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Whither Human Survival and Longevity 
or 

 The Shape of Things to Come   
 
 
 
 
 
Leslie Mayhew and David Smith  
Faculty of Actuarial Science and Insurance  
Cass Business School 
 
Abstract 
 
With the continuing increases in life expectancy, populations are ageing rapidly.  
Governments are concerned for the future of pensions and health care for which population 
forecasts are an important component for planning purposes. In this paper we focus on human 
survival rather than mortality rates which are the more usual starting point when estimating 
future populations. Using a simple model we link basic measures of life expectancy to the 
shape of the human survival function and consider its various forms. We then use the simple 
model as the basis for investigating actual survival in England and Wales from 1841 onwards 
and investigate the concept of a ‘maximum age’. We show how the model can be used in a 
predictive sense and demonstrate in two tests that show our model would have given more 
accurate results than comparable government forecasts using the same base information. We 
then go on to show that, based on trends in life expectancy, official population forecasts could 
undershoot the population at age 50+ by 0.6m, with consequent financial implications for 
pensions, health and social care.  
 
1. Introduction 
 
In June 2009 Henry Allingham of the UK celebrated his 113th birthday, one of a tiny 
number of people that have made it to such an old age. On present trends the next 20 
years or so will see a six fold increase in the number of centenarians in this country to 
around 60,000 and so Henry Allingham will potentially be joined by many others, not 
only in the UK but also around the world (Manton et al, 1991; Coale, 1996; Vaupel, 
1998; Wilmoth and Robine, 2003; Robine and Saito, 2003).   
 
However, amidst the celebrations of his achievement it is still the case that around 
14% of English males will die before their 65th birthday and 31% before their 75th 
birthday.  The highly publicised increases in life expectancy have thus to an extent 
masked the fact that life span is still hugely variable even in prosperous countries.  
 
Whilst to a degree life span inequalities are inevitable, society continues to attach a 
high priority to reducing the number of premature deaths from whatever causes or 
influences whether biomedical or societal in origin.  As a result, policy makers are 
pulled in two directions. At one extreme they wrestle with the problem of how society 
will be able to cope with the burgeoning numbers of elderly in terms of health care 
costs and pensions, and at the other, of promoting a healthy living and risk-avoiding 
culture so that people are able to live longer active and more productive lives.  
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We have reached the present position in which the majority of UK citizens live until 
they are at least 80 years old as a result of many factors and influences spread over 
100 years. These include massive reductions in childhood mortality through better 
nutrition and immunisation programmes that has led to mortality under 30 years of 
age virtually disappearing, better welfare safety nets leading to poverty reduction, 
improved health care, central heating, more recently life style changes from 
reductions in smoking, and finally better treatment and management of chronic 
diseases in old age particularly heart disease.   
 
Nevertheless, inequality in life span is arguably the most fundamental inequality that 
exists among human populations (Rogers, 1995; Carey, 2003; Edwards and 
Tuljapurkar, 2005; Wachter, 2003) and so progress in reducing it is of significant 
interest in public policy terms. For example the UK government target is to reduce 
health inequalities by 10% by 2010 as measured by infant mortality and life 
expectancy at birth between the worst performing areas of the UK and the rest.  To 
what extent is the achievement of this target supported by trends in S(x), the 
proportion of the population surviving to age x, through time and by when is it likely 
to be accomplished? 
 
Such changes in the way we live spread over many years, prompts a number of 
questions. For example, whether inequalities are reducing or increasing through time, 
or whether there are upper limits to life span or if patterns differ between countries, in 
particular those at different stages of economic development or with different 
cultures. An interesting question for example is whether countries experiencing rapid 
development and economic growth exhibit similar patterns in human survival to 
already developed countries, and if there are differences whether they are attributable 
to differences in governance or approaches to welfare.   
 
The literature on the subject of human survival is considerable, going back in some 
cases centuries (Olshansky and Carnes, 1997). Among the many papers on the 
subject, Fries (1980) made the important observation that, although more people were 
living longer for all these reasons, the shape of the human survival curve S(x) was 
becoming more rectangular in shape, suggesting that there were possible biological 
limits to life span.  
 
This has sparked considerable debate in the literature ever since in which the 
arguments broadly resolve into two camps. One agrees with Fries which is that from a 
rational standpoint there must be biological limits to life expectancy and it is only a 
matter of ‘when’ and not ‘if’ they limit is reached. The other camp points to the fact 
that there has been an unbroken linear rise in life expectancy of about three months a 
year for at least 150 years and that there are no signs of this abating (Oeppen and 
Vaupel, 2006).  In the leader board of life expectancies in different countries, the 
position has changed many times over the years with, for example, New Zealand in 
the first half of last century leading the way, then Scandinavia, briefly Switzerland, 
and now Japan. Supporters of this viewpoint hence argue that, taking the world as a 
whole, it is premature to talk of upper limits for so long as this trend persists.  
 
Following in Fries’s footsteps there have been numerous efforts to demonstrate 
progress towards rectangularistion hypothesis applying an array of measures to S(x) 
including the interquartile range, standard deviations and Gini coefficients (Wilmoth 
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and Horiuchi. 1999; Kanisto, 2000; Lynch and Brown, 2001). Their ultimate focus is 
on the ‘compression of human mortality’ and around an upper limit to life span rather 
than on the driving forces.  Edwards and Tuljapurkar (2005), using the Kulber-Leibler 
divergence to compare changes over time, found evidence of differences in S(x) 
according to socio-economic inequality, associated factors such as educational status 
and ethnicity as well as for example gender.   
 
For an actuary, pension provider or health economist, maximum life span is arguably 
mainly of academic interest as compared with S(x). The reason is that very few people 
will reach the maximum life span while changes in the numbers of people reaching 
different ages will determine the future benefits to be paid out in the case of life 
assurance and pension provision, and will inform the demand for social security and 
health care from the public purse.  Such information is customarily supported by 
official published population projections. A problem is that there has been a tendency 
to under-estimate improvements in mortality especially at older ages, resulting in 
population forecasts that are too low (Bengtsson, and Keilman, 2003). 
  
In this paper we will argue that there is very little sense of overall strategic direction 
or indication of speed of change in human survival, so that we do not know if this 
year’s projections will alter significantly from one year to the next or how this will 
affect future planning assumptions. An example of this would be the answer to the 
question of how far pension age should be raised, and if life expectancy increases 
faster than we had planned for in our calculations, how many more people will 
survive to pensionable age than we had anticipated? A simple look-up table or chart 
may be more practicable in this regard than repeated model runs of different 
population scenarios (Blake and Mayhew, 2006).   
 
Taking these considerations into account, measures of rectangularistion do not 
directly lead to the answer of how many people will survive to age x between now and 
2020 and nor how many deaths would be avoided as a result each year in the 
intervening period. What would be helpful are methods to predict the shape of S(x) 
going forward from which can be derived many useful measures including how many 
lives will survive to any given age. To do this we need to understand patterns of 
survival in more detail.  
 
In this paper we develop a model that builds on regularities in the survival curve to 
shed light on some of these important questions, whether life expectancy is measured 
at birth or at any other age.  The paper has five objectives; they are to: 
 
- model and predict changes in the shape of the survival curve through time so 

that for example knowing where life expectancy will be in the future will 
enable accurate estimates of the percentages surviving to different ages 

 
- use the model to investigate whether there is evidence of a human ‘maximum’ 

age and, if so, how many years will elapse until that point is reached 
 
- investigate whether there are signs that life-span inequalities are reducing or 

increasing with time and at what rate and in which age range 
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- estimate how many extra lives will be saved each year and at which ages as 
survival rates improve 

 
- test whether the approach produces more accurate estimates of survivorship 

than currently used methods that spring from mortality models in the first 
instance. 

 
We use data for England and Wales concentrating on the period 1841 to 2003 to 
illustrate or findings. First, however, we outline the modelling approach and develop 
the mathematical framework we need to develop the basics ideas used in the analysis. 
Later sections apply the model to historical data to interpret the past and as a basis for 
building projections in which technical details on how projections are constructed are 
included. Since survival is the converse of death, the method is theoretically 
complementary to customary methods based on projecting mortality rates although 
differences arise due to technical differences of approach. 
 
Limitations of space restrict the number of empirical examples that can be provided in 
this paper, although we have tested the method on data from several countries. In 
presenting our results, we consider the case of predicting survivorship from 1981 to 
the present using then GAD forecasts and our forecasts based on the model but from a 
1981 perspective and then with a similar procedure for 1991. We then compare the 
performance of both models with the realised survivorship rates and compare what 
happens when the model is rolled forward to 2020. A concluding section reflects on 
the principal findings and overall approach and discusses follow-on work. 
 
The origins of the techniques described are derived from research in two other 
unrelated fields both of which use queuing theory. These are worthy of mention 
because they illustrate a commonality of mathematical processes under different 
guises that suggests, in turn, a range of other possible applications. The first of these 
is described in Mayhew (1987) which is concerned with estimating the time elapsed 
by social security claims in the system and was used for setting social security targets, 
and the second is based on time to discharge times in accident and emergency 
departments (Mayhew and Smith, 2007). Both in fact have their basis in types of 
survival curve, but the distributions are known by different names in the queuing 
literature (usually the distribution of ‘time spent in the system’).   
 
The fact that in both cases there are statistically robust empirical regularities between 
average time spent and the time taken to process a given percentage of social security 
claims or patients in an A&E department encouraged us to believe that similar 
regularities are observable in other fields, in this case human survival. Such an 
example is given in Mayhew (2001) which investigates the issue of long term care 
provision in Japan.  Trends in life expectancy are used to project the Japanese survival 
curve in future years and hence the numbers of people likely to need long term care 
going forward. The key difference is that sojourns in these environments are ideally as 
short as possible but in life most want to remain in the system as long as possible ~ a 
life in slow lane!  
 
Among the results obtained in this paper the following are of particular significance: 
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o There has been a fundamental change in the pattern of survivorship from 1946 
with the result that previously indicated trends of a convergence in survival 
ages has stalled. At the oldest ages the survival ages are becoming more 
divergent with no sign of slowing down so that some people will live ever 
longer. These and other findings could mean that the Government target of 
reducing health inequalities which relies on a convergence in life expectancy 
in different areas of the country may not be achievable. 

 
o The underlying model that generates these patterns and trends, described in the 

first part of the paper, can be adapted to produce future life tables that appear 
to be more accurate than those officially used as the basis for population 
projections. This finding is based on a comparison of our model with GAD 
projections made in 1981 and 1991 and comparing the results with what 
actually occurred.  

 
o In projecting forward to 2020 our model shows greater survivorship than 

official GAD forecasts suggesting that there will be even higher numbers of 
older people than is currently being planned for. For example using 2001 as 
our base year we estimate that the number of males aged 50+ in 2020 will be 
approximately 0.7m higher than GAD’s own principal 2001 based projection 
for 2020. If correct this finding has implications for pensions, life insurance 
and services for older people such as health and social care that rely on 
population projections for planning and distribution purposes.  

