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Abstract

In this paper, we focus on forecasting heterogeneous panels in presence of cross-sectional depen-
dence in terms of both spatial error dependence and common factors. We propose two main
approaches to estimate the factor structure, one using the residuals (“Residuals Based Approach”,
RBA) while the second using a panel of some variables (“Auxiliary Variables Approach”, AVA)
to extract the factors. Small sample properties of the methods proposed is investigated through
Monte Carlo simulation exercises and used in an application to predict house price inflation in

OECD countries.

Keywords: Cross-Sectional dependence, Common factors, Spatial dependence, House price

inflation, Inflation forecasting, Macroeconomic forecasting

1. Introduction

1.1. Owerview and main contributions

The presence of both a cross-sectional and a time-series dimension makes the identification
of optimal forecasts methods for panel data a particular challenging task and the literature on
the issue is relatively scarce. A crucial role is played by the way in which we deal with cross-
section dependence (CD), a natural feature of a panel of units. One strand of the literature focuses
on the best linear unbiased predictor in spatial models: see amongst others Baltagi & Li (2004,
2006), Baltagi, Bresson & Pirotte (2012), Baltagi, Fingleton & Pirotte (2014). Another strand of
the literature focuseson forecasting with panel data with common factors in the error terms, for

instance, Hjalmarsson (2010), Karabiyik, Westerlund & Narayan (2016), Trapani & Urga (2009)
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which treat the common factors as nuisance parameters and make no attempt to use them to
improve forecasts of a given panel unit.

In this paper, we consider the case of forecasting using a heterogeneous panel model which
contains both unobserved common factors and spatial error dependence. We compare forecasting
methods using global information to predict unit specific outcomes by means of a small number of
common factors extracted from a large number of panel units.

We propose two alternative approaches. The first approach makes use of estimates of the
common factors in the predictive model by applying principal components (PC) analysis on the
residuals from a first stage consistent estimation of the model parameters. The unobserved nature
of the common factors requires forecasting the future values of the estimated factors and then
computing the predictions on the variable of interest. In the second approach, closely related to
the diffusion index forecasting methodology of Stock & Watson (1998, 2002), the common factors
are estimated from a number of auxiliary variables. In particular, in this paper common factors are
potentially estimated from the realizations of the same variable for different panel units whereas
in previous studies the factors come from a large number of indicators for the same panel unit.
This second approach that we propose is similar to the one in Engel, Mark & West (2015). The
authors show that even if the univariate exchange rate series contain little or no serial correlation,
global information, estimated by means of common factors in a panel of exchange rates, can help
predicting future exchange rates. Using simulated and real data, we compare forecasts generated
by these two approaches with the forecasts using only unit-specific information.

In this paper, we also reconsider the question of pooling time series in the presence of CD.
Pooling in heterogeneous panels can produce misleading results on the magnitude of the average
effects and inference based on them (Baltagi, Bresson & Pirotte, 2008; Pesaran & Smith, 1995).
However, when the estimates of the individual parameters contain too much noise, pooling can
provide better out-of-sample forecasts (Mark & Sul, 2011). We investigate the role of CD on the
optimal prediction strategy.

The final aim is to compare estimators recently proposed in the literature for panels containing
unobserved common factors. We use methods by Pesaran (2006), Bai (2009), Song (2013) and
related estimators for the slope parameters and compare their small sample performance in terms

of prediction accuracy.



1.2. Related literature

Our paper is related to three different strands of the literature on forecasting with panel data.
First, it is related to the large body of literature on the comparison of the pooled and heteroge-
neous estimators of the slope parameters in terms of forecasting accuracy, as recently revisited by
Pesaran & Zhou (2018), Wang, Zhang & Paap (2018). A large number of papers compares the
performance of alternative estimators in terms of their predictive ability. For instance, the main
finding in Garcia-Ferrer, Highfield, Palm & Zellner (1987), Baltagi & Griffin (1997), Baltagi, Grif-
fin & Xiong (2000), Baltagi, Bresson, Griffin & Pirotte (2003), Baltagi, Bresson & Pirotte (2004),
Trapani & Urga (2009) the superiority of homogeneous estimators. However, Hoogstrate, Palm
& Pfann (2000) point out that the superiority of the pooled estimators is a result of the sample
size such that as the number of time series observations increases heterogeneous estimators become
advantageous. Mark & Sul (2012) show that the potential gain from pooling is determined by
the degree of heterogeneity and the empirical application on the exchange rate forecasts confirms
this theoretical results. Thus, our paper is directly linked to this literature as we compare the
forecasting performance of recently proposed pooled and heterogeneous estimators.

Second, there is an important number of studies which evaluates the effect of CD on the forecast
performance. The contributions studying the effect of CD on forecasting with panel data can be
divided into two main groups, with the first focusing one studying spatial dependence and the
second emphasizing the role of using common factors. Among others, Baltagi & Li (2004, 2006),
Baltagi et al. (2012, 2014) study the optimal predictors in different types of random effects panel
models with spatial interactions. These studies underline the possibility of improving the unit
specific forecasts using information from other units in the panel. For instance, in the case of error
spatial dependence Baltagi & Li (2004) shows that a weighted sum of the residuals from all units in
the panel data set contributes to the optimal prediction of each single unit. Our paper is linked to
this literature as we study the impact of spatial dependence on forecasting in panel data. However,
it worth noting that we assume that the time invariant effects are fixed parameters.

Third, this paper is also related to the time series literature on the diffusion index forecasts as it
benefits from these studies in terms of forecasting using common factors. In spatial panels a weight
matrix has to be specified to realize the forecasts. Another possibility to exploit the panel-wide

information to improve the unit specific outcomes is to use common factors. Using data on the



Canadian regional growth rates, Kopoin, Moran & Paré (2013) showed that the forecasts which use
national and international information are significantly better than those which use only regional
information. Engel et al. (2015) used data from several OECD countries to improve the forecasts
of exchange rates of individual countries. Their approach is similar to that of Stock & Watson
(1999). The difference is that in Stock & Watson (1999) the common factors are estimated from a
large number of predictors, whereas Engel et al. (2015) estimate the common factors from a large
number of countries. The latter paper is very close to ours contribution in terms of using statistical
methods to estimate factors common to countries to forecast individual outcomes, while instead

we study the possibility of extracting information from different variables on each panel unit.

1.8. Organization

The remainder of the paper is organised as follows. In Section 2, we introduce the panel
predictive model, the two approaches of forecasting with unobserved common factors, and we
also briefly describe estimation methods implement. In Section 3, we evaluate the small sample
properties of the forecast methods and estimators via an extensive Monte Carlo analysis. Section
4 contains an empirical exercise to illustrate the forecast performance of these methods using data

on house price inflation in OECD countries. Section 5 concludes.

2. Panel forecasting model and methods of forecasting

2.1. The forecasting model

We consider stationary predictive panel data model with CD in the disturbances. The h-steps

ahead variable y; 1, h > 0,9=1,2,...,n,t=1,2,...,T, is given by

Yirrh = o + Bixit + vV + wipin, (1)
n
Uit+h = Z Tij€5,t+hs (2)
j=1
where x;; = (zi1¢, Tiaty - - -, Tik,t)' is a (ky X 1) vector of observed individual-specific regressors
which can include predetermined variables, 3, = (51, Bi2, - - -, Bik, ) represents the corresponding

(kg x 1) slope parameters, r;; are unknown spatial weights, ;; is an error term which is uncorrelated

over time and individuals. f/ is a vector of unobservable common factors of size my, v} are the



associated (my x 1) factor loadings. «; are the unit specific time-invariant effects. Unless otherwise
specified, 3;, v/ and «; are assumed to be fixed parameters.

The model in (2) contains as special cases all commonly used spatial processes like spatial
autoregression (SAR), spatial moving average (SMA), spatial error components (SEC) and their
higher order versions. Moreover, it can be rewritten in the form of a factor model of n factors
and without an idiosyncratic component as w; 4, = 1‘2‘5.,1:+h, where r;, = (141,72, ...,7in)" and
€ t+h = (E144hs€244hs-- - Ent+n). To distinguish between the two components of the model
defining the cross-sectional interactions it requires some restrictions on the spatial weights r;;, 7, j =
1,2,...,n. The standard assumption in the spatial econometrics literature is that the n x n matrix
R = [r;;] has bounded row and column norms for all n. In this case, (2) carries weak CD (WCD).
Furthermore, the existence of m, distinct common factors requires that plim% Zle £/ fty/ = Xy

T—o00
and plim%I‘T = X are both my x m, positive definite matrices, where I' = (v, 7,...,7,). In
n—oo
this case, the m, common factors are called “strong common factors” (Chudik, Pesaran & Tosetti,

2011). Hence, the model contains strong CD (SCD) as well as WCD.

2.2. Forecasting approaches

We are interested in post-sample forecasting as defined in Granger & Huang (1997, p.3). As-
suming that the expectation of w; ;45 conditional on past information is zero for all panel units,
Le. B(uitn|vit, Xit, £, yir—1,%ip—1,£1,...) = 0 for any h > 0 and for every i = 1,2,...,n, the

optimal predictor of the variable of interest in period 1"+ h given the information in 7' is
Yi e = i + Bixir + V£ (3)

In the case of slope homogeneity 3; = 3 but throughout the section we will use the heterogeneous
notation for simplicity. This predictor is unfeasible as it contains the unknown coefficients and the
unobserved common factors. Replacing these unknown quantities by their estimates, the feasible
predictor is given by

Ui, rrhT = Qi + E’;XiT + ’7??31 (4)
The main issue is that the unobservable common factors have to be estimated from the data. One
possibility is to estimate the parameters 3, and o; using the estimators robust to unobserved

common factors and collecting the residuals

~ ~ -~/
Eit = Yit — Q5 — /Bixi,t—/w t=nh+ 1a s 7T7 (5)
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where 3, is a consistent estimate of 3, and

T

Q; = ﬁ Z (yit - B;Xi,t—h) . (6)

t=h+1

Given that the estimates &; and Bl are consistent, these residuals consistently estimate e; =
V'€, + ui for the sample i = 1,...,n, t = h+ 1,...,T. Hence, it is possible to apply PC
on these residuals to estimate the common factors fty_h int=~h+1,...,T. Let us denote these
estimates as ?f Notice that the last possible estimates are in period T'—h. However, the prediction
in (3) requires the estimates of the unobserved common factors in period T, i.e. ?? Therefore,
the factors need to be forecast from their estimates to make the prediction feasible. For simplicity

let us assume that each common factor follow an AR(1) model. Then, such a forecast is

Ay ~ ~ oy \ lay oy
fr=M01fp,, II= (f—2hf—2h> £ onf_p, (7)
where £ o), = (?{,fé, e ,/f;’jﬁh)’, £, = (f}’LH,g, . ,?{’Tih)’. Then the prediction can be com-
puted as
~ ~ ! ~yl 7Y
Ui = Qi + Bixir + 37 (8)

We call this the Residual Based Approach (RBA).

