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Abstract As the number of moving objects increases, the challenges for achieving
operational goals w.r.t. the mobility in many domains that are critical to economy and
safety emerge dramatically. This, in domains such as the Air Traffic Management do-
main, dictates a shift of operations’ paradigm from location-based, as it is today, to
trajectory-based, where trajectories are turned into “first-class citizens”. Addition-
ally, the increasing amount of data from heterogenous and disparate data sources, im-
ply the need for advanced analysis methods that require exploiting spatio-temporal
mobility data in appropriate forms and at varying levels of abstraction. All these call
for an in-principle way for organising integrated views of mobility data, with tra-
jectories playing the main role. In this paper, based on a comprehensive framework
identifying fundamental spatio-temporal data types and specific conversions among
these types, we propose an ontology for modelling semantic trajectories, integrating
spatio-temporal information regarding mobility of objects, at multiple, interlinked
levels of abstraction, as needed by analysis methods. We validate the ontological
specifications towards satisfying the needs of visual analysis tasks in the complex
Air Traffic Management domain, using real-world data.

1 Introduction

Many tasks in critical domains w.r.t. economy and safety, such as Flow and Traffic
Management in the aviation domain, impose emergent and challenging problems, re-
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quiring analysis of mobility data. This data comprises surveillance data in association
with data about the moving objects (e.g. geometric information, objects’ physical and
operational characteristics), and contextual information (e.g. regions and points of in-
terest, weather information, traffic, etc.), coming from disparate and heterogeneous
data sources.

Challenging problems include effective information provision for situation aware-
ness, identification of recurrent patterns of behaviour and decision making at differ-
ent scales and levels of abstraction, as well as, the prediction of moving objects’
behaviour under specific circumstances. These challenges are significant, given that
their achievement aims to reduce factors of uncertainty regarding operations, enhance
punctuality of activities, advance planning efficiency, and reduce operational costs.

To address the complexity of these challenges, which increases significantly as the
number of moving objects increases, a shift of operations’ paradigm from location-
based, as it is today, to a trajectory-based has been proposed: Trajectories are turned
into “first-class citizens”, and mobility of objects, decision making, assessment of
situations and planning of operations revolve around the notion of trajectory.

Following a data-driven approach towards addressing these challenges, we need
to consider how we do represent trajectories to satisfy the data needs and require-
ments of analysis tasks. Our approach is based on two principles, towards supporting
exploratory tasks requiring the synergy between humans and computational tasks:
First, trajectories should reveal objects’ behaviour in explicit terms, at different levels
of abstraction considering their geometric, contextual, and analysis-specific features.
In doing so, analysis tasks can retrieve data about trajectories at any level of ab-
straction that is appropriate for their purposes, switching between abstraction levels,
delving into the details of mobility phenomena and providing overviews in generic
terms. Second, data transformations (or conversions) require trajectories to integrate
spatial events into temporal sequences, while, on the other hand, these events need
to be aggregated into spatial time series, associated to geographic contexts. This sup-
ports identifying re-occurring patterns of behaviour. Combining these abilities, al-
lows identifying re-occurring patterns of behaviour at varying levels of abstraction,
enhancing our understanding of mobility phenomena and thus, decision making.

At this point we need to clarify that, as far as abstraction is concerned, aggre-
gation and generalisation provide the basic means for abstracting data/information.
In this paper when we refer to ”abstraction” we consider any possible combination
of aggregation and generalization,. When it is necessary, we specify explicitly which
kind of abstraction is required.

Our objective is to specify an ontology for modelling semantic trajectories, inte-
grating spatio-temporal information regarding mobility of objects at multiple, inter-
linked levels of abstraction, supporting appropriate data transformations, as needed
by visual analysis tasks. Visual analytics impose specific requirements to support the
combination of human and computational data processing through interactive visual
interfaces, enabling analysis of spatio-temporal [8] and mobility data [5], sophisti-
cated data analysis, and informed decision making [9], at varying levels of abstrac-
tion.

Existing models and ontologies for the representation of semantic trajectories do
not provide the flexibility needed to represent semantic trajectories and associated
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data and events at multiple levels of abstraction. They usually specify models for rep-
resenting trajectories at different levels (from raw to semantic), where each level as-
sociates trajectories with a different kind of information. In cases where abstractions
(mainly aggregations of geometric information) are supported, these are limited to
specific types of abstraction and to a restricted number of levels, and in many cases
present limitations in associating abstract specifications among themselves. Conse-
quently, switching between levels of abstraction as needed by exploratory analysis
tasks is limited. This, implies weaknesses to the exploration of data for the purposes
of analysis task, and in particular for the purposes of visual analytics. These issues
are further discussed in detail with explicit references to existing trajectory models,
in section 3.

Specific contributions that this work makes are as follows:
(a) We revisit fundamental data types for visual analysis tasks revolving around

the notion of semantic trajectory, specifying conversions among these types of data:
These types and conversions provide an in-principle framework for identifying trajec-
tories’ constituents, and provide a comprehensive framework for validating ontologi-
cal specifications towards the provision of appropriately transformed data, satisfying
data requirements of visual analysis methods.

(b) We revisit the notion of “semantic trajectory”, as a meaningful sequence of tra-
jectory parts at any level of abstraction. By being meaningful, a semantic trajectory is
associated with human-interpretable and machine-processable information, revealing
objects behaviour in explicit terms. Dealing with multiple levels of abstraction, we
support analysis of moving objects’ behaviour at any scale and/or level of abstraction
that is appropriate for analysis tasks.

(c) We validate the ontology by means of enhanced SPARQL queries, using real-
world data from the Air Traffic Management domain, in concrete cases of importance
for flow management.

The paper is organised as follows: Section 2 motivates the need for an ontology
for the representation of semantic trajectories, specifying requirements for such a
representation. It further revisits fundamental data types and outlines the data trans-
formations for supporting analytics tasks w.r.t. trajectories. Section 3 reviewes weak-
nesses and limitations of existing proposals for representing semantic trajectories.
Section 4 provides background information about the Flow Management cases of the
Air Traffic Management domain for validating ontological specifications. Section 5
presents the datAcron ontology for the representation of semantic trajectories. Sec-
tion 6 presents how data transformations are supported by the ontological specifica-
tions, supporting visual analytics tasks for the purposes of Flow Management cases.
The paper concludes with discussion remarks and plans for future work in Section 7.

2 Semantic Trajectories: Requirements and Fundamental Types of Information

Our main goal is to specify an ontology that provides a comprehensive semantic
model for the representation of trajectories, integrating spatio-temporal information
regarding mobility of objects at multiple, interlinked levels of abstraction, supporting
appropriate data transformations, as needed by visual analysis tasks.
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Towards this objective, first we specify the requirements for the representation of
semantic trajectories defining important terms, and then we recall the fundamental
types of spatio-temporal mobility data and data transformations/conversions appro-
priate for supporting mobility analytics, with a clear focus on visual analytics: Funda-
mental data types and conversions provide a comprehensive framework for validating
ontological specifications.

2.1 Requirements for the representation of semantic trajectories

Aiming to a comprehensive semantic model of trajectories that integrates mobility
data, we aim at representing all these features that are necessary to the representation
of semantic trajectories, including geometric, geographic and application specific in-
formation [33].

As reported in [33], geometric information concerns the evolution of location of
a moving object during a given time interval. The temporal sequence of raw (surveil-
lance) data specifying the moving object spatio-temporal positions reported from
sensing devices defines a raw trajectory [22]. Using geometric information we may
answer queries like “Return objects which were located at x, y, z at time t”. However,
geometric information may be specified at varying levels of aggregation, revealing
representations and knowledge regarding the behaviour of a moving object at dif-
ferent spatio-temporal scales, which can be useful for various tasks: For instance, a
trajectory may be represented as a line rather than as a temporal sequence of posi-
tions. Such a representation may ease computations that reveal patterns of movement,
or computations regarding spatial/topological relations with other geometries. Alter-
natively, a trajectory can be represented as a temporal sequence of lines representing
sub-trajectories, each one of special interest on its own (e.g. each one crossing a
specific region of interest, or corresponding to a specific phase of movement), or as
a sequence of aggregated raw positions with high concentration in spatio-temporal
regions or points of interest.

The reader may have noticed that in explaining the significance of specifying a
trajectory at multiple levels of geometric abstraction, we “associated” geometric in-
formation with geographical (e.g. special areas or points of interest) and application-
specific (e.g. phases of movement) information. This further supports the usefulness
of having multiple levels of geometric abstractions, each one serving different pur-
poses towards representing and analysing the behaviour of moving objects. Having
these geometric abstractions, we may answer queries like “Return objects that crossed
the spatial region X during the time interval [t begin, t end]”, “Return objects whose
trajectories crossed spatial regions that properly include region X during the time in-
terval [t begin, t end]”, and “Return objects whose trajectories include an aggregation
of positions close to a specific point of interest”.

Different levels of geometric abstraction provide alternative constituents for struc-
turing trajectories. According to [22] a structured trajectory consists of a sequence
of trajectory parts that can be either raw positions reported from any sensing devise,
aggregations of raw positions referred as nodes, or trajectory segments.
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A trajectory segment is a trajectory itself, which may be part of a whole trajec-
tory. A node provides an aggregation of raw positions. Segments and nodes aggregate
information that may instantiate a behaviour pattern. For example, a sequence of raw
positions may instantiate a “turn” event, while a set of positions may instantiate a
“stop” event. These aggregations can be represented by a single node or segment, as-
sociated to an event type (e.g. “turn” or “stop”, respectively), and to the corresponding
set of raw positions.

Segments of trajectories and nodes can be defined with different objectives de-
pending on the application and target analysis, and are thus associated with application-
specific information. As defined in [22], a maximal sequence of raw data that comply
with a given pattern defines an episode. In this work we consider events as a generali-
sation of episodes. Events represent specific or abstract happenings and are associated
to trajectory parts, providing application specific information that is relevant to the
trajectory. As a consequence, queries such as “Return objects whose trajectories con-
tributed to congestion events in a specific spatial-temporal region”, or “Return objects
whose trajectories comprise a segment that is associated with a high-speed event” can
be answered.

