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Unitarity methodsfor scatteringin two
dimensions

Valentina Forini, Lorenzo Bianchi and Ben Hoare

Abstract The standard unitarity-cut method is applied to severalsiwastwo-
dimensional models, including the world-sheet AdSS® superstring, to compute
2 — 2 scattering S-matrices at one loop from tree level amptisudEvidence is
found for the cut-constructibility of supersymmetric igtable models, while for
models without supersymmetry (but integrable) the missatmpnal terms can be
interpreted as a shift in the coupling.

1 Discussion

Unitarity-based methods, whose use in four dimensions &as brucial for an ef-
ficient evaluation of scattering amplitude§ [n non-abelian gauge theories as well
as gravity theories?], have never really been applied in two dimensidriBhe aim

of our work [7] (we refer the reader to the independent results8fftias been to
initiate the use of unitarity methods in the perturbativedgtof the S-matrix for
massive two-dimensionééld theories. Limiting ourselves to the usesténdard
unitarity (therefore placing on shell only two internalds?) we present a formula
for the one-loop 2— 2 scattering amplitude built directly from the correspaori
on-shell tree-level amplitudes.

As reviewed below, we have applied our method to various isodimding
enough evidence to postulate tkapersymmetric, integrable two-dimensional theo-
ries should be cut-constructible via standard unitaritythoels For bosonic theories
with integrability, we find agreement with perturbationahgup to a finite shift in

Valentina Forini, Lorenzo Bianchi and Ben Hoare
Humboldt Universitat zu Berlin, Newtonstrasse 15, 124@9liB, Germany
e-mail: forini, bianchi, hoare@physik.hu-berlin.de

1 For the three-dimensional case s8g4] 5, 6].

2 This is nothing but the application of the optical theorehe Ease where the loop amplitude is
subdivided into more than two pieces is referred tgeseralizedunitarity.
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the coupling’. We also successfully apply our method to the light-coneygdixed
sigma-model for theAdS; x S® superstring, where - importantly - standard pertur-
bation theory seems to fail in evaluating the S-matrix belthre leading order due
to regularization issues.

Natural extensions of our analysis would be the generaéizab both higher
loops* and higher points, as well as the evaluation of rationalriimmions in the
case of scattering of particles with different massesyéasting for example for the
AdS; x S® x M* world-sheet S-matriX.

2 Two-particle S-matrix from unitarity cutsat oneloop

In two dimensions, the two-body scattering process of sstedional-invariant field
theory is described via the four-point amplitude

(@7 (p3) D°(pa) [S| P (p1) P (P2)) = Fgg (P1. P2, P3, Pa)
= (2m)25®) (p1+ P2 — P3 — Pa) (1, P2, P3, Pa) 1)

whereS is the scattering operator, the fieldshave on-shell momentg (for us,
all the particles have equal non-vanishing mass set to Juaitg can carry flavor
indices. Importantly, the energy-momentum conservabidanction satisfies

52 (pr+ P2 — pa— pa) = I(pr, P2) (8(p1 — P3) & (P2 — p4>+5(p1—p4>5(p2—p3)()25
which accounts for the fact that ith = 2 there is no phase space, and the only
thing particles can do is either preserve or exchange theinemta. Above, p is the
spatial momentum, the Jacobid(p, p2) = 1/(0&, /0p1— 0&,/0p2) depends on

the dispersion relatiog, (the on-shell energy associated to p) for the theory at hand,
and spatial momenta are assumed to be ordered m,. The S-matrix elements
relevant for the description of the-2 2 scattering in the two-dimensional case are
then defined as

J(P1,
%%(p].? p2) (4p; p2) ’Q/{\I\I/TS( P1, P2, P1, p2) . (3)
1€2

3 It would be interesting to analyze models which are just symemetric and not integrable.

4 Two-loop logarithmic contributions to the world-sheettserdng matrix for several backgrounds
of interest were evaluated iB][

5 This implies an extension to the case of different massebeof-thannel prescription we de-
scribe in the next section, and would complete the analydi8]avhere the logarithmic part was
computed up to two loops.

