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Abstract 

Concrete is extensively used in the construction industry; however formation and development of cracks 

undermines the integrity of the structure. Thus, both improving the mechanical properties of this 

material as well as efficient health monitoring of structures are essential tasks to be tackled.  

The research covered in this paper is concerned with the effect of nano fibres on the mechanical 

properties of concrete. The use of nano fibres such as Carbon Nanofibre (CNF) within cementitious 

materials is found to be effective in enhancing the mechanical properties of concrete as well as its 

sensing ability. Most previous work focused on evaluating the micro-structure and mechanical 

behaviour of nano-reinforced mortar. Only a few studies attempted to evaluate the mechanical and 

sensing properties of nano-reinforced concrete with coarse aggregates. 

The objective of this study is to fill this gap in the literature by evaluating the mechanical and self-

sensing properties of Carbon Nanofibre concrete. Material tests were conducted on cylinders and beam 

samples of CNF concrete in order to develop the full compressive, tensile, and flexural constitutive 

behaviour including the post-peak response, as well as evaluate its self-sensing capability. The results 

obtained are valuable for analysis and design of large critical infrastructures employing CNF concrete. 

Keywords: Nanostructure; Fibre reinforcement; Electrical properties; Testing; Carbon nanotube 

(CNT); Carbon nanofiber (CNF); Mechanical properties; Self-Sensing   
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Introduction 

Different types of fibres are widely used to control cracking in fibre-reinforced concrete (FRC). The 

efficiency of these fibres is however dependant on their geometry and material properties, and they can 

be considered at multi-scale levels from nano to macro scale.  Macro fibres (typically defined as fibres 

with diameters > 500 μm) can bridge macro cracks and improve post-peak toughness. Fine microfibers 

(typically defined as fibres with diameter < 50 μm) on the other hand, bridge the microcracks which 

delay the process by which the microcracks coalesce to form macrocracks. Nano-particles such as 

carbon nanotubes (CNTs) and carbon nanofibers (CNFs) exhibit unique properties with remarkable 

mechanical, physical and electrical properties and hence they have been gaining extensive scientific 

attention during the past years, and they are applied in many fields, including cementitious materials, 

to fabricate new materials with novelty functions.   

CNT/CNF  

The primary differences between the CNT and CNF are morphology, size, ease of processing, and price. 

Table 1 briefly compares the properties of the two fibres. Carbon Nanotubes (CNTs) are extremely 

small and their diameter is usually less than 20 nm with an elastic modulus of more than 1 TPa and an 

elastic strain capacity of 12%, which is 60 times higher than that of steel as discussed by Yazdanbaksh 

(2012) and Salvetat and Kuik (1997). Similarly, carbon nanofibers (CNF) are unique as they combine 

microscopic length (from 200 nm to 100 µm) with a nanoscopic diameter (1–200 nm), with greater 

strength to weight ratio than steel as noted by Sanchez and Ince (2009). Compared to CNTs, CNFs have 

a lower production cost (about 100 times lower) and are suitable for mass production.  

The nano-reinforced cementitious composite could only benefit from the outstanding properties of the 

nanofibers when they are properly dispersed within the matrix. The difficulty in dispersing nanofibers 

in liquid media has been overcome using methods such as surface modification of fibres using 

surfactants in combination with sonication.  

The dispersion and interfacial bond of CNF fibres and cementitious composite at CNF/cement weight 

ratio of 0.4% was investigated through experiments (Yazdanbakhsh et al. 2009, 2010). Two different 
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CNFs, as well as two different surfactants (non-ionic and polycarboxylate superplasticiser), were used. 

CNFs were dispersed in a water-surfactant solution and ultrasonically processed for 15 minutes. As the 

experimental results showed, the non-ionic surfactant was more effective in de-agglomeration of the 

CNFs in water. However, the addition of non-ionic surfactant was found incompatible with cement 

hydration to cement paste and it increased the amount of entrapped air remarkably. It was found that a 

polycarboxylate-based superplasticiser (i.e. weaker surfactant also known as water reducing admixture) 

could properly disperse a relatively high concentration (more than 1.0%) of CNFs in water. 

Camacho-Ballesta et al. (2016) conduced the dispersion by mixing CNT and distilled water in a high-

shear mixer for 10 min and afterwards an ultrasound treatment was applied for 5 min. They found 7.7% 

improvement in compressive strength of 0.25% CNT reinforced cement paste, while the flexural 

strength was improved by 19.4% when 0.5% fibre dosage was used. Tyson et al. (2011) conducted 

small-scale flexural tests on CNT and CNF reinforced cement paste. It was found that the addition of 

both CNT and CNF improved the peak displacement up to 150% (specimen with 0.2 wt% CNF) which 

is crucial for structural applications in which higher ductility and strain capacity is needed. In addition, 

the elastic modulus of cement paste was increased from 15 GPa to 24 GPa by addition of 0.2% CNF. 

Overall, the CNF fibres outperformed CNTs for displacement at failure, which was attributed to the 

higher aspect ratio of CNFs. In another study, Metaxa et al. (2013) investigated the mechanical 

performance and dispersion of CNF (0.048 wt%) reinforced cement paste. Initially, CNFs were added 

to a water/surfactant solution then subjected to an intensive sonication. It was concluded that the 

addition of CNF to cement paste offers a significant property enhancement to the cementitious 

nanocomposites, mainly increased flexural strength and stiffness, and crack control at the nanoscale. 