Geographical features allow turning the geometric information representing the
spatial path into a geographical trace [33] which is meaningful for humans and com-
putational processing tasks. This requires associating trajectory parts to (types of)
geographic regions: Shops/spots/buildings of different kinds, regions of special inter-
est (e.g. touristic, commercial or industrial), etc. Generalising geographical features,
we can draw semantic associations between trajectory parts, supporting further the
abstraction of trajectories (e.g. any trajectory crossing many shops can be a “shop-
ping trajectory”, irrespectively the kind of shops crossed. Specific types of shopping
trajectories may indicate specific types of shops crossed). In this work, we generalise
geographical features to contextual. This comprises features of the moving objects,
as well as features of moving objects’ environment, considering that these features
are associated to objects’ movement. These may include weather attributes, space
configuration features, as well as aggregated data about co-occurring trajectories –
i.e., traffic. This enables answering not only queries such as “Return trajectories that
crossed region X”, but also queries such as “Return trajectories that crossed any re-
gion with specific weather conditions [specified as conditions in weather attributes]”.

It must be noted that events aggregate different types of features. An event pattern
may comprise contextual features (e.g. crossing a spatial region, or a region with a
specific weather condition), features of moving objects (e.g. reaching highest pos-
sible altitude), geometric and geographical features, and/or other events regarding
the mobility of the object (e.g. moving in low-speed or descending). Events may be
low − level - associated to basic behaviour - or complex - associated to complex
patterns of behaviour.

A trajectory part may be associated with any event that co-occurs with it spatially
and/or temporally: E.g. Bad weather conditions, or traffic regulations associated with
a spatial region may co-occur with a trajectory crossing-it (thus, related spatially)
during a time period (related temporally).

A semantic trajectory is a meaningful sequence of trajectory parts. By being
meaningful, a semantic trajectory is associated with contextual information and re-
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lated events, towards revealing objects’ deliberative or accidental behaviour in ex-
plicit terms, thus contributing to understanding the rationale for that behaviour and
providing comprehensive information about the occurring behaviour.

Given the above definition of a semantic trajectory, a semantic trajectory can be
specified at different levels of abstraction, depending on the geometric features, con-
textual features, and events considered. Abstraction may happen by means of aggre-
gation, generalisation, or both. In doing so, we may retrieve semantically associated
trajectories, based on the semantic features they aggregate and information to which
they are associated. For instance we may retrieve “trajectories crossing sensitive areas
and associated to suspicious events”. Such trajectories may be represented at varying
aggregation levels. They may cross areas with different types of sensitivity and they
may be associated with different types of suspicious events.

We conjecture that abstractions of a single trajectory should be interlinked, so as
any application to be able to get any relevant information that is necessary for its
purposes, being able to move in a continuum between specialised / basic information
and generalised / aggregated information, through querying and applying data trans-
formations. This supports, for instance, delving into the details regarding a trajectory
part associated to a complex event of type “suspicious behaviour”, by inspecting geo-
metrical, contextual and application-specific features at the appropriate level of detail.

2.2 Fundamental Data Types and Data Transformations for Visual Analytics

Given our aim to represent trajectories towards supporting data-driven approaches
to challenging problems in critical domains, this section presents generic spatio-
temporal data transformations to serve analysis goals on mobility data.

As mentioned in [7], there are three fundamental types of spatio-temporal data
associated with mobility: trajectories of moving objects, spatial event data, and spatial
time series.

Individual trajectories provide information on the movement of individual ob-
jects. Aggregated traffic data are spatial time series describing how many moving
objects were present in different spatial locations and/or how many objects moved
from one location to another during different time intervals. The time series may
also include aggregate characteristics of the movement, such as the average speed
and travel time. Time series describing the presence of objects are associated with
distinct locations, and time series describing aggregated moves (often called fluxes
or flows) are associated with directed links between pairs of locations. In both cases
spatial time series are represented as chronologically ordered sequences of values
of time-variant thematic attributes associated with spatial locations or spatial entities
(for example, regions of special interest).

Spatial events emerge at spatial locations and exist for a period of time. Spatial
events are described by their spatial regions, existence times, and contextual features.
Events may occur irrespectively of trajectories, but somehow be related to trajectories
(e.g. weather events, regulations imposed in a spatio-temporal region), or may be
derived from trajectories (e.g. a turn of a moving object, short distance between a
pair of objects, or large number of moving objects in a spatio-temporal region).
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Based on these types of spatio-temporal data and following the approach of [23],
the fundamental types of queries can be seen as transformations combining three
basic components: (a) space (where), (b) time (when), (c) object or event (what).
These components can be used in three basic types of queries:

– Retrieve the trajectories/events in a region for a time period (when&where →
what).

– Retrieve the region occupied by a trajectory/event or set of trajectories/events, at
a given time instant or period (when&what→ where).

– Retrieve the time periods that a non-empty set of trajectories/events appear in a
specific location or area (i.e., where&what→ when).

Fig. 1 Conversions between different representations

Exploiting these fundamental data types and queries, we aim to support the generic
transformations depicted in Figure 1 [7], in support of visual analytics tasks. Briefly,
as Figure 1 shows, trajectories integrate spatial events (transformation I), while these
events, similarly to trajectories, may be aggregated to spatial time series. These may
be either place-based, i.e. associated to a specific spatial region (transformation III),
or link-based, such as flows of trajectories between pairs of spatial regions (transfor-
mation II). Projections of spatial time series may result to spatially-referenced time
series or to spatial situations (transformations VI). These transformations impose spe-
cific requirements to representations, so as to answer queries regarding trajectories,
aggregations of features and events.

More specifically, the left part of the diagram in Figure 1 shows the tight rela-
tionships between spatial events and trajectories. In fact, trajectories comprise parts
that are associated to spatial events. Even in raw trajectories, each record represents
the presence of an object at a specific location at some instant in time. As it is further
shown in Figure 1, trajectories are obtained by integrating spatial events. In the sim-
plest case, for each moving object, all (raw) position records are linked in a chrono-
logical sequence. Reciprocally, trajectories can be transformed to spatial events either
by full disintegration back into the constituent events or by extraction of particular
events of interest such as sharp turns, entering/exiting a region, crossing a waypoint,
etc. Spatial events that are close in space and time can be united into more complex
spatial events. For example, a spatio-temporal concentration of many moving objects
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entering/crossing a spatial region during a small time window may be treated as a
single event of traffic congestion.

Spatial time series can be obtained from spatial events or trajectories through
spatio-temporal aggregation. For instance, spatial regions specify spatial compart-
ments, and time can be divided into intervals called time windows. For each spatial
compartment and time window, the spatial events or moving objects that appear in
the compartment during the associated time window are binned together and counted.
The result is a place-based time series in which temporal sequences of aggregate val-
ues are associated with the spatial compartments. From such spatial time series, in
turn, it is possible to extract more complex spatial events; for example, events of high
traffic density and high demand for a specific spatial region and for specific temporal
intervals.

Trajectories can also be aggregated into link-based time series: for each pair of
spatial compartments and for a specific time window, the objects that moved from the
first to the second compartment during this time interval (specifying a link between
compartments during that period) are counted. Aggregated characteristics of their
movement may be calculated.

Discrete place-based and link-based spatial time series can be viewed in two com-
plementary ways. On the one hand, they consist of temporally ordered sequences of
(aggregated) values associated with individual places or links, i.e., local time series.
On the other hand, a spatial time series is a temporally ordered sequence of the distri-
bution of spatial events, moving objects, or collective moves (flows) of objects over
the whole space of interest, together with the spatial variation of various aggregate
characteristics. These distributions are called spatial situations [5].

Based on the requirements for the representation of semantic trajectories specified
in the first part of this section, and the framework of fundamental types of mobility
data and conversions between them, presented in the second part of this section, we
proceed to propose a model for the representation of semantic trajectories, which
aims at (a) supporting the representation of semantic trajectories at multiple, inter-
linked levels of abstraction, (b) structuring trajectories by means of different types of
trajectory parts, (c) associating events at varying levels of abstraction with trajectory
parts, (d) supporting the transformations needed for visual analysis tasks.

3 Related work

Existing approaches for the representation of trajectories, either (a) use plain textual
annotations instead of semantic associations to features of interest [3], [12], [13],
having limitations towards machine-processable information for the purposes of mo-
bility analysis tasks; (b) constrain the types of events that can be used for structuring a
trajectory [33], [3], [12] [29]; or (c) make specific assumptions about the constituents
of trajectories [32], [29], [13], [20] [15], [17], thus providing limitations to the spec-
ification of trajectories at varying levels of abstraction according to needs.

To a greater extent than previous proposals, we aim to support the representation
of trajectories at multiple, interlinked levels of detail.



The datAcron Ontology for Semantic Trajectories 9

More specifically, although authors in [15] provide a rich set of constructs for the
representation of semantic trajectories, these are specified as sequences of episodes,
each associated with raw trajectory data, and optionally, with a spatio-temporal model
of movement. Beyond representing trajectories only as sequences of episodes, there
is no fine association between abstract models of movement and raw data, provid-
ing limitations to analysis tasks that need both of them in association. On the other
hand, [13], [29] and [32] provide a two-levels analysis where semantic trajectories
are lists of semantic sub-trajectories, and each sub-trajectory is a list of spatial points.
Authors in [17], based on the two-levels analysis of trajectory models, introduce an
ontological pattern for the specification of trajectories.

Regarding events and episodes, most of the proposed models are based on the
“stop-move” model [34] [30], or they are connected to features at specific levels of
abstraction: In [13] events -mostly related to the environment rather than to the tra-
jectory itself- are connected to points. This may lead to ambiguities as far as the
association of events to trajectories crossing the same points is concerned, especially
for the events concerning the trajectory itself rather than the environment. In [15]
episodes concern things happening in the trajectory itself, and may be associated to
specific models of movement. However, it is not clear how multiple models of a sin-
gle trajectory -each at a different level of analysis- connected to a single episode, are
associated. Contextual information in [15] is related to movement models, episodes
or semantic trajectories, which is quite generic as a model, while in [32], [29] and
[17] fixes and states represent basic behavioural features of the moving object. These
may also represent contextual features, and are associated to trajectory points, or in
[29] they specify domain-specific features. Finally, in [13] environment attributes are
associated to points only, and can only be assigned specific values.