 
2. Modelling approach and basic ideas 
 
Mathematically the survival curve denoted by S(x) denotes the probability of 
surviving to age x whereas e(x) defines life expectancy at age x.  With no loss of 
generality we initially develop our ideas into the form of a simple, stylised model in 
order to gain insights into the processes linking survival and life expectancy. This 
allows us to derive a basic relationship between the survival processes and simple 
dynamics that allow us to estimate lives saved, and mortality at different ages.  
 
To calibrate the model in practice we use a form of the conventional Gompertz-
Makeham survival curve in order to investigate the actual relationship between lives 
saved at different ages over time. However, we do not place restrictions on the values 
that the parameters are able to take. By exploiting the regularities in the data and 
trends over time we are also able to make a qualified guess at whether populations are 
converging towards a maximum life span, how many lives are saved each year of life 
expectancy, and the speed at which the survival curve is converging or otherwise.  
 
Imagine a stationary population in which there is a constant number of births and 
deaths, no migration and which is subjected to the same mortality regime each year. 
Consider Figures 1(a) – (c), which show the mortality curves ABC for three such 
hypothetical populations at a given point in time. The vertical axis shows the number 
of survivors lx and the horizontal axis age x. We define the point 1x  in each case as the 
onset of mortality, the age at which death begins, which can range from zero upwards. 
For simplicity we assume there are no deaths before this age. We call the point where 
BC cuts the age axis as 2x  or the maximum age to which anyone lives.  
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Figure 1: Three hypothetical mortality models (a), (b) and (c) 
 
Both 1x  and 2x  are somewhat fuzzy quantities in the real world. In developed 
countries we could assume the onset of mortality ( 1x ) occurs from around 50 years 
onwards.  Alternatively this may be defined by reference to particular percentile of 
deaths, for example 10%, to remove the effects of accidents and rare diseases that 
affect few of the population.  Similarly, rather than look at the final death in a 
population it may be more appropriate to assume that 2x  is the age of death of the 90th 
percentile. However, our purpose is to use them as conceptually useful devices to 
anchor and compare distributions and mortality processes rather than to determine 
them empirically.  
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Now imagine the age distribution of the population at another point in time. In model 
(a), we see that 1x  is unchanged whilst 2x  the oldest age has advanced to 2x′  (point 
D). In other words the onset of mortality is unchanged but now some people live to 
older ages. The consequence of this is a decline in the mortality gradient BD 
compared with BC. In model (b) we see that both 1x  and 2x  have advanced by the 
same amount, such that the mortality gradient is the same before and after. In model 
(c) 2x  has remained constant but 1x  has advanced to 1x′  (point E) with the effect that 
the mortality gradient is steeper. For reasons that will become apparent shortly we call 
(a) the dispersed mortality model, (b) the parallel mortality model and (c) the 
compressed mortality model  

 
What do the models tell us about the evolution of populations following one or other 
of these evolutionary paths? Qualitatively speaking, model (a) might be thought of 
benefiting older people more than younger people, model (b) all age groups equally 
and model (c) younger generations before older generations.  
 
Some relationships and properties of the simple model 
 
Table 1 is a list of basic parameters comparing each of the three models. Assume the 
number of survivors at a given age is xl . Line 1 in the parameter list (table 1) shows 
the population for each case as a function of 1x and 2x . This is simply the area under 
the population curve. Line 2 shows life expectancy 

1x
e at 1x  as a function of 1x

 
and 

2x . Line 3 shows the mortality gradient or number of deaths at each age where death 
can occur.  As shown, this value must increase if the difference between the age when 
people start dying and the age at which all lives have ceased decreases.  This is to 
ensure a stable population as an increase in the number of deaths at each age is needed 
so that total deaths are the same.  
 
Line 4 is a measure of the degree to which the mortality curve is rectangular in shape, 
following Wilmoth and Horiuchi (1999). The nearer the ratio is to one the closer the 
mortality curve is to a rectangle. It is calculated by comparing the area under the 
mortality curve from birth with the encompassing rectangle whose base ranges from 
the age at which mortality age to 2x . 
 
Line 5 shows the theoretical relationship between cumulative mortality ( )p x , life 
expectancy at 1x and a specified age, x, that is greater than 1x . These equations are 
most easily understood in the context of Figure 2a-c. Figure 2a depicts the dispersion 
case in which 1x  is assumed fixed while 2x  increases. On the vertical axis is life 
expectancy at 50 years, which is assumed for illustrative purposes to equate with 1x . 
Each line represents the cumulative mortality of 0%, 10%, 20% 30% etc. and can be 
used to determine the age at which the specified percentage of the population has died 
by. The 0% line corresponds to the vertical axis and so is invariant with life 
expectancy; however, note that all lines converge at the origin. Take for example 
point P equating to a life expectancy of a further 30 years at age 50 - the graph shows 
that 50% of the population would die by age 80. Further analysis shows that each one-
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year advance in life expectancy at 1x  translates into 2 extra years in maximum age as 
can be easily verified. 
 
 

 Parameter Mortality 
dispersion (A) 

Parallel Mortality (B) Mortality compression 
(C) 

1 Population size ( )1 22
xl x x′+  ( )1 22

xl x x′ ′+  ( )1 22
xl x x′ ′+  

2 Life expectancy at 
age 1x  ( )1x

e  
)(

2
1

1
'
2 xx −  ( )1 2 1

1
2

x x x′ ′+ −  ( )1 2 1
1
2

x x x′ + −  

3 Number of deaths 
at each year of age 
where death is 
possible 

1

2 1

xl
x x′ −

 

 

1

2 1

xl
x x′ ′−

 1

2 1

xl
x x′−

 

4 Coefficient of 
rectangularisation 

2 1

22
x x

x
′ +
′

 2 1

22
x x

x
′ ′+
′

 2 1

22
x x

x
′+

′
 

5 Proportion of 
population 
deceased as a 
function of 

1x
e  and 

age x  

 

( )
1

1

2 x

x xp x
e
−

=  

 

( )
( )( )1

1

1 12 x

x xp x
e x x

′−
=

′− −

 

 

( )
( )( )1

1

1 12 x

x xp x
e x x

′−
=

′− −

 

6 Survival function 
as a function of 

1x
e   

1

11
2 x

x x
e
−

−  
( )( )1

1

1 1

1
2 x

x x
e x x

′−
−

′− −
 

( )( )1

1

1 1

1
2 x

x x
e x x

′−
−

′− −
 

7 Force of Mortality 
at age x 

1 1

1
2 xe x x− +

 
( )( )1 1 1 1

1
2 xe x x x x′ ′− − − +

 
( )( )1 1 1 1

1
2 xe x x x x′ ′− − − +

 
8 Inter percentile 

range, xΔ  
( )

1
2 xe p xΔ  

1 1 12( ) ( )xe x x p x′+ − Δ  ( ) ( )
12 12 xx x e p x− − Δ  

9 Deaths avoided or 
person years saved  ( )1

2 22
xl x x′ −  ( )

1 2 2xl x x′ −  ( )1
1 12

xl x x′ −  

10 Adjustment cycle 
(years) 

2 1x x′ −  
 

2 1x x′ −  2 1x x−  

11 Mean age of  
Population, x  ( )

1 2 1 2

1 23 3
x x x x

x x
′ ′+
−

′+
 

( )
1 2 1 2

1 23 3
x x x x

x x
′ ′ ′ ′+

−
′ ′+

 
( )

1 2 1 2

1 23 3
x x x x

x x
′ ′+

−
′ +

 

12 Median age ( )1 2
1
4

x x+  ( )1 2
1
4

x x′ ′+  ( )1 2
1
4

x x′ +  

Table 1: Some parameters of interest 
 

 
 
 
 
 
 



 10

 
 
 
    
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2: Cumulative mortality for each case: (a), (b) and (c)  

 
In Figure 2b we have the same axes as before but cumulative mortality is now 
assumed to be parallel; that is to say each advance in life expectancy has exactly the 
same proportional effect on the chances of survival at all ages above the given age 
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and so all age groups appear to benefit equally. To aid the illustration 1x  is again 
initially set to 50 and 2x  to 100, where both parameters are assumed to advance in 
lock step. Minimum life expectancy in this case is 25 years rising to an assumed 
maximum of 50 years, which is why the vertical axis starts at 25 and not 0 as in case 
(a). Now only the 0% mortality curve passes through the origin, whereas previously 
all the percentiles did so. As for this model, the increase in values for 1x  and 2x  must 
be the same value, each one-year increase in life expectancy advances both 1x  and 2x  
by one year, as can be easily verified. 

 
In 2c cumulative mortality from 50 converges to a point as 1x  advances while 2x  is 
held constant. As with case (b), minimum life expectancy at 50 is 25 years assuming 

1x  equals 50 and 2x  equals 100. Similarly, only the 0% mortality curve passes 
through the origin, but note that the lines meet when the onset of mortality 1x  equals 
the maximum age 2x . Life expectancy at this point is given by 2 1x x− so for example 
if 2x  equals 100 and 1x  equals 50 the maximum life expectancy is 100-50=50. In 
other words all people live to 100! Since 2x  is fixed each one-year advance in life 
expectancy equates to a 1-year delay in the onset of mortality, 1x , up to a maximum of 

2x , and so the rate at which the lines converge depends on advances in life 
expectancy.  

 
It is noteworthy that the median age (denoted by the 50th percentile) is identical in all 
three models with a cumulative mortality gradient of one. This can be seen by putting 
( ) 0.5p x = in each equation in line 5 and simplifying to give 

1 1xe x x= −  in each case. 
Put another way, it means that a one-year increase in life expectancy always equates 
to a rise in median age of one year regardless of which model one uses. 
 
Line 6 shows the survival function as a function of 

1x
e .  This is simply 1 less the 

proportion of lives that have died as stated in line 5. 
 