Yazdani and Mohanam (2014) studied the compressive strength and flexural strength of cement mortar 

reinforced with 0.1% and 0.2% of both CNT and CNF with water/cement ratios of 0.35-0.50. The 

mixing technique used was ultrasonication of fibres in water-surfactant mixture for 30 min and 15 min 

respectively for CNT and CNF. It was concluded that the best combination for compressive and flexural 

strength production was CNF composites (0.1%-0.2%) with w/c ratio of 0.35. Gao et al. (2009) 

investigated the mechanical properties of concrete and Self-Consolidating Concrete (SCC) containing 
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0.16%-2.5% CNF by volume of binder. The cylinder compressive strength of the concrete was 

increased by 42.7% for 0.16% CNF concentration. The authors believe that using SCC improved CNF 

dispersal and increased the electrical sensitivity of the concrete. Sivakumar (2011) used 0.5%, 1.0%, 

1.5%, and 2.0% of CNF by volume of binder within SCC. CNF were mixed with water using a blender, 

and superplasticiser was then added. The characteristic compressive strength of the concrete increased 

by 29.4% for 1.0% CNF. Both flexural strength and split tensile strength increased with 0.5% and 1.0% 

then decreased for higher volume fractions. The maximum variation for the split tensile strength was as 

low as 0.6%. Another recent study on nanoconcrete was conducted by Meng and Khayat (2016) on 

mechanical properties of UHPC with carbon nanofiber. 0.5% micro steel fibre, 5% silica fume and 0-

0.3% CNF were used. The compressive strength slightly increased by 5-8 MPa. The direct tensile 

strength and flexural strength was increased by 56% and 46% respectively for 0.3% CNF concrete and 

the energy absorption was increased by 108%. Gdoutos et al. (2016) conducted a fracture mechanics 

experiment study on MWCNT and CNF reinforced cement mortar prisms. In their study, CNF showed 

better performance than those MWCNT samples. The authors stated that besides good dispersion, the 

diameter, and the length of the CNF was responsible for the better performance. The addition of 0.1% 

wt. CNF to the mortar resulted in an increase of 105.9% in flexural strength and 94.3% in modulus of 

elasticity. Overall, the nano-reinforced mixes exhibited less brittle behaviour.     

Howser et al. (2011) tested short shear critical columns built with 1% dosage of CNF reinforced self-

consolidating concrete (SCCNFC) under reversed cyclic load. Steel fibre reinforced SCC (SCSFC) and 

SCC columns with no fibres (SCRC) were also tested for comparison purposes. A definite yielding of 

longitudinal steel occurred in both the SCRC and SCCNFC columns with visible compression strut, 

while steel fibre reinforced column failed with one dominant shear crack. This was attributed to the 

absence of transverse shear ties. The ultimate normalised capacity, deflection, and ductility of SCCNFC 

column was respectively 30.7%, 34.9%, and 35.1% higher than the SCRC column. It was concluded 

that the addition of carbon nanofibers to concrete increased the strength and ductility of the short 

column.  
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The effectiveness of silica fume in maintaining a good dispersion was also proposed and studied by 

researchers (Yazdanbaksh, 2012; Sanchez and Ince, 2009; Kim et al. 2014). This novel and effective 

method of using silica fume to immobilise and stabilise the nanofilaments already dispersed in cement 

paste prevent them from migrating towards each other. Kim et al. (2014) studied the SEM images of 

dispersed CNTs in the cement matrix and it was found that using silica fume strongly affected the 

mixing process of nanofibers, and they were dispersed individually hence increasing the compressive 

strength. The study by Sanchez and Ince (2009) on the effect of silica fume on the dispersion 

enhancement of the CNF in cement composite revealed that silica fume particles due to their small size 

disrupted the individual CNF fibre-fibre interaction that held them as clumps during the dry mixing. 

This resulted in an overall greater, though not complete, dispersion of the CNFs throughout the cement 

paste. 

Another enhanced property upon the introduction of the carbon nanofibers to the matrix is increased 

electrical conductivity of the cementitious materials. This feature is explained in the following section. 

Self-health monitoring 

Since the birth of nanotechnology and development of cementitious materials, advanced methods have 

emerged for structural health monitoring, providing measurable electrical responses to applied strain. 

Incorporating conductive nanomaterials (such as carbon nanofiber, carbon fibre, or carbon black) within 

concrete, results in developing a material that can be conductive and piezoresistive (resistance changes 

with strain), which is so-called smart concrete. The self- sensing capability of the nanoconcrete is based 

on its piezoresistivity. Electrically conductive concrete allows performing resistivity measurements, 

which could be used to analyse the strain or stress variations in the structural member.  

Researchers (Kim et al., 2014, Wen and  Chung, 2001, Cao and Chung, 2001) found that adding silica 

fume is effective in lowering the electrical resistance of carbon fibre reinforced cement mortar, and it 

enhances the electromagnetic shielding effectiveness of CNT-CNF/cement composites causing the 

nanofibers to have noticeable impact on the electrical properties of the cement composites, and 

decreasing its electrical resistance.  
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Azhari and Banthia (2017) studied both carbon fibre and carbon nanotube as the conductive filler in 

cement paste. 10% improvement in conductivity was observed for the hybrid sensor (containing both 

carbon fibre at 15% and MWCNT at 1% by volume). Cylindrical samples showed nonlinear decrease 

in resistivity under linear compressive load. The electrical resistivity changed in a reversible manner, 

corresponding to the applied cyclic load, increasing with the increase in tensile strain and vice versa. 

The response of CNT-cement based material to both sinusoidal compression loads and axial loads with 

forward/backward sweep variation of the frequency was measured by Materazzi et al. (2013) to monitor 

their electrical response for measuring dynamically varying strain in concrete structures. Good 

correlation was qualitatively observed between axial strain and electrical resistance, and normalised 

input and output were almost perfectly overlapped. Thus, it was concluded that CNT-cement 

composites provide useful information for SHM to the dynamic range. Dalla et al. (2016) investigated 

the damage-sensing capability of CNT-cement mortar with 0.6 wt.% loading and CNF-cement mortar 

with 0.2 wt.% and 0.6 wt.% loading. Piezoresistive behaviour of both types of mortar was analysed and 

they showed fully recoverable electrical resistance varying in an inverse relation to applied compressive 

stress. Three-point bending test on small prismatic mortar samples showed that both fibres gave 

remarkable damage sensing capability to the mortar evidenced by dramatic resistivity jumps at 

maximum loading level, thus providing valuable warning sign. Camacho-Ballesta et al. (2016) also 

found that for MWCNT cement paste, the Fractional Change in Resistance (FRC) was well correlated 

with the stress applied to the specimen under compression. Also, sensitivity was enhanced when the 

current intensity was increased. The best performance as strain sensor was obtained for the 0.05% CNT 

composite, reaching values of gauge factor up to 240. The electrical conductivity of the hybrid 

specimens (0.2% CNF/0.2% CNT) was found significantly higher than single CNT or CNF cement 

composites by Noiseux-Lauze and Akhras (2013). The relationship between strain and resistivity was 

fairly linear and a gauge factor of approximately 70 was measured. In addition to the referred research, 

other researchers also found an improvement in the conductivity of CNT/CNF reinforced cementitious 

materials, and a relationship between strain and stress was found (Galao et al., 2014; Sasmal et al., 