An alternative approach is to estimate the factors from the explanatory variables x;; by PC,
supposing that they have a factor representation as x;; = a? + I'7'f¥ + v;; where f{ is a vector of
common factors of size m,, I'j’ are their loadings, aj are the fixed effects and v;; is a vector error
term which can be autocorrelated and can contain WCD. If fty C f} this method can be used by
estimating f from x; for ¢ = 1,...,n, ¢t = 1,...,7, and plugging them in the predictive model
(3). However, the condition f/ C £/ may not be always reasonable in practice. When this is not

satisfied we can assume that some auxiliary variables w;; are observable which satisfy
wy=a’+TV " +6u, t=1,...,T, (9)

such that £/ C £/, where wi = (wi1t, wiat, - - - ,Wik,¢) 15 a (ky, x 1) vector of auxiliary observed
individual-specific variables, a}’ are the fixed effects, I'}’ is the (m,, X k) matrix of factor loadings
associated with the (m,, x 1) unobservable common factors f/. Note that w;; can contain x;; as
its components. Then the prediction methodology, which we call Auxiliary Variables Approach

(AVA), is based on the following four steps:



Step 1: Use any estimator which controls for unobserved common factors as described in the
next subsection and compute the residuals in (5). In a pooling case, BZ should be replaced by the
appropriate pooled estimator.

Step 2: Use principal components methods in the spirit of Bai (2003) to extract m,, common
factors £’ from observed variables w, t =1,...,T.

Step 3: Estimate the factor loadings 4;’ by OLS on the regression

A~

é\lt:‘}’;u/ft’lih—l-yzt, t:h+1,,T (10)
Step 4: Compute the prediction @AT RIT using
~, ~ =~/ ~wl o
y{?:m.m:r = a; + Bixir + 7, £ (11)

Remark 1. Both approaches require information on the number of common factors contained
in the respective variables. In the RBA m, (the number of factors in the process e;) and in the
AVA m,, (the number of factors in the auxiliary variables w;;) need to be known. These can be
consistently estimated using the methods proposed Bai & Ng (2002).

Remark 2. The AVA approach can be further improved by slightly modifying the fourth step.
In the case that m,, > my, i.e. the number of common factors in w;; is strictly greater than that
of the ones in e, the regression in Step 3 uses redundant common factors. To choose the correct
number of factors in this step once more the information criteria of Bai & Ng (2002) can be used
after suitable modifications on the number of parameters estimated.

Remark 3. It is not sure that the order of importance of common factors in the w;; equation will
be the same as in the order of common factors in terms of their predictive ability on the dependent
variable. For instance, in a macroeconomic study there can be regional factors which are most
important for the countries in these regions. PC approach described here will order the common
factors in terms of their global importance which may not be the valid ordering for all regions. In
this case machine learning methods can be used to select the most important common factors for
each panel unit in the same spirit as Bai & Ng (2008, 2009).

Remark 4. In the RBA, the factors are required to carry serial correlation. Given that this is
so, similar to the second remark, in the RBA the prediction of the common factors given in (7)
requires choosing the optimal model for the unobserved common factors. Since the PC estimates

of the common factors are orthogonal by construction, any univariate time series model can be

7



used on each estimate for prediction. As in the Monte Carlo simulations below the common factors
are generated as an AR(1), we use this single lag prediction.

Remark 5. The AVA approach may seem restrictive as it requires additional observable variables
to estimate the common factors. However, it is reasonable to assume that the forecaster has access
to many variables which are potentially correlated with the common factors of interest. This is the
assumption behind the diffusion index methodology of forecasting which proved useful ever since
the seminal work of Stock & Watson (1998). In fact, it can be the case that the forecaster has
access to an information set which is too large such that it is hard to extract the useful information
to perform forecasts.! In this case, the variables to include in w;; can be chosen using the penalized
regression methods as in Bai & Ng (2008, 2009).

If additional variables do not exist, the observed variables x;; can be still used to estimate the
common factors given that they are correlated linearly with the unobserved common factors f}.
When these variables include all common factors in the DGP for the dependent variable, there is
no need to use additional observables. This is a testable hypothesis. In this case we suggest a two
step methodology which can be applied as follows: Notice that the residuals in Step 1 of the AVA
contain all unobserved common factors in the vector f/. In an additional step, the forecaster can
extract common factors only from x;; and run the regression of €;; on these factors. If the residuals
from this regression fail to reject the WCD hypothesis using the test of Pesaran (2015), Step 4 is
applied with these factors.? If the WCD hypothesis is rejected, we suggest to apply PCA to the
residuals from the regression of €;; on the common factors extracted from x;; and forecast them to

apply the RBA. This gives a hybrid solution between the two approaches.

2.3. Methods of estimation

The two approaches of forecasting with unobserved common factors described above require
the estimation of the slope parameters. In what follows, we only briefly describe the estimation

procedures. The details of the relevant estimation methods are reported in the Supplementary

'Boivin & Ng (2006) show that for forecasting purposes less data can be better than larger but noisy data.
2Juodis & Reese (2018) show that the pre-removal of unobserved common factors by means of subtracting cross-

sectional averages causes an incidental parameters problem in testing for WCD. As a result, the WCD test proposed
by Pesaran (2015) no longer has the standard normal asymptotic distribution. However, De Hoyos & Sarafidis (2006)
show that Frees (1995, 2004) and Breusch & Pagan (1980) tests can be used to test for general CD.



Material. The estimators of the individual slope coefficients that we consider take the form
~ -1
/3M,i = (Xg.,—hMHXi.,—h) X;‘.,—hMHYi.y (12)

and the pooled estimators of the average slope parameters have the form

n -1 5
Bup = <Z X;hMHth> > X _xMuyi, (13)

i=1 i=1

where X; _j, = (X}1,X}q, ... 7X;,T—h)/7 Vi. = (Yih+1,Yi2s - - Yir), My = Ip_, — HHH) H' and
~ denotes Moore-Penrose inverse. The estimators we consider differ in the way they deal with the
common factors, hence, the matrix H defines these different estimators.

The first class of the estimators is of CCE-type proposed by Pesaran (2006). These estimators
use cross-sectional averages of the dependent variable and the explanatory variables as proxies for
the common factors. For these estimators we set H = (er_j,, Z) where er_y, is a vector of ones of
length T — h, Z = (21,75, . .. 2 ) 2 = n~tS" 7zl and zy = (Yt Xi4-p) s t=h+1,....T.
We call these estimators Ind. CCE and CCEP. A slightly modified versions of these estimators
use the cross-sectional averages of only the exogenous variables, hence, H = (er_;, W) where W
is the matrix of observations on cross-sectional averages of some exogenous variables which can
include the explanatory variables themselves. These are named as Ind. CCEX and CCEPX.

The second class of estimators includes the ones which use PC methods to estimate the common

factors. First one is the iterative principal components estimator proposed by Bai (2009) which

we call IPCP. The procedure starts with an initial estimation of the slope parameters 3 and the
(0)

individual specific effects ;. Let us denote these initial estimates B(O) and a;

factor estimates are computed from the residuals €; = y; — ago) — B(O)/xi’t_h using PC. Factor

. Next, the common

estimates update parameter estimates iteratively until numerical convergence is achieved. We can
express this estimator by setting H = (er_p, f‘%) where f‘}‘ is the matrix of observations on the
common factor estimates after the numerical convergence is achieved for the slope parameters. The
heterogeneous counterpart of this estimator was first used by Song (2013) and is called Ind. IPC.
Another consistent estimator can be obtained by setting H = (er_p, f‘x) where F? is the matrix of
observations on the common factor estimates obtained by PC on the explanatory variables. These
estimators are called Ind. PCX and PCPX. These are also used as initial values for the iterative
PC estimators. Although consistent, these estimators do not wipe out all common factors in (1)

if the condition f/ C £ is not satisfied. An alternative is to set H = (ep_p, F~, f‘“) where F* is

9



the matrix of observations on the common factor estimates obtained by PC on the residuals in (1)
which are computed using the estimators Ind. PCX or PCPX. We call these two-stage estimators
Ind. PCX2S and PCPX2S.

Under general conditions, all these estimators are consistent for the individual parameters or
their expected values as long as both dimensions of the panel get large and when the regressors are
strictly exogeneous. Pesaran & Tosetti (2011) show that the CCE estimators are consistent under
the assumption on the boundedness of the row and column sums of the matrix R. The PC estima-
tors require slightly stronger assumptions on the degree of the heteroskedasticity and dependence
in either panel dimensions. The details of these are given in the Supplementary Material. CCFE
estimators also require a rank condition which we assume to hold.?

When the right hand side variables contain weakly exogeneous variables like predetermined
variables, pooled estimators turn inconsistent for the average effect when the true model is het-
erogeneous (Pesaran & Smith, 1995) even when there are no unobserved common factors. For
the CCFE estimators to remain consistent in the existence of weakly exogeneous regressors, lags of
cross-sectional averages have to be included in the estimation of individual equations. They also
require the number of cross-sectional averages to be at least as large as the number of unobserved
common factors (Chudik & Pesaran, 2015). As our main aim is to compare forecast performance,
in our simulations we rely on strictly exogeneous regressors noting that otherwise pooled estimators
are already outperformed by individual estimates. This is confirmed by simulations considering a
dynamic model for which the results are reported in the Supplementary Material. In the application
below, we use specifications with predetermined variables, paying attention to the requirements
mentioned above. Namely, for to compute the estimates using Ind. CCE and CCEP, we add

sufficient number of lags of cross-sectional averages as in (Chudik & Pesaran, 2015).