Line 7 shows the force of mortality calculated using 

( )
( )

( )

d S x
dxx
S x

μ
−

=   

 
By definition we can also reverse the process to get the survival function from the 
force of mortality.  
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 So for the Mortality Dispersion Model: 
 

( ) ( )

( ){ }

( ) ( ){ }

( )

( )

11

1 1

1 1

1

1

1

1

1

1 1 1

1

1

1exp
2

exp ln 2

exp ln 2 ln 2

2
exp ln

2

1
2

x

xx

x

x x

x x

x

x

x

S x dt
e t x

e t x

e x x e x x

e x x
e

x x
e

⎧ ⎫⎪ ⎪= −⎨ ⎬− −⎪ ⎪⎩ ⎭

⎡ ⎤= − −⎣ ⎦

⎡ ⎤ ⎡ ⎤= − − − − −⎣ ⎦ ⎣ ⎦

⎧ ⎫⎡ ⎤− −⎪ ⎪= ⎢ ⎥⎨ ⎬
⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭

−
= −

∫

 

 
Wilmoth and Horiuchi (1999) noted the degree of convergence (or divergence) in 
mortality curves provided one possible measure of rectangularisation, and suggested 
the age difference between the inter-quartile range for this purpose. In line 8, we 
generalise this concept and call it the inter-percentile range. Consider model (a) and 
assume the inter-percentile range is 0.8 i.e. (90%-10%) and that life expectancy at 1x  
is 20 years. The Inter-percentile age range is 2 20 0.8× ×  or 32 years but if life 
expectancy is 30 years the range is 48 years or 50% larger.  

  
If we now consider model (b) the IPR is, not surprisingly, constant for any given 
value of life expectancy. For example, if 

1 1 12( ) 10xe x x′+ − = , i.e. the expectation of 
life at age 1x′  is 10 years, and the IPR is 0.8 then the age range would be 8 years. In 
the convergent case, it is obvious from Figure 2c the IPR reduces as life expectancy 
increases. Plugging similar numbers into model (c) as before and assuming a 
maximum age 2x  equal to 100 then when life expectancy is 40 we obtain an IPR of 16 
(calculated as 2 0.8 (100 50 40)× × − − ) and similarly an IPR of 48 years when life 
expectancy is 20 years. The line arrow in Figure 2c denotes this case. 

 
On some more general points we note that the derivative or slope of the cumulative 

mortality curves 
1x

d e
dx

 is independent of both 1x  and 2x . This means that changes in 

these parameters will not affect the general shape of the graphs, but they will cause a 
scale shift on the horizontal and vertical axes. It is further evident that the slopes in 
models (a) and (c) are functions of p whereas in model (b) the slope is a constant, as 
noted above. It is normally assumed that mortality rates decline in old age. In our 

models age specific mortality rates are given by 
2

1
x x−

 which means that in model (a) 

mortality rates decline through time, in model (b) they are constant but shift to the 
right, while in model (c) they increase but become more compacted into a smaller age 
range. 
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Of the three models, it is readily apparent that (c) comes closest to the model 
originally proposed by Fries (1980). This because it is the only case among the three 
in which the coefficient of rectangularization (line 4) converges to a value of one, 
which occurs when 1x equals 2x . The other two models approach a value of one but 
only as 2x′  becomes unrealistically large. Since rectangularization has been 
thoroughly studied by Wilmoth and Horiuchi (1999), we do not pursue it further here 
but simply note the range of outcomes. 
 
Population Size 
 
The table shows there are different equations for the three distinct models.  However 
this does not need to be the case, as all models have an 1x′  and an 2x′ , it is just that the 
value is sometimes the same as the original.  If we are happy to allow the situation 
where 1 1x x′ = or 2 2x x′ = then we can have one equation for all three models: e.g. 
 
Population size = 2 1 2 1

1
( ) ( )

2 2x x x
x x x xl x l l
′ ′ ′ ′− +′ + =  

 
Similarly, by using ‘new’ values for all models we are able to get life expectancy to 
always equal 

( ) ( ) ( )2 1 1 1 2 1 1
1 1
2 2

x x x x x x x′ ′ ′ ′ ′− + − = + −  

 
As the population is assumed to be stationery the total number of deaths per year must 
equal xl .  Therefore the number of deaths at a particular age, where this age must be 
greater than 1x′  , can always be expressed as: 

1

2 1

xl
x x′ ′−

 

 
In terms of the degree of rectangularisation , we have  
 
Area of rectangle = 2xl x′  

Area under mortality curve = ( ) ( )1 2 1 2 1
1 1
2 2x x xl x l x x l x x′ ′ ′ ′ ′+ − = +  

Co-efficient =  ( )2 1 2 1

2 22 2
x

x

l x x x x
l x x
′ ′+ ′ ′+

=
′ ′

 

 
The proportion of population deceased as a function of 

1x
e and age x is then, 

 

( )
1

1 1
1

2 1 1 1

where
2 x

x x x x x x
x x e x x

′ ′− − ′= ≥
′ ′− ⎡ ⎤′− −⎣ ⎦

 

And the Inter percentile range (IPR) is 
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( ) ( )
12 1 1 12 xp x x p e x x⎡ ⎤′ ′ ′− = − −⎣ ⎦  

 
By general reasoning the increase in the stationary population must be the lives saved 
over the period. 
 

( ) ( )2 2 1 1

2 2x

x x x x
l

′ ′− −⎡ ⎤
+⎢ ⎥

⎣ ⎦
 

 
Table 1 can therefore be simplified to: 
 

 Parameter Equation 
1 Population size ( )1 22

xl x x′ ′+  

2 Life expectancy at age 1x  ( )1x
e  ( )2 1 1

1
2

x x x′ ′+ −  

3 Number of deaths at each year of 
age, b 

1

2 1

xl
x x′ ′−

 

 
4 Coefficient of rectangularisation 2 1

22
x x

x
′ ′+
′

 

5 Proportion of population 
deceased as a function of 

1x
e  and 

age x  

 

( )
( )

1

1

1 12 x

x xp x
e x x

′−
=

⎡ ⎤′− −⎣ ⎦
 

6 Survival function as a function of 

1x
e   ( )

1

1

1 1

1
2 x

x x
e x x

′−
−

⎡ ⎤′− −⎣ ⎦
 

7 Force of Mortality at age x  
( )( )1 1 1 1

1
2 xe x x x x′ ′− − − +

 

8 Inter percentile range ( )
1 1 12 xx p e x x⎡ ⎤′Δ = − −⎣ ⎦  

9 Deaths avoided or person years 
saved  

( ) ( )2 2 1 1

2 2x

x x x x
l

′ ′− −⎡ ⎤
+⎢ ⎥

⎣ ⎦
 

 
10 Adjustment cycle (years) 2 1x x′ −  

 
11 Mean age of  

Population,  
a  

( )
1 2 1 2

1 23 3
x x x x

x x
′ ′ ′ ′+

−
′ ′+

 

12 Median age ( )1 2
1
4

x x′ ′+  

Table 2: Some parameters of interest for the combined model  
 
 
 



 15

Mortality Rates 
 
We need to understand how populations adjust to changes in mortality prospects for 
subsequent cohorts through time in order to assess the impact of improved survival on 
the lives saved at each age. Again we adopt a simplified approach, by considering 
each of the models separately and then bring them together in a rather clumsy general 
equation. 
 
Model A 
 

 
Figure 3: Change in survival under model A  
 
If we consider a particular year where the population suddenly become ‘healthier’ i.e. 
they are the first people to have the potential to reach age 2x′ , then we need time to 
elapse until they reach the age 1x .  
 
For 1t x≤   i.e. before these new ‘healthier’ lives reach 1x  
 

Death rate ( ) ( )2 1
2 1

x
x

lx x l
x x

= − =
−

 

 
This is of course intuitive as we start with a stable population and if xl  people are 
born then the same number must die. 
 
 
For 1 2x t x< ≤  i.e. when the new ‘healthier’ lives reach 1x and die at the new lower rate 
but we still have some older lives dying at the original rate 
 

Death rate ( ) ( ) ( ) ( )2 1
2 1 2 1

x xl lx t t x
x x x x

= − + −
′− −

 

 
The first term involves the older lives who die at the original rate.  As t increases this 
number reduces (as the population with original mortality rates dies out).  The second 

1x  2x  2x′  

lives 

age 
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term involves the newer lives dying at the newer, lower rate.  As t increases the value 
of this term increases as a larger number of people from this population reach ages 
where they can die. The overall death rate decreases as t increases over this range of 
values.  The population is therefore growing over this period and growth reaches a 
maximum at time 2t x= . 
 
For 2 2x t x′< ≤  i.e. all the older lives have died off but no new lives have yet reached 
the new maximum age 2x′  i.e. the population is still increasing. 
 

Death rate ( ) ( )1
2 1

xlt x
x x

= −
′ −

 

 
As there are only new lives left we only have the new death rate but we haven’t 
reached the stable population yet.  As t  increases the number of people in the total 
population and the population exposed to mortality increases and the number of 
deaths also increases. 
 
For 2x t′ <  i.e. the new maximum age has been reached and the population is again 
stable 
 

Death rate ( ) ( )2 1
2 1

x
x

lx x l
x x

′= − =
′ −

 

 
Deaths under model A 
 

 
 
Figure 4: Deaths under model A 
 
 

1x  2x  2x′

deaths

time 
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Note that the gradients will not usually be the same (they will only be the same if 
2 2 12x x x′ = − ). 

 
Model B 
 

 
Figure 5:  Change in survival under model B 
 
This time we have the difficulty of whether 1x′  is greater or less than 2x  i.e. how large 
the shift is. 
 
Case (a) 1 2x x′ <  
 
For 1t x≤   i.e. before these new ‘healthier’ lives reach 1x and don’t die. 
 

Death rate ( ) ( )2 1
2 1

x
x

lx x l
x x

= − =
−

 

 
Which is the same as previously. 
 
For 1 1x t x′< ≤  i.e. the new ‘healthier’ lives reach 1x and don’t die but we still have 
some older lives dying. 
 

Death rate ( ) ( ) ( ) ( ) ( )2 1 1 2
2 1 2 1 2 1

( )x x xl l lx x t x x t
x x x x x x

= − − − = −
− − −

 

 
The first term is the same as above while the second term represents the lives that no 
longer die.  As t increases this number increases which means that the total death rate 
decreases as t increases. 
 
For 1 2x t x′ < ≤  i.e. the new ‘healthier’ lives reach 1x′  and start to die at the new rate 
(which is actually the same as the old rate) and we still have some older lives dying.  

1x  2x 2x′

1x′
lives 

age 
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However, the rate is changing as more of the new lives start getting exposed to ages 
they can die at. 
 

Death rate ( ) ( ) ( ) ( )
( )
( )

2 1
2 1

2 1 2 1 2 1

xx x
l x xl lx t t x

x x x x x x

′−
′= − + − =

′ ′ ′ ′− − −
 

 
The first term is the same as above (i.e. decreases as t increases as the old lives die 
out) while the second term are the new lives that are starting to die.  As t increases 
this number increases.  Note that for this period deaths are constant as the number of 
new lives dying is the same as the reduction in old lives dying (as the mortality rate 
for a given age where mortality occurs is not changed as the slope is identical). 
 