2017; Rhee and Roh, 2013).    
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Research Significance 

The main inspiration for this research was to extend the study of nanofiber reinforced concrete by 

developing its full mechanical properties including the post-peak response, as well as evaluating its 

electrical and self-sensing properties. Previous research focused on investigating the behaviour of 

mortar specimens, and only a few studies attempted to evaluate the behaviour of concrete specimens, 

particularly their full mechanical behaviour under tensile and compressive loads. The research will 

therefore fill an important gap in the literature and is considered vital for assessing the performance of 

large critical infrastructures employing CNF concrete. Further, the strain-sensing capability of carbon 

nanofiber reinforced concrete (CNFRC) currently could be a major advantage in civil engineering 

whose main purpose is the early assessment of structural damage. Therefore, it is important to 

investigate the sensing properties of such materials, and feed the findings into the industry.  

Experimental Programme 

A total of five concrete mixtures, incorporating different contents of CNF, were produced in this set of 

experiments to evaluate the effect of carbon nanofibers on concrete. The Plain Concrete (PC) mixture 

was dealt as the control mixture with no fibres. CNFRC were produced incorporating 0.25%, 0.5%, 

0.75%, and 1.0% CNF by binder volume. These samples are denoted as CNFRC0.25, CNFRC0.5, 

CNFRC0.75, and CNFRC1.0, which indicates the concrete type followed by the fibre percentage used 

for the mix. Three samples of beams and six cylinders were replicated in each test. Mechanical 

properties of the material under flexure, uniaxial compression, and split tensile forces were established. 

Also, self-health monitoring of the beam samples under flexure were studied for this group.  

Constituent materials 

For binder materials, Type I Portland cement, and dry undensified silica fume Grade 940U (Elkem 

Materials, Inc.) were used with bulk density of 200-350 kg/m3 (Table 2). Silica fume acts physically as 

a filler and chemically as a highly reactive pozzolan. Sharp sand was used as fine aggregate and gravel 

with maximum size of 10mm was used as coarse aggregate.    
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Heat treated carbon nano fibre (Pyrograf-III, PR-19-XT-LHT) provided by Applied Sciences Inc. were 

used. The properties of these fibres are summarised in Table 3 (Pyrograph Products, 2013). These fibres 

are heat-treated to temperatures of 1500°C, which carbonizes chemically vapour deposited carbon 

present on the surface of the fibre to a short range ordered structure. This heat treatment produces 

nanofibers which generally provide the highest electrical conductivity in nanocomposites hence are 

considered to be better options for smart concrete. The fibres generally become entangled during growth 

because they are produced in a vapour phase, thus, producing a mesh-like configuration. This raw form 

is then de-bulked by the manufacturer with a product that is uniform in bulk density allowing accurate 

compounding into the final products. The de-bulked form is denoted as XT. The loose bundle of the 

‘XT’ carbon nanofiber requires much less energy to achieve dispersion, thus allowing greater retention 

of fibre length during processing. The surfactant used for dispersion of CNF in water was a high-range 

polycarboxylate-based water-reducer admixture (superplasticiser) provided by Elkem under the 

commercial name ViscoFlow 1000.  

Mix proportions 

A total of five concrete mixtures incorporating different contents of CNF were produced in this study 

in order to evaluate the effect of carbon nanofibers. The concrete mixture was designed aiming for a 

target strength of 53MPa; and some mixture trials were tested and a final concrete mix proportions was 

obtained. Plain Concrete (PC) mixture was dealt as control mixture with no fibres. For other mixtures 

CNF was added at different dosages by binder volume ranging from 0.25%-1.0%. The content of the 

mixture was kept constant in all mixtures with W/B (water/binder) ratio of 0.37. Silica fume was kept 

at 10% by weight of cement and the High Range Water Reducer (HRWR) was used at 0.5% of the 

binder. The composition of all mixtures is presented in Table 4. 

Preparation of CNF and dispersion in mixing water 

According to previous research findings, HRWR was used to achieve a better dispersion of CNF in 

aqueous solution. In this study, the HRWR along with ultrasonication was adopted to achieve a good 

dispersion of the nano fibres in the liquid medium. As Yazdanbakhsh (2012) states, ‘superplasticiser 

should not be added to the paste during paste mixing and is required to be added to the aqueous solution 
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to yield the best possible dispersion’ of CNFs in water during ultrasonic processing. Therefore, the 

aqueous solution was made by the following steps: 

a) Water + HRWR ; stirred manually 

b) CNF was added; stirred manually for about 2 minutes 

c) Ultrasonication process 

A 20-kHz ultrasonic processor (Vibra-Cell, Model VCX 750, Sonics & Materials) was used to disperse 

the nano fibres with a 139mm long titanium alloy solid probe with 13mm diameter. The processor was 

set to operate at an amplitude of 50% at 20s time intervals to prevent overheating of the solution. The 

CNFs were weighed in a glass container, then water+HRWR liquid was added and stirred manually. 

The solution of water+HRWR+CNF was sonicated for about 15 min which was the optimum time 

needed to achieve well-dispersed CNF/water solution at room temperature. Details of the sonication for 

each batch are presented in Table 5.   

Sample preparation 

Following the recommendation by the Elkem Materials, the silica fume was added to the mix of fine 

and coarse aggregate. The mixing procedure for CNFRC concrete was as follows: 

a. Coarse aggregate and fine aggregate were added to the mixer and mixed well (2 minutes). 

b. Silica fume was added and mixed (2 minutes). 

c. Once evenly mixed (a uniform grey colour obtained), cement was added and mixed well (2 

minutes). 

d. Water+HRWR+CNF was then added under low speed to the mixer and mixed well till the 

paste uniformity was enhanced (3-5 minutes).  

Mechanical properties studied 

For each mix, six cylinders and three beams were casted and specimens were tested under uniaxial 

compression, splitting tensile and flexural loading using ADVANTEST 9 (Controls Group) testing 

machine.  
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Compression Test 

The compression test was conducted according to BS EN 12390-3:2002 (2002). Since the post-peak 

behavior of the material was important to this research, the load was applied in a displacement control 

manner and the strain was monitored in the concrete. The displacement was controlled through 

displacement transducers attached to the cylindrical specimen in equal angular distances of 120˚. The 

transducer was hammered into concrete with an initial length of 100mm. they were tightened to 

concrete and kept in place with an elastic band around all three transducers. The displacement was 

applied at a rate of 1µm/s.   

