result can be compared directly with the 2→ 2 particle
S-matrix (following from the finite or renormalized four-point amplitude) found
using standard perturbation theory. Of course, this need not be the case for the
original bubble integrals before cutting – due to factors ofloop-momentum in the
numerators. These divergences, along with those coming from tadpole graphs,
which we did not consider, should be taken into account for the renormaliza-
tion of the theory. We have not investigated this issue, since all the theories we
consider below are either UV-finite or renormalizable.

To explore the validity of the procedure outlined we have considered both relativistic
and non-relativistic (world-sheet field theory for the AdS5×S5 superstring) models.

3 Relativistic models

In the relativistic, bosonic case, we looked at a class of generalized sine-Gordon
models [10, 11], theories defined by a gauged WZW model for a cosetG/H plus a
potential, whose classical integrability can be demonstrated through the existence of
a Lax connection. Considering the cosetG/H = SO(n+1)/SO(n), where asymp-
totic excitations are a free SO(n) vector with unit mass (which is the case we have
considered in our general procedure), this class includes the sine-Gordon (n = 1)
and complex sine-Gordon (n= 2) models, for which the exact S-matrices are known
[12, 13]. In all the cases the one-loop S-matrix got via unitarity cuts agrees – up to

11 Because its bubble integralI0 can only contribute to rational terms, thet-channel contribution
has been neglected in [8], where all rational terms were determined from symmetry considerations.
12 In some sense this is natural as, in general dimensions, quantum field theory amplitudes have
the form (1), while theδ -function identity (2) is specific to two dimensions.
13 See [7] for the generalization to the case which includes fermions.
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a term proportional to the tree-level S-matrix which can be interpreted as a scheme-
dependent shift in the coupling14 – with the one known from perturbation theory.
Importantly, the latter includes one-loop corrections coming from a gauge-fixing
procedure which integrates out unphysical fields [15] and results in contributions to
the one-loop S-matrix which restore various properties of integrability.

As for relativistic, supersymmetric models, which have checked the procedure
on theories obtained as Pohlmeyer reductions of the Green-Schwarz action for the
Type IIB superstring on AdS5 ×S5[16, 17], AdS3 ×S3 [18] and AdS2 ×S2 [16]
which can be seen as supersymmetric generalizations of the bosonic models con-
sidered above15. These reduced theories are all classically integrable, demonstrated
by the existence of a Lax connection, and conjectured to be UV-finite [20]. The
tree-level and one-loop S-matrices for these theories werecomputed in [21, 22],
while the exact S-matrices have been conjectured using integrability techniques in
[23] for the reduced AdS2×S2 model, [22] for the reduced AdS3×S3 model and
[24] for the reduced AdS5×S5 model. In all the cases considered, the agreement is
exactand no additional shift of the coupling is needed. The presence of the super-
symmetry, albeit deformed, may provide an explanation for this, with shifts arising
from bosonic loops cancelled by shifts from fermionic loops. Importantly, in the
reduced AdS3×S3 standard perturbative computation a contribution coming from a
one-loop correction needs to be added so that the S-matrix satisfies the Yang-Baxter
equation. It is this S-matrix that the unitarity technique matches. This is then an-
other example of how unitarity methods applied to a classically integrable theory
seem to provide aquantum integrableresult. This seems to suggest a relationship
between integrable quantization and unitarity techniqueswhich would be interesting
to investigate further.