For 2 2x t x′< ≤  i.e. all the older lives have died off and the number of new lives dying 
is increasing as they start to reach the new maximum age. 
 

Death rate ( ) ( )1
2 1

xlt x
x x

′= −
′ ′−

 

 
As there are only new lives left we only have the new death rate but we haven’t 
reached the stable population yet.  As t increases the number of people in the 
population and the number of deaths both increase. 
 
For 2x t′ <  i.e. the new maximum age has been reached and the population is again 
stable 
 

Death rate ( ) ( )2 1
2 1

x
x

lx x l
x x

′ ′= − =
′ ′−

 

 
 
Figure 6: Deaths under model B 
 
Note that the gradients are the same. 
 

1x   2x′1x′
2x  time 

deaths 
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Case (b) 1 2x x′ <  
 
For 1t x≤   i.e. before the new ‘healthier’ lives reach 1x  
 

Death rate ( ) ( )2 1
2 1

x
x

lx x l
x x

= − =
−

 

 
Which is the usual death rate as seen in case a. 
 
For 1 2x t x< ≤  i.e. the new ‘healthier’ lives reach 1x and don’t die but we still have 
some older lives dying. 
 

Death rate ( ) ( ) ( ) ( ) ( )2 1 1 2
2 1 2 1 2 1

( )x x xl l lx x t x x t
x x x x x x

= − − − = −
− − −

 

 
This is the same death rate as in case (a) though the times when this process occurs 
differ. 
 
For 2 1x t x′< ≤  i.e. the new lives haven’t reached 1x′  so aren’t dying but all the old 
lives have died off => no one dies during this period! 
 

Death rate = 0 
 
 
For 1 2x t x′ ′< ≤  i.e. all the older lives have died off and the number of new lives dying 
is increasing as they pass the age where deaths start to occur, 1x′ , and start to reach the 
new maximum age 2x′ . 
 

Death rate ( ) ( )1
2 1

xlt x
x x

′= −
′ ′−

 

 
Again, we have seen this death rate in case (a) but with the time that this applies being 
different. 
 
For 2x t′ <  i.e. the new maximum age has been reached and the population is again 
stable 
 

Death rate ( ) ( )2 1
2 1

x
x

lx x l
x x

′ ′= − =
′ ′−
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Figure 7: Deaths under model B: alternative case ~ note that the gradients will be the 
same 
 
 
Model C 
 

 
 
Figure 8: Effect of an increase in survival with no change in maximum age 
 
For 1t x≤   i.e. before these new ‘healthier’ lives reach 1x  
 

Death rate ( ) ( )2 1
2 1

x
x

lx x l
x x

= − =
−

 

 
Which is our usual result. 
 

1x  2x  

1x′
lives 

age 

  

1   2 2′ 
1x x x x′

deaths 

time 
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1 1x t x′< ≤  i.e. the new ‘healthier’ lives reach 1x  and don’t die but we still have some 
older lives dying 
 

Death rate ( ) ( ) ( ) ( ) ( )2 1 1 2
2 1 2 1 2 1

( )x x xl l lx x t x x t
x x x x x x

= − − − = −
− − −

 

 
This is the same as Model B. 
 
For 1 2x t x′ < ≤  i.e. the new ‘healthier’ lives reach 1x′  and start to die at the new rate 
and we still have some older lives dying at the old rate.   
 

Death rate ( ) ( ) ( ) ( )2 1
2 1 2 1

x xl lx t t x
x x x x

′= − + −
′− −

 

 
This is similar to Model 2 but the rates that the new and old population experience are 
different 
 
For 2x t<  i.e. the old lives die out and the population becomes stable once again  
 

Death rate ( ) ( )2 1
2 1

x
x

lx x l
x x

′ ′= − =
′ ′−

 

 
 
Figure 9:  Transition in annual number of deaths over adjustment period 
 
Generalised Model 
 
We can see above that there are sections where two of the models experience similar 
rates to each other.  In fact, what drives the three models are similar ideas i.e. how 
many ‘old’ and ‘new’ lives are dying at a given point in time.  Allowing 1 1x x′ =  or 

1x  2x  1x′

deaths 

time
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2 2x x′ =  then we can generalise the model initially into two parts; old lives and new 
lives. 
 
 
Old lives 
 

( ) ( )

( ) ( )

( )

2 1 1
2 1

2 1 2
2 1

2
2 1

death rate = 

0 0

x
x

x

x

lx x l t x
x x
lx t x t x

x x
l x t

x x

⎧
− = ≤⎪ −⎪

⎪⎪ − < ≤⎨ −⎪
⎪

= <⎪
−⎪⎩

 

 
 
New lives 
 

( )

( ) ( )

( ) ( )

1
2 1

1 1 2
2 1

2 1 2
2 1

0 0

death rate =

x

x

x
x

l t x
x x

lt x x t x
x x

lx x l x t
x x

⎧
′= ≤⎪ ′ ′−⎪

⎪⎪ ′ ′ ′− < ≤⎨ ′ ′−⎪
⎪

′ ′ ′− = <⎪
′ ′−⎪⎩

 

 
 
Of course, bringing the two equations together in this form brings problems with 
trying to set the boundaries.  However, by using ‘Max’ and ‘Min’ functions we can 
combine both sets of equations into one equation. 
 

( )( ) ( ) ( )( ) ( )2 1 2 1 2 1
2 1 2 1

death rate= , , , ,x xl lx Max Min t x x Min Max t x x x
x x x x

′ ′ ′− + −⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ′ ′− −
 

 
3. The empirical model 
 
The theoretical model above allows many convenient results to be obtained.  We now 
turn to the issues of whether such geometric shapes occur in reality by using the 
predictions and insights generated by the theory on real data.  Our particular interests 
are ascertaining whether such patterns hold in reality and if they alter through time; if 
populations are converging to a maximum age with the passage of time; as life 
expectancy improves how many lives are saved year on year in different age bands, 
both in the past and future; and finally, using the model generated to forecast age-
specific survival.  
 
For the UK life data exists for many years and we are easily able to obtain the 
expected life and the percentiles at the ages where death occurs.  We focus here on 
life tables for England and Wales for which there is a long established annual record 
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as far back as 1841. By studying these it is hoped that we can demonstrate that one of 
the three types of models detailed above can be used to model the results and 
forecasts we seek.   
 
In the next section we illustrate aspects of continuous or broken evolution, 
convergence, divergence or parallelism from past data. In particular, results will be 
presented that show to what extent life is on track to converge to some upper limit and 
over what time period. This will be supported by a range of illustrative outputs 
including long-term projections of the annual number of avoided deaths at different 
ages based on trends in life expectancy and other potentially useful insights.  
 
Data Sources 

Life tables for England and Wales from 1841 to 2003 are contained in the Human 
Mortality Database (HMD, 2007), which has been available since 2000 and is the 
product of a joint collaboration between the Department of Demography at the 
University of California at Berkeley and the Max Plank Institute for Demographic 
Research. The HMD was created to provide detailed mortality and population data to 
researchers, and others interested in the history of human longevity. Its main goal is to 
document the longevity revolution of the modern era and to facilitate research into its 
causes and consequences (for more information, see www.mortality.org.)  

The database contains original calculations of death rates and life tables for 33 
national populations, as well as the raw data used in constructing those tables. A 
complete statement of the methodology used is contained in the methods protocol 
(Wilmoth et al, 2007). We illustrate examples of each predicted form of the survival 
curve using different starting ages and time windows. Our start ages are 1 year, 50 
years and 80 years with a span of data running from 1841 to 2003, which are split into 
different time periods.  Different time windows or starting ages produce distinctive 
patterns that are capable of particular interpretation and analysis going forward and 
backward in time.   

Characterisation of changes based on life expectancy at age 1 
 
In the first example, based on a starting age of 1, we split the series into three distinct 
eras, each spanning 4 to 5 decades, from 1841 onward.  We then use the cut-off points 
partitioning these eras to similarly compare the patterns obtained at age 50 and 80 
respectively. In the accompanying figures, life expectancy is plotted against the 
percentiles of people surviving to a given age. These percentiles are shown as the 10th, 
20th, 30th etc to the 90th percentile. The choice of percentile is arbitrary and in the 
model any combination of values can be used. Since the starting population is 
100,000 lives a horizontal line connecting any two adjacent percentiles for a given life 
expectancy represents 10,000 deaths between the ages indicated on the horizontal 
axis. As percentile lines move closer together, it is therefore indicative of increased 
mortality rates within the age ranges indicated by a compaction of mortality into a 
smaller age range. The percentiles indicate the underlying model; if the percentiles are 
divergent than model (a), parallel then model (b), and if convergent then model (c). 
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(a) England and Wales (males)  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(b) England and Wales (females)  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 10:  Mortality percentiles as a function of life expectancy at 1, males (A) and 
females (B) from England and Wales 
 
  
 
 
  
From the case with a starting age of 1 year in Figures 10 (a) and (b), it appears we can 
identify three eras as follows: 
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A – Starting in 1841 and ending in 1900 an era of rising life expectancy at age 
1 from around 47 to 54 years (1.2 years per decade) for males and from 48 to 
57 years for females (1.5 years per decade). During this era there was 
persistent high infant and childhood mortality, but reducing health inequalities 
at older ages as indicated by the convergence in the 20th to 90th mortality 
percentiles. 
 
B - Starting in 1901 and ending in 1946, an era of rising life expectancy from 
around 54 to 67 years (2.8 years per decade) for males and from 57 years to 71 
years (3.1 years per decade) for females. This more rapid improvement in life 
expectancy is mainly due to falling infant and childhood mortality and the 
continuing reduction in health inequalities as indicated by convergence in the 
10th to 90th mortality percentiles. 
 
C - Starting in 1947 to the present, an era of continuing rises in life expectancy 
from 67 to 76 years (1.6 years per decade) for males and from 71 years to 80 
years (1.6 years per decade) for females.  This slower improvement in life 
expectancy compared to B is due to the fact that childhood mortality had 
already been virtually eliminated at the start of this period so little 
improvement was achieved from reducing this further.  Also the fall in 
convergence in other percentiles meant improvements in life expectancy was 
improved by a more parallel behaviour.  The improvement in the lower 
percentiles was thus lower than before while the improvement at the higher 
percentile was greatest in this era.  

 
We are able to split the results into 3 distinct eras because of more or less year on year 
improvements in life expectancy at this starting age. An exception is male years 
spanning the First World War, which interrupt the long run trend and have therefore 
been removed from Figure 10 (a). rather than starting at age 1, we could have used a 
start age of 0, but in this case we found that there was pattern loss due to high 
mortality at birth which tends to mask the underlying trend in the 10th percentile series 
in particular.  
 