6 Without loss of generality, one can consider 1) the amplitudes associated to the first product
of d-functionsd(p; — p3) (P, — Pa)- The denominator in3) is required to make contact with the
standard definition of the S-matrix in two dimensions.
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In applying the standard unitarity rules (derived from tipgical theorem) 9] to
the one-loop four point amplitudd) one considerswo-particle cuts obtained by
putting two intermediate lines on-shell. The contribuidhat follow to the imagi-
nary part of the amplitude are therefore given by the susm Bfandu- channel cuts
illustrated in Fig.1, explicitly

2y o, |
VR (pr, 2, p3ap4)|sfcut:/W/(2n)2 6" (12— 1) i (12— 1)
x o OFR(P1, P2:11,12) 7 VG312, 11, pa, pa) (4)
" d2|1 " d2|2 . .
/DR (P, P2, Pa, Pa)l—out = / W/ e 178" (47~ 1) i7" (22 -1
x o OFa(P1. 1,12, ps) 7 O5R12, P11, Pa) (5)
" d2|1 " d2|2 . .
A DFR (P, P2, Pa, Pa)lu-cu = / W/ G 70 (07— 1) i7" 122 - 1)

x o/ ORR(p1, 11,12, pa) O &K(12, P2, 11, p3) (6)

where.o7 (@ are tree-level amplitudes and a sum over the complete saterfiie-
diate stateRR S (all allowed particles for the cut lines) is understood. isetthat
tadpole graphs, having no physical two-particle cuts, grééfinition ignored in
this procedure.

Fig. 1 Diagrams representing s-, t- and u-channel cuts contrigut the four-point one-loop
amplitude.
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To proceed, in each case one usBsgnd the momentum conservation at the
vertex involving the momenturp; to integrate ovel,, e.g. for thes-channel

- d?ly .
TR P P2, s, Palls e = [ G 8 (147~ )i (1~ pa— o) 1)

x o/ ORS (pr, 2,11, —11+ pr+ p2) @ O S2(—11 + pL+ P2, |1, Ps, pa) . (7)

The simplicity of the two-dimensional kinematics and ofrigeat one loop plays
now its role, since in each of the integrals the set of zerd#isend-functions is a
discrete set, and the cut loop-momenta are frozen to speaiiies’. This allows
us to pull out the tree-level amplitudes with the loop-motaegvaluated at those
zeroe<’. In what remains, following standard unitarity computagdo], we apply
the replacemernittd* (12 — 1) — ﬁ (i.e. the Cutkowsky rule in reverse order)
which sets loop momenta back off-shell, thus reconstrgctiralar bubbles. This
allows us to rebuild, from its imaginary part, the cut-coustible piece of the am-
plitude and, via®) %, of the S-matrix. It then follows that a candidate expres§iw
the one-loop S-matrix elements is given by the followingpersum of products of
two tree-level amplitude¥’

1 ~ ~
Sma?\](pl, p2) = 4eapr—£1p2) [S(O)ﬁ?\l(pla pz)S*O)Eg(pl, P2)lpi+p  (8)

+895R(p1, P1)S VR p1, p2) o+ SORR (1, p2)SVER(p1, p2) | prpz}

where the coefficients are given in terms of the bubble itegr

[ d%qg 1
'p_./ (22 (@ —1+ig)((q— p)2— 1+i¢€) ©)

and read explicitly

arsini{ezp1 — €1p2)
ATt (&2p1 — €1P2)

| _im—arsint{&;py — £1p2) I — | B
LR T Ami (61— €1p2) °" am’ Prope
A few importants remarks are in order:

(a) Since the unitarity-cut procedure only ensures theectmess of logarith-
mic terms (in general, of those terms associated to branthkiugularities, typ-

7 Attwo loops, to constrain completely the four componenttheftwo momenta circulating in the
loops one needs four cuts, each one giving an on-ghilhction. Two-particle cuts at two loops
would result in a manifold of conditions for the loop momenta

8 This is like usingf (x)3(x—Xo) = f(x0)8(x—Xo), wheref (x) are the tree-level amplitudes in the
integrals.

9 This corresponds to the choipg = p1, ps = P2.

10 1n (8), 89 (p1, p2) = 4(&2p1 — £1p2)S?9 (p1, p2) and the denominator on the right-hand side
comes from the Jacobial(p;, p2) assuming a standard relativistic dispersion relation (fier
theories we consider, at one-loop this is indeed the case).
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ically logarithms or polylogarithms), the propos8) é&nd its fermionic general-
ization [7] crucially need to be tested on known examgies