Flexural test 

The flexural test was conducted according to BS EN12390-5:2000 (2000). The beams were 

100×100×500mm. The clear span was set to 300mm and the upper bearer distance was set to 100mm. 

Two displacement transducers at the center of the specimen on both front and back sides of the beam 

were used to measure the mid span displacement. This test provides a clear means of comparing the 

post-cracking tensile behavior of various fiber reinforced concretes. The test was conducted under 

displacement control and the load was applied with a rate of 0.1µm/s. The flexural strength (or 

maximum tensile stress in the lower fiber of the beam under loading) can be obtained using the BS 

EN 12390-5:2000 guidelines. 

Split tensile test 

The uniaxial tension tests have a complex nature, therefore splitting tension tests are usually conducted 

on cylindrical specimens by compressing the cylinder through a line load applied along its length which 

can be conducted in a standard concrete compression testing machine. Therefore, for this study the split 

tensile test was conducted on cylinders with dimension of Ø100×200 mm according to BS EN12390- 

6:2009 (2009). According to this guidance, a constant loading rate of 1260 N/s was used.  

Self-health monitoring 
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CNF concrete is a material with discontinuous conductive nanofibers (CNF) which creates an 

electromagnetic field and transforms the non-conductive concrete into a conductive material. For this 

study, a direct-current four-probe method was adopted to measure the sensitivity of the concrete beam 

during the flexural beam tests. In this method, four electrodes are embedded within the matrix in which 

the outer two electrodes are the current pole for passing current, and the inner two electrodes are the 

voltage poles for measuring the voltage. Therefore, the electrical resistance between the two middle 

electrodes could be calculated based on ohm’s law where: V=I×R (i.e. V is the voltage (volts, v), R is 

the resistance (Ohm, Ω) and I is the current (Amp, A)).  

Four electrode contacts made with woven copper wire mesh (#16 mesh), with 1.233mm Aperture, and 

0.355mm wire diameter were placed symmetrically with respect to the centre along the length of the 

beam specimens at four planes that were all perpendicular to the stress axis (Figure 1). Before the last 

30 seconds of concrete compaction, the electrodes were inserted and clamped to the sides and vibrated 

for a short while enough to release any possible local entrapped air during insertion of the copper mesh. 

The outer electrodes were connected to a power supply unit capable of supplying Direct Current (DC) 

up to 30V. Since the electrical resistance of the concrete varied with elapse of time due to polarization 

of positive and negative charges (Konsta-Gdoutos and Aza, 2014), direct current was applied for 

approximately 15 min prior to testing to let the electrical resistance stabilise in concrete. A single 

concrete strain gauge (PL-60-11, by TML) was attached to both sides of the beam at the centre close to 

the top surface as shown in Figure 6 to measure the compressive strain of the top fibres of the beam 

during loading. In order for the metallic elements of the loading rig not to influence the electrical 

readings, the bottom surface of the samples in contact with the rig rollers was isolated with an electrical 

resistance tape, as well as the bottom surface of the top roller. The output was then used to correlate 

with the electrical readings.  

The current was kept constant throughout the test at 1mA. The resistivity and the strain along the stress 

axis of specimens were measured respectively by the data acquisition system and concrete strain gauges 

during loading. The concrete gauge attached to the surface of the beam and the copper electrodes are 
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shown in Figure 2. The configuration of wire attachments to the power supply as well as the final beam 

set up is illustrated in Figure 3.  It is important to note that all samples have been tested at the same age 

and in the same environment. The effect of age of samples and humidity of the environment is an 

important subject that will be investigated in future research studies.   

Results and discussions 

This section presents the mechanical properties of CNFRC materials. The results from compression, 

split tensile, and flexural tests are discussed in the following sub-sections.  

Compression test results  

The graph in Figure 4 presents the stress-strain relationship for all concrete types, and the compressive 

strength of cylinders for all types of concrete is shown in Figure 5. For each type, the results of two 

representative samples are presented. Since the strength of the concrete is dependent on the calcium 

silicate hydrate (C-S-H) component of the concrete, the nanofibers are expected to reinforce the 

nanoscale properties of the C-S-H, hence increasing the compressive strength. At the interface, CNF 

possesses an intimate bonding with the cement matrix due to the Van der Waals forces. The large aspect 

ratio and stacked-up cone shape and rough edges of the fibers give themselves filament abilities to block 

and diver micro-cracks, which can slow down crack propagation and formation of the crack network. 

The increase in compressive strength can be related to two effects: 

• Bridging effect of the CNF for micro-cracks, 

• Filler effect for accelerating the hydration reactions of the cementitious materials.  

Figure 6 shows the Scanning Electron Microscopic (SEM) images of a cracked CNF concrete sample. 

Figure 6a shows that the nanofibers are bridging the micro cracks. Figure 6b depicts that some 

nanofibers have pulled out and fractured at the surface. When the nanofibers are pulled out with the 

increase in applied loads, energy is dissipated at the nanofibers-matrix interface, resulting in delayed 

macro crack formation.    
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From Figure 5, with the addition of only 0.25% of CNF fibers to the concrete, the compressive strength 

was increased by 30.5%. However, there was an inflection point at 0.5% CNF content, at which the 

compressive strength of concrete was decreased by 8.5%. This decrease could be attributed to the 

presence of fiber clumps in concrete matrix and poorer dispersion quality of the CNF solution compared 

to other CNFRC samples. Although CNFRC0.5 was less effective in enhancing plain concrete post-

peak behaviour (Figure 4), it improved the strength by 19.5%, which is comparable to the findings of 

Sanchez and Sobolev (2010) who found an increase in compressive strength of plain mortar from 30 

MPa to 36 MPa (by 20%) using CNF at 0.5% wt. of cement (with W/C=0.365). Compared to the results 

obtained by Kowald (2004) who used 0.5% CNT in high-strength concrete and found a 12% increase 

in compressive strength, it can be stated that the CNF incorporated in this study showed slightly better 

performance than CNT. Li et al. (2005) also obtained a 19% enhancement in compressive strength of 

mortar by using 0.5% MWCNT.  