3. Monte Carlo study

3.1. Design of the experiments
The dependent and the explanatory variables are generated as follows:
Yit+h = o + Binxine + Biowioe + Vir f1e + Vi for + Ui p4n, (14)

Tije = Q5 + Yij1 fie + Vijz f3e + vije, 7 =1,2, (15)

3See Karabiyik, Reese & Westerlund (2017) for a discussion on this topic.
10



where i =1,2,...,n,t=1,2,...,T, x;j;, j = 1,2, are the observed explanatory variables, f;;, j =
1,2,3, are the unobserved common factors with loadings v;;x, «; and a;; are the fixed effects, and
Bij are the slope coefficients. The error term of the dependent variable carries spatial dependence
and it is generated as a SAR using
n
Uip = pP; sz‘jujt + eit, where g; ~ N (0, JZ-Q), UZZ ~ IIDU(0.5, 1.5), (16)
j=1
where wj;; is the element of the spatial weight matrix W, in row ¢ and column j. An SMA is also
considered as a generating process but the results are similar and they are not reported here. A
rook-type spatial weight matrix is used. We consider two different cases for p;. These two cases are
based on Baltagi & Pirotte (2010), with the main difference being heterogeneity of the parameters
in the (first order) SAR (or SMA) models, where p; = p = (0.2,0.8) which corresponds to low and

high spatial dependence, respectively. Similarly, we generate the heterogeneous coefficients using
pi=p+e, with p={0.2,08}, e ~U(-0.1,0.1). (17)
The unobserved common factors are generated as follows

fit = ppifii—1 +vpie,  vpe ~N(0,1— p;j), pri =05, fjo=0, j=1,2.3. (18)

The disturbances associated to the explanatory variables are generated by a stationary AR(1)

process which is given by
Vijt = PogViji—1 + €ijes €ije ~ N(0,1=p2 ), pyy; ~ 1IDU(0.05,0.95), (19)

assuming that v;jo = 0, 7 = 1,2. The first 10 observations are discarded to minimize the im-
pact of initial values. The slope coefficients f;; are generated under two different assumptions

corresponding to high and low heterogeneity. They are given by

Bij = Bj+mj,  Bj=1, mny; ~TDN(0,07 ), (20)

2 pr—

where o2
nj

0.15 and a%j = 0.3, 7 = 1,2, correspond to low and high heterogeneity, respectively.
These heterogeneity levels in both cases are higher compared to those of Pesaran (2006), Pesaran

& Tosetti (2011). The individual effects are generated as

Q1 HDN(l, 1), Q5 ~ IIDN(O5, 0.5), ] = 1, 2 (21)

11



and they are fixed for each replication. The loadings of the unobserved common factors in the

equations for the explanatory variables are generated as

Yi11  Yil3 HDN(O.5,0.5) HDN(0,0.5) (22)
Vi1 i3 IIDA/(0,0.5) IIDAY(0.5,0.5) |

To produce forecasts using the AVA an additional variable x;3; is generated as
Tigt = a3 + V311 + Visa far + Vist, (23)
where the factor loadings are given by
a;z ~ IIDN(1.5,1.02), 732, ~ IIDN(1,0.1). (24)

The other terms in (23) are defined in the same way as those contained in explanatory variable
DGPs (15).

Contrary to the case of the factor loadings in the process generating the explanatory variables
xij¢ from different distributions, in this paper we follow Trapani & Urga (2009) and Phillips & Sul
(2003) and draw loadings to generate low and high CD. This is controlled as follows

IIDN(1,0.1) for Low CD,
Vi1s Vi2 ~ (25)
IIDN(2,0.4) for High CD.

The chosen parameters in (25) induce average correlation coefficients among panel units of 0.5 and

0.8, respectively. The full set of experiments is summarized in Table 1.

Table 1: Summary of Experiments

Cases Description Parametrization
- Case I Low Spatial & Low Factor Dependence  p = 0.2, 7,1, vi2 ~ IIDN(1,0.1)
- Case 2 Low Spatial & High Factor Dependence p = 0.2, v;1,vi2 ~ IIDN(2,0.4)
- Case 8 High Spatial & Low Factor Dependence p = 0.8, ;1,72 ~ IIDN(1,0.1)
- Case 4 High Spatial & High Factor Dependence p = 0.8, 7,1, vi2 ~ IIDN(2,0.4)

We consider (n,T) = {20, 30,50,100}. For each experiment, 2,000 replications are performed.
The results for the individual estimators CCE, CCEX, IPC, PCX, PCX2S and their pooled coun-
terparts are reported. For PC estimators, we assume that the number of unobservable common

factors are known.

12



The forecasts are computed for the ith individual at future period T + h, with h = 1 to
compare the performance of two forecast approaches and estimator performance. We also tried
h = 5,10 using the AVA to compare the individual and pooled estimators and the results are

available upon request. We use root mean squared error (RMSE) to measure the predictive accuracy

defined as RMSE; = \/ % 22:1 (Yir+r — yi7T+T)2 and to obtain a single measure, the average of the
statistic across units is computed. The results are reported relative to the OLS benchmark which
is computed using unit specific OLS estimates. Hence, they show the gain in forecast accuracy

from using estimated common factors.

3.2. Simulation results

The results on the prediction performance of different estimators with the RBA and the AVA
for the case of low heterogeneity are reported in Tables 2-5 whereas the results on the case of high
heterogeneity are given in Tables 6-9.

Table 2 is concerned with the case of low spatial dependence and low factor dependence (Case
1), the forecast performance of any estimator is superior using the AVA compared to the RBA.
When n, T = 20, for any given estimator the relative RMSE of the forecasts using the RBA is 1.4.
As either T or n or both increases this ratio also increases and exceeds 1.5 when n,T = 100.

In the case of CCE estimators, it is seen that the individual estimators outperform the pooled
estimators even in smallest samples. For instance, with AVA, the relative RMSE of Ind. CCE
(0.723) is slightly better than its pooled counterpart (0.746) when n,T = 20 which gives a relative
RMSE of 0.97. When T increases to 100 for the same n this ratio is 0.92 which shows that the
relative performance of the individual estimator increases. This result is similar for other estimators
except Ind. PCX and and its pooled version. When T = 20, for any n the pooled estimator
ourperforms the individual estimator. This can be explained by the fact that these estimators do
not control for all unobserved common factors in the DGP of the dependent variable, hence the
individual estimators are affected more by the lower signal to noise ratio compared to pooled ones.
However, as T increases, again the individual estimator is preferred.

Finally, a comparison of the best performing CCE and PC' estimators shows that the CCE
performs better in the case of small T' and small n but PC improves and has a better performance
when n gets large. For instance, with AVA, when n, T = 20, Ind. CCFE and Ind. IPC have relative
RMSEs equal to 0.723 and 0.733, respectively. When n = 100 for the same time dimension, these
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Table 2: Relative RMSE — Low Heterogeneity, Case 1: Low Spatial Dependence & Low Factor Dependence

Individual Pooled
T Residual Based Approach Auxiliary Variables Approach Residual Based Approach Auxiliary Variables Approach
\ 20 30 50 100 20 30 50 100 20 30 50 100 20 30 50 100
Ind. CCE CCEP
20 0.992 0.984 0.979 0.976 0.723 0.687 0.673  0.661 20 1.022 1.048 1.061 1.067 0.746 0.730 0.726  0.719
30 1.007 0.982 0.962 0.964 0.731 0.674 0.636 0.636 30 1.038 1.049 1.060 1.064 0.749 0.720 0.707 0.708
50 0.998 0.990 0.966 0.973 0.709 0.687 0.653 0.635 50 1.031 1.051 1.053 1.075 0.732  0.731 0.713  0.706
100 1.004 0.987 0.974 0.955 0.686 0.668 0.644 0.636 100 1.030 1.051 1.066 1.061 0.710 0.715 0.711  0.711
Ind. CCEX CCEPX
20 0.996 0.987 0.980 0.977 0.726 0.689 0.674 0.661 20 1.023 1.048 1.061 1.067 0.746 0.730 0.726  0.719
30 1.012 0.986 0.963 0.965 0.734 0.676 0.637 0.636 30 1.038 1.049 1.060 1.064 0.749 0.720 0.707 0.708
50 1.001 0.992 0.967 0.973 0.711 0.687 0.654 0.635 50 1.031 1.051 1.053 1.075 0.732  0.731 0.713  0.706
100 1.005 0.987 0.974 0.956 0.687 0.668 0.644 0.636 100 1.030 1.051 1.066 1.061 0.710 0.715 0.711 0.711
Ind. IPC IPCP
20 0.999 0.988 0.980 0.979 0.733  0.690 0.674  0.660 20 1.023 1.049 1.062 1.068 0.748 0.731 0.727  0.720
30 1.001 0.981 0.962 0.966 0.733 0.674 0.636  0.635 30 1.038 1.050 1.061 1.065 0.750 0.721 0.708 0.708
50 0.981 0.980 0.964 0.974 0.704 0.682 0.651 0.634 50 1.031 1.051 1.053 1.075 0.733 0.731 0.714  0.707
100 0.980 0.975 0.968 0.954 0.674 0.661 0.641 0.634 100 1.030 1.051 1.066 1.061 0.710 0.715 0.711 0.711
Ind. PCX PCPX
20 1.087 1.059 1.018 1.000 0.790 0.735 0.697 0.673 20 1.026 1.051 1.064 1.069 0.749 0.731 0.727  0.719
30 1.102 1.055 1.009 0.989 0.795 0.721 0.668 0.651 30 1.039 1.050 1.062 1.066 0.751 0.722 0.708 0.708
50 1.087 1.052 1.003 0.996 0.776 0.732 0.678 0.649 50 1.032 1.052 1.053 1.075 0.733 0.731 0.714  0.706
100 1.090 1.045 1.013 0.977 0.752  0.713 0.673  0.650 100 1.031 1.051 1.066 1.061 0.710 0.715 0.711  0.711
Ind. PCX2S PCPX2S
20 1.036 1.012 0.991 0.984 0.745 0.698 0.677 0.661 20 1.026 1.051 1.064 1.069 0.747 0.729 0.727 0.719
30 1.044 1.004 0.972 0.970 0.750 0.681 0.639 0.637 30 1.039 1.050 1.062 1.066 0.750 0.721 0.707  0.708
50 1.024 1.006 0.973 0.978 0.722  0.693 0.655 0.635 50 1.032 1.052 1.053 1.075 0.733 0.731 0.713  0.706
100 1.022 0996 0.978 0.958 0.696 0.672 0.645 0.636 100 1.031 1.051 1.066 1.061 0.710 0.715 0.711 0.711

values are 0.686 and 0.674, respectively. When n and T' are

very similar performance.