(b) Thet-channel cut requires a prescription, since if one first trseg-function
identity (2) to fix, for example p1 = p3 andp, = p4 the corresponding integral
is ill-defined. To avoid this ambiguity we follow the pregation that we should
only impose thed-function identity at the enéf. Furthermore, if we choose the
alternative solution of the conservatidrfunction in 6), namelyl, = ¢4+ pa—

p2, the coefficient of (0) in (8) would be different, which leads to the consistency
condition on the tree-level S-matrix

SO (pr. p1) SVER(P1, p2) = SVha(pr P2) SO (P2, p2) . (10)

We have checked this for the tree-level S-matrices of alfigid theory models
treated below.

(c) As they only involve the scalar bubble integral in two dimsions, the re-
sult 8) following from our procedure is inherentfinite. No additional regular-
ization is required and the result can be compared diredtlytive 2— 2 particle
S-matrix (following from the finite or renormalized fouripbamplitude) found
using standard perturbation theory. Of course, this ne¢d@dhe case for the
original bubble integrals before cutting — due to factorop-momentum in the
numerators. These divergences, along with those comimg faolpole graphs,
which we did not consider, should be taken into account ferrémormaliza-
tion of the theory. We have not investigated this issue,esaltthe theories we
consider below are either UV-finite or renormalizable.

To explore the validity of the procedure outlined we havesidered both relativistic
and non-relativistic (world-sheet field theory for the AdSS® superstring) models.

3 Relativistic models

In the relativistic, bosonic casewe looked at a class of generalized sine-Gordon
models L0, 11], theories defined by a gauged WZW model for a c@gtl plus a
potential, whose classical integrability can be demotestirthrough the existence of
a Lax connection. Considering the co&tH = SO(n+ 1) /SQ(n), where asymp-
totic excitations are a free @) vector with unit mass (which is the case we have
considered in our general procedure), this class inclugesine-Gordonn(= 1)
and complex sine-Gordon & 2) models, for which the exact S-matrices are known
[12, 13]. In all the cases the one-loop S-matrix got via unitarityscagrees — up to

11 Because its bubble integrk) can only contribute to rational terms, thehannel contribution
has been neglected i@][ where all rational terms were determined from symmetnysaderations.
12 |n some sense this is natural as, in general dimensionstuqudield theory amplitudes have
the form (), while thed-function identity @) is specific to two dimensions.

13 See [] for the generalization to the case which includes fermions
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a term proportional to the tree-level S-matrix which canrtieripreted as a scheme-
dependent shift in the coupling — with the one known from perturbation theory.
Importantly, the latter includes one-loop corrections gafrom a gauge-fixing
procedure which integrates out unphysical fieltl§ pnd results in contributions to
the one-loop S-matrix which restore various propertiestgfgrability.

As for relativistic, supersymmetric modelwhich have checked the procedure
on theories obtained as Pohlmeyer reductions of the Grebn8z action for the
Type 1IB superstring on AdSx S°[16, 17], AdS; x S [18] and AdS x S [16]
which can be seen as supersymmetric generalizations ofobeniz models con-
sidered abové&. These reduced theories are all classically integrablepdestrated
by the existence of a Lax connection, and conjectured to bditité [20]. The
tree-level and one-loop S-matrices for these theories weneputed in 21, 22],
while the exact S-matrices have been conjectured usingradddity techniques in
[23] for the reduced AdSx S? model, R2] for the reduced Ad$x S* model and
[24] for the reduced AdSx S model. In all the cases considered, the agreement is
exactand no additional shift of the coupling is needed. The preserf the super-
symmetry, albeit deformed, may provide an explanationHay, with shifts arising
from bosonic loops cancelled by shifts from fermionic loofmportantly, in the
reduced Ad$ x S standard perturbative computation a contribution comingifa
one-loop correction needs to be added so that the S-matisieathe Yang-Baxter
equation. It is this S-matrix that the unitarity techniquatames. This is then an-
other example of how unitarity methods applied to a cladlgiGategrable theory
seem to provide guantum integrableesult. This seems to suggest a relationship
between integrable quantization and unitarity technigui@sh would be interesting
to investigate further.