As noted in the previous section, the specification of trajectories at various layers,
from raw to semantic, depending on the information associated to trajectories (as it
is done in [33]) is orthogonal to the goal of providing specifications of trajectories
at multiple levels of abstraction. A different approach to that is proposed in [21],
where trajectories are associated with qualitative descriptions of movement, at dif-
ferent aggregation levels, much like the distinction between low-level and complex
events made above. However, trajectories are specified as sequences of segments as-
sociated to at least two key points providing quantitative information on movement,
with no association to any type of events or activities.

This lack of flexibility to specify semantic trajectories at multiple levels of ab-
straction regarding geometric and contextual information, as well as events, and the
lack of the capability to link these specifications so as to be able to switch between
abstractions flexibly, is a common feature among previous efforts. In addition to that,
to the best of our knowledge, there is no work that considers the requirements of
analysis tasks in structuring trajectories, so as to support fundamental types of data
and transformations between them.

Specifically, considering data transformations for analysis tasks, apart from the
structural transformations between or within the different types of spatio-temporal
data specified in section 2, there exist transformations that change the scale, or level
of detail, which may be beneficial for particular tasks. For example, Chu et al. [14]
transform trajectories into sequences of traversed map regions (e.g.streets) and apply
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text mining methods for discovery of ”topics”, i.e., combinations of regions that have
a high probability of co-occurrence in one trip. The extraction of ”topics” is done
for different time intervals. By investigating the temporal evolution of the topics, it
is possible to understand where objects travel in different times of the day and days
of the week. Al-Dohuki et al. [1] transform trajectories into texts consisting of re-
gion names and text labels denoting speeds (low, medium, and high). Furthermore, a
discrete representation of aggregated movements between places can be treated as a
graph, to which graph analysis methods can be applied [16][19]. As such, these var-
ious transformations enable the comprehensive analysis of traffic data from multiple
complementary perspectives [10].

To the best of our knowledge, the ontology presented in this paper for the spec-
ification of semantic trajectories, namely the datAcron ontology, is the first one to
provide the flexibility needed to represent trajectories at multiple, interlinked levels
of abstractions. Furthermore, and to a greater extent than other models and ontolo-
gies proposed, it is validated in the context of data transformations needed by analysis
tasks, in highly complex problem cases in the aviation domain.

The datAcron ontology has been succinctly presented in [28,25]. Here we delve
into the details of the specifications, while, also to a greater extent and detail than all
previous publications, we show in detail how the datAcron ontology supports a wide
range of generic data transformations that are required by analysis tasks, supporting
the provision of information at various levels of analysis and form.

4 The Flow Management domain.

To further contextualize our work and show concrete examples of specifications, in
this section we provide basic background information and specify the types of entities
and data required in data analysis scenarios from the Air Traffic Management (ATM)
domain, concerning Flow Management (FM).

Flow management (FM) provides some of the most explorative scenarios in the
aviation domain. Actually, FM is an extremely important service for airlines to oper-
ate in a safe and efficient way, complementary to Air Traffic Control (ATC). The ob-
jective of FM is to ensure an optimum flow of air traffic. In brief, its objectives include
(a) detecting cases where air traffic demand at times exceeds the available capacity of
the ATC system and (b) imposing flight regulations to resolve these demand-capacity
imbalances.

In demand-capacity imbalance situations the expected number of flights in some
part of the airspace, called sector, exceeds the prescribed sector capacity, i.e., the ca-
pability of the air traffic controllers responsible for this sector to handle flights safely:
This results to the occurrence of hotspots. Regulations change the departure times of
some flights in order to prevent sector overload. This results in flight delays, and thus,
increased costs of operations. These delays can also result in creating new hotspots
at other times and/or in other sectors, with cascading effects to the whole system.
The capability to predict the emergence of hotspots well in advance could be used
to improve flight planning, decisions on active sector configurations used (specified
below), and it can improve assessment of regulations that should be imposed to re-
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duce the occurrences of hotspots, resulting in fewer and smaller delays. However, it
is currently not clear how to achieve these goals. This is mainly due to the existing
factors of uncertainty, and thus to the low predictability of the actual operations (e.g.
of actual trajectories and events) taking place at specific time instants. Hence, it is
necessary to analyse available historical data to identify patterns of human experts’
decision making, revealing expert knowledge (e.g. features, rules and criteria) likely
to be used in different circumstances.

As the general mission of visual analytics is to provide techniques and tools sup-
porting human understanding of data, comprehension of the phenomena reflected in
the data and analytical reasoning, the exploration of the complex historical data rele-
vant to the FM cases is an appropriate task for visual analytics.

4.1 The Flow Management entities

In the following, we provide a comprehensive list of the FM entities, along with
details.

– Flight plans provide specifications of planned or intended trajectories consisting
of spatiotemporal events, such as of flying over specific waypoints (i.e. fixed co-
ordinates among which airways are set). Flight plans also specify information
concerning estimated take-off time, and, in case of delay caused by a regulation,
the calculated take-off time of the flight.

– Air blocks, are static airspace volumes defined by geometries specifying spatial
2D projections of the airspace volume, and lower and upper flight levels.

– Sectors are static spatial 3D objects comprising other sectors or airspace volumes
that are defined by air blocks. Each sector is managed by a specific number of air
traffic controllers (typically two, Executive and Planning Controllers).

– Sector configurations are alternative divisions of airspace into sectors. Sectors
constitute the minimum unit that an Air Traffic Controller operates. The number
of sectors dividing the airspace may vary in different times, allowing to oper-
ate the airspace with the appropriate number of controllers according to demand
conditions, ensuring safety of operations in ow cost.

– Opening schemes or active configurations are the sector configurations actually
deployed in a given airspace, associated with time intervals of their validity. The
schedule of active sector configurations is continuously refined as getting closer
to operation time, when the available information about flight plans (and thus, de-
mand) is progressively refined. This introduces an uncertainty factor to the plan-
ning of operations.

– Capacities are referring to sectors: for each sector at a specific time instant, the
capacity value of that sector may either be undefined (if the sector is not active
at that time instant) or specify the upper limit of the number of flights crossing
that sector in a time period with pre-specified duration (typically one hour). The
capacity of a sector is the same at any time instant at which it is active.

– Predicted weather is a spatial time series of multiple predicted weather attributes
referring to 3D locations (longitude, latitude, altitude).
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Figure 2 illustrates two alternative sector configurations in the Spanish airspace.

Fig. 2 Configurations of sectors in the Spanish airspace. Colours are for distinguishing between sectors.
Illustrations have been created using the V-Analytics platform [6].

The FM monitoring process computes periodically (typically every 20 minutes)
the foreseen demand for each sector, by counting the expected number of flights in the
sector during the next period (typically one hour, to match the definition of capacity).
If a potential demand versus capacity imbalance is detected for a specific sector a
regulation may be applied to adjust the demand values to the available capacity for
that sector.

A regulation is a special type of event that occurs as a measure that a network
manager takes to solve an excess of capacity. The attributes of any regulation include
the location (sector), start and end times, and reason codes (e.g. ”C” for regulations
due to demand capacity imbalances, or ”W” for regulations due to weather condi-
tions).

Regulations imposed to sectors usually result in delays imposed to flights crossing
that area. Delayed flights may cause hotspots (and thus, new regulations) to other
sectors in the airspace, etc. This introduces an additional factor of unpredictability to
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operations. Therefore, we need to understand such cascading effects and provide the
ability to stakeholders to plan the occurrence of regulations well in advance, reducing
uncertainty.

On the other hand, ideally, sector configurations should be chosen so that the
demand in each sector does not exceed the sector capacity, thus, not imposing the
need to regulate flights, while making efficient use of resources. In reality, demand-
capacity imbalances happen quite often for a set of reasons (deviations of actual
flights from flight plans, weather conditions, strikes etc.), causing flight regulations
and delays, contributing to unpredictability of operations. In search for models that
might support enhanced pre-tactical planning, we need to understand how configu-
ration choices are made by airspace managers, and how trajectories are planned by
airspace users, allowing better management of demand-capacity imbalances and as-
sessment of regulations at the pre-tactical stage of operations.

Towards supporting mobility analytics to address the FM specific challenges and
to achieve the operational goals, it is clear that we need to exploit information about
trajectories at multiple levels of detail: Raw trajectories should be represented, and
these should be linked to segments of trajectories that are spatially included into
airspace compartments: Such compartments of interest are sectors, which however
may be active (i.e., be part of an active configuration) or not. Given that different
sectors are ”constructed” from the same air blocks, we can specify trajectories as
series of segments crossing air blocks, which are then aggregated - depending on the
aggregation of air blocks into sectors - on series of segments crossing active sectors.
As an “intermediate” level of representation between trajectories as series of raw
positional data and as series of trajectory segments, we can specify trajectory nodes
associated to events of importance, and thus with spatial and temporal contextual
features (e.g. entering/exiting an air block). Trajectory parts may be associated to
events and features regarding weather conditions, regulations, traffic. etc. Contextual
features and events can be specified at varying levels of generalisation, supporting
semantic associations between trajectories and their parts (e.g. trajectory segments
crossing air blocks regulated due to any reason, or trajectory segments crossing air
blocks regulated due to weather conditions or traffic).

Specific FM cases, specifying analysis targets, data sets and data transformations
needed are detailed in Section 6.

5 The datAcron Ontology

The datAcron ontology1 was developed by group consensus over a period of 12
months following a data-driven approach according to the HCOME methodology
[18]. It is a SIN (D) ontology, according to the Description Language notation for
the expressiveness of ontologies, and has been designed to be used as a core ontology
towards integrating data from heterogeneous data sources of surveillance and con-
textual data, in association to recognised (low-level and high-level) events, towards
supporting analysis tasks exploiting semantic trajectories.

1 http://ai-group.ds.unipi.gr/datacron_ontology/
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Following the HCOME methodology, the following specific phases of engineer-
ing have been followed:

Specification of aim, scope, requirements and identification of collaborators: In
this initial phase, we had to be acquainted with terminology regarding semantic tra-
jectories and with analysis goals related to mobility data in several scenarios in two
critical domains: Air Traffic Management and Maritime Situation Awareness. Thus,
we had to identify the data requirements of analysis tasks, and specify the queries to
be answered from the ontology. The fundamental data types specified in section 2.2
provide the basic framework for representing and exploiting mobility data through
transformations.