both large, the two estimators have

The results do not change significantly when we consider the case of low spatial dependence

and high factor dependence (Case 2) which are reported in Table 3. In this case the performance of

the RBA is lower compared to the AVA, with the relative RMSE being about 1.8 for any estimator

when n,T = 20. However, in this case the relative performance of RBA with respect to forecasts

without common factors is improved compared to the previous case even in smallest samples. As

in this case common factors have bigger variability in the DGP of the dependent variable the

relative performance of the pooled estimators are better compared to the previous case. However,

all estimators deal with these common factors in a successful manner. Hence, still the individual

specific estimators are superior, once more except the Ind. PCX and and its pooled version.

14



Table 3: Relative RMSE — Low Heterogeneity, Case 2:

Low Spatial Dependence & High Factor Dependence

Individual Pooled
T Residual Based Approach Auxiliary Variables Approach Residual Based Approach Auxiliary Variables Approach
n 20 30 50 100 20 30 50 100 20 30 50 100 20 30 50 100
Ind. CCE CCEP
20 0.925 0.933 0.938 0.941 0.496 0.467 0.455 0.445 20 0.939 0.964 0.979 0.985 0.508 0.491 0.486 0.479
30 0.943 0.932 0.918 0.928 0.495 0.448 0.416 0.417 30 0.959 0.965 0.963 0.975 0.505 0.474 0.457  0.460
50 0.931 0.937 0.926 0.942 0471 0.454 0.426 0.412 50 0.947 0.967 0.969 0.992 0.484 0.480 0.462 0.456
100 0.938 0.941 0933 0.915 0.447 0.432 0.414 0.408 100 0.950 0.971 0.978 0.966 0.461 0.461 0.455 0.455
Ind. CCEX CCEPX
20 0.931 0.936 0.939 0.942 0.501 0.470 0.457  0.446 20 0.939 0.964 0.979 0.985 0.508 0.491 0.486 0.479
30 0.947 0.935 0.919 0.928 0.500 0.450 0.417 0.418 30 0.959 0.965 0.963 0.975 0.505 0.474 0.457  0.460
50 0.934 0.939 0.927 0.942 0.473 0.455 0.427 0.413 50 0.947 0.967 0.969 0.992 0.484 0.480 0.462 0.456
100 0.940 0.941 0.934 0.915 0.448 0.433 0.415 0.409 100 0.951 0.971 0.978 0.966 0.461 0.461 0.455 0.455
Ind. IPC IPCP
20 0.934 0.937 0939 0.944 0.502 0.467 0.453 0.443 20 0.939 0.965 0.980 0.985 0.509 0.491 0.486  0.479
30 0.942 0.933 0.918 0.929 0.495 0.446 0.413 0.416 30 0.958 0.965 0.964 0.975 0.506 0.475 0.457  0.460
50 0.923 0.933 0.926 0.943 0.466 0.450 0.424 0.411 50 0.947 0.967 0.969 0.992 0.484 0.481 0.462 0.456
100 0.927 0.935 0.931 0.915 0.440 0.428 0.412 0.407 100 0.951 0.971 0.978 0.966 0.461 0.461 0.455 0.455
Ind. PCX PCPX
20 1.065 1.042 0.998 0.976 0.627 0.561 0.506 0.473 20 0.944 0.969 0.982 0.987 0.515 0.494 0.488  0.480
30 1.085 1.038 0.986 0.963 0.623 0.542 0.478 0.449 30 0.961 0.967 0.966 0.976 0.509 0.477 0.458 0.461
50 1.069 1.034 0.983 0.977 0.605 0.549 0.480 0.443 50 0.948 0.969 0.969 0.992 0.486 0.482 0.463 0.456
100 1.074 1.033 0.995 0.949 0.583 0.528 0.476  0.440 100 0.951 0.971 0.978 0.966 0.463 0.461 0.455 0.455
Ind. PCX2S PCPX2S
20 0.956  0.954 0.947 0.946 0.517 0.478 0.458  0.445 20 0.944 0.969 0.982 0.987 0.509 0.491 0.486  0.479
30 0.968 0.947 0.925 0.932 0.512 0.454 0.418 0.418 30 0.961 0.967 0.966 0.976 0.506 0.474 0.457  0.460
50 0.947 0.948 0.931 0.945 0.482 0.460 0.427 0.412 50 0.948 0.969 0.969 0.992 0.484 0.480 0.462 0.456
100 0.950 0.946 0.936 0.917 0.457 0.436 0.415 0.409 100 0.951 0.971 0.978 0.966 0.461 0.461 0.455 0.455
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Table 4: Relative RMSE — Low Heterogeneity, Case 3: High Spatial Dependence & Low Factor Dependence

Individual Pooled
T Residual Based Approach Auxiliary Variables Approach Residual Based Approach Auxiliary Variables Approach
\ 20 30 50 100 20 30 50 100 20 30 50 100 20 30 50 100
Ind. CCE CCEP
20 1.017 1.014 1.008 1.009 0.883 0.842 0.853 0.834 20 1.003 1.035 1.045 1.060 0.877 0.854 0.871 0.859
30 1.040 1.017 1.002 0.996 0.890 0.844 0.821 0.809 30 1.016 1.034 1.050 1.052 0.876 0.854 0.849 0.841
50 1.045 1.028 0.999 0.999 0.882 0.852 0.803 0.791 50 1.011 1.034 1.043 1.056 0.862 0.856 0.827 0.824
100 1.051 1.019 1.005 0.986 0.854 0.824 0.809 0.786 100 1.009 1.029 1.043 1.043 0.832 0.830 0.833 0.822
Ind. CCEX CCEPX
20 1.060 1.038 1.024 1.016 0.912 0.857 0.862 0.838 20 1.003 1.036 1.045 1.060 0.877 0.854 0.871 0.859
30 1.072 1.036 1.013 1.000 0.911 0.855 0.828 0.811 30 1.016 1.034 1.050 1.052 0.876 0.854 0.849 0.841
50 1.066 1.037 1.004 1.002 0.895 0.857 0.806 0.792 50 1.012 1.034 1.043 1.056 0.862 0.856 0.827 0.824
100 1.060 1.023 1.008 0.988 0.861 0.827 0.811 0.787 100 1.009 1.029 1.043 1.043 0.832 0.830 0.833 0.822
Ind. IPC IPCP
20 0.983 0.990 0.996 1.003 0.872 0.836 0.851 0.835 20 1.003 1.036 1.045 1.061 0.877 0.855 0.871 0.860
30 0.992 0.987 0.986 0.988 0.873 0.837 0.820 0.809 30 1.015 1.034 1.051 1.052 0.875 0.854 0.850 0.841
50 0.989 0.992 0.985 0.989 0.861 0.840 0.800 0.791 50 1.012 1.034 1.044 1.057 0.862 0.856 0.828 0.824
100 0.992 0.988 0.986 0.978 0.831 0.814 0.806 0.787 100 1.009 1.030 1.044 1.043 0.831 0.830 0.833 0.822
Ind. PCX PCPX
20 1.123 1.088 1.051 1.033 0.942 0.880 0.872 0.845 20 1.007 1.039 1.047 1.062 0.879 0.855 0.872  0.860
30 1.129 1.080 1.044 1.017 0.939 0.877 0.843 0.819 30 1.017 1.035 1.052 1.053 0.877 0.855 0.850 0.841
50 1.115 1.074 1.028 1.017 0.924 0.878 0.819 0.800 50 1.013 1.036 1.044 1.056 0.863 0.857 0.828 0.824
100 1.109 1.058 1.030 1.001 0.891 0.849 0.824 0.794 100 1.009 1.030 1.043 1.043 0.832 0.830 0.833 0.822
Ind. PCX2S PCPX2S
20 1.055 1.035 1.016 1.014 0.897 0.848 0.853 0.833 20 1.007 1.039 1.047 1.062 0.877 0.854 0.871 0.859
30 1.069 1.031 1.008 1.000 0.901 0.847 0.822  0.809 30 1.017 1.035 1.052 1.053 0.876 0.854 0.849 0.841
50 1.066 1.035 1.003 1.001 0.889 0.853 0.803 0.790 50 1.013 1.036 1.044 1.056 0.862 0.856 0.827 0.824
100 1.069 1.026 1.008 0.988 0.861 0.826 0.809 0.786 100 1.009 1.030 1.043 1.043 0.832 0.830 0.833 0.822

The results for the case of high spatial dependence and low factor dependence (Case 3) are
reported in Table 4. Once more the performance of the RBA is lower compared to the AVA but
their performances seem closer in this case with the relative RMSE being about 1.2 in smallest
samples. Here, with RBA, the relative performance of the pooled estimators is better than the
individual estimators when 7' is small, one exception being the Ind. IPC and IPCP estimators.
Here, the best performing estimator is Ind. IPC in all samples sizes. These conclusions are equally
valid for the case of high spatial dependence and high factor dependence (Case 4) for which the
results are given in Table 5.