In this study, the maximum strength was achieved by the addition of 1.0% fibre, with 39% increase in 

strength. It is worth mentioning that the results for CNFRC0.75 were very close to CNFRC1.0, hence 

the effect of fibre at a dosage higher than 0.5% became inconspicuous in the case of this experimental 

program. In the review of the previous work on the compressive strength of CNF composites, it was 

found that 1.0% CNF by volume of binder increases the cylinder compressive strength by 26.9% 

(Sivakumar, 2011) which was lower than what was achieved in this research. However, Gao et al. 

(2009) found that the addition of 0.16% CNF to a self-consolidating concrete (SCC) increases the 

compressive strength by 40%. The reason for higher enhancement found by them could be the type of 

the concrete used in their study, suggesting that SCC could possibly better accommodate the dispersion 

of the fibres when mixed with the cementitious materials and hence achieving a more uniform mixture 

because of its higher fluidity (due to higher HRWR and water content) resulting in higher strength 

increase. This is, however, a premise that needs to be further studied in the future.  

From the post-peak behaviour of cylinders, it can be seen that CNFRC0.75 and CNFRC1.0 had similar 

behaviour, and they outperformed other materials in terms of ductility, reaching a strain exceeding 

0.004 at failure. CNFRC0.5 reached higher strain despite lower strength compared to CNFRC0.25. 
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Figure 7 shows specimens of Group B after failure. From the figure, PC and CNFRC0.25 showed the 

most damage and concrete was broken into pieces, however, CNFRC0.75 and specially CNFRC1.0 

showed the least damage, mainly on the concrete surface. It can be concluded that samples with higher 

fibre dosage (0.75% and 1.0%) were more successful in attaining their integrity and mainly surface 

damage was observed. The reason for this is because the fibres enhanced the compressive performance 

of concrete by better filler effect (i.e. creating compacter concrete by filling the voids in the matrix) at 

higher fiber dosage.  

Split tensile test results 

The average split tensile strength of all samples for each concrete type is shown in Figure 8. No 

significant changes were observed in the splitting tensile strength with variation in the CNF percentage. 

However, compared to PC this mechanical property was increased by 24.2% when 1.0% CNF was 

added to the concrete. Amongst the CNF concrete samples, both 0.75% and 1.0% CNF fibre had the 

greatest effect on the concrete and their effect was almost similar. Addition of 0.25% CNF in the 

concrete resulted in 22.2% increase in split tensile strength, which is close to the findings of Gay and 

Sanchez (2010) who found 26% increase in tensile strength of the reinforced cement paste with 0.2% 

CNF. It can be concluded that the effect of CNF within concrete could compete with its effect in cement 

paste or cement mortar. On the other hand, the direct tensile strength of 0.3% (wt. of binder) CNF 

reinforced UHPC tested by Meng and Khayat (2016) showed 56% increase in the strength, and 

Sivakumar (2011) achieved 66.6% increase in split tensile strength of SCC with 1.0% CNF by volume 

of binder. The different results obtained by these researchers could be due to the different concrete type 

used in their study, namely UHPC (which is more compact than PC) and SCC (which has higher fluidity 

than PC) respectively. As mentioned beforehand, this comparison suggests that the effect of CNF could 

vary within different concrete types and further studies regarding this issue are recommended. All 

samples failed by a crack through the centre of the cylinders and splitting the cylinder into two pieces 

as shown in Figure 9.  

Flexural test results 
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The flexural strength of each sample was calculated according to BS EN 12390-5:2000 and the average 

strength is presented in Figure 10. From this figure, the change in the flexural strength shows the same 

general trend as compressive strength and split tensile strength for CNFRC with an inflection point at 

0.5% fibre dosage. From the three samples that were tested, the load-displacement relationship of one 

beam from each mix, representing the behaviour of the concrete is shown in Figure 11.  

According to both Figures 10 and 11, it is evident that the addition of CNF has increased the flexural 

strength of the plain concrete by 63%, 35.3%, 52.5%, and 85% respectively with fibre dosage of 0.25%, 

0.50%, 0.75% and 1.0%. From reviewing previous researches, a 55.5% increase in the flexural strength 

of the cement paste was found with the addition of CNF at 0.1 wt.% of cement (Tyson et al., 2011). 

This fibre dosage was close to the CNFRC0.25 of this research with an equivalent CNF dosage at 0.17 

wt.% of cement. It is seen that both results are somewhat close considering that the higher fiber volume 

fraction used in CNFRC0.25 might be the reason for higher effect (63%) on the flexural strength. When 

Tyson et al. (2011) doubled the amount of fibre dosage (0.2 wt.%), the flexural strength decreased by 

30%. This phenomenon also occurred in this study between CNFRC0.25 and CNFRC0.5; in which the 

compressive strength decreased by 17.3% as the amount of fibre was doubled.  

Li et al. (2005) achieved a 25% increase in the flexural strength of cement mortar by the addition of 

0.5% MWCNT. The results obtained in this study for an equivalent amount of CNF in concrete was 

35.3%, which suggests that CNF could compete with CNT and perform better within the concrete 

matrix. 

From the strength point of view, it is evident that the concrete with 1.0% fibre was the strongest with a 

flexural strength of 6.30 MPa. The performance of CNFRC1.0 in this study outperformed the results 

found by Sivakumar (2011), who found an increase of 38% in flexural strength of SCC when 1% CNF 

by volume of binder was used. Also, Meng and Khayat (2016) reported a 46% increase in flexural 

strength of UHPC reinforced with 0.5% micro steel fibre and 0.3% CNF. This enhancement in flexural 

strength could be of great advantage for the behaviour of concrete members at the structural level. 

Overall, the trend of change in compressive strength, flexural strength, and split tensile strength from 
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0.5% to 1.0% in this study agrees with the findings of Sivakumar (2011) for CNF reinforced SCC who 

found an increasing trend in all mechanical properties.  

Interestingly, contrary to what one might presuppose that the 0.25% fibre addition could have the least 

effect on the behaviour of the material as opposed to higher fibre concentrations; it was more effective 

than 0.5% and 0.75% fibre concentrations in the concrete matrix in increasing the flexural strength. A 

possible reason is that due to the lower fibre concentration, agglomeration of fibres was greatly 

prevented and better dispersion was achieved for this material. However, according to the load-

displacement graph, CNFRC0.25 did not show great ductility compared to other CNFRCs. The material 

showed more brittle behaviour after reaching the maximum strength followed by sample breakage 

regardless of its higher strength capacity. 