Knowledge acquisition, development and ontology maintenance: The develop-
ment of the datAcron ontology has been driven by ontologies related to our objec-
tives: DUL, SimpleFeature, NASA Sweet and SSN, as well as schemes and speci-
fications regarding data from different data sources. These ontologies served as top
ontologies, whose specifications are further refined to the specification of datAcron
and domain-specific classes/properties. Standard ontology development and mainte-
nance tasks (e.g. improvisation, versioning, documentation), together with consulta-
tion from experts on data analysis and domain-specific tasks took place. It must be
pointed out, that following a data driven approach, the major goal was to provide
“interfaces” with computational and analysis tasks that either provide data to popu-
late the ontology, or fetch data to be exploited for analysis purposes. Thus, ontolog-
ical specifications should support ontology population and querying in adequate and
lossless ways. I.e. annotating, representing and associating data using the appropri-
ate terms, adequately, and without losing any valuable bit of information that would
affect analysis results.

Exploitation and Validation: During this phase, the ontological specifications
have been validated in (a) populating the ontology by means of RDF generators,
and in (b) providing data in appropriate forms for data analysis tasks. Refinements
of ontological specifications proposed during this phase, or changes in the required
features to be exploited, had to be incorporated in the ontology.

It must be pointed out that these phases happened iteratively: E.g. the specifica-
tion of a new data source providing any kind of features in different forms, trigger the
first phase, with potential consequent activities in the other phases.

5.1 Core vocabulary and overall structure

As explained in section 2.1 and illustrated in Figure 3, a trajectory (Trajectory)
can be segmented to several trajectory parts (TrajectoryParts). Each trajectory
part can be a trajectory segment, a trajectory node, or a position provided by a raw
surveillance data source. Segments and nodes can be further analysed iteratively to
other, less abstract trajectory parts.

The generic pattern of specifying structured trajectories is presented in section
5.2.
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Trajectories and trajectory parts can be associated with geometric and contextual
information, as well as with events represented by the class dul:Event. As already
pointed out, events are important happenings associated to the mobility of objects.
These may occur in the environment of moving objects and affect their mobility,
or may be derived from trajectories. Ontology patterns for associating contextual
information and events to trajectory parts are presented in section 5.2.

Fig. 3 The main concepts and relations of the proposed ontology.

5.2 Patterns for the representation of semantic trajectories

Figure 4 illustrates the generic pattern of structured trajectories. The main concept in
this pattern is the Trajectory, which is a subclass of Spatio-Temporal Structured
Entities represented by the class ST StructuredEntity. This, being a subclass
of dul:Region represents a region in a dimensional space and time, used as a
value for a quality of an entity (e.g. a storm covering an area), while it also represents
(structured) trajectories and their parts. A structured trajectory, as well as any of its
parts of type TrajectoryPart, can be a temporal sequence of Trajectory-
Part entities.

Direct subclasses of Trajectory are the
- IntendedTrajectory: planned trajectories specified by an dul:InformationEntity
such as a FlightPlan,
- ActualTrajectory: trajectories constructed from actual positioning data, after
compression of the raw positional data, preserving positional data and associated with
low-level events representing important trajectory changes (e.g. turns, increase/de-
crease of speed, change of altitude etc),
- RegulatedTrajectory: trajectories that have been modified by an operational
event, such as a regulation,
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- RawTrajectory: trajectories constructed by the raw unprocessed sequence of
positional data of moving objects.

An ActualTrajectory can be further distinguished to a ClosedTrajec-
tory (i.e., a trajectory that has reached its destination) and to an OpenTrajec-
tory (i.e., a trajectory in progress).

The TrajectoryPart class is further refined to the following subclasses:
- Segment: associated to a spatial region and a time proper interval.
- Node: associated to a point in space and a time instant, or time interval. The latter
holds in case the node aggregates several raw positions. A Node can be the result of
a data processing component computing aggregations and abstractions of raw posi-
tional data.
- RawPosition: represents the raw (unprocessed) positional data. Each raw posi-
tion instance is associated to a point in space and a time instant.

Fig. 4 The pattern of structured trajectories. Domain specific concepts in gray

A specific trajectory, as well as any of its trajectory parts, being instances of
dul:Region can be associated to its parts via the dul:hasPart property or via
the subproperties hasInitial, hasLast which indicate the first and last part of
the ST StructuredEntity, respectively. For instance, a trajectory may comprise
a sequence of trajectory segments (e.g. segments within sectors), who on their own
turn comprise other segments (e.g. segments within air blocks), nodes (e.g. entering
or exiting any airspace compartment), raw positions, and so on. The temporal se-
quence of structured entities is specified by means of the property dul:precedes.
Trajectories related via the property dul:precedes represent subsequent trajecto-
ries of a specific object, and thus, we can keep a long history of its movement. It must
be noted that this combination of properties supports sharing trajectory parts between
trajectories even of the same object with no ambiguity: For instance, a trajectory node
or segment can be shared between the actual and the intended trajectory of an aircraft,
without mixing the trajectories.

Each structured entity (i.e., trajectory or trajectory part) can be associated to a
specific geometry (sf:Geometry), representing a point or region of occurrence,
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and a temporal entity (dul:TimeInterval) specifying a time interval of occur-
rence. The geometries of structured entities can be serialized into Well-Known-Text
(WKT) and asserted as values to the data property hasWKT, which is sub-property
of geosparql:hasSerialization.

Fig. 5 The pattern of trajectories linked with events. Domain specific concepts in gray

Trajectories and trajectory parts can be associated with events and contextual fea-
tures of importance. Specifically, events can be associated with any ST StructuredEntity
(i.e. with any trajectory and trajectory part), via the property occurs. This is illus-
trated in Figure 5. An event can be associated with other events via the properties
dul:hasConstituent or dul:hasPart. This is the case for high-level (com-
plex) events (e.g. hotspot occurrence) associated with other high-level (e.g. regula-
tion imposed to a sector and events signifying individual flights entering a sector)
or low-level events. An event may involve participants (associated via the property
dul:hasParticipant) and it holds for a specific TimeInterval specified by
the property dul:hasTimeInterval. An event can be a:
- LowLevel event, in case its detection requires data from a single trajectory: For
instance a TopOfClimb is such an event.
- HighLevel event, in case its detection requires contextual data and maybe, data
from multiple trajectories. For example, events of type EnterSector involve in-
formation about sectors crossed by a trajectory. As another example, the occurrence
of hotspots requires data about sectors and multiple trajectories.
Orthogonal to the classification between low-level and high-level events, we also have
the following classes of events:
- Operational event, if it is issued by operators, affecting regions or groups of
entities for a specific time interval. For example, a regulation (Regulation) is ap-
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Fig. 6 The pattern of trajectories linked with contextual information. Domain specific concepts in gray

plied on a sector and remains active for a time interval, and indirectly affects all the
trajectories crossing the sector.
- Environmental event, if it happens in the environment and affect the mobility
of moving objects. Extreme weather conditions are such events.

It must be noted that associating events to trajectory parts satisfies the require-
ment to associate events at varying levels of trajectory aggregation. For instance, a
low-level “turn” event associated with a node, is associated to any trajectory part
(e.g. trajectory segment) that comprises that node. Also, each trajectory part may be
associated to multiple events and thus, provide rich information about objects’ be-
haviour. For instance, a low-level “turn” event associated with a node may co-occur
with a low-level “descend” event associated with a trajectory segment comprising
that node. In addition to that, the trajectory segment can be further associated with
events of type “CrossingSector”.

In addition to events, trajectory parts can be linked to contextual information.
Such information may concern static aspects of the environment (e.g. airports, airspaces,
etc), dynamic aspects (e.g. changing sector configurations, opening schemes, fore-
casts of weather conditions). The pattern for linking trajectory parts with contextual
information is illustrated in Figure 6. Without loss of generality, subsequent para-
graphs and Figure 6 provide examples of associating contextual entities of interest
for the FM cases to trajectories.

Weather conditions are very important to trajectories in the FM domain: Each
TrajectoryPart can be associated with entities of type WeatherCondition,
which is defined as a subclass of ssn:FeatureOfInterest. This represents any
entity whose properties are being estimated or calculated in the course of an observa-
tion.

Of particular interest to the FM domain are airspace regions. Structured entities
can be linked to spatial regions (instances of dul:Region) of particular interest
through the properties within and dul:nearTo.
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Also, the departure and destination airport of a trajectory can be considered as
contextual information, linked via the properties hasDeparture and hasDesti-
nation, respectively. The properties range to the class dul:Physical-Place,
which can be further refined to domain specific classes such as Airport, or Heli-
port.

Finally, a FlightPlan is also a domain specific entity of type dul:InformationEntity
which is associated to an IntendedTrajectory via the property reportsTra-
jectory. Flight plans provide information on the intended trajectory and, in case a
regulation has affected the trajectory, report the regulated intended trajectory.

5.3 Examples

As a concrete and simple example of a trajectory specified at multiple levels of ab-
straction, Fig. 7 shows the representation of a trajectory crossing an airspace compart-
ment: The trajectory is represented both as a geometry projected in two dimensions,
and as a temporal sequence of trajectory segments, which are indicated in different
colour, depending on whether each segment occurs within the compartment or not.
This structure results through a topological link discovery process where the trajec-
tory geometry is used as a first indication of the potential fact that the trajectory
crosses the air compartment (filtering step). This is further verified by exploiting the
raw trajectory positional data and identifying the trajectory segments that spatially
occur within the compartment. Additional information to trajectory segments is pro-
vided by associated events that are not shown in the figure, to keep it simple. Hence,
beyond the representation of the trajectory as a sequence of trajectory segments, at
a second level of abstraction, the trajectory is represented as a temporal sequence of
semantic nodes, each one signifying an important event occurring across the trajec-
tory. For instance, trajectory nodes H, L, M, and K are associated to entry/exit events,
representing the relation of raw positions with the airspace compartment. Trajectory
segments and nodes are further associated to positional raw data.