Starting age of 50 
 
For later starting ages, continuous improvements are more restricted in time. Figures 
11 (a) and (b) show the patterns for males and females with a starting age of 50 years.  
There are no net improvements in life expectancy before 1901 and only limited 
improvements up to 1947. From 1947 to the present there has been a significant 
acceleration with more unbroken gains in life expectancy of  around 6 to 7 years for 
males and females as compared with half that between 1901 and 1946. A key 
difference with the previous case is that the pattern now appears to be parallel rather 
than convergent and is unchanged over the whole historical period. 
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(a) England and Wales (males)  
 
 
 
 
 
 
 
 
 
 
 
 
(B) England and Wales (females) G 
 
 
 
 
(b) England and Wales (females) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 11: Mortality percentiles as a function of life expectancy at 50, (a) males and 
(b) females England and Wales 
 
Starting age of 80 
 
Figures 12 (a) and (b), consider the pattern based on a starting age of 80 years. In this 
case it is evident that mortality percentiles acquire a divergent pattern indicating an 
increasing spread in the probability of death at older age coupled with rises in life 
expectancy.  As in the previous case, up to 1901 the results show that improvements 
in life expectancy were uneven and that there were no net gains over the period with 
the pattern holding more or less constant whether life expectancy was increasing or 
decreasing. Post-1947 however, there has been more or less continuous improvement 
with life expectancy increases for males and females of between 2.3 and 2.6 years 
over the period. 
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(a) England and Wales (males)  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(b) England and Wales (females)  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 12: Mortality percentiles as a function of life expectancy at 80, (a) males and 
(b) females England and Wales 
 
Testing for convergence and maximum age 
 
If these trends are to be used for forecasting future population survival an important 
question is how such patterns evolve, and whether a maximum age is indicated for 
example in convergent cases. However, as we have seen, continuation of such 
patterns is not necessarily guaranteed and if used to predict the future it is dependent 
on both the pace of progress in life expectancy and any changes in mortality patterns 
and the extent to which these can be anticipated. 
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There would appear to be two main ways to project the data trends forward.  The first 
is to project the percentiles forward using a basic relationship with the expected future 
lifetime as seen in the graphs above.  A time frame can then be obtained by looking at 
how quickly expected future lifetime is increasing with respect to calendar year. The 
second method is to project the percentiles by comparing them directly to the calendar 
year. 
 
To some extent this is a theoretical exercise as convergence fizzled out after 1946 but 
there is value in ascertaining what the maximum age would have been projected to be 
pre-1947, and how long it would have been expected to take to reach that point. The 
results can then be benchmarked against what has actually occurred 
 
Consider the convergent pattern for females already indicated in section B of earlier 
Figure 10 covering the period 1901 to 1947.  For the purposes of our analysis survival 
data for female lives for the year 1918 has been removed, as the influenza pandemic 
creates distortions in this year.  It can be seen that the early deciles are converging 
towards the later ones though whether the later percentiles are converging or are 
parallel is harder to ascertain by sight. 
 
To see whether convergence is occurring we fitted a linear regression to each decile.  
With these regressions we are able to determine which deciles are converging and 
also predict the expected life at age 1 required and the age of death where 
convergence would occur.  The results are given below in Table 3 and presented in 
Figure 13. 
 
 

Converging 
percentiles 

Age of death 
where 

convergence 
occurs 

Required expected 
future lifetime at age 1 

10th and 20th 83.91 83.16 
20th and 30th  84.06 83.24 
30th and 40th  86.14 84.96 
40th and 50th  88.47 87.46 
50th and 60th  92.28 92.58 
60th and 70th 98.82 103.19 
70th and 80th 102.89 110.86 
80th and 90th  106.05 117.8 

Table 3: Details of when deciles converge assuming linear regression 
 
The above table can be easily interpreted when looking at one individual line.  For 
example the top line states that the 10th and 20th percentiles will converge when the 
expected future lifetime at age 1 is 83.16 years and the age of death for these lives is 
83.91.  
 
Also, if we look at the required expected future lifetime at age 1 the column indicates 
that the earlier deciles are converging first and that the last adjacent deciles to 
converge are the 80th and 90th percentiles which will only converge when expected 
future lifetime at age 1 reaches 117.8 years. 
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However, there seems to be a problem when we look at the two columns together and 
it is easiest to illustrate with the last line.  According to this line the 80th and 90th 
percentiles will converge when the expected future lifetime at age 1 is 117.8 but the 
age at death for these lives will be 106.05.   
 
The problem is that the expected age at death is less than the expected future lifetime 
but these are the higher percentiles so the age of death should be higher than the 
expected future lifetime. This is seen in Figure 13 which is based on female data in 
the era from 1901 to 1947 and includes the fitted regressions lines projected to 1988. 
 
As can be seen the inconsistency with expected future lifetime and age at death is that 
the graph inverts i.e. the 10th percentile would cross the 90th percentile before the 80th 
and 90th percentiles are anywhere near close. In fact the 80th and 90th percentiles cross 
when the expected future lifetime is 117.8 by which time the 10th percentile lives will 
be dying at age 178! 
 
There are a number of ways that we can get around this problem and most focus on 
looking at how the percentiles will behave once they have met.  The first method that 
will lead to the quickest convergence is to consider that as the 10th percentile crosses 
the other percentiles it dominates and the improvement in mortality continues at the 
same pace that the 10th percentile has shown.  In this case convergence will occur 
where the 10th and 90th percentiles converge.  This takes place when the lives are 
expected to die at age 94.45. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 13: Convergent case based on females from England and Wales, 1901 to 1946 
with fitted regression lines 
 
However, there is very little justification in the above assumption. As causes of death 
among the prematurely dying are a consequence of social, environmental or lifestyle 
changes it is hard to mount a case that improvements will continue at such a pace.  
Therefore when the 10th percentile meets the 20th percentile it is far more likely that 
the 20th percentile’s rate of mortality improvement carries on into the future.  If this is 
the case then total convergence will only occur when the last percentiles meet, in this 
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case the 80th and 90th percentiles which will meet when the lives are expected to die at 
age 106.05. 
 
Projecting time to convergence 
 
While obtaining the ages of possible convergence is useful we also want to know if 
this will be in 10 years time or 1,000 years time.  As we are basing the values of the 
percentiles on expected future lifetime we can analyse how fast this value is 
increasing and from this determine our convergence values. 
 
For the years 1901-1951 a simple linear regression gives the equation 
 
 Expected future lifetime = calendar year * 0.3109 - 517.26 
 
Under our first scenario we had the 10th and 90th percentiles converging when lives 
were expected to die at age 94.45.  This equates to a nominal expected future lifetime 
of 87.038 (this is nominal as if we have convergence expected future lifetime would 
be 94.45-1 = 93.45).  The value of 87.038 is obtained, assuming our regression is 
correct, in the calendar year 2001.65.  In other words we should now have had 
convergence of mortality for females in the UK! 
 
Under the second scenario we had the assumption that the slower improving 
percentile would dominate when percentiles meet.  We can therefore reproduce table 
3 from above and now calculate the year that these percentiles merge. 
 

Converging 
percentiles 

Age of death 
where 

convergence 
occurs 

Required expected 
future lifetime at age 1 

Calendar Year this 
occurs 

10th and 20th 83.91 83.16 1988 
20th and 30th  84.06 83.24 1989 
30th and 40th  86.14 84.96 1994 
40th and 50th  88.47 87.46 2003 
50th and 60th  92.28 92.58 2019 
60th and 70th 98.82 103.19 2055 
70th and 80th 102.89 110.86 2080 
80th and 90th  106.05 117.8 2103 

Table 4: Table showing age of death at convergence for different morality percentiles 
and the calendar year when this would be expected to occur 
 
However, we have seen that expected future lifetime has become a nominal value as 
the way that we assume the percentiles’ behaviour changes when meeting another 
percentile will affect the real expected future lifetime.  We can therefore look at when 
the percentiles converge by projecting the percentiles instead.  Table 5 predicts the 
year of convergence by projecting either the expected future lifetime (as above), or by 
looking at the age of death where convergence occurs and projecting the lower 
percentile or the higher percentile to this age. 
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Converging 
percentiles 

Calendar Year this 
occurs according 
to expected future 

lifetime 

Calendar year 
obtained projecting 

lower percentile 

Calendar year 
obtained projecting 

upper percentile 

10th and 20th 1988 1989 1988 
20th and 30th  1989 1989 1989 
30th and 40th  1994 1994 1995 
40th and 50th  2003 2003 2003 
50th and 60th  2019 2020 2021 
60th and 70th 2055 2056 2058 
70th and 80th 2080 2084 2087 
80th and 90th  2103 2111 2119 

Table 5: Table showing the calendar year of convergence for different percentiles 
based on projecting the percentiles forward 
 
Testing for parallelism 
 
After 1951 the pattern changes from convergence to an apparently more parallel 
regime, at least visually, in which there is no convergence and therefore no upper age 
limit indicated. However, it is hard to find an occurrence of perfect parallel lines 
which last for any length of time.  To illustrate this, below is a plot for male lives 
from 1952-2003 aged 50. 
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Figure 14: Mortality percentiles for males from England Wales at age 50  
 
Looking at the plot we can see that the lines are parallel with the exception of the first 
two deciles which appear to be diverging.  Fitting regressions to these percentiles and 
testing for convergence gives the results in Table 6. 
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Converging 
percentiles 

Age of death 
where 

convergence 
occurs 

Required expected 
future lifetime at age 

50 

10th and 20th N/A N/A 

20th and 30th  N/A N/A 

30th and 40th  N/A N/A 

40th and 50th  338.78 262.49 
50th and 60th  287.95 216.61 
60th and 70th 187.63 124.89 
70th and 80th 139.26 79.53 
80th and 90th  158.3 98.35 

Table 6: Table showing age of death at convergence and expected future life time at 
age 50 
 
This table is very different to the previous table.  For the 10th, 20th and 30th percentiles 
we have divergence so we do not have values for convergence.  Even the other 
percentiles which do converge do not do so for a number of years.  For example, the 
first deciles to converge are predicted to be the 70th and 80th percentiles but this will 
only occur when the expected future lifetime of a 50 year old male is 79.53 years and 
these particular lives will live until they are 139.26 years old! 
 
Testing for divergence 
 
The divergence case appears to be restricted to the oldest starting ages. A convenient 
way to consider the pace of inter-decile divergence is either as a function of life 
expectancy, as in this illustration (Figure 15) at age 80, or a function of time.  
 
Figure 15 shows that the inter-decile range (the gap in years between the 10th and 90th 
percentile) increases in direct proportion to life expectancy. For each one year 
increase in life expectancy, the female inter-decile range increases by 1.2 years (male 
by 1.5 years).  
 