4 AdSs x S superstring world-sheet theory

We have finally considered the case of the light-cone gaugeHsuperstring on
AdSs x S and its world-sheet S-matr¥. Assuming the quantum integrability of
the full world-sheet theory and using the global symmetitesexactworld-sheet
S-matrix has been uniquely determin@d|[up to an overall phase, or dressing fac-
tor [27]. The determination of the latter exploited the non-reiatic generalization

14 In the sine-Gordon case the agreement is exactnBo® the shift in the coupling is by the dual
Coxeter number of the group = SO(n), a structure that appears regularly in the quantization of
WZW and gauged WZW models, whekes the quantized level (see for exampldl]).

15 The reduced Adsx S theory is in fact given by the4” = 2 supersymmetric sine-Gordon
model. The reduced AdS« S® and AdS x S theories have a non-local” = 4 and.#" = 8 super-
symmetry respectively, which manifests ag-deformation of the S-matrix symmetry algebra. We
have also checked that the unitarity-cutting procedurechest the perturbative result at one-loop
in the.#" = 1 supersymmetric sine-Gordon mod&®].

16 Notice that this is aon-relativisticmodel, as seen quantizing it perturbatively and noticirag th
the choice of a flat Minkowski worldsheet metric is incompkiwith Virasoro constraints (see for
example R5)).
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of the crossing symmetr2B, 29 as well as perturbative data both from the string
and gauge theory side8(, 31]. Relaxing the level-matching condition and tak-
ing the limit of infinite light-cone momentum (decompactiiion limit), the world-
sheet theory becomes a massive field theory defined on a pltheyell-defined
asymptotic states and S-matrix. The scattering of the walilgket excitations has
been studied at tree-level iB7], while one-loop B3] and two-loop B4] results have
been carried out only in the simpler near-flat-space liB6} fvhere interactions are
at most quatrtic in the fields. These studies have also ettplsiown some conse-
quences of the integrability of the model, such as the fattion of the many-body
S-matrix and the absence of particle production in the edatf processesp).

The tree level matrix elements were evaluate®i#] [n the generalized uniform
light-cone gauge (showing therefore an explicit depend@amcthe parametexla-
beling different light-cone gauge choice]) at leading order in perturbation the-

ory, where the small parameter is the inverse of the stringjomg = \2/—5 . After hav-
ing explicitly verified that the tree-level matrix elemeatsove verify the fermionic
generalization of the consistency relatidid), we could safely use them as an in-
put of our procedure and get the one-loop S-matrix for thetimpne gauge-fixed
sigma model’. As a first result, an overall phase could be resummed at the on
loop order, which show the expected gauge depend&®.eAs mentioned above,
because of the complicated structure of interactions ofitfie-cone gauge-fixed
sigma model, the perturbative S-matrix is known beyond éagling order33, 34
only in the kinematic truncation known as near-flat-spaest [f35]. Therefore, to
test the validity of the unitarity method, we needed to coramaur one-loop result
to the corresponding limit of the exact world-sheet S-mafrhis was achieved by
considering the matrix elements derived 2] for a single SU2|2) sector together
with the dressing phase, here needed at next-to-leadirey ordhe 7/v/A expan-
sion8,

In comparing the exact S-matrix with the one found via uitiganuts '° we found

(D) exact= o5 ((1A+2[B)-C]-2)pr-+([B)-2(C)-[D)+2)p2) eba=o(PrP2) (DY i+ 0(1/0°) .

(11)
From (11) we see that we have agreement up to a phase whose arguniagsis |
in momenta. This is not surprising, as it simply amounts taimg from the string
frame to the spin-chain framd(), 41]. As argued already at the tree leval], such
terms should not affect the physical spectrum followingrfriaputting the S-matrix
into the asymptotic Bethe equations.

17 Notice that the non-relativistic dispersion relatiefp) = /1+ % sin® 5 [38, 26], when ex-
panded in the near-BMN limit p» {p, corresponding to the perturbative regime, leads to a rela
tivistic energyg; = 1/1+ p2.

18 In the comparison with the world-sheet calculation all disienal quantities (such as the spin-
chain length and the momenta) should be rescaled via a fatidh /(2m) [32), for us p— { p.

19 This is done in the so-called constahtaugea = 0.
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