As a further more elaborated example, Fig. 8 shows an example of associating
trajectories with information about events and contextual information. The two maps
in the upper part show the trajectories of the flights performed between Paris Orly
and Lisbon (left) and between London Heathrow and Madrid (right) during April
2016. Information about crossing sectors in which various types of regulations were
applied has been attached to the points of the trajectories, denoting the regulation
reason codes. In the map, the trajectories are represented by segmented lines; the
segments are coloured according to the regulation reasons of their starting points. For
the segments that were not in regulated sectors, the regulation reason code is empty.
These segments are represented by thin dashed lines. The two images in the middle
represent the segments of the trajectories between London and Madrid that were go-
ing through regulated sectors. On the left is a space-time cube with a geographic map
lying in the base and the vertical dimension representing time. The time axis is ori-
ented upward. The segments are positioned in the cube according to their geographic
coordinates and time stamps. We can see that there were many flights between Lon-
don and Madrid that crossed sectors with regulations in action (precisely, 196 out of
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Fig. 7 A simple example of representing a trajectory crossing an airspace compartment.

228), and this mostly happened over the Bay of Biscay an the northwest of France.
In the first three days, the regulation reason code for these parts of the flights was
mostly “R” (ATC Routeing), and the most frequent reason in the remaining days was
“C” (ATC Capacity due to hotspots). On the right, the same segments are shown in a
3D view where the vertical dimension represents the flight altitude. The two images
at the bottom represent the same information as above, together with the remaining
segments of the trajectories.

6 Data Transformations for Visual Analytics

In this section we show how data transformations can be supported by the proposed
ontology, according to the needs of visual analysis tasks in two major FM cases: Case
FM01, aiming to the discovery of patterns of regulations, and case FM02, aiming to
the analysis of hotspots occurrences. Cases specify scenarios with specific analysis
objectives and data needs. Appropriate visualizations show data-driven exploratory
analysis results towards identifying patterns of behaviour and supporting decision-
making.

6.1 Data sets

To explore the capacities of the ontology to support visual analysis tasks we exploit
the following data sets:
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trajectory segments crossing regulated sectors:

complete trajectories:

Fig. 8 Examples of trajectories enriched with information about crossing sectors in which regulations
were applied.
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– CFMU Regulations: This data set provides historical data of regulations applied
by the control flow management unit (CFMU) on sectors in the European airspace,
during April 2016.

– Sector Configuration: This data set describes the structure of sector configurations
for specific periods of time within April 2016.

– Flight Plans: This data set contains the submitted flight plans prior to the take off
for the flights operated during April 2016, to/from airports worldwide. However,
only a few flights have destination/origin a non-European airport.

– Entry/Exit points: This data set is derived from the combination of sector configu-
rations and flight plans. A spatiotemporal link discovery task [24] interpolates the
altitude, latitude, longitude and time an aircraft enters/exits each air block (and
sector). Having these entry/exit points we can specify trajectories as sequences
of trajectory segments, each one topologically being “within” a crossed airspace
compartment (shown in Fig. 7).

– NOAA grib binary files: This data set is a collection of 96 binary files reporting
3-hour weather forecasts, starting from April 1st, to April 24th, 2016.

These data sets are provided by heterogeneous (and often voluminous) data sources.
We have introduced the RDF-Gen [27,26] method which converts data into triples
with low latency, w.r.t. a given ontology (in our case, the datAcron ontology). The
main idea of RDF-Gen is to use a SPARQL-like triple template for each data source,
to convert raw data from the source to RDF triples. RDF-Gen templates allow the use
of custom functions for cleaning and converting data values, generating URIs, and
generating triples populating the ontology. This ontology population task by means
of the appropriate RDF generator templates, as already pointed in the introductory
part of Section 5, is an ontology validation task performed during ontology develop-
ment. However, we do not delve into the details of this process here.

Among the data sets listed, the flight plans data set is the most voluminous.
Specifically, this data set reports 958,288 flight plans (please recall that flight plan
updates are possible, and flight plans can report at most three trajectory types), which
are converted to 1,548,628,183 triples. The link discovery task for interpolating en-
try/exit positions for air blocks and constructing the corresponding trajectory seg-
ments for each trajectory, generates 283,906,720 additional triples, resulting to a total
of 1,832,534,903 triples.

6.2 datAcron namespaces for functions

Data transformations cannot be fully supported by standard SPARQL 1.1 queries,
since most of the queries involve spatial and temporal functions. We have extended
standard SPARQL 1.1 with the following namespaces regarding functions:

– SPARQL functions.converters: These include functions for converting given val-
ues to a specific format, e.g. the conversion of latitude,longitude,altitude and time
values into a single string representation for each 4D point. An important function
in this namespace is the getWeatherAVG(), which given the name of a weather
variable, a geometry, an altitude range and a timestamp, retrieves the average
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value for the weather variable within the airspace volume defined from the geom-
etry and the altitude range.

– SPARQL functions.distance: These are various distance functions between ge-
ometries. For cases where high performance is preferred over accuracy, the GeoEl-
lipticDistance() function (based on Vincenty’s formulae [31]) can be used in the
computations. For all the cases where accuracy is important, this namespace pro-
vides the function geodesicDistance() which is implemented on top of geograph-
icLib2. This function computes the distance between the centroids of given ge-
ometries in meters, and provides accuracy up to 10−9m.

– SPARQL functions.spatial: These are functions implementing all the OGC topo-
logical relations between pairs of geometries. Each function accepts WKT repre-
sentations of geometries as arguments, and returns boolean true if the topological
relation holds or false otherwise.

– SPARQL functions.temporal: These are functions implementing all the temporal
relations described in Allen’s interval algebra [2]. Each function returns true if
the corresponding temporal relation holds, or false otherwise. For example, the
function during sf() returns true if the temporal interval defined by the first two
arguments (start and end time instants), is during, starts or finishes within the
interval specified by the third and fourth arguments.

6.3 Validation setup

We have implemented a SPARQL 1.1 endpoint, on top of which we have imple-
mented procedures for producing the required time series spanning within specific
time periods. These procedures take as input a shifting time window duration and
a time step for shifting the time window, instantiate query parameters (e.g. parame-
ters concerning the time window) and pose the queries. Subsequently, parameters of
parameterised queries are identified by “$”.

For instance, in cases where we need to generate time series of counts of entities,
the corresponding procedure uses a parameterized SPARQL query, where the time
period of interest, the time window and the time step for shifting the window are
parameters to be instantiated. The procedure builds a sequence of queries for subse-
quent time windows of a given duration. The starting points of subsequent windows
differ by a number of minutes equal to the time step specified.

Specifically, given a time step ∆t, a time window duration wd and a period
[TimeStart, T imeEnd], the i-th query of n iterations, where n = (TimeEnd−wd−TimeStart)

∆t ,
concerns the time interval [TimeStart+ i ∗∆t, T imeStart+ wd+ (i ∗∆t)].

6.4 Pre-processing steps and auxiliary structures

To increase the efficiency of query answering, we pre-compute intermediate results
and store these in auxiliary structures. This method is by analogy to the spatial data
bases which rely on specialised indices (i.e. spatial indices such as R-Tree) to improve

2 publicly available online at https://geographiclib.sourceforge.io/
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query answering performance. This is an additional way of exploiting data fetched via
the SPARQL endpoint. Further more, the auxiliary structures (in addition to custom
made functions) overcome limitations of SPARQL (i.e. such as iterative queries), and
in the same time simplify the SPARQL queries used in the end (e.g. to increase the
computational efficiency of query answering, no nested queries are used for the use
cases) without affecting the validation of ontological specifications.

As already specified above, the link discovery process segments a trajectory to
those parts that are within air blocks, by computing the spatio-temporal entry/exit
points per trajectory and air block. Given that sectors comprise air blocks we can
represent trajectories at different aggregation levels, depending on whether we are
focusing on air blocks or sectors, according to the ontology specifications. The addi-
tional triples computed by the link discovery process are of the form (?x :within
?y.) representing trajectory segments ?x that occur spatially in air blocks ?y.

To further increase efficiency we use an in-memory HashMap relating sectors
with sets of airblocks. For the cases where a sector comprises another sector, we
associate the former with the set of airblocks composing the latter. The HashMap is
constructed using the query:

PREFIX : <http://www.datacron-project.eu/datAcron#>
PREFIX dul: <http://www.ontologydesignpatterns.org/ont/dul/DUL.owl#>
PREFIX sp: <java:SPARQL_functions.spatial.>
SELECT ?s ?airblock_wkt (str(?lower) as ?lowerLevel)

(str(?upper) as ?upperLevel) WHERE {
?s dul:hasPart+ ?airblock .
?airblock :hasGeometry ?g ;

:hasLowerLevel ?lower ;
:hasUpperLevel ?upper .

BIND(sp:getGeom(?g) as ?airblock_wkt) .
}

where (?s dul:hasPart+ ?airblock.) traverses the property path built from
one or more occurrences of dul:hasPart, specifying the structure of sectors in
terms of constituent air blocks and sectors. The above query reports the URIs of
sectors, as well as the air block projection geometry in WKT and the lower/upper
flight levels for each air block that a sector comprises.

Furthermore, the ontology is populated with triples stating regulations imposed
on sectors (i.e. regulation events) for specific time intervals, with a potential cancel-
lation time per regulation. The duration of a regulation is the time interval between
the starting time and the earliest time instant between regulation cancellation (if it is
specified) and ending time.

As we will see in subsequent sections, we need to associate sets of regulations
and affected sectors to temporal intervals. The temporal interval of any set of regu-
lations is the union of individual regulation’s intervals I1 ∪ ... ∪ In. In some cases
we need pairs of sectors (S1, S2) that are affected by temporally overlapping regula-
tions R1, ..., Rn. We say that two regulations Rκ, Rλ are temporally overlapping if
Iκ ∩ Iλ 6= ∅.

Being interested in pairs of sectors affected by temporally overlapping regula-
tions, as a pre-processing step, we retrieve the necessary data regarding sectors and
regulations imposed on sectors from the ontology and pre-compute the pairs of sec-
tors affected by temporally overlapping regulations , together with the respective tem-
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poral intervals of all regulations per pair of sectors. This results to triples of the form
(?sectorX associatedByOverlappingRegulationWith ?sectorY.).
To further increase the query-answering performance in many cases, this relation
among sectors is also stored in an in-memory IntervalTree, s.t. given a time inter-
val Qκ, we can effectively retrieve the pairs of sectors affected by regulations whose
temporal interval overlaps with Qκ.