Note that there is a slight hint that the line may be non-linear, that the pace of 
divergence is slowing and that that divergence cannot proceed indefinitely in the 
current phase of human evolution. 
 
The data points range from 1841 to 2003, but increases have not been continuous 
through time. As Figure 16 shows, until 1950 the inter-decile range for females 
fluctuated between 10 and 12 years, with minima occurring between 1880 and 1890.  
In this case the best fit curve is a second-degree polynomial (R2  = 0.91) 
 
Since 1950 however the inter-decile range it has increased to almost a 15-year spread 
and may reach 16 years by 2020 based on current trends. In practical terms this means 
that for any female reaching age 80 there is a widening spread of age of death and that 
once life expectancy at 80 attains 11 years there will be a 10% chance of living to 
100.  
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Figure 15: Inter-decile range as a function of life expectancy at 80, females 
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Figure 16: Trend in the inter-decile range for females from 1841 
 
4. Development of projections  
 
In order to develop projections of these trends and produce future population survival 
estimates, we can split the tasks into five stages as follows: 
 

1. Establish relationship between the percentiles and the expectation of life at a 
given age 

2. Establish nature of linear relationship between calendar year and expectation 
of life 
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3. Project forward expectation of life using the relationship found in stage 2 
4. Derive survival percentiles using the projected expectation of life and the 

relationship derived in stage 1 
5. Compare projections with projections from an independent source and with 

actual realised values. 
 
The Gompertz-Makeham formula 
 
A problem with using the full life table for this process is the volume of data required.  
A more suitable solution can thus be to determine a function that fits the data so that 
only a few parameters are required. The function chosen to fit the data is a form of the 
Gompertz-Makeham Model.  The Gompertz-Makeham Model provides a function for 
the force of mortality and is defined as: 
 

x
x A Bcμ = +  or ( )  where lnx

x A Be cγμ γ= + =  
 
Traditionally the curve is fit over all ages (though not very young ages) and it is 
assumed that the constant A mainly deals with non-age related deaths such as 
accidents.  As a result this constant is constrained by the fact that it cannot be negative 
as this would imply people coming back to life due to accidents.  However, for this fit 
we have allowed the constant to be negative if this gives a better fit overall for the 
ages we are interested in (50-85). 
 
The survival function for a life is simply defined as: 

( )
0

exp
x

sS x dsμ
⎧ ⎫

= −⎨ ⎬
⎩ ⎭
∫  

 
However, we are interested in the survival function for a life already aged 50 so: 

 ( )
50

exp 50
x

sS x ds xμ
⎧ ⎫

= − ≥⎨ ⎬
⎩ ⎭
∫  

 
For a population assumed to have 100,000 people alive at aged 50 then multiplying 
the equation above by 100,000 will give the number of people alive at age x. 
 

 
50

100,000exp 50
x

x sL ds xμ
⎧ ⎫

= − ≥⎨ ⎬
⎩ ⎭
∫  

 
So using the Gompertz-Makeham formula and an age t where lives are expected to 
start dying from, then the survival function S(x) is:  
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Fitting the Curve 
 
The curve was fitted using iteration.  We focused on the ages 50-85 which we split 
into six groups each with six ages i.e. 50-55, 56- 61, etc.  The parameter A has most 
affect on the first two groups, B has most affect on the middle two groups and finally 
C has most affect on the last two groups.  The iterative method worked by finding the 
group with the largest difference between expected and observed and changed the 
relevant parameter.  This process was repeated until all deviations were of an 
acceptable amount. 
 
By allowing the parameters to be flexible, the fits for all the years were more than 
adequate. Figure 17 below shows the fit for the population curve for the year 1973 
compared to the actual lives recorded (1973 is used as a representative year 
approximately midway through the period under investigation). 
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Figure 17:  Chart showing fit between the actual and predicted survival based on 
data from 1973 
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It can be seen that the fit captures the general shape of the curve very well.  While the 
actual curve is higher for long periods, the gap between the curves is never large as 
the mortality rates are very similar. The parameters that were fitted for 1953-2003 in 
steps of 10 years are given in Table 7. 
 
Parameter 1953 1963 1973 1983 1993 2003 

A -0.00318 -0.00639 -0.00542 -0.00331 -0.00317 0.00062 
B 0.00016 0.00024 0.00021 0.00011 0.00008 0.00001 
C 1.08803 1.0832 1.08346 1.09091 1.0927 1.11208 

 γ  0.08437 0.07992 0.08016 0.08701 0.08865 0.10623 
Table 7: Parameter values for the Gompertz-Makeham formula 
 
Technical observation 
 
There are trends in the fitted parameters though as each fit was done independently 
there is no smoothing of parameters to highlight the trends.  The data from 1953 
shows the randomness that mortality data always demonstrate and had noticeably 
lower mortality than the surrounding years.  Ignoring 1953 we can see that parameter 
B has fallen while parameter C has increased.  This is expected as the fall in 
parameter B means that less lives are dying at younger ages and parameter C means 
that more lives are dying at older ages (which is expected as although mortality rates 
are improving there are more lives reaching these later ages).  However, we would 
expect parameter A to also fall as well as this affects younger lives but this has 
actually increased (i.e. become less negative).  As discussed earlier, the parameter A 
is not normally allowed to go negative as it is seen as the lives that die through non-
age related deaths.  However, to get a better fit we allowed this to happen and so 
parameter B meant too many younger lives die and the negative parameter A 
compensated for this excessive loss.  As B has decreased to capture the shape of the 
curve later on, parameter A hasn’t had to adjust the lives as much and so has become 
larger.  
 
Calculating the lives saved from 1953 to 2003 
 
The number of lives in the population is simply the area under the curve.  The easiest 
way to determine the population at any point should therefore be to integrate the 
survival function.  Unfortunately, the survival function we have used is not an 
integrateable function.  We therefore need to use a trapezoid approximation to get our 
population. The population aged x, lx is given by: 
 

( ) ( )( )1 1
2xl l S x S x= + +   

where l is the population size for the first age being considered.  Of course, we can 
make this approximation more accurate by dividing the year into smaller intervals but 
the difference that this makes is negligible compared to the random error that occurs 
when observing mortality rates and additionally when fitting the Gompertz-Makeham 
formula. 
 
Table 8 below gives the population size for each of the six selected years while Table 
9 gives the difference in population when compared to 1953 i.e. the lives saved 
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assuming 100,000 lives were aged 50 and the populations at any point in time are 
stable. Based on Table 8 we see that compared with 1953, 2.9m would be alive in 
2003 as compared with 2.3m in 1953; this represents an accelerating trend as is seen 
in Table 9 which compares lives saved group by age. It can be seen that in terms of 
numbers the greatest change is in the 70-79 age group with large changes also seen in 
the 60-69 and 80-89 age groups.  In percentage terms the changes increase as the age 
group gets older.   
 

Age 
range 1953 1963 1973 1983 1993 2003 
50-59 945,493 948,745 951,703 959,817 968,880 974,978 
60-69 752,275 752,548 768,155 802,122 837,397 880,654 
70-79 430,495 422,652 451,946 504,878 566,651 667,014 
80-89 121,532 116,636 137,988 169,537 219,995 313,694 
90+ 11,949 11,596 16,349 21,668 35,750 61,291 
total 2,261,744 2,252,177 2,326,141 2,458,022 2,628,673 2,897,631

Table 8:  Population size grouped by age 
 

Age 
range 1953 1963 1973 1983 1993 2003 
50-59 n/a 3,253 6,211 14,324 23,387 29,485 
60-69 n/a 273 15,881 49,847 85,123 128,379 
70-79 n/a -7,842 21,451 74,383 136,156 236,519 
80-89 n/a -4,897 16,455 48,004 98,463 192,162 
90+ n/a -353 4,399 9,719 23,801 49,342 
total n/a -9,566 64,397 196,277 366,930 635,887 

Table 9:  Lives saved compared to 1953 grouped by age 
 
Justification of Projections going Forward 
 
It can be seen above that the Gompertz-Makeham formula can fit the data well and 
allow calculations on the number of lives ‘saved’. We have previously shown that the 
life tables show systemic patterns in terms of their evolution over time. The question 
arises as to whether we can combine these findings into a tool that allows us to 
construct life tables in the future based on projected trends. The validity of the 
approach will shortly be thoroughly tested to see if it is capable of more accurate 
forecasts than those officially published.  
 
Just because all of the stages listed earlier can be carried out does not justify this as a 
suitable projection method.  Our method of validation involved backward testing by 
comparing our results with forward projections from base years in 1981 and 1991 
produced at the time by the Government Actuary’s Department and with what 
actually occurred. In doing so we wanted to establish whether our approach predicted 
actual change more accurately than Government Actuary Department’s (GAD)’s own 
forecasts at the time.  By using these projections we have sufficient time from the date 
of the prediction to the last easily available life table (2003) to assess the quality of 
the projection. 
 
We used data from 1952 to 1981 to generate our own 1981 projection and data from 
1952 to 1991 to generate our 1991 projection.  It can be argued that the GAD 
projections would not have been able to use all of this data because of the time taken 
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to calculate their projections but as our method is very quick we should have been 
able to use all of the data available. Using 1952-1981 we get the following 
relationships between the percentiles and the expectation of future life at age 50 
shown in Figure 18 for English and Welsh males. Of course, this data makes up a 
subset of the data in Figure 14 above and all the illustrated percentiles can certainly 
justify a straight line fit. 
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Figure 18: Mortality percentiles for England and Wales males at age 50 for data from 
1952-1981 
 
 
For life expectancy and calendar year a polynomial of order 2 was used to capture the 
shape as shown in Figure 19. It can be argued that this is not the correct equation to 
use as it implies that expected life pre-1952 is actually higher the further back we go.  
However, this phenomenon is often seen and a similar shape is observed if we use 
data from 1841-1981 as is shown in Figure 20. As we are only needing to project until 
2020 (the length of the GAD projection) it was decided that the fit using 1952-1981 
data would be sufficient to demonstrate whether our method produced comparable or 
different results to GAD. 
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Figure 19: Expected life at age 50 for England and Wales males for 1952-1981 with 
regression 
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Figure 20: Expected life at age 50 for England and Wales males for 1841-1981 with 
regression 
 
Suitability of Projections 
 
It should be noted that the GAD projection was obtained by constructing life tables 
using the projected mortality rates. 
 