The results above are confirmed in the case of high heterogeneity reported in Tables 6-9. How-
ever, in this case even when we have spatial dependence individual estimators perform better than

their pooled counterparts. To summarize, (i) the AVA outperforms the RBA in all cases; (ii) indi-
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Table 5: Relative RMSE — Low Heterogeneity, Case 4: High Spatial Dependence & High Factor Dependence

Individual Pooled
T Residual Based Approach Auxiliary Variables Approach Residual Based Approach Auxiliary Variables Approach
n 20 30 50 100 20 30 50 100 20 30 50 100 20 30 50 100
Ind. CCE CCEP
20 0.961 0.966 0.974 0.977 0.674 0.627 0.648 0.629 20 0.952 0.978 0.997 1.007 0.668 0.634 0.661 0.647
30 0.982 0.968 0.956 0.959 0.671 0.623 0.597  0.592 30 0.968 0.978 0.983 0.991 0.660 0.630 0.616 0.614
50 0.979 0.977 0.955 0.967 0.654 0.629 0.577 0.571 50 0.959 0.981 0.981 0.999 0.639 0.632 0.594 0.594
100 0.982 0.971 0.963 0.942 0.613 0.590 0.584  0.562 100 0.958 0.977 0.986 0.975 0.598 0.595 0.601 0.587
Ind. CCEX CCEPX
20 0.988 0.980 0.983 0.980 0.695 0.638 0.656 0.632 20 0.952  0.978 0.997 1.007 0.668 0.634 0.661 0.647
30 1.003 0.981 0.963 0.962 0.687 0.633 0.602 0.594 30 0.968 0.978 0.983 0.992 0.660 0.630 0.616 0.614
50 0.993 0.984 0.958 0.968 0.663 0.633 0.579 0.572 50 0.959 0.981 0.981 0.999 0.639 0.632 0.594 0.594
100 0.988 0.974 0.965 0.943 0.618 0.593 0.585 0.563 100 0.958 0.977 0.986 0.975 0.598 0.595 0.601 0.587
Ind. IPC IPCP
20 0.947 0.955 0.967 0.973 0.669 0.624 0.648 0.631 20 0.953 0.978 0.997 1.007 0.668 0.634 0.661 0.647
30 0.956 0.952 0.948 0.955 0.661 0.621 0.598 0.594 30 0.968 0.978 0.984 0.992 0.660 0.630 0.616 0.615
50 0.948 0.958 0.949 0.961 0.641 0.624 0.577 0.574 50 0.960 0.981 0.981 0.999 0.639 0.632 0.594 0.595
100 0.953 0.957 0.955 0.941 0.601 0.585 0.583 0.562 100 0.958 0.977 0.986 0.976 0.597 0.595 0.601 0.588
Ind. PCX PCPX
20 1.093 1.062 1.028 1.008 0.770  0.695 0.683 0.648 20 0.957 0.982 0.999 1.009 0.672 0.637 0.662 0.647
30 1.105 1.056 1.014 0.989 0.761 0.687 0.638 0.613 30 0.971 0979 0.985 0.993 0.662 0.631 0.617 0.615
50 1.089 1.053 1.001 0.993 0.741 0.688 0.612 0.591 50 0.961 0.983 0.981 0.999 0.640 0.633 0.594  0.595
100 1.087 1.043 1.010 0.968 0.701 0.652 0.621 0.582 100 0.958 0.977 0.986 0.976 0.599 0.595 0.601 0.588
Ind. PCX2S PCPX2S
20 0.993 0.985 0.981 0.982 0.690 0.635 0.650 0.629 20 0.957 0.982 0.999 1.009 0.668 0.634 0.661 0.646
30 1.008 0.982 0.962 0.963 0.684 0.628 0.598  0.592 30 0.971 0.979 0.985 0.993 0.660 0.630 0.616 0.614
50 0.998 0.986 0.959 0.969 0.663 0.632 0.577 0.571 50 0.961 0.983 0.981 0.999 0.639 0.632 0.594 0.594
100 0.996 0.977 0.966 0.944 0.621 0.594 0.585 0.563 100 0.958 0.977 0.986 0.976 0.598 0.595 0.601 0.587
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Table 6: Relative RMSE — High Heterogeneity, Case 1:

Low Spatial Dependence & Low Factor Dependence

Individual Pooled
T Residual Based Approach Auxiliary Variables Approach Residual Based Approach Auxiliary Variables Approach
n 20 30 50 100 20 30 50 100 20 30 50 100 20 30 50 100
Ind. CCE CCEP
20 0.993 0.985 0.979 0.977 0.724 0.688 0.673 0.661 20 1.103 1.133 1.146 1.151 0.807 0.792 0.788 0.780
30 1.008 0.983 0.962 0.965 0.732 0.674 0.637 0.636 30 1.121 1.138 1.158 1.156 0.808 0.787 0.782 0.778
50 0.998 0.991 0.966 0.973 0.710 0.687 0.653 0.635 50 1118 1.140 1.142 1.170 0.797 0.797 0.780 0.777
100 1.004 0.987 0.974 0.956 0.686 0.668 0.644 0.636 100 1118 1.140 1.164 1.158 0.776  0.784 0.784  0.785
Ind. CCEX CCEPX
20 0.996 0.987 0.980 0.977 0.726 0.689 0.674 0.661 20 1.103 1.134 1.146 1.151 0.807 0.792 0.788 0.780
30 1.012 0.986 0.963 0.965 0.734 0.676 0.637 0.636 30 1.121 1.138 1.158 1.156 0.808 0.786 0.782 0.778
50 1.001 0.992 0.967 0.973 0.711 0.687 0.654 0.635 50 1.118 1.140 1.142 1.170 0.797 0.797 0.780 0.777
100 1.005 0.987 0.974 0.956 0.687 0.668 0.644 0.636 100 1118 1.140 1.164 1.158 0.776  0.784 0.784  0.785
Ind. IPC IPCP
20 0.999 0.988 0.980 0.979 0.733 0.690 0.674 0.660 20 1.105 1.136 1.148 1.154 0.810 0.794 0.789 0.782
30 1.001 0.981 0.962 0.966 0.733 0.674 0.636  0.635 30 1122 1.140 1.160 1.158 0.809 0.788 0.783  0.779
50 0.981 0.980 0.964 0.974 0.704 0.682 0.651 0.634 50 1120 1.141 1.143 1.171 0.798 0.797 0.781 0.778
100 0.980 0.975 0.968 0.954 0.674 0.661 0.641 0.634 100 1119 1.142 1.165 1.160 0.777 0.785 0.785  0.785
Ind. PCX PCPX
20 1.087 1.059 1.018 1.000 0.790 0.735 0.697 0.673 20 1.106 1.137 1.149 1.154 0.810 0.793 0.788 0.781
30 1.102 1.055 1.009 0.989 0.795 0.721 0.668 0.651 30 1122 1.139 1.160 1.158 0.809 0.787 0.782 0.778
50 1.087 1.052 1.003 0.996 0.776 0.732 0.678 0.649 50 1.119 1.142 1.142 1.170 0.798 0.797 0.781 0.777
100 1.090 1.045 1.013 0.977 0.752  0.713 0.673  0.650 100 1118 1.141 1.164 1.158 0.777 0.785 0.784  0.785
Ind. PCX2S PCPX2S
20 1.036 1.012 0.991 0.984 0.745 0.698 0.677 0.661 20 1.106 1.137 1.149 1.154 0.808 0.792 0.788 0.781
30 1.044 1.004 0.972 0.970 0.750 0.681 0.639 0.637 30 1122 1.139 1.160 1.158 0.808 0.787 0.782 0.778
50 1.024 1.006 0.973 0.978 0.722  0.693 0.655 0.635 50 1.119 1.142 1.142 1.170 0.797 0.797 0.780 0.777
100 1.022 0996 0.978 0.958 0.696 0.672 0.645 0.636 100 1118 1.141 1.164 1.158 0.777 0.784 0.784  0.785

vidual estimators outperform pooled estimators, the only exception being the case of high spatial

dependence and low level of heterogeneity; (iii) PC estimators, especially the Ind. IPC of Song

(2013), is the estimator which is most robust to spatial dependence.

4. An application to house price inflation in OECD countries

In this section, we report an illustrative example using the two forecasting approaches and

several panel data estimators with the main aim of undertaking short-run forecasts of the house

price inflation in the OECD countries.
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Table 7: Relative RMSE — High Heterogeneity, Case 2: Low Spatial Dependence & High Factor Dependence