CNFRC0.5, CNFRC0.75, and CNFRC1.0 showed relatively high displacement capacity compared to 

PC which means that these materials had much higher ductility. The displacement at failure of the plain 

concrete specimen is about 0.08mm; while the displacements at failure of the specimens reinforced with 

0.5%, 0.75%, and 1% CNF are respectively 0.22mm, 0.24mm, and 0.19mm. This corresponds to an 

amplification factor between 2.38 and 3, indicating a significant improvement in ductility. This can be 

attributed to better nano-crack and micro-crack control due to a higher concentration of fibres as 

opposed to CNFRC0.25. During the post-peak stage, CNFRC1.0 showed higher load level than other 

samples and at the mid-span deflection of 0.12 mm, the capacity of the sample reached the same 

capacity as CNFRC0.75. At this stage, both CNFRC0.75 and CNFRC1.0 had higher loading capacity 

compared to CNFRC0.5, hence higher energy dissipation was obtained for 0.75% and 1.0% CNF 

samples. On the other hand, it is interesting to note that the maximum displacement achieved by 0.5% 

CNF reinforced concrete was higher than 1.0% CNF sample.  

 Although it was assumed that better dispersion of 0.25% fibres caused higher flexural strength than 

0.5% and 0.75% fibre, it should be emphasised that the dispersion of other samples was also satisfactory 

since there was an apparent improvement in the behaviour of the concrete in terms of strength, ductility, 

and energy dissipation capacity, which was manifested by the post-peak behaviour. This is due to the 
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presence of higher fibre dosage. Overall, it is believed that the CNF embedded in the paste along with 

the network created by CNF inside of the pockets (referring to clumps that might not have been fully 

dispersed, and be formed inside the paste followed by being introduced into the concrete matrix) may 

have limited the propagation of the cracks when 1.0% fibre is used, allowing specimens to retain some 

significant flexural capacity over the plain concrete.  

Figure 12 shows the failure of CNFRC beam samples after the test. While the figure shows a single 

crack for the CNFRC specimens, the initiation of the crack was much delayed for the specimens 

reinforced with CNF, and the crack propagation was also much slower than in the case of plain concrete. 

This resulted in a smaller crack width at failure, as can be seen for sample CNFRC0.5, where the 

developed crack was very thin and the beam remained mostly intact. This failure explains the load-

displacement behaviour of the beam and its higher ductility. Also, CNFRC1.0 showed thin crack width 

towards the top of the beam. CNFRC0.25 had a full breakage shortly after reaching the maximum 

strength and the beam was split into two pieces (Figure 12a). 

Self-health monitoring results 

To investigate the self-health monitoring capability of CNF concrete and quantify this property for each 

sample, the following time histories are plotted and compared for each concrete type.  

• Load vs. time 

• Compressive strain vs. time 

• Measured electrical resistance vs. time  

These plots are shown in Figures 13 and 14 for PC, CNFRC0.25, CNFRC0.5, CNFRC0.75, and CNFRC1.0 

respectively. Additionally, the average value of initial electrical resistance for CNFRC samples after 

stabilisation of electrical circuit for 15 min prior to loading is tabulated in Table 6. From the results, 

increasing the fibre dosage decreased the electrical resistance of the concrete evidently. For the plain 

concrete, no relation could be detected between the resistance and strain. However, a good correlation was 

qualitatively observed for CNFRC between strain and electrical resistance during loading. (c) 



 
 

18 
 

Considering the CNFRC0.25 results, as the load increased, the compressive strain measured by the 

strain gauge in the centre of the beam at the top also increased, while the calculated resistance was 

decreasing inversely proportional to the strain. Both CNFRC0.5 and CNFRC0.75 results (Figure 14) 

showed similar behaviour regarding the relationship between resistance of the material with the load 

and strain. The variation in resistance (R) value was varying with strain following the same trend. The 

change in resistance was however in reverse to the strain. For all samples, a trend was found in which 

with increasing compressive strain, the resistance decreased and with decreasing compressive strain, 

the resistance increased. This is because under compressive stress, the fibres in the concrete get closer 

to each other as the material is compressed, hence the conductive network becomes stronger resulting 

in decreased electrical resistance. On the other hand, the conductive network becomes weak either due 

to the fibers getting apart from each other by reducing compressive stress (for e.g. unloading specimen) 

or due to micro-cracks interrupting the circuit, thus the resistance increases gradually. The decrease in 

electrical resistance for samples can be spotted during the post-peak stage. This could be due to the 

development of micro-cracks during this stage. 

During the test of sample CNFRC1.0, the beam reached its highest load carrying capacity very quickly 

and it fractured within 30 seconds. Despite the short duration of the test, the change in electrical 

resistance was promptly responsive to the change in strain. This result can confirm that the CNFRC is 

apt to measure rapidly varying strain responses. This also manifests the potential of CNFRC as a damage 

sensor, by a dramatic change in the resistance at loading instances as early as the maximum load, hence 

providing timely failure warnings. This phenomenon was also claimed for cement paste by Materazzi 

et al. (2013).  

The results presented here can thus contribute to extending the known strain-sensing capability of the 

CNF cementitious composites to the CNF reinforced concrete (CNFRC). To better understand the 

relation between the strain and the electrical resistance, electrical resistance variation (ERV) is analysed 

for each concrete and presented in the next subsection. 
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Electrical Resistance Variation (ERV) 

Piezoresistivity of the CNFRC is expressed using fractional change (ERV) in resistance. The current 

was constant (A) and the initial voltage reading (V0) was recorded and hence the initial electrical 

resistance R0 was calculated for each sample. Subsequent voltage values were recorded every second at 

the same time as the strain was recorded during the test. Therefore, each strain value at every time point 

i had corresponding values of voltage recorded as Vi. The electrical resistance Ri and electrical resistance 

variation, ERV, were calculated as follows: 

 R0 = V0 /A, (1) 

 Ri = Vi /A (2) 

 ERV = (Ri – R0)/R0  (3) 

ERV vs. strain is plotted and presented in Figure 15 for all concrete types. The linear function for the 

best-fit linear trend line, correlating the ERV and the strain is also presented in this figure along with 

the correlation coefficient (R²). The correlation coefficient of the best-fit line to the data is a measure 

of the linear distribution of the data. If the data has a strong linear distribution, (R²) is closer to 1. 