To show how suitable the projections are we can now compare the projections from 
our model, the GAD projection and actual survival for the years 1990 and 2000. The 
key graphs showing the life tables for 1990 and 2000 are given in Figures 21 and 22. 
These compare GAD forecasts with our own model and with actual survival using 
subsequently published life tables. 
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Looking at these two snapshots there are some clear similarities.  For both years and 
at all ages the number of lives is highest for the realised values, followed by our 
model, followed by the GAD projection.  It can also be seen that for the older ages 
our projection is closer to GAD than the realised value while for the younger ages our 
projection is closer to realised than it is to the GAD projection. 
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Figure 21: Comparison of projected life tables for 1990 for England and Wales males 
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Figure 22: Comparison of projected life tables for 2000 for England and Wales males 
 
Continuous comparisons  
 
Rather than looking at just a couple of snapshot graphs it is possible to look at 
differences in continuous time by the use of contour plots.  These plots work in a 
similar way to contour lines on geographical maps where the size of the ‘hill’ in this 
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case is the size of the difference at a particular time and particular age. Each contour 
measures a constant percentage difference either between our model and actual data 
or between GAD forecasts and actual data. Figure 23 (A) shows a plot for our model 
and Figure 23 (B) based on GAD projections. 
 

 
(A) Percentage difference between actual and model as a function of age and 

calendar year 
 

 
(B) Percentage difference between Actual and GAD as a function of age and 

calendar year 
 
Figure 23: Contour plot showing differences between actual and model and actual 
and GAD 
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The contour maps illustrate that the two snapshots are correct in the impression they 
give; namely that at all ages and for all years our model was able to get a more 
accurate projection to the mortality observed than the GAD projections.  As the model 
currently fits a life-table to each year individually there is less smoothness in the 
deviations compared to the GAD model.  This is represented by the contour lines 
being more irregular. 
 
5. Future Projections 
 
Although we cannot compare with reality we can still see the differences between the 
GAD projection and our model for the years up to 2020. If there are significant 
differences this could have implications for pensions, health care and other public 
services that rely for their planning on accurate population forecasts. 
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Figure 24: Comparison of projected life tables for 2010 for England and Wales males 
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Figure 25: Comparison of projected life tables for 2020 for England and Wales males 
 
We can see that the trends already apparent in the first two graphs continue with the 
difference in projected lives increasing at all ages as lives get projected further into 
the future. This is further illustrated by using a contour map of the difference between 
our model and GAD for all years from 1981-2020 shown in Figure 26. 

 
Figure 26: Contour plot showing differences between model and GAD 
 
As can be seen the deviations as a percentage between the two models increase with 
both year of projection and age that we are studying. 
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1991 Based Projections 
 
Using the same five stage process as highlighted above, a projection can be based in 
1991 that uses the data from 1952-1991.  For this data we have the following 
relationship between the percentiles and the future expectation of life as shown in 
Figure 27. 
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Figure 27: Mortality percentiles for England and Wales males at age 50 for data from 
1952-1981 
 
As expected, there is no reason to change our assumption that there is a basic linear 
relationship between the percentiles and the expectation of life over this data range. 
 
We also have the following relationship between expectation of life and calendar year 
shown in Figure 28. Once again, fitting a polynomial of order two appears to capture 
the shape of this relationship although once again we see a point of inflection around 
the year 1956 which implies that people were expected to live longer in the past. 
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Figure 28: Expected life at age 50 for England and Wales males for 1952-1991 with 
regression 
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Figure 29: Comparison of projected life tables for 2000 for England and Wales males 
 
From Figure 29 we can see that once again we have the same pattern of our model 
predicting less lives at each age than was realised but with GAD underestimating the 
number of lives by a greater extent.  Similarly we see again that at the younger ages 
our model is closer to GAD and for later ages we are closer to the realised values. 
 
When we observe the above graph and compare it to the graph for the 1990 projection 
using data up to 1981, we can see that although both projections are for nine years the 
model is far closer to the realised values in the 2000 projection using 1991 data.  This 
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is because the assumed increase in life expectancy is greater for the later projection as 
we have more recent data that captures this increasing rate. 
 
Once again we can compare GAD projections and our model for the future even 
though we cannot of course compare with realised values. This is shown in Figures 30 
and 31. 
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Figure 30: Comparison of projected life tables for 2010 for England and Wales males 
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Figure 31: Comparison of projected life tables for 2020 for England and Wales males 
 
Again we see the difference between the projections increasing as we move further 
into the future.  This is due to GAD believing that the increase in life expectancy will 
slow down in the future whereas we are predicting that the trend will continue for the 
foreseeable future.  There is less difference in the shapes of the curve for 2020 
compared to the 1981 projection.  
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2001 based projections 
 
The 1981 and 1991 based projections allow us to compare our model and GAD’s 
model to realised outcomes.  However, the last major GAD projection was 2001 and 
so it is useful to see how our model and GAD’s model for this time will project future 
survival rates and population sizes.  The usual stages were carried out to fit our model 
and it is useful to note how well the second order polynomial fits the expectation of 
life data for 1952-2001 as shown in Figure 32. 

20

21

22

23

24

25

26

27

28

29

1952 1956 1960 1964 1968 1972 1976 1980 1984 1988 1992 1996 2000

year

ex
pe

ct
ed

 fu
tu

re
 li

fe
 a

t a
ge

 5
0

 
Figure 32: Male life expectancy at age 50 from 1952 to 2001 
 
The percentiles are similar to previous fits so are not shown here and the life tables 
show similar characteristics in that our model predicts more survivorship at each age 
with the difference increasing with time and age.  Hence it is unnecessary these life 
tables are not shown here.  
 
Projections of Population 
 
A more useful demonstration of the results is to compare the number of lives 
predicted by our model and GAD in the age bands 50-59, 60-69, 70-79, 80-89 for the 
year 2020 based on the 2001 projection.  This was carried out using the projection 
model detailed on the GAD website with the same assumptions for immigration that 
this model used.  It was also assumed that birth rates and mortality for ages up to and 
including 49 were the same as GAD leading to both models having the same number 
of 50 year olds in each calendar year.  For ages 50 and above the mortality rates used 
were those from the model fitted above. The results for male lives are given in table 
10 below. 
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age  GAD 2020 Model Diff Diff % 

50-59 
  

3,788,205  
 

3,809,512 
 

21,306 0.56%

60-69 
  

3,014,841  
 

3,111,925 
 

97,084 3.22%

70-79 
  

2,324,314  
 

2,504,966 
 

180,653 7.77%

80-89 
  

978,574  
 

1,164,099 
 

185,525 18.96%

total 
  

10,105,934  
 

10,590,502 
 

484,568 4.79%
Table 10: Comparison of male population projected from 2001, model versus GAD 
 
As expected our model predicts higher numbers of lives in each age band compared to 
GAD with the percentage increasing as age increases.  For the age groups 50-59 and 
60-69 the percentage change is small as the difference in assumed mortality rates is 
small for each age in these age groups.  For the 70-79 age group the difference is a lot 
larger though it should be noted that the percentage differences for this age group 
would have been a lot larger if we had used projections from 1981 or 1991 as the 
projected mortality rates of our model and GAD have closed with each projection as 
we saw earlier. 
 
The largest percentage change by far is the 80-89 year age group.  This is because the 
difference in mortality rates between the models is most prominent in this age range. 
One concern with this model is the function we have used to predict our future life 
expectancy.  Although we have shown that the model has predicted more accurately 
than the GAD model for 1981 and 1991 it can be argued that using our model to 
predict expected future life expectancy in say 2050 is going to give a very large 
number if our expected trend continues.  However, we are not stating that our model 
should be used for such large projections; merely that over shorter periods of time life 
expectancy trends continue rather than sharply changing other for events such as war 
and influenza. 
 
However, to demonstrate that the projection is certainly feasible to 2020 we also fitted 
an ARIMA model to the data.  For the data 1952-2001 the ARIMA model had trouble 
fitting a suitable model.  However for the data 1963-2001 an ARIMA(4,1,0) model 
fitted very well (see Annex B).  Table 11gives the projected life expectancy from our 
model, the ARIMA model and also 95% confidence limits from the ARIMA model. 
We note that apart from 2002 the predicted expected future life expectancy from our 
model is within the 95% confidence interval of the ARIMA model.   
 
Therefore, although the expectation of life is high it is certainly within a realistic 
scenario.  It should also be noted that our predictions in 1981 and 1991 would also 
have been considered to be high and yet have turned out to have underestimated the 
improvements in life expectancy.  Note that for females the situation is different and 
the rate of acceleration is lower and so the potential for error appears to be much 
lower (see Figure A3, Annex A). This confirmed by the fact that our projections are 
much closer to official projections over the period. 
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Year Model ARIMA 
Forecast 

ARIMA Lower 
95% Confidence 

ARIMA Upper 
95% Confidence 

2002 28.95 28.58 28.25 28.92 
2003 29.23 28.99 28.62 29.36 
2004 29.52 29.31 28.87 29.75 
2005 29.82 29.42 28.81 30.02 
2006 30.12 29.70 28.97 30.43 
2007 30.43 30.05 29.25 30.86 
2008 30.74 30.17 29.21 31.14 
2009 31.06 30.39 29.28 31.50 
2010 31.39 30.72 29.51 31.93 
2011 31.73 30.89 29.54 32.23 
2012 32.07 31.05 29.55 32.55 
2013 32.41 31.35 29.74 32.96 
2014 32.76 31.55 29.81 33.29 
2015 33.12 31.69 29.81 33.58 
2016 33.49 31.96 29.95 33.96 
2017 33.86 32.18 30.05 34.31 
2018 34.24 32.32 30.05 34.58 
2019 34.62 32.54 30.15 34.93 
2020 35.01 32.78 30.27 35.28 

Table 11:  ARIMA forecasts compared with model: males 2002 to 2020 
 
6. Conclusions 
 
In this paper we have offered a new way of charting the development of populations 
through an analysis of trends in human survival based on ordinary life tables. We 
sought to explain the various different shapes of survival curves starting with a simple 
model. This conjectured three basic patterns of survival: (a) ‘divergent’, (b) 
‘convergent’ or (c) ‘parallel’. Qualitatively speaking (a) might be thought of 
benefiting older people more than younger people, (b) all age groups equally and (c) 
younger generations before older generation. Variant (a) predicts that as life 
expectancy increases inequalities in age of death would increase over time; only 
variant (c) predicts a maximum age to which everybody would survive and is thus 
consistent with the process of increasing rectangularisation of the survival curve 
conjectured by other researchers; in the parallel variant (b) inequalities in age at death 
would persist but that increases in life expectancy would be shared equally across the 
population.  
 