Individual Pooled
T Residual Based Approach Auxiliary Variables Approach Residual Based Approach Auxiliary Variables Approach
n 20 30 50 100 20 30 50 100 20 30 50 100 20 30 50 100
Ind. CCE CCEP
20 0.926 0.933 0.938 0.941 0.497 0.467 0.455 0.445 20 0.979 1.006 1.022 1.026 0.545 0.528 0.523 0.516
30 0.943 0.932 0.918 0.928 0.496 0.448 0.416 0.417 30 1.000 1.007 1.010 1.020 0.541 0.514 0.501 0.502
50 0.931 0.938 0.926 0.942 0.471 0.455 0.426 0.412 50 0.990 1.011 1.012 1.038 0.523 0.521 0.503  0.499
100 0.938 0.941 0933 0.915 0.447 0.432 0.414 0.408 100 0.992 1.015 1.026 1.014 0.501 0.503 0.501 0.501
Ind. CCEX CCEPX
20 0.931 0.936 0.939 0.942 0.501 0.470 0.457  0.446 20 0.979 1.006 1.022 1.026 0.545 0.528 0.523  0.516
30 0.947 0.935 0.919 0.928 0.500 0.450 0.417 0.418 30 1.000 1.007 1.010 1.020 0.541 0.514 0.501  0.502
50 0.934 0.939 0.927 0.942 0.473 0.455 0.427 0.413 50 0.990 1.011 1.012 1.038 0.523 0.521 0.503  0.499
100 0.940 0.941 0.934 0.915 0.448 0.433 0.415 0.409 100 0.992 1.015 1.026 1.014 0.501 0.503 0.501 0.501
Ind. IPC IPCP
20 0.934 0.937 0939 0.944 0.502 0.467 0.453 0.443 20 0.979 1.007 1.022 1.027 0.546  0.529 0.524  0.517
30 0.942 0.933 0.918 0.929 0.495 0.446 0.413 0.416 30 1.000 1.008 1.011 1.020 0.542 0.515 0.502  0.503
50 0.923 0.933 0.926 0.943 0.466 0.450 0.424 0.411 50 0.991 1.010 1.013 1.038 0.523 0.521 0.504  0.500
100 0.927 0.935 0.931 0.915 0.440 0.428 0.412 0.407 100 0.993 1.015 1.026 1.015 0.501 0.504 0.501 0.501
Ind. PCX PCPX
20 1.065 1.042 0.998 0.976 0.627 0.561 0.506 0.473 20 0.983 1.011 1.025 1.028 0.550 0.531 0.525 0.517
30 1.085 1.038 0.986 0.963 0.623 0.542 0.478 0.449 30 1.002 1.009 1.013 1.021 0.544 0.516 0.502  0.503
50 1.069 1.034 0.983 0.977 0.605 0.549 0.480 0.443 50 0.992 1.013 1.013 1.039 0.525 0.522 0.504  0.500
100 1.074 1.033 0.995 0.949 0.583 0.528 0.476  0.440 100 0.993 1.015 1.026 1.015 0.502 0.504 0.501 0.501
Ind. PCX2S PCPX2S
20 0.956  0.954 0.947 0.946 0.517 0.478 0.458  0.445 20 0.983 1.011 1.025 1.028 0.545 0.528 0.523 0.516
30 0.968 0.947 0.925 0.932 0.512 0.454 0.418 0.418 30 1.002 1.009 1.013 1.021 0.541 0.514 0.501  0.502
50 0.947 0.948 0.931 0.945 0.482 0.460 0.427 0.412 50 0.992 1.013 1.013 1.039 0.523 0.521 0.503  0.499
100 0.950 0.946 0.936 0.917 0.457 0.436 0.415 0.409 100 0.993 1.015 1.026 1.015 0.501 0.503 0.501 0.501
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Table 8: Relative RMSE — High Heterogeneity, Case 8: High Spatial Dependence & Low Factor Dependence

Individual Pooled
T Residual Based Approach Auxiliary Variables Approach Residual Based Approach Auxiliary Variables Approach
n 20 30 50 100 20 30 50 100 20 30 50 100 20 30 50 100
Ind. CCE CCEP
20 1.018 1.015 1.008 1.009 0.884 0.843 0.853 0.834 20 1.051 1.089 1.096 1.111 0.907 0.888 0.900  0.890
30 1.040 1.017 1.002 0.996 0.890 0.844 0.822 0.809 30 1.067 1.089 1.110 1.109 0.906 0.889 0.889 0.878
50 1.045 1.028 0.999 0.999 0.882 0.852 0.803 0.791 50 1.066 1.090 1.102 1.115 0.896 0.891 0.866 0.863
100 1.051 1.019 1.005 0.986 0.854 0.824 0.809 0.786 100 1.065 1.087 1.103 1.105 0.868 0.870 0.873 0.863
Ind. CCEX CCEPX
20 1.060 1.038 1.024 1.016 0.912 0.857 0.862 0.838 20 1.051 1.089 1.096 1.111 0.907 0.888 0.901  0.890
30 1.072 1.036 1.013 1.000 0.911 0.855 0.828 0.811 30 1.067 1.089 1.110 1.109 0.906 0.888 0.889 0.878
50 1.066 1.037 1.004 1.002 0.895 0.857 0.806 0.792 50 1.066 1.090 1.101 1.115 0.896 0.891 0.866 0.863
100 1.060 1.023 1.008 0.988 0.861 0.827 0.811 0.787 100 1.065 1.087 1.103 1.105 0.868 0.870 0.873 0.863
Ind. IPC IPCP
20 0.983 0.990 0.996 1.003 0.872 0.836 0.851 0.835 20 1.052 1.091 1.097 1.113 0.908 0.889 0.901 0.891
30 0.992 0.987 0.986 0.988 0.873 0.837 0.820 0.809 30 1.067 1.090 1.111 1.110 0.906 0.889 0.890 0.879
50 0.989 0.992 0.985 0.989 0.861 0.840 0.800 0.791 50 1.067 1.090 1.103 1.116 0.897 0.892 0.866 0.864
100 0.992 0.988 0.986 0.978 0.831 0.814 0.806 0.787 100 1.066 1.088 1.104 1.106 0.868 0.870 0.873 0.864
Ind. PCX PCPX
20 1.123 1.088 1.051 1.033 0.942 0.880 0.872 0.845 20 1.056 1.092 1.098 1.113 0.909 0.889 0.901  0.890
30 1.129 1.080 1.044 1.017 0.939 0.877 0.843 0.819 30 1.068 1.090 1.112 1.110 0.907 0.889 0.889 0.878
50 1.115 1.074 1.028 1.017 0.924 0.878 0.819  0.800 50 1.067 1.091 1.102 1.115 0.897 0.892 0.866 0.863
100 1.109 1.058 1.030 1.001 0.891 0.849 0.824 0.794 100 1.065 1.088 1.104 1.105 0.869 0.870 0.873 0.864
Ind. PCX2S PCPX2S
20 1.055 1.035 1.016 1.014 0.897 0.848 0.853 0.833 20 1.056 1.092 1.098 1.113 0.907 0.887 0.900  0.890
30 1.069 1.031 1.008 1.000 0.901 0.847 0.822  0.809 30 1.068 1.090 1.112 1.110 0.906 0.888 0.889 0.878
50 1.066 1.035 1.003 1.001 0.889 0.853 0.803 0.790 50 1.067 1.091 1.102 1.115 0.896 0.891 0.866 0.863
100 1.069 1.026 1.008 0.988 0.861 0.826 0.809 0.786 100 1.065 1.088 1.104 1.105 0.868 0.870 0.873 0.863
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Table 9: Relative RMSE — High Heterogeneity, Case 4: High Spatial Dependence & High Factor Dependence

Individual Pooled
T Residual Based Approach Auxiliary Variables Approach Residual Based Approach Auxiliary Variables Approach
n 20 30 50 100 20 30 50 100 20 30 50 100 20 30 50 100
Ind. CCE CCEP
20 0.962 0.966 0.974 0.977 0.674 0.627 0.649 0.629 20 0.982 1.009 1.029 1.038 0.689 0.658 0.683  0.669
30 0.982 0.968 0.956 0.959 0.671 0.624 0.597  0.592 30 1.000 1.011 1.018 1.025 0.682 0.654 0.644 0.641
50 0.979 0.977 0.955 0.967 0.654 0.629 0.577 0.571 50 0.992 1.013 1.015 1.034 0.663 0.657 0.621  0.622
100 0.982 0.971 0.963 0.942 0.613 0.590 0.584  0.562 100 0.990 1.011 1.022 1.013 0.623 0.622 0.629 0.617
Ind. CCEX CCEPX
20 0.988 0.980 0.983 0.980 0.695 0.638 0.656 0.632 20 0.982 1.009 1.029 1.038 0.689 0.658 0.683 0.669
30 1.003 0.981 0.963 0.962 0.687 0.633 0.602 0.594 30 1.000 1.011 1.018 1.025 0.682 0.654 0.644 0.641
50 0.993 0.984 0.958 0.968 0.663 0.633 0.579 0.572 50 0.992 1.013 1.014 1.034 0.663 0.657 0.621  0.622
100 0.988 0.974 0.965 0.943 0.618 0.593 0.585 0.563 100 0.990 1.011 1.022 1.013 0.623 0.622 0.629 0.617
Ind. IPC IPCP
20 0.947 0.955 0.967 0.973 0.669 0.624 0.648 0.631 20 0.982 1.010 1.029 1.038 0.690 0.658 0.683 0.670
30 0.956 0.952 0.948 0.955 0.661 0.621 0.598 0.594 30 1.000 1.011 1.019 1.025 0.682 0.655 0.644 0.641
50 0.948 0.958 0.949 0.961 0.641 0.624 0.577 0.574 50 0.992 1.013 1.015 1.034 0.663 0.657 0.621 0.623
100 0.953 0.957 0.955 0.941 0.601 0.585 0.583 0.562 100 0.990 1.011 1.022 1.013 0.623 0.623 0.629 0.617
Ind. PCX PCPX
20 1.093 1.062 1.028 1.008 0.770  0.695 0.683 0.648 20 0.986 1.013 1.031 1.040 0.694 0.660 0.684 0.670
30 1.105 1.056 1.014 0.989 0.761 0.687 0.638 0.613 30 1.002 1.012 1.020 1.026 0.684 0.656 0.645 0.641
50 1.089 1.053 1.001 0.993 0.741 0.688 0.612 0.591 50 0.993 1.015 1.015 1.034 0.664 0.658 0.621  0.622
100 1.087 1.043 1.010 0.968 0.701 0.652 0.621 0.582 100 0.990 1.011 1.022 1.013 0.624 0.623 0.629 0.617
Ind. PCX2S PCPX2S
20 0.993 0.985 0.981 0.982 0.690 0.635 0.650 0.629 20 0.986 1.013 1.031 1.040 0.690 0.657 0.683  0.669
30 1.008 0.982 0.962 0.963 0.684 0.628 0.598  0.592 30 1.002 1.012 1.020 1.026 0.682 0.654 0.644 0.641
50 0.998 0.986 0.959 0.969 0.663 0.632 0.577 0.571 50 0.993 1.015 1.015 1.034 0.663 0.657 0.621 0.622
100 0.996 0.977 0.966 0.944 0.621 0.594 0.585 0.563 100 0.990 1.011 1.022 1.013 0.623 0.622 0.629 0.617
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4.1. Empirical setup and data

To forecast the house price inflation we use the model specifications in Holly, Pesaran & Ya-
magata (2010) and Caldera & Johansson (2013). Authors model the long run movements in the
house price index in the US using state level data and in OECD countries using country level data,
respectively, by household disposable income, population growth and a proxy for cost of borrowing.
Taking first differences of the non-stationary variables in their model to achieve stationarity, our

most general forecasting equation is given by

Alogp;sn = a; + BriAlog pis + B2iAlog yir + P3iAlogni + Baitic + € pvhs (26)

where p is the real house price index, y is the per capita household disposable income, n is the
population and ¢ is the real long-term interest rate.