The query behind this process is as follows:
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX dul: <http://www.ontologydesignpatterns.../DUL.owl#>
PREFIX sp: <java:datAcron.unipi.gr.sparql_functions.>
CONSTRUCT { ?Sector0 :associatedByOverlappingRegulationWith ?Sector1 }
WHERE {

?Regulation0 a :FM_Regulation .
?Regulation0 dul:hasRegion ?Sector0 ;

dul:hasTimeInterval ?TimeInterval0 .
?TimeInterval0 :TimeStart ?TimeStart0 ;

:TimeEnd ?TimeEnd0 .
?Regulation1 a :FM_Regulation .
?Regulation1 dul:hasRegion ?Sector1 ;

dul:hasTimeInterval ?TimeInterval1.
?TimeInterval1 :TimeStart ?TimeStart1 ;

:TimeEnd ?TimeEnd1 .
FILTER(sp:overlaps(?TimeStart0,TimeEnd0,?TimeStart1,TimeEnd1 )

}

6.5 Visual analytics enhanced via data transformations

Subsequently, we show how ontology specifications support the full range of data
transformations needed for visual analysis tasks in the context of Flow Management
cases. Representative visualisations obtained during the visual analysis process are
presented and discussed in detail.

6.5.1 FM01: Discovering patterns of regulations

This case, as described by its title, aims at providing an understanding of the occur-
rence of regulations. Recall that a regulation is a particular type of event that applies
to airspace sectors and affect the trajectories crossing these sectors. Imposing regula-
tions to trajectories (resulting to regulated trajectories), however, may necessitate the
applications of regulations to other sectors of the airspace.

In this case we validate the ontology specifications in three exploratory cases to-
wards (a) discovering daily or weekly patterns of regulations with a particular reason
code imposed on individual sectors, (b) understanding how trajectories crossing pairs
of sectors, thus providing links between sectors, affect regulations imposed on these
sectors, and (c) understanding how weather conditions affect the occurrence of regu-
lations and their impact on trajectories.

FM01 requires the following transformations that are presented in detail in sub-
sequent paragraphs: (a) at first a spatial events to spatial time series transformation,
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and then, (b) transforming trajectories to spatial time series (place-based and link-
based), and transforming link-based spatial time series to place-based spatial time se-
ries. Finally, it requires (c) transforming trajectories into time series of spatial events,
enriched with additional information (e.g. weather attributes).

(a) Discover regular temporal patterns of regulations:

Although this case does not involve trajectories, it is important as a first step
towards the FM01 objective: We need to generate spatial time series of counts of reg-
ulations of a particular type (i.e. with a particular reason code; e.g. code ”C” for reg-
ulations due to the occurrence of hotspots) per sector and time windows of a chosen
duration. Among these time series, we aim to find time series with high periodicity
with regard to the daily and weekly time cycles. The transformation demonstrated
in this case is the aggregation of spatial events (in this case, regulations) into spatial
time series (aggregation III in Figure 1).

To find out whether there are sectors where regulations occur regularly in time,
we compute time series of regulation counts by sectors and days. The parameterized
query is as follows:

PREFIX : <http://www.datacron-project.eu/datAcron#>
PREFIX dul: <http://www.ontologydesignpatterns.org/ont/dul/DUL.owl#>
PREFIX tmp: <java:SPARQL_functions.temporal.>
PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>
SELECT (count(distinct ?regulation) as ?count)

WHERE {
?regulation a $regulation$ ;

dul:hasRegion $sector$ ;
dul:hasTimeInterval ?t .

?t :TimeStart ?s ; :TimeEnd ?e.
FILTER(tmp:overlaps(?s,?e,

$StartDate$ˆˆxsd:DateTime,
$EndDate$ˆˆxsd:DateTime))

}

Here, parameters that must be instantiated are: $regulation$ (regulation type),
$sector$ (sector name), $StartDate$ (time period start), $EndDate$ (time
period end). The time series of regulation counts within the specified period are pro-
duced by executing the query for each consecutive time window.
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Fig. 9 Time series of regulation counts by sectors and days; left: linear view (per sector); right: periodic
view (sector, per week)

In Fig. 9 the resulting time series are represented in a line plot. The image on the
left presents a linear view of time. The horizontal axis represents the time span of
the data, i.e., 1 month. The time series per sector are shown one below another. We
can observe time series with frequent occurrences of regulations and time series with
less frequent but quite regular occurrences. On the right, a periodic view of the time
series is illustrated where each time series is divided into weekly pieces shown one
below another. Only the time series for a single sector is visible in the current view
port. This time series has high periodicity: regulations occurred on all Fridays and
Mondays and all Saturdays, except the last one.

(b) Discover interdependencies between sectors:

As a first step towards discovering interdependencies between sectors, we need
to find “patterns between regulated sectors”: Such patterns concern regulations in
some sectors that often lead to regulations in other sectors. Therefore, given any pair
of sectors S1 and S2 affected by temporal overlapping regulations, we need to find
whether a regulation applied in S1 (or S2) affect the time where trajectories cross S2

(resp. S1), causing a new regulation in S2 (resp. S1). Therefore, as a first step, we
need to count the number of flights’ trajectories in both directions.

In the first intermediate step we exploit the in-memory pre-computed Interval-
Tree: for the time interval each trajectory lasts, let that be d, we query the Interval-
Tree and retrieve the pairs of sectors affected by temporally overlapping regulations
whose temporal interval overlaps with d. After verifying that each sector in a pair
is crossed by the trajectory (i.e., a link between these sectors exists), we increase an
integer counting the trajectories crossing the pair.

In more detail, the process first retrieves the geometries of regulated intended
trajectories, as they have been reported by flight plans, using the query:
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PREFIX : <http://www.datacron-project.eu/datAcron#>
PREFIX dul: <http://www.ontologydesignpatterns.org/ont/dul/DUL.owl#>
SELECT DISTINCT ?ti ?wkt WHERE {

?fp :reportsTrajectory ?ti ;
:reportsTrajectory [ a :RegulatedTrajectory ].

?ti a :IntendedTrajectory ;
dul:hasGeometry/:hasWKT ?wkt .

}

Then, for each regulated intended trajectory, we retrieve the constituent spatio-temporal
positions. We compute the time interval d where the trajectory occurs (i.e., the differ-
ence between the timestamps of the first and last spatio-temporal trajectory position),
and we use d to query the intervalTree for pairs of regulated sectors whose regula-
tions’ temporal interval overlaps with the trajectory interval. We filter out pairs with
at least one sector not crossed by the trajectory (i.e. no trajectory segment is within
that sector), and for the remaining pairs we verify that each sector is crossed by the
trajectory (i.e. by checking whether there is a trajectory segment within each sector
of the pair), and the corresponding counter of the pair is increased by one.

The SPARQL queries supporting the above process are as follows:

1. Select the intended trajectories of regulated flight plans and the time interval in
which they occur:

SELECT DISTINCT ?ti ?wkt ?timeStart ?timeEnd WHERE {
?fp :reportsTrajectory ?ti ;

:reportsTrajectory [ a :RegulatedTrajectory] .
?ti a :IntendedTrajectory ;

dul:hasStart ?s ;
dul:hasEnd ?e .

?ti dul:hasGeometry/:hasWKT ?wkt .
?s :hasTemporalFeature/:TimeStart ?timeStart .
?e :hasTemporalFeature/:TimeStart ?timeEnd .

}

2. Select the spatio-temporal positions of the trajectories:

SELECT DISTINCT ?ti ?position ?time WHERE {
?fp :reportsTrajectory ?ti ;

:reportsTrajectory
[ a :RegulatedTrajectory] .

?ti a :IntendedTrajectory .
?ti dul:hasPart+ ?p .
?p a :RawPosition.
?p :hasGeometry/:hasWKT ?position .
?p :hasTemporalFeature/:TimeStart ?time .

}

The complete query would be:
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SELECT DISTINCT ?ti ?timeStart ?timeEnd WHERE {
?fp :reportsTrajectory ?ti ;

:reportsTrajectory
[ a :RegulatedTrajectory] .

?ti a :IntendedTrajectory .
?ti dul:hasStart ?Start ;
dul:hasEnd ?End ;
dul:hasPart+ ?Part1 ;
dul:hasPart+ ?Part2 .
?Part1 :within ?Airblock1 .
?Part2 :within ?Airblock2 .
?Sector1 dul:hasPart+ ?Airblock1 .
?Sector2 dul:hasPart+ ?Airblock2 .
?Sector1 :associatedByOverlappingRegulationWith ?Sector2 .
?Start :hasTemporalFeature/:TimeStart ?timeStart .
?End :hasTemporalFeature/:TimeStart ?timeEnd .
?Regulation1 dul:hasRegion ?Sector1 ;

dul:hasTimeInterval ?t1 .
?Regulation2 dul:hasRegion ?Sector2 ;

dul:hasTimeInterval ?t2 .
?t1 :TimeStart ?start1 ;

:TimeEnd ?end1 .
?t2 :TimeStart ?start2 ;

:TimeEnd ?end2 .
FILTER(

tmp:overlaps(?timeStart, ?timeEnd,
tmp:minDate(?start1,?start2),tmp:maxDate(?end1,?end2)) &&

(?Sector1!=?Sector2))
}

The results are shown visually in Fig. 10. During April 2016, a total of 8,254
links emerged between regulated sectors. The largest number of flights that moved
between two sectors was 2,716. The geographic map (Fig. 10, top left) shows that
there were quite many (precisely, 140) local links between sectors that differed in
the vertical positions but had the same or overlapping horizontal positions. These
links are represented on the maps by circles drawn around the sector centroid po-
sitions. The remaining links are represented by curved lines connecting the sector
centroids. The line widths and the opacity levels are proportional to the flight counts.
Specifically, Fig. 10 shows the following results. Top left: The links between reg-
ulated sectors that occurred during the month are represented by curved lines with
the widths proportional to the counts of the flights that moved from one regulated
sector to another. The circles represent the links connecting sectors that differ in the
vertical positions but have the same or overlapping horizontal positions. Top right:
Histograms of the link duration in minutes (the maximum is 960 minutes) and the
dates when the links occurred (the largest number was on April 2). The bars are di-
vided into segments coloured according to the counts of the trajectories involved in
the links; the colour legend is shown above the histograms. Bottom left: the links are
represented by points in a radial coordinate system where the angle and the distance
from the centre represent the time of the day and the link duration, respectively [4,
11]. The circular grid lines are drawn with the interval of 60 minutes. Bottom right: A
density map shows the distribution of the points in the radial coordinate system. The
densest areas correspond to the link start times around 5-6 o’clock in the morning and
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duration from 1.5 to 4 hours and to the start times around 8-9 o’clock and duration
2-3 hours.