From the plot above, it is apparent that when loading samples started, the strain started to increase and 

the absolute value of ERV increased from zero simultaneously with the strain. The ERV had negative 

sign since the resistance decreased under compressive strains; and since the absolute value of the ERV 

is of importance to this discussion, henceforward the ERV sign is neglected in the magnitude 

comparisons. The maximum ERV for CNFRC cases occurred near a strain of 150µε. It is evident that 

ERV was constant for PC, showing no variation in resistance, while it was increasing for all volume 

fractions of CNF as the compressive strain increased. The maximum electrical resistance variation was 

directly related to CNF concentration and according to the figure, it can be concluded that the tunnel 

conductivity effect of the CNFRC increases with increasing the fibre concentration as the maximum 

ERV value increased from 0.06 to 0.17 when fibre dosage increased from 0.25% to 1.0%.  

The ERV versus strain relationship for CNFRC0.25 exhibited deviation from the perfect linear 

behaviour at a strain of about 70 µε, while other CNFRC maintained their original slope, and an almost 
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linear relationship between ERV and compressive strain could be detected for 0.5%, 0.75% and 1.0% 

CNFRC. This can be determined from the R² coefficient values for CNFRCs, which was the smallest 

(R² = 0.902) for CNFRC0.25. On the other hand, other CNF concentrations showed a very good linear 

correlation coefficient (i.e. R² closer to 1).  

The ERV was comparatively steady when the fibre concentration was 0.75% and 1.0% and the 

maximum ERV for these were 0.17 and 0.19 respectively. This was close to the values found in the 

literature (Gao et al., 2009) for SCC where using CNF fibres at 0.70%, 1.0% and 2.0% lead to a 

maximum ERV value of 0.20, 0.21 and 0.25 respectively. In another study (Camacho-Ballesta et al., 

2016), the maximum ERV for 0.25% and 0.5% CNT cement paste was 0.05 and 0.14 respectively which 

are close to the values found in this study for 0.25% CNF (ERVmax= 0.06) and 0.5% CNF (ERVmax= 

0.13) in concrete. The close values of the ERV for specific fibre volume fractions of these studies, 

considering the different matrix used, could lay down the foundation of a finding which suggests that 

from a certain volume fraction of CNF (i.e. nanofibers) in concrete, there exists a specific range of 

conductivity that can be expected from the material, subjected to satisfactory dispersion of the 

nanofibers. However, this hypothesis needs to be further investigated with more experiments. 

Conclusions 

This paper aimed to fill an important gap in the literature by comparing the mechanical performance of 

CNFRC with plain concrete and evaluate the effect of CNF at different volume fractions (0-1.0% by 

the volume of binder) on the compressive, tensile and flexural performance of concrete. In addition, a 

qualitative assessment of the electrical data obtained for a CNFRC beam was conducted to investigate 

its self-sensing property. The following conclusions were made from the results: 

• Addition of 1.0% CNF (amongst 0.25%, 0.5% and 0.75% volume fractions) into concrete 

resulted in the highest compressive strength improvement by 39% as well as better post-peak 

behaviour for stress-strain relationship under uniaxial compression. Also, this amount of fibre 

showed the best flexural strength with the magnitude of 6.30 MPa.  This increase in the flexural 
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capacity of the beam with the addition of 1.0% fibres showed that the nanofibers were effective 

in increasing the flexural capacity of the beam to a great extent.   

• The flexural strength was more influenced by CNF dosage amongst the CNFRC samples as 

opposed to other mechanical properties; whereas, the split tensile strength was the least affected 

by varying the CNF dosage. Having said that, the split tensile strength was improved by 22.2% 

with the addition of only 0.25% volume fraction of CNF.   

• The peak displacement of concrete under four-point bending test was improved for CNFRC 

mixes. The greatest achievement was observed for 0.5% and 1.0% CNF reinforced concrete up 

to 170% higher than PC, which is crucial to structural applications in which higher ductility 

and strain capacity to failure is needed.  

• Regarding the damaged samples, specimens with 0.75% and 1.0% fibre in concrete showed 

better integrity in compression test, and surface damage was observed rather than severe 

crushing and explosion of the cylinder samples.  

• From the self-sensing point of view, increasing the fibre dosage from 0.25% to 1.0% decreased 

the electrical resistance of the concrete by almost 50% from 8.78 kΩ to 4.19 kΩ. 

• The electrical resistance of the CNFRC showed a reverse relationship with compressive strain. 

As the compressive strain decreased, the resistance increased, while with increasing 

compressive strain, the resistance decreased.   

• The electrical resistance variation (ERV) for PC showed no relation with applied strain, while 

the ERV for all CNFRC had a linear relation with compressive strain prior to reaching the 

ultimate load with the correlation coefficients (R²) above 0.9.  
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Notation 

A: Electrical Current 

ERV: Electrical Resistance variation 

R0: Initial Electrical Resistance 

Ri: Electrical Resistance at time i 

V0: Initial Voltage Reading 

Vi: Voltage Reading at time i 
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Table 1: Properties of CNT and CNF 

 

  

Fiber Type 

Typical Characteristics 

Physical Properties 
Mechanical 

Properties 
Cost 

Diameter 

(nm) 
Length SSA 

Young’s 

Modulus 

Tensile 

strength 

CNT 

SWCNT 0.3-2  >200 nm 
>300  

m2/g 
1 TPa 60 GPa 

~£110/g* 

(EliCarb) 

MWNT 20-80 1-20 μm 
250-300 

m2/g 

~£50/g* 

(EliCarb) 

CNF 60-200 
20-100 

μm 

50-60 

m2/g 
400 GPa 7 GPa ~ £0.43/g** 



 
 

28 
 

Table 2: Properties of silica fume 

 SiO2 
Retention on 

45µm sieve 

Bulk Density 

(Undensified) 

(Kg/m3) 

Specific 

surface 

(m2/g) 

Mean particle size 

(µm) 

Silica Fume 

(Elkem 940U) 
> 90% < 1.5% 200-350 15-30 0.15 

 