The simple model provided many useful technical results as well as hypotheses which 
were used as a basis for explaining real life tables over a long period. We used data 
from England and Wales spanning 160 years of evolution for our analysis. The results 
show a more complex and nuanced picture than portrayed in the three simple variants 
depending on era and on starting age. We observed that these trends could alter so that 
from time to time this led to different survival developments paths. Three eras were 
identified based on survival patterns from age 1. The first was pre-1901 in which 
there was persistently high childhood mortality coupled with convergence and hence 
reduced inequalities between the 20th and 90th survival percentiles. The second ending 
in 1946 was characterised by more rapid improvements in life expectancy following 
improvements in infant and childhood mortality. In this period our results showed that 
trends appeared to predict convergence towards a maximum age that would be 
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reached in this century, although it was difficult to pin down both the value of the 
maximum or the year of convergence with accuracy.  
 
The process suggested sequential convergence with the 10th and 20th percentiles 
converging first and then the 20th with the 30th and so on.  The reasoning for this is as 
follows. As causes of death among the prematurely dying are a consequence of social, 
environmental or lifestyle changes it is hard to mount a case that improvements will 
continue at such a pace going forward.  Therefore when the 10th percentile meets the 
20th percentile it is far more likely that the 20th percentile’s rate of mortality 
improvement carries on into the future.  If this is so then total convergence will only 
occur when the last percentiles meet, in this case the 80th and 90th percentiles which 
will meet when the lives are expected to die ( i.e. in this case at age 106.05). 
 
It was clear that the convergence had further to go at higher percentiles, but after 1946 
the pattern changed from the convergent to the parallel variant. We are now in an era 
of continuing rises in life expectancy from 67 to 76 years (1.6 years per decade) for 
males and from 71 years to 80 years (1.6 years per decade) for females. The slower 
improvement in life expectancy compared to the previous era is due to the fact that 
childhood mortality had all but been eliminated at the start of this period so little 
improvement was achieved from reducing this further. The reasons for the changes 
post 1946 are attributable to factors such as developments in medical science, 
improvements in welfare, improved health care, and fewer people working in 
hazardous occupations such as coal mining, and also a decline in smoking. But the 
improvements have been selective and higher socio-economic groups have benefited 
more than others. At the oldest ages the probability of survival is indicating a growing 
variance with no sign of slowing down so that some people will live ever longer.  
 
When the starting age for investigating survival patterns is varied to begin later in life 
in this case at age 50, the pattern obtained is an accurate representation of the parallel 
variant. This applies from when records began, although improvements in life 
expectancy were not continuous through time as the analysis showed. In contrast the 
pattern from age 80 onwards was a clear example of the divergent variant. It means 
that the gains in life expectancy at age 80 are being shared ever less equally between 
survivors to that age. In other words life expectancy is stretched more for some than 
for others, with obvious implications for areas such as long term care of the elderly.  
In summary, although life expectancy is increasing, there is no sign of convergence at 
other ages and there is slower growth in improvement in the first decile of mortality. 
These findings could mean that the Government target of reducing health inequalities 
which relies on a convergence in life expectancy may not be achievable. 
 
In using these findings to inform current population projections, it needs to be 
confirmed whether such changes of trend are predictable going forward or whether we 
are due for another change of direction (e.g. life expectancy improvement level off or 
there is a new variant). We have already noted that there has been a lot of concern 
among actuaries and demographers that governments around the world repeatedly 
underestimate how long people will live by under estimating improvements in 
mortality rates at older ages in future years. We therefore tested whether our model 
would have produced more accurate estimates of survival than the UK Government’s 
own forecasts using information that would have been available at the time. In tests 
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over two different periods we found that our model gave considerably more accurate 
results but still underestimated observed survival at the end of both test periods.  
 
We then projected expected population numbers using our model based on data 
available in 2001 and compared it to the GAD projections from that year.  As 
predicted the percentage of difference between our model and GAD’s increased as the 
age increased with our model predicting more lives.  The difference between our 
model and GAD’s comes from two possible sources.  The first is that GAD expects a 
slower improvement in life expectancy than we do. We use a second order polynomial 
so life expectancy is increasing at a quicker rate than in their approach. The effect of 
this may be appreciated from Figure 32 which showed the pattern of male life 
expectancy at aged 50 from 1952 to 2001 including a fitted regression line.  
 
The second potential source of difference is that is that GAD, through caution, 
expects improvements at the older ages to slow down as life expectancy potentially 
hits some ‘barrier’ such as a biological limit to life. We, on the other hand, are 
assuming that improvements will keep on continuing at a constant rate. However as 
our tests indicated we can show that GAD’s error percentage compared with actual 
outcome have been wrong before.  Since population forecasts are updated annually 
there is plenty of time for GAD to correct an underestimate of a population forecast 
that is for 15 years hence. However, for the pensions industry which is used to 
looking much further ahead and pricing products accordingly more accurate 
information could be important.  
 
We carried out similar modelling for female lives and the relevant figures are 
included at Annex A.  The main item to note is how much closer our prediction of 
population size is with GAD’s figures.  The main reason for this is that the expected 
increase in female life expectancy has not been increasing as rapidly for females as 
males in recent years and so the prediction in life expectancy for our model and 
GAD’s is a lot closer.  The main discrepancy again is in the 80-89 age group caused 
again by GAD taking the view that life increases at the older ages will be less rapid 
than those we assume. 
 
As for the assumption about continuing life improvement our results are based around 
the long term trend from (1841-2001) so there is arguably no need to assume that life 
expectancy will have to slow down in the near term.  Since countries such as Japan 
have extra years of expected life compared to the UK then there is a clear argument 
that these extra years in the UK can be obtained before any natural limits are found. 
When we used more recent short term cuts of historical data to forecast life 
expectancy we found if anything that by 2020 it could be even higher than we predict 
but overshooting is a possibility.  
 
We therefore used ARIMA techniques to ensure that projections did not breach 
confidence limits and that if they did the year in which this occurs could define the 
effective time horizon. This showed that our model is likely to be less reliable for 
males than for females farther into the future for the reason that the male life 
expectancy is changing quicker. Nevertheless, the results show that the male model 
will remain within the 95% confidence intervals until 2020. It is consequently 
suggested that results obtain are likely to be a more realistic forecast than current 
official projections for the 50+ age group. 
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The implications of our results are considerable, even in the next decade. By 2020 life 
expectancy for males at age 50 will be just below that of females who would be 
expected to live for 35 years. This compares with a male life expectancy of 22.5 years 
in 1960, a difference of 12.5 years. In addition, a male that reaches age 50 in 2020 
would have a 4.5% chance of reaching 100 as compared with a female who would 
have an 8.8% chance (see Table C1, at Annex C). This compares with 0.54% for 
males and 1.7% for females in 2001 and 0.014% and 0.098% in 1951. A male 
reaching age 80 in 2020 would have 6.4% chance of reaching 100, as compared with 
a female who would have a 12.3% chance. These findings thus underline the speed at 
which the ageing population will make its presence felt within the next decades. 
Finally we have already noted that the population age 50+ will be 0.65m higher than 
expected based on current forecasts.   
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Annex A: Females 
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Figure A1: Female life expectancy at age 50, 1841-1981 
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Figure A2: Female life expectancy at 50, 1952-1981 
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Figure A3: Female life expectancy at 50, 1952-2001 
 
 
age  GAD 2020 Model Diff Diff % 

50-59 
  

3,962,913  
 

3,963,685 
 

771 0.02%

60-69 
  

3,203,880  
 

3,202,956       -924 -0.03%

70-79 
  

2,632,919  
 

2,645,805 
 

12,886 0.49%

80-89 
  

1,344,369  
 

1,442,493 
 

98,124 7.30%

total 
  

11,144,081  
 

11,254,939 
 

110,858 0.99%
Table A1: Comparison of female population projected from 2001, model versus GAD 
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Annex B: ARIMA 
 
Fitting a second order polynomial to the expected life as noted in the main body of the 
paper causes problems in two ways.  Firstly, when looking back we have the problem 
that life expectancy would start to increase the further back we go which of course 
does not happen. 
 
The second problem is that when forecasting forward we find that the projected life 
expectancy will quickly exceed a value that can be considered to be in the range of 
likely values.  Now the paper with this current projection method is looking to project 
until 2020 which as we are using data up to 2001 can be considered to be a 19 year 
projection.  However, it could be argued that even by then the projection of expected 
life may be too large.  To try to address this problem we decided to fit an ARIMA 
model to the data so that we could derive confidence intervals for the expected life at 
age 50 up to 2020. 
 
The purpose of this paper is to keep the methodology simple and so the ARIMA 
fitting is not part of the model; rather it is a sensibility check on the values derived.  
Therefore, there will be little discussion on the fitting of the model. 
 
To ensure that we achieved the best fit for our time series we used the ARIMA model 
with no preconceptions of the parameter values.  Therefore we fitted the normal form 
of the nonseasonal ARIMA model i.e. using the parameters ARIMA(p,d,q) model, 
where:  
 

p is the number of autoregressive terms,  
d is the number of non-seasonal differences, and  
q is the number of lagged forecast errors in the prediction equation.  

 
The main problem we had with our main data set (1841-2001) is that the volatility of 
life expectancy due to wars and illness meant that we were not able to fit a suitable 
ARIMA model because of these random ‘jumps’ in the expected life. 
 
We then used our standard reduced data set of (1952-2001).  While this allowed us to 
fit an ARIMA model the fit was not particularly good.  We concluded that this was 
due to the volatility at the start of the period. We therefore concentrated our attention 
on the years 1963-2001.  Using this reduced data set we were able to fit a satisfactory 
ARIMA model of the form 
 
 ARIMA(4, 1, 0) 
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The value of the coefficient (and their significance) for this model (as derived by 
Minitab) are shown in Table A2: 
 

Type Coefficient SE of 
Coefficient 

T P 

AR 1 -0.5341 0.1471 -3.63 0.001 

AR 2 -0.0529 0.1572 -0.34 0.739 

AR 3 0.6133 0.1558 3.94 0.000 

AR 4 0.6234 0.1490 4.18 0.000 

Constant 0.06034 0.03075 1.96 0.058 

Table B1: ARIMA results 
 
Using this model we were thus able to calculate the confidence intervals as presented 
in the main text. 
  
 
Annex C:  Probability of reaching 100 years at ages 50 and 80 
 
(a) Males 
 
Current Age Base year 

1951 1981 2001 2010 2020 
50 0.014% 0.129% 0.535% 1.152% 4.483% 
80 0.063% 0.411% 1.103% 1.967% 6.370% 

 
(b) Females 

 
Current Age Base year 

1951 1981 2001 2010 2020 
50 0.098% 0.738% 1.741% 4.876% 8.801% 
80 0.264% 1.381% 2.730% 7.297% 12.298% 

Table C1: Probabilities of reaching 100 years by person becoming given age in base 
year: (a) males; (b) females 
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