Caldera & Johansson (2013) estimate the house price equation simultaneously with a housing
investment equation which gives a supply and demand system for the housing market. In this
investment equation they have the house prices, residential construction costs and population
growth. Since housing investment has house prices as a component it can be use to estimate the
common factors in the price equation. It is also reasonable to assume that other variables in the
investment equation are correlated with these common factors. To estimate the common factors in
the AVA, we use 8 variables in total. In addition to the ones defined above, we have per capita gross
fixed capital formation in housing (inv), residential fixed capital formation deflator (cc) which is a
proxy for residential construction costs, GDP per capita (gdp), the consumer price index (cpi) and
per capita private final consumption expenditure (cons).

The data set comes from the OECD Economic Outlook at quarterly frequency. All variables
are seasonally adjusted and cover the period between 1995:1 and 2017:4 for 20 OECD countries,
hence the final dataset contains 1840 observations. The countries considered are AUS, BEL, CAN,
CHE, DEU, DNK, ESP, FIN, FRA, GBR, IRL, ITA, JPN, KOR, NLD, NOR, NZL, PRT, SWE
and USA. The panel is balanced for the house price index p. There is the presence of missing
observations for some of the variables. For CHE, inv and cc are missing for the periods between
2016:1 and 2017:4 and for CHE, JPN and NZL, y is missing between 2017:1 and 2017:4. To obtain
a balanced sample, we predicted these in-sample observations using other variables in the data
set. To predict per capita household disposable income, we regress logy on log gdp and a linear

trend for each country separately and fill the missing observations with predicted values. For per
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Table 10: Descriptive Statistics

Variable Mean  Standard Deviation Minimum Maximum Unit Root Test p

Alog pit 0.0062 0.0179 -0.0749 0.0710 -4.07 0.7
Aloginv;  0.0017 0.0407 -0.2762 0.2225 -6.70 1.2
Alogyi 0.0033 0.0119 -0.1361 0.0884 -8.81 0.5
Alog cciy 0.0065 0.0158 -0.1209 0.1334 -5.58 14
Alogn 0.0016 0.0013 -0.0021 0.0111 -1.67 1.4
Alog gdp;;  0.0040 0.0106 -0.0745 0.2017 -8.07 0.4
Alog cpiyy 0.0043 0.0046 -0.0267 0.0459 -6.34 0.5
Alogcons;y  0.0038 0.0089 -0.1480 0.0552 -8.60 0.4
Tit 0.0244 0.0266 -0.0805 0.2564 -11.10 1.7

Notes: For each variable x;;, the unit root test statistics are computed as CIPS =
n~t3°"  ti(n,T) where t;(n,T) is the t-statistic of the coefficient b; in the regression
Az = a; + bzip—1 + ciT-1 + D5 digATi—j + Y0, 6Azj where Ty = n~ES @
The lag lengths p; are selected using Akaike information criterion for each country and their
means p=n"" > i, pi are reported. The critical values for the unit root tests are -2.11, -2.20

and -2.36 for 10%, 5% and 1%, levels respectively.

capita gross fixed capital formation in housing, the variables in the model by Caldera & Johansson
(2013) are used. Namely, loginv is regressed on log cc, logy, logn and a linear trend and missing
observations are replaced with the predicted values. Similarly, log cc is predicted by logcpi and a
linear trend. As a percentage of the total number of observations, the number missing observations

filled is 0.44% for inv and y, 0.66% for cc.

4.2. Preliminary analysis

Table 10 gives the descriptive statistics for each variable. Before proceeding with the estimation
of the regression models and calculating the accuracy of predictions based on them, we check the
time series and cross-sectional properties of the variables.

The results on the unit root tests for each variable are given in Table 10. As each variable

shows strong evidence of CD (see below), the CD-robust unit root tests developed by Pesaran
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Table 11: CD Test Results

Variable Alogpi Aloginvy Alogy;: Alogecy Alogng: Aloggdp;y Alogepiy  Alogconsi T4t

Panel a: Original Data

Breusch-Pagan LM Test 1432.85 675.84 393.12 578.66 2890.09 3001.74 3477.42 1233.97 3789.70

(0.00) (0.00) (0.00)  (0.00)  (0.00) (0.00) (0.00) (0.00) (0.00)
Modified BP Test 63.76 24.92 10.42 19.94 13851 144.24 168.64 53.55 184.66
(0.00) (0.00) (0.00)  (0.00)  (0.00) (0.00) (0.00) (0.00) (0.00)

Panel b: Defactored Data

Breusch-Pagan LM Test  693.30  834.81  958.64  966.67  2232.18  724.09 900.90 726.16  886.10
(0.00) (0.00) (0.00)  (0.00)  (0.00) (0.00) (0.00) (0.00) (0.00)

Modified BP Test 25.82 33.08 39.43 39.84  104.76 27.40 36.47 27.50 35.71
(0.00) (0.00) (0.00)  (0.00)  (0.00) (0.00) (0.00) (0.00) (0.00)

Notes: For each variable z;;, the Breusch-Pagan LM Test statistics are computed as CDgp = T S "~} i Efj where &;; is the

correlation coefficient between z;; and z;. Under the null of no CD, the asymptotic distribution of the test statistic is XZ with
¢ =n(n—1)/2. The Modified BP Test statistics are computed as CDy; = [n(n —1)]~%/2 Z?;ll Z;}ZHI(TE% — 1) which is distributed
as N(0,1) under the null of no CD. p-values are in parentheses. The test statistics given in Panel b are computed after removing
country fixed effects and the unobserved common factors estimated using PC methods. For each variable the number of common

factors are chosen using the information criterion ICp, of Bai & Ng (2002).

(2007) are applied to each variable in the data set. The only variable for which we cannot reject
the unit root hypothesis is population growth. In the application we use models with and without
this variable. In Table 11, CD test results are reported. Two different CD tests are applied to each
variable in the dataset. The first one is the LM test of Breusch & Pagan (1980). This is a general
cross-correlation test where the null hypothesis states that the correlation coefficients between all
pairs of units in the data set are jointly zero. Under the null hypothesis the test statistic follows
a x? distribution with n(n — 1)/2 degrees of freedom as T' goes to infinity for fixed n. The results
show that for each variable in the data set there is strong evidence against no CD hypothesis.
The disadvantage of the Breusch & Pagan (1980) test is that as n gets larger its variance
increases, hence it is not appropriate for panels of large cross-sectional dimension. Thus, we also
report the results from a modified version of this test, the Modified BP Test which is distributed
as a standard normal for large 7" and n (see Pesaran, 2015, for details). The results are in line with
the previous test such that the null of no CD can be rejected for any variable in any conventional

significance level.
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Although these two tests are general CD tests, they do not detect the types of CD in the data.
To see if the results change after removing the unobserved common factors we applied the same
tests to defactored variables. We remove unobserved common factors using PC methods where the
number of common factors are chosen by the information criterion /C), proposed by Bai & Ng
(2002). With a few exceptions the test statistics are weaker but still the no CD hypothesis can be

rejected for each variable.

Table 12: Distance Based Spatial Dependence Tests

Variable Alogp;: Aloginvy Alogy;: Alogee;; Alogng Aloggdpy Alogepiyy Alogconsi it

i) 0.52 0.36 0.15 0.23 0.26 0.54 0.68 0.48 0.66
Test Statistic  183.35 11.13 83.56  106.11 8.72 189.38 240.45 173.80  229.73
(0.00) (0.00) (0.00)  (0.00)  (0.00) (0.00) (0.00) (0.00) (0.00)

Notes: For each demeaned variable x;;, the spatial autoregressive coefficient is estimated by maximum likelihood in the
regression Xy = pW,X + ¢4 where x; is the vector of observations of countries stacked for each t and W,, is the row

normalized inverse distance matrix. p-values are in parentheses.

To see if there is evidence for spatial interactions based on geographic distance, we estimate a
first order SAR model for each variable by maximum likelihood. We use a row normalized inverse
distance matrix as spatial weights.* For the variable of interest, the house price inflation, the SAR
coefficient is estimated as 0.52 and it is highly significant. The consumer price inflation shows the
highest coefficient estimate which is equal to 0.68. All remaining coefficients also have statistically
significant SAR, coefficients.

Finally we estimate a factor model for the house price inflation series to see the global common
movements embedded in it. The information criterion IC),, of Bai & Ng (2002) indicates the
existence of 3 common factors in the panel. These common factor estimates are in Figure 1 where
we report estimates using both PC and maximum likelihood methods together with the correlation
between the two estimates.

We observe that the two methods give similar estimates of the common factors with the correla-
tion coefficient up to 0.96. The third factor has a relatively low coefficient equal to 0.82. However,
we compare the estimates of the common components using each method and found an average

correlation coefficient over countries equal to 0.98. Hence, even if there are differences in common

“The data on geographical distance come from CEPII GeoDist dataset Mayer & Zignago (2011).
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factor estimates, the loadings estimates compensate the discrepancies. As the results are simi-
lar, we focus on PC estimates and report the factor loadings estimates in Table 13 using the PC
method.

The estimates of the first common factor shows an upward trending segment until around 2005.
As factor loadings estimates of all countries, except CHE, DEU and JPN, are positive, this factor
adds an increasing component to each countries house price inflation series. After 2005 the effect of
the global financial crisis can be seen as the common factor estimate drops sharply. This common
factor is found to be highly correlated with an AR(1) coefficient estimated as 0.89.

On the other hand, the second common factor has a downward trend until 2005 and the rest
is stable. For the countries with negative loading estimate, this factor strengthens the upward
movement until around 2005. The estimated AR(1) coefficient is smaller but still strong for this
factor, equal to 0.77.

The last common factor has a peak in the crisis period whereas for the rest of the sample it
looks stable. For countries with positive loadings, this factor compensates the drop caused by the

first common factor. It has a much smaller AR(1) coefficient which is equal to 0.58.