 

 

 

Table 3: Properties of CNF - PR-19-XT-LHT 

Fiber 

type 
Fiber name 

Average 

Diameter 

(nm) 

Average 

length 

(µm) 

Surface area 

(m2/gm) 

Dispersive 

Surface 

Energy 

(mJ/m 2) 

Bulk Density 

(Kg/m3) 

CNF 
Pyrograf-III  

PR-19-XT-LHT 
150 50-200 20-30 120-140 16-48 
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Table 4: Details of concrete mixture proportions per m3 of concrete 

Concrete 

Mix 
W/B 

CA 

(kg) 

FA 

(kg) 

Binder (B) CNF 

H
R

W
R

  

W 

(kg) 

Slump 

(mm) 
C 

(kg) 

Silica 

Fume  

(kg) 

% (kg) 
(kg) 

PC 0.37 918 955.5 360 36 0.0 0.0 2 146 85 

CNFRC0.25 0.37 918 955.5 360 36 0.25 0.63 2 146 125 

CNFRC0.5 0.37 918 955.5 360 36 0.5 1.26 2 146 90 

CNFRC0.75 0.37 918 955.5 360 36 0.75 1.90 2 146 70 

CNFRC1.0 0.37 918 955.5 360 36 1.0 2.50 2 146 50 

Notation: CA=coarse aggregate, FA= fine aggregate, C=Cement, SF= silica fume, CNF= carbon nanofiber, 

HRWR= high range water reducer, W= water.  
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Table 5: Sonication properties of CNFRC mixtures 

 

  

CNF % 
CNF/W 

(%) 
W+HRWR (ml) Sonication Energy (J) t (s) Watt (J/s) (Watt/ml) 

0.25 0.43 2426.5 36375 270 134.72 0.056 

0.50 0.86 2640 91777 600 152.96 0.058 

0.75 1.30 3058.7 86330 600 143.88 0.047 

1.0 1.71 4068.4 134814 540 244.1 0.060 
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Table 6: Initial electrical resistance of CNFRC prior to loading 
 

  

 CNFRC0.25 CNFRC0.5 CNFRC0.75 CNFRC1.0 

Initial R (kΩ) 8.76 8.80 7.9 8.33 5.86 5.86 4.07 4.30 
Average (kΩ) 8.78 8.12 5.86 4.19 
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FIGURE CAPTIONS 

Figure 1: SHM beam specimen layout, b. Equivalent circuit diagram for direct-current four-pole 

method 

Figure 2: (a) Concrete gauge; (b) copper electrodes 

Figure 3: (a) Four-pole method configuration; (b) Final beam test set up 

Figure 4: Compressive stress-strain relationship 

Figure 5: Compressive strength results 

Figure 6: SEM images of CNF concrete specimens 

Figure 7: Sample failure after compression test: (a) PC; (b) CNFRC0.25; (c) CNFRC0.5; (d) 

CNFRC0.75; (e) CNFRC1.0; (f) CNFRC1.0 

Figure 8: Split tensile strength results 

Figure 9: Split tensile failure of cylinders: (a) CNFRC0.25; (b) CNFRC0.75 

Figure 10: Flexural strength results 

Figure 11: Four-point bending load-displacement graphs 

Figure 12: Flexural beam test samples after failure: (a) CNFRC0.25; (b) CNFRC0.5; (c) 

CNFRC0.75; (d) CNFRC1.0 

Figure 13: Time history results for CNFRC 

Figure 14: Time history results for CNFRC 

Figure 15: ERV vs. strain for all concrete types 
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Table 2: Properties of silica fume 

Table 3: Properties of CNF - PR-19-XT-LHT 
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Figure 1: SHM beam specimen layout, b. Equivalent circuit diagram for direct-current four-pole 

method 
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Figure 2: (a) Concrete gauge; (b) copper electrodes 
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Figure 3: (a) Four-pole method configuration; (b) Final beam test set up 
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Figure 4: Compressive stress-strain relationship 
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Figure 5: Compressive strength results 
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Figure 6: SEM images of CNF concrete specimens 



 

Figure 7: Sample failure after compression test: (a) PC; (b) CNFRC0.25; (c) CNFRC0.5; (d) 

CNFRC0.75; (e) CNFRC1.0; (f) CNFRC1.0 
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Figure 8: Split tensile strength results 
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Figure 9: Split tensile failure of cylinders: (a) CNFRC0.25; (b) CNFRC0.75 
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Figure 10: Flexural strength results 

 



 

 

 

 

 

 

 

 

 

Figure 11: four-point bending load-displacement graphs 
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Figure 12: Flexural beam test samples after failure: (a) CNFRC0.25; (b) CNFRC0.5; (c) 

CNFRC0.75; (d) CNFRC1.0 
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Figure 13: Time history results for CNFRC 
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Figure 14: Time history results for CNFRC 
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Figure 15: ERV vs. strain for all concrete types 

 

ERV = -0.0004ε - 0.0136 

R² = 0.906 

ERV = -0.0009ε + 0.0066 

R² = 0.9953 

ERV = -0.0013ε + 0.0099 

R² = 0.9951 

ERV = -0.0011ε - 0.0163 

R² = 0.9502 

-0.2

-0.15

-0.1

-0.05

0

0.05

0 50 100 150 200

E
R

V
 (
Ω
/Ω

) 

Strain (10E-6) 

PC CNFRC0.25 CNFRC0.5

CNFRC0.75 CNFRC1.0 Linear (CNFRC0.25)


	Faghih and Ayoub-Advances in Cement Research
	Abstract
	Introduction
	CNT/CNF
	Self-health monitoring

	Research Significance
	Experimental Programme
	Constituent materials
	Mix proportions
	Preparation of CNF and dispersion in mixing water
	Sample preparation

	Mechanical properties studied
	Compression Test
	Flexural test
	Split tensile test
	Self-health monitoring

	Results and discussions
	Compression test results
	Split tensile test results
	Flexural test results
	Electrical Resistance Variation (ERV)


	Conclusions
	Acknowledgments
	References
	Notation
	FIGURE CAPTIONS
	TABLE CAPTIONS

	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6
	Figure 7
	Figure 8
	Figure 9
	Figure 10
	Figure 11
	Figure 12
	Figure 13
	Figure 14
	Figure 15