Fig. 10 Interdependencies between sectors considering trajectories providing links between sectors.

Towards getting re-occurring links between sectors affected by temporally over-
lapping regulations, according to the flows of flights from one sector to the other, we
compute time series of links existence: for each pair of sectors (S1, S2) with tem-
porally overlapping regulations and for which links exist, we need to compute time
series with the number of trajectories crossing S1 and S2 for each time window. Time
series with multiple peaks would signify interrelationships between sectors that we
want to discover. Here trajectories are aggregated into flows between places (sectors)
resulting in linked-based spatial-time series (aggregation II in Figure 1).

The temporal window, as specified above, shifts with a pre-specified time step
∆t:
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PREFIX : <http://www.datacron-project.eu/datAcron#>
PREFIX dul: <http://www.ontologydesignpatterns.org/ont/dul/DUL.owl#>
PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>
PREFIX tmp: <java://SPARQL_functions.temporal.>
SELECT (count (DISTINCT ?tr) as ?cntr) WHERE {

?tr a :IntendedTrajectory ;
dul:hasPart+ ?segment1 ;
dul:hasPart+ ?segment2 .

?segment1 :within ?airbl1 ;
:hasTemporalFeature ?t1 .

?segment2 :within ?airbl2 ;
:hasTemporalFeature ?t2 .

?t1 :TimeStart ?time1 .
?t2 :TimeStart ?time2 .
$Sector1$ dul:hasPart+ ?airbl1 .
$Sector2$ dul:hasPart+ ?airbl2 .
$Sector1$ :associatedByOverlappingRegulationWith $Sector2$ .
FILTER(tmp:during_sf(?time1,?time1,$t+k*∆t$,$t+wd+k*∆t$) &&

tmp:during_sf(?time2,?time2,$t+k*∆t$,$t+wd+k*∆t$) )
}

This query concerns a particular pair of sectors associated with temporally over-
lapping regulations, instantiating the query parameters $Sector1$, $Sector2$.
Also, [t+k*∆t, t+wd+k*∆t] is the k-th sliding time window of duration wd within
the specified time period.

Fig. 11 demonstrates visual exploration of link re-occurrences based on the query
results. For each pair of linked sectors, all links have been aggregated in a single link,
for which a time series of link occurrences was computed. Here, link re-occurrence
is explored at the time scale of days. The aggregated links are represented on a map
by curves with the line widths proportional to the number of days in which the links
re-occurred, ranging from 1 to 18. On the right, only the links that re-occurred in 9
or more days are shown; the links with the maximal re-occurrence are highlighted
in black. There were 4,664 sector pairs in total, of which 3,156 (67.7%) re-occurred
only once and further 745 pairs (16%) re-occurred twice. The maximal number of
different days in which links re-occurred was 18, which was attained by 2 links; and
57 links (1.2%) re-occurred in 9 or more days.
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All links: Frequent links:

Fig. 11 Links re-occurrence at the time scale of days.

Finally, we can aggregate links by sector pairs and time windows into spatial time
series. This is a transformation from spatial time series (place based) to spatial time
series (link based) not shown as a direct transformation in Figure 1.

To obtain a spatial time series of links, the following query aggregates for each
pair of sectors associated by temporally overlapping regulations, the trajectories in-
tended - according to the flight plans specified - to cross both of them. The number
of such trajectories are computed per time window of a given duration.

PREFIX : <http://www.datacron-project.eu/datAcron#>
PREFIX dul: <http://www.ontologydesignpatterns.org/ont/dul/DUL.owl#>
PREFIX tmp: <java://SPARQL_functions.temporal.>
SELECT (COUNT(DISTINCT ?t) as ?count) WHERE {

?t dul:hasPart ?segment1 ;
dul:hasPart ?segment2 .

?segment1 :within ?airblock1 .
?sector1 dul:hasPart+ ?airblock1 .
?segment2 :within ?airblock2 .
?sector2 dul:hasPart+ ?airblock2 .
?r dul:hasRegion ?sector1 .
?r dul:hasTimeInterval ?time .
?time :TimeStart ?ts ; :TimeEnd ?te .
?sector1 :associatedByOverlappingRegulationWith ?sector2 .
FILTER(?sector1!=?sector2) .
FILTER(tmp:during_sf(?ts,?te,$t+k*∆t$,$t+wd+k*∆t$))

}
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Fig. 12 A time graph shows the daily aggregates of the counts of the flights that took place during the
existence of the links between regulated sectors. The aggregates have been initially obtained for the pairs
of linked sectors and then further aggregated by areas, as in Fig. ??.

In Figs. 12 and 13, we aggregated the number of trajectories by the links and
daily time intervals. The time graph in Fig. 12 shows the time series of the number
of trajectories between regulated sectors. The black vertical lines mark Mondays. We
see that the Saturday of April 2 was exceptional regarding both the values attained
and the number of area pairs with high values. However, the following Saturdays of
April 9 and 16 also had quite many area pairs with high values.

To see whether the spatial patterns were similar on different Saturdays and, more
generally, whether there was periodic repetition of similar spatial patterns on the same
days of the week in different weeks, we have created an animated map display with
4 map panels labelled t, t + 7, t + 14, and t + 21, where t is the currently chosen
day in the animation. This visualization enables convenient comparison of the spatial
situations on Saturdays, Sundays, Mondays, and so on.

The upper and lower images in Fig. 13 show the situations on Saturdays and Mon-
days, respectively. It can be noted that, in general, the spatial patterns on the same
days of different weeks were not very similar. April 2 and 9 (Saturdays) had similar
diagonal patterns with multiple links oriented along the line between the Canary Is-
lands and the northeast of France, whereas the Saturdays of the following two weeks
had similar link patterns between the British Islands on the one side and France and
Spain on the other side. On April 11, 18, and 25 (Mondays), there were similar star-
like patterns, with many links oriented in different directions having starts or ends in
the same area. On April 11 and 18, the ”stars” appeared around the same area over
the Netherlands, whereas on April 25 the “star” moved to Belgium, southwest of the
previous location.



34 George A. Vouros, Georgios M. Santipantakis, Christos Doulkeridis , Akrivi Vlachou et al.

Saturdays:

Mondays:

Fig. 13 Comparison of the spatial patterns of the regulations-related flights on Saturdays, starting from
April 2 (top), and Mondays, starting from April 4 (bottom).

(c) Discover dependencies between weather conditions and regulations:
In this case we need to find for each regulation of type :ATC WeatherRegulation

(i.e., with reason code “ W”) that affects a Sector S, and for each trajectory that in-
tends to cross that sector, the predicted weather conditions at the time the trajectory
is going to cross the sector. The objective is to reveal the rationale for the occurrence
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of events and understand how trajectories are being affected. As an example, we shall
explore the relationships between the flight regulations issued due to windy weather
and the wind parameters available in the weather data. The data set contains data
about 162 regulations with the reason code “W”. The descriptions of 37 such regula-
tions include the keyword “wind”. We selected two days in which the regulations due
to wind were applied not within airports but in sectors crossed on the fly. These days
were April 16 and 18, 2016. We extracted the corresponding intended trajectories of
the flights and enriched them with wind parameters extracted from the weather data.
There are 14 wind attributes with non-null values describing the u- and v-components
of the wind, i.e., the west-east and south-north components.
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Fig. 14 Exploration of the relationships between the regulations due to winds and the wind parameters
extracted from weather data.

Specifically, we first retrieve the intended trajectories that have been regulated,
and compute the temporal interval. This query has already specified above.

For each such trajectory and the corresponding temporal interval, we retrieve the
sectors affected by regulations identified by reason code ”W” (i.e. bad weather con-
ditions), and which temporally overlap with the interval of the trajectory. Each trajec-
tory that is crossing an airblock of a regulated sector by reason code “W”, is added
in the result set, enriched with values of weather variables. For example, the follow-
ing query will enrich each position of the trajectory :tr 20160416 125062 m1 with
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values of the “u-component of wind isobaric” and “v-component of wind isobaric”
weather variables:

SELECT ?p ?wkt (str(?alt) as ?altitude) ?unixtime
(conv:getWeatherAVG(?wkt,?altitude,?unixtime,

"u-component_of_wind_isobaric") as ?u_comp_wind)
(conv:getWeatherAVG(?wkt,?altitude,?unixtime,

"v-component_of_wind_isobaric") as ?v_comp_wind)
WHERE {

:tr_20160416_125062_m1 dul:hasPart+ ?p .
?p a :RawPosition;

dul:hasTemporalFeature ?t ;
:hasGeometry ?g .

?t :TimeStart ?time .
?g :hasWKT ?wkt ;

:hasAltitude ?alt .
BIND(tmp:dateTime2unixTime(?time) as ?unixtime) .

} ORDER BY ?unixtime

Generalizing, a query for associating trajectories regulated due to weather with
weather attributes is as follows:

SELECT DISTINCT ?ti
?wkt (str(?alt) as ?altitude) (tmp:dateTime2unixTime(?time) as ?

unixtime)
(conv:getWeatherAVG(?wkt,?altitude,?unixtime,

"u-component_of_wind_isobaric") as ?u_comp_wind)
(conv:getWeatherAVG(?wkt,?altitude,?unixtime,

"v-component_of_wind_isobaric") as ?v_comp_wind)
WHERE {

?fp :reportsTrajectory ?ti ;
:reportsTrajectory [ a :RegulatedTrajectory] .

?ti a :IntendedTrajectory ;
dul:hasStart ?s ; dul:hasEnd ?e ;
dul:hasPart+ ?segment ; dul:hasPart+ ?p .