Table 13: House Price Inflation - Factor Loadings Estimates

Country  41i  J2i  Js Country  41; 20 Y3
AUS 0.55 -0.16 -0.33 IRL 0.66 048 -0.02
BEL 0.46 -0.27 0.42 ITA 0.62 -0.40 0.44
CAN 0.36 -0.53 -0.38 JPN -0.27 -0.01 -0.66
CHE -0.19 -0.60 -0.03 KOR 0.12 -0.68 -0.20
DEU -0.12 0.03 -0.45 NLD 0.50 0.3 0.23
DNK 0.64 0.17 -0.12 NOR 0.42 0.08 -0.17
ESP 0.81 -0.06 0.21 NZL 0.53 -0.22 -0.34
FIN 0.52 0.03 -0.18 PRT 0.36 046 -0.12
FRA 0.69 -0.44 0.33 SWE 0.62 0.03 -0.30
GBR 0.799 0.06 -0.17 USA 0.67 0.17 -0.11

The above analysis shows very strong evidence in favor of different types of CD in the variables

in our data set. Hence, it is important to take into account the CD properties in the estimation
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Figure 1: Common Factors in House Price Inflation Series
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and forecasting.

4.3. Forecasting results

The results of the estimation of the 1-year ahead predictive models and their pseudo-out-of-
sample RMSE values are given in Table 14 and 15. We consider four different models based on
26. Model 1 uses only Alogy;; as a regressor whereas Model 2 uses all exogeneous regressors but
ignores the lagged housing inflation. Model 3 and Model 4 augment these two models with lagged
housing inflation, respectively.

We estimate each model in the period 1995:2 and 2016:4 and the objective is to forecast the
value in 2017:4. For the heterogeneous estimators we report their mean over countries known as
mean group (MG) estimates together with their standard errors estimated using the usual non-
parametric variance formulas (see, for instance Pesaran & Smith, 1995). For the estimators which
require the information on the number of factors, i.e. the estimators using PC methods, we use
the information criterion 1C), of Bai & Ng (2002) to estimate these numbers. For the iterative PC
estimators we set this number to one as otherwise the forecast performance of the estimator falls
dramatically. In order to see the advantage of using common factors for forecasting with panel
data, in addition to the estimators described in Section 2, we report results from 4 additional
estimators which do not into account the possible unobserved common factors contained in house
price inflation. These estimators are Ind. OLS, Ind. GLS estimator based on Swamy (1970) which
is computed using the deviations of each variable from their time average (see, for details Lee &
Griffiths, 1979), fixed effects (FE) and the usual 2-way fixed effects (2WFE). To forecast using the
2WFE, we use the coefficient on the last time dummy as the future value.?

In the two first models under consideration lagged housing inflation is dropped from right hand
side. The results of these two models, Model 1 and Model 2, are given in Table 14. Since these are
prediction models the coefficients do not have their usual economic meaning but it can be useful
to compare the estimates from different estimators. In Model I for which the results are given
in Panel a, the first observation is that there are substantial differences between the coefficient
estimates which come from estimators which do not control for unobserved common factors and

the ones which do. For instance, using SW (column 2) the coefficient of lagged disposable income

5See Baltagi (2008) for alternative methods to forecast with the 2WFE estimator.
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growth is estimated as 0.23 whereas this number is 0.14 and 0.16 for CCEMG (column 3) and
IPCMG (column 5), respectively. This is in line with the results of Holly et al. (2010) who find
that the non-robust estimators tend to overestimate the impact of disposable income on house
prices. Important differences can be observed between heterogeneous and pooled estimators of the
average effects. For instance the estimator IPCP (column 12) which is the the pooled counterpart
of the IPCMG (column 5), gives 0.05 for the same effect. Similar differences are observed for the
model with additional predictors given in Panel b and the models with lagged dependent variable
given in the two panels of Table 15. In these cases most important differences are being observed
in the coefficient of the interest rate.

The pseudo-out-of-sample performance of each estimator combined with the RBA and the AVA
are given at the bottom of each panel. In Panel a of Table 14 it can be seen that the Ind. CCEX
(column 4) estimator shows the best prediction performance when combined with the AVA. The
RMSE for this strategy is computed as 1.244. The closest performance from the estimators without
unobserved common factors is seen on the Ind. OLS (column 1) which has an RMSE about 9%
higher than the best performer. The RMSE of the same estimator combined with the RBA is
about %6 higher which shows the advantage of the AVA over the RBA and overall the usage of
common factors for forecasting. The results are confirmed by introducing additional predictors in
the model. Now the best performer, Ind. CCEX has an RMSE equal to 0.928 which means more
than %30 gain in precision.

In terms of the best performing strategy, the results are unchanged in the models with lagged
dependent variables (Table 15). The overall prediction performance of the models improve dra-
matically by the introduction of lagged house price inflation. Now the lowest RMSE is equal to
0.867. The RMSE for the best performing estimator without common factors (Ind. GLS) is about
26% higher than this value. Once more the results show the superiority of the AVA over the RBA.

To summarize, the individual estimators outperform the pooled estimators in models with or
without lagged dependent variables; the prediction strategies using unobserved common factors
increase the prediction ability significantly; the AVA has a superior performance compared to the

RBA.
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Table 15: Estimation Results for the 1-Year Ahead Predictive Regressions—Models With Lagged Dependent Variable

1) @) ®3) (4) (6) @) 8) 9) (10) (11) (12)  (13) (14)
Ind. OLS Ind. GLS 1Ind. CCE Ind. CCEX Ind. IPC  Ind. PCX Ind. PCX2S FE 2WFE CCEP CCEPX IPCP PCPX PCP25X
Panel a: Model 3 — Alogp; i, = a; + friAlog iy + BoiAlog yir + €ip4n
Lagged House Price Inflation 0.26 0.27 0.16 0.09 0.09 0.08 0.31 0.27 0.16 0.12 0.16 0.08 0.01
(0.057)  (0.057) (0.042) (0.069) (0.057) (0.05) (0.071) (0.024) (0.035)  (0.07)  (0.052) (0.049)  (0.042)
Disposable Income Growth 0.09 0.09 0.07 0.12 0.01 0.01 0.05 0.04 0.01 0.05 0.02 -0.03 -0.01
(0.058) (0.054) (0.047) (0.056) (0.056) (0.056) (0.048) (0.032) (0.046) (0.059) (0.042) (0.053)  (0.061)
1-Year Ahead RMSE (x100)
Residual Based Approach 1.333 1.206 1.301 1.337 1.441 1.419 1.433 1.404 1.424
Auxiliary Variables Approach 1.260 1319 1.234 1.183 1.266 1.256 1449 1472 1.306 1.324 1.321 1.326 1.335
Panel b: Model 4 — Alogp;+n = ai + BriAlogpis + BaiAlog yi + BziAlogni + Baitit + € p4h
Lagged House Price Inflation 0.20 0.22 0.08 0.08 0.05 -0.02 0.32 0.28 0.10 0.12 0.16 0.06 0.00
(0.064)  (0.068) (0.044) (0.067) (0.068) (0.052)  (0.091) (0.024) (0.04)  (0.076) (0.048) (0.052)  (0.039)
Disposable Income Growth 0.13 0.11 0.11 0.14 0.11 0.11 0.07 0.08 0.06 0.08 0.06 0.03 0.02
(0.05) (0.063) (0.049) (0.053) (0.062) (0.054) (0.059) (0.033) (0.048) (0.068)  (0.051) (0.068)  (0.065)
Population Growth -0.05 -0.05 -0.08 -0.04 -0.04 -0.01 -0.05 -0.10 -0.06 -0.07 -0.08 -0.06 -0.03
(0.031) (0.036) (0.02) (0.029) (0.047) (0.037) (0.045) (0.018) (0.021)  (0.059) (0.024) (0.042)  (0.029)
Interest Rate -4.03 -3.62 -1.16 -3.44 -3.99 -3.93 -0.92 -0.16 0.35 0.76 0.84 0.36 0.77
(1.723)  (1.856) (1.17) (2.054) (2.308) (2119)  (1.652) (0.424) (0.912) (2.428) (0.986) (2.327)  (2.235)
1-Year Ahead RMSE (x100)
Residual Based Approach 1.317 0.928 1.530 1.218 1.487 1.481 1.517 1.476 1.457
Auxiliary Variables Approach 1122 1.089 1.200 0.867 1.450 1.161 1475 1533 1.356 1.393 1.404 1.378 1.377
Notes: For individual estimators given in columns (1)-(7) mean group estimates are reported which are computed as w;En =n7130, WE,? Ind. CCE and CCEP refer to the dynamic CCE

estimators computed as in Chudik & Pesaran (2015) by including py lags of the cross-sectional averages of the dependent and explanatory variables in the regression. The lag length is chosen as

pr = [(T = h)Y/3] where | ] denotes the biggest integer smaller than its argument. Standard errors are in parentheses which are computed using the usual formulas given in, for instance, Pesaran

& Tosetti (2011).
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5. Conclusions

In this paper, we evaluated the performance of alternative methods of forecasting in presence
of heterogeneous panel data with cross-sectional dependence by considering both spatial depen-
dence and unobserved common factors. Alternative estimators of unit specific parameters and
their pooled counterparts are compared in Monte Carlo simulations and by pseudo-out-of-sample
forecasts using real data on house price inflation in OECD countries.

Our main results are as follows. The Auxiliary Variables Approach, which uses a number of
indicators correlated with the unobserved common factors in the DGP of the variable of interest,
outperforms the Residual Based Approach which extracts the common factors from residuals of
the model. The choice between forecasting using individual specific estimates and pooled estimates
depend on the level of heterogeneity and spatial dependence in the error terms: for a given level
of heterogeneity, higher spatial dependence increases the relative forecast performance of pooled
estimators whereas for a given degree of spatial dependence higher heterogeneity makes forecasts
using individual estimates perform better. Further, among the methods of estimating common
factors, the CCE approach of Pesaran (2006) outperforms the principal components methods of
Song (2013) in the case of individual estimates and low spatial dependence, whereas for pooled
estimates the differences are negligible. The main difference on the performance of the the two
methods occurs when we move from low to high spatial dependence, whereas moving from low to
high factor dependence does not change their comparative performance. The estimators based on

PC methods are found to be more robust to spatial dependence than C'C'E methods.
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