4 AdS5×S5 superstring world-sheet theory

We have finally considered the case of the light-cone gauge-fixed superstring on
AdS5×S5 and its world-sheet S-matrix16. Assuming the quantum integrability of
the full world-sheet theory and using the global symmetriesthe exactworld-sheet
S-matrix has been uniquely determined [26] up to an overall phase, or dressing fac-
tor [27]. The determination of the latter exploited the non-relativistic generalization

14 In the sine-Gordon case the agreement is exact. Forn≥ 2 the shift in the coupling is by the dual
Coxeter number of the groupG= SO(n), a structure that appears regularly in the quantization of
WZW and gauged WZW models, wherek is the quantized level (see for example [14]).
15 The reduced AdS2 ×S2 theory is in fact given by theN = 2 supersymmetric sine-Gordon
model. The reduced AdS3×S3 and AdS5×S5 theories have a non-localN = 4 andN = 8 super-
symmetry respectively, which manifests as aq-deformation of the S-matrix symmetry algebra. We
have also checked that the unitarity-cutting procedure matches the perturbative result at one-loop
in theN = 1 supersymmetric sine-Gordon model [19].
16 Notice that this is anon-relativisticmodel, as seen quantizing it perturbatively and noticing that
the choice of a flat Minkowski worldsheet metric is incompatible with Virasoro constraints (see for
example [25]).
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of the crossing symmetry [28, 29] as well as perturbative data both from the string
and gauge theory sides [30, 31]. Relaxing the level-matching condition and tak-
ing the limit of infinite light-cone momentum (decompactification limit), the world-
sheet theory becomes a massive field theory defined on a plane,with well-defined
asymptotic states and S-matrix. The scattering of the world-sheet excitations has
been studied at tree-level in [32], while one-loop [33] and two-loop [34] results have
been carried out only in the simpler near-flat-space limit [35] where interactions are
at most quartic in the fields. These studies have also explicitly shown some conse-
quences of the integrability of the model, such as the factorization of the many-body
S-matrix and the absence of particle production in the scattering processes [36].

The tree level matrix elements were evaluated in [32] in the generalized uniform
light-cone gauge (showing therefore an explicit dependence on the parametera la-
beling different light-cone gauge choices [37]) at leading order in perturbation the-

ory, where the small parameter is the inverse of the string tensiong=
√

λ
2π .After hav-

ing explicitly verified that the tree-level matrix elementsabove verify the fermionic
generalization of the consistency relation (10), we could safely use them as an in-
put of our procedure and get the one-loop S-matrix for the light-cone gauge-fixed
sigma model17. As a first result, an overall phase could be resummed at the one-
loop order, which show the expected gauge dependence [39]. As mentioned above,
because of the complicated structure of interactions of thelight-cone gauge-fixed
sigma model, the perturbative S-matrix is known beyond the leading order [33, 34]
only in the kinematic truncation known as near-flat-space limit [35]. Therefore, to
test the validity of the unitarity method, we needed to compare our one-loop result
to the corresponding limit of the exact world-sheet S-matrix. This was achieved by
considering the matrix elements derived in [26] for a single SU(2|2) sector together
with the dressing phase, here needed at next-to-leading order in the 1/

√
λ expan-

sion18.
In comparing the exact S-matrix with the one found via unitarity cuts19 we found

(SCD
AB)exact= e

i
4g

(
([A]+2[B]−[C]−2)p1+([B]−2[C]−[D]+2)p2

)
eϕa=0(p1,p2) (SCD

AB)cut+O(1/g3) .
(11)

From (11) we see that we have agreement up to a phase whose argument is linear
in momenta. This is not surprising, as it simply amounts to moving from the string
frame to the spin-chain frame [40, 41]. As argued already at the tree level [32], such
terms should not affect the physical spectrum following from inputting the S-matrix
into the asymptotic Bethe equations.

17 Notice that the non-relativistic dispersion relationε(p) =
√

1+ λ
π2 sin2 p

2 [38, 26], when ex-

panded in the near-BMN limit p→ ζp, corresponding to the perturbative regime, leads to a rela-

tivistic energyεi =
√

1+p2
i .

18 In the comparison with the world-sheet calculation all dimensional quantities (such as the spin-
chain length and the momenta) should be rescaled via a factorof

√
λ/(2π) [32], for us p→ ζ p.

19 This is done in the so-called constant-J gaugea= 0.
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