?s :hasTemporalFeature/:TimeStart ?timeStart .
?e :hasTemporalFeature/:TimeStart ?timeEnd .
?p a :RawPosition ;

:hasGeometry ?pg ;
:hasTemporalFeature/:TimeStart ?pt .

?g :hasWKT ?wkt ;
:hasAltitude ?alt .

?segment a :TrajectorySegment ;
:within ?airblock .

?sector dul:hasPart ?airblock .
?regulation dul:hasRegion ?sector ;

dul:hasTimeInterval ?regulationTInterval .
?regulationTInterval :TimeStart ?start ;

:TimeEnd ?end .
?regulationTInterval a :ATC_WeatherRegulation .
FILTER(tmp:overlaps(?timeStart, ?timeEnd,

tmp:minDate(?start1,?start2),tmp:maxDate(?end1,?end2)) )
}

It must be noted that the execution of this query takes too much time for a typical
SPARQL endpoint. On the other hand, breaking down the query to a set of smaller
queries, replacing ?ti with each trajectory that satisfies the temporal criteria de-
scribed above, we can achieve a considerable improvement in the overall perfor-
mance. In addition to that, the auxiliary structures maintain in memory information
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that is frequently requested, thus it can be accessed much faster this way, rather than
through the SPARQL endpoint.

In Fig. 14, the upper two images are map fragments showing where the regula-
tions due to the wind conditions were applied on April 16 (left) and 18 (right). The
intended flight trajectories are represented by lines. The segments of the trajectories
that crossed the regulated sectors are marked in red and the remaining segments are
represented by thin light blue lines. We can see that the regulations happened in the
region of the Canary Islands, on the east of it on April 16 and on the west on April
18. The 3D perspective view of the trajectories (Fig. 14, middle) shows us that the
flights were supposed to cross the affected sectors in their climb or descent phases.

To investigate which of the wind attributes might lead to the decision to issue the
regulations, we explore the data using the parallel coordinates plots, as in Fig. 14,
bottom. The parallel horizontal axes correspond to the 14 wind attributes, the upper
7 axes to the u-component attributes and the lower 7 axes to the v-component. Each
axis has its individual scale from the minimal to the maximal value of the respective
attribute. The plots on the left and on the right correspond to April 16 and 18, respec-
tively. The background painting represents the distributions of the attribute values in
the trajectory points that were beyond the regulated sectors. The stripes correspond
to the deciles of the distributions, i.e., the interval covered by each stripe on each axis
includes 10% of values of the respective attributes. Lighter shades correspond to the
odd deciles (i.e., the first, third, fifth, seventh, and ninth) and darker shades to the
remaining even deciles. We have applied a combination of filters to select only the
points located in the vicinity (specifically, within the radius of 350 km) of the flight
origins and destinations. The red lines on top of the painting represent the value com-
binations in the points that were in the regulated sectors.

When we compare the red lines with the background distribution, we see that
none of the wind parameters reach especially high or especially low values. The val-
ues of the attributes u-maximum-wind and u-tropopause were quite high (correspond-
ing to the upper deciles of the background distributions), whereas the values of the
attributes describing the v-component of the wind were relatively low. This indicates
that the wind blowing from the west was sometimes quite strong and could be prob-
lematic to the ascending and descending aircraft. Since such wind parameters were
not exceptional, judging from the background distribution, it can be concluded that
they are problematic only in the region of the Canary Islands, possibly, due to the
specifics of the local airports. This means that the weather parameters alone may be
insufficient for predicting the necessity of applying flight regulations in this or that
region.

6.6 FM02: Hotspots occurrence

In this case, we want to support understanding of the rationale for the choice of sec-
tor configurations, based on the expected evolution of demand. In doing so, we first
retrieve all sectors (active or not) crossed by any trajectory and then, we provide a
time series of the number of trajectories intended to cross any sector, providing the
evolution of demand per sector.
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To compute the evolution of demand we aggregate the trajectories specified by
flight plans into spatial time series by sectors and time windows. Two time-dependent
attributes may be computed for any sector: entry count (how many flights enter the
sector during each time interval) or occupancy (how many flights are present in that
sector during each time interval). These may be counted in overlapping time win-
dows, depending on the step used for shifting the time window. As usually, to produce
spatial time series we use a time window of specific duration and a time step, which
specifies the time difference between the starting points of two consecutive windows.

TheseFM02 cases require in the first place transforming trajectories (as specified
by flight plans) into time series of spatial events, and then, transforming trajectories
into spatial time series of demands by aggregating them by (active) sectors (aggrega-
tion II in Figure 1).

(a) This case first requires for a given intended trajectory specified by a flight
plan, to retrieve the series of sectors S (active and inactive) crossed by that trajec-
tory, and the trajectory segments crossing each sector in S. For example, the fol-
lowing query returns the sectors crossed by the trajectory of a given flight plan, e.g.
:flight plan AA51147955:

PREFIX : <http://www.datacron-project.eu/datAcron#>
PREFIX dul: <http://www.ontologydesignpatterns.org/ont/dul/DUL.owl#>
SELECT ?sector (min(?start) as ?timeEnter) (max(?end) as ?timeExit)

WHERE {
:flight_plan_AA51147955 :reportsTrajectory ?t .
?t a :IntendedTrajectory ;

dul:hasPart ?segment .
?segment a :Segment ;

:within ?airblock ;
:hasTemporalFeature ?time .

?time :TimeStart ?start ;
:TimeEnd ?end .

?sector dul:hasPart+ ?airblock .
} Group By ?sector
Order By ?timeEnter

A more restricted version of the above query, concerns the active sectors during
the time period of the flight defined by the first and last node of the trajectory reported
by the given flight plan, according to the active sector configurations. The query is as
follows:
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PREFIX : <http://www.datacron-project.eu/datAcron#>
PREFIX dul: <http://www.ontologydesignpatterns.org/ont/dul/DUL.owl#>
SELECT ?sector (min(?start) as ?timeEnter) (max(?end) as ?timeExit)

WHERE {
:flight_plan_AA51147955 :reportsTrajectory ?t .
?t a :IntendedTrajectory ;

dul:hasPart ?segment .
?segment a :Segment ;

:within ?airblock ;
:hasTemporalFeature ?time .

?time :TimeStart ?start ;
:TimeEnd ?end .

?sector dul:hasPart+ ?airblock .
?f a :FM_Configuration ; :configurationOfAirspace ?airspace ;

:hasTemporalFeature ?time.
?airspace dul:hasPart ?sector.
?time :TimeStart ?ts ; :TimeEnd ?te.
FILTER(tmp:overlap(?start,?end,?ts,?te))
} Group By ?sector
Order By ?timeEnter

(b) Finally, we use the following query to compute per sector and time window,
the demand for that sector, i.e., the number of trajectories intended to cross that sector
during the corresponding period specified by the temporal window. As usually, the
time window shifts with a step of ∆t minutes.

PREFIX : <http://www.datacron-project.eu/datAcron#>
PREFIX dul: <http://www.ontologydesignpatterns.org/ont/dul/DUL.owl#>
PREFIX tmp: <java://SPARQL_functions.temporal.>
SELECT (count(DISTINCT ?tr) as ?demand) WHERE
{

?flightPlan :reportsTrajectory ?tr .
?tr a :IntendedTrajectory ;

dul:hasPart ?segment .
?segment :within ?airblock ;

:hasTemporalFeature ?time .
$Sector$ dul:hasPart+ ?airblock .
:entersRegion :occurs ?segment .
?time :TimeStart ?s .
FILTER(tmp:during_sf(?s,?s,$t+k*∆t$,$t+wd+k*∆t$))

}

As done above, we can restrict this query to the number of trajectories crossing
active sectors (i.e., considering the periods in which each sector is active).
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PREFIX : <http://www.datacron-project.eu/datAcron#>
PREFIX dul: <http://www.ontologydesignpatterns.org/ont/dul/DUL.owl#>
PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>
PREFIX tmp: <java://SPARQL_functions.temporal.>
SELECT (count(DISTINCT ?t) as ?demand) WHERE
{

?f a :FM_Configuration ;
:configurationOfAirspace ?airspace ;
:hasCapacity ?capacity ;
:hasTemporalFeature ?time .

?airspace dul:hasPart $Sector$ .
?sector dul:hasPart+ ?airblock .
?time :TimeStart ?ts ; :TimeEnd ?te.
?t a :IntendedTrajectory ;

dul:hasPart ?segment .
?segment :within ?airblock ;

:hasTemporalFeature ?tn .
?tn :TimeStart ?s ;

:TimeEnd ?e .
FILTER(myfn:overlaps(?s,?e,?ts,?te) &&
tmp:during_sf(?s,?s,$t+k*∆t$,$t+wd+k*∆t$))

}

7 Concluding remarks

Fig. 15 A synoptic view of FM cases and data transformations applied, together with the required levels
of trajectory analysis.

This work contributes a generic ontology for the representation of semantic trajecto-
ries at varying levels of spatio-temporal analysis to support analysis tasks, supporting
our understanding of movement phenomena and of significant events that affect en-
tities’ mobility: Trajectories can be seen as temporal sequences of moving objects’
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positional data, aggregations of positional data signifying meaningful events, as tem-
poral sequences of trajectories segments, or as geometries.

Delving into these specifications, we show how visual analysis tasks can be sup-
ported by the different levels of trajectory specifications, via appropriate data trans-
formations at query time. This happens via the use of SPARQL queries executed in
the populated ontology for the purposes of concrete and important real-world cases.
Indeed, generic data transformations, shown in the complex and highly exploratory
Air Traffic Management domain, adapt available data to the analysis goals, or to spe-
cific requirements of the methods that the analyst wants to apply.

Figure 15 shows all the cases considered (1st column), and for each case it spec-
ifies the data transformations applied (2nd column), the levels of trajectory analysis
required (3rd column) and indications of interesting features as far as the representa-
tion is concerned.

As future work we aim to re-use this ontology in different domains where trajec-
tories play important role in analysis of behaviour: Either for traffic analysis in cities,
or for human behaviour analysis in crowded places (e.g. buildings, touristic places,
festivals etc.), under normal or emergency circumstances, or even in domains where
trajectories do not involve spatio-temporal entities, but space-temporal entities, where
space is any n-dimensional space where information entities (e.g. images) do exist.
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