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Stochastic processes induced by Dirichlet 

(B-) splines: modelling multivariate asset 

price dynamics

by

Vladimir K. Kaishev
Cass Business School, City University, London, UK

Abstract

We  consider  a  new  class  of  processes,  called  LG  processes,  defined  as  linear  combinations of
independent  gamma  processes.  Their  distributional  and  path-wise  properties  are  explored  by
following  their  relation  to  polynomial  and  Dirichlet  (B-)  splines.  In  particular,  it  is  shown  that
the  density  of  an  LG  process  can  be  expressed  in  terms  of  Dirichlet  (B-)  splines,  introduced
independently  by  Ignatov  and  Kaishev  (1987,  1988,  and  1989)  and  Karlin  et  al.  (1986).  We
further  show  that  the  well  known  variance-gamma  (VG)  process,  introduced  by  Madan  and
Seneta  (1990),  and  the  Bilateral  Gamma  (BG)  process,  recently  considered  by  Küchler  and
Tappe  (2008)  are  special  cases  of  an  LG  process.  Following  this  LG  interpretation,  we  derive
new (alternative) expressions for the VG and BG densities and consider their numerical proper-
ties. The LG process has two sets of parameters, the B-spline knots and their multiplicities, and
offers further flexibility in controlling the shape of the Levy density, compared to the VG and the
BG processes. Such flexibility is often desirable in practice, which makes LG processes interest-
ing for financial and insurance applications.

Multivariate  LG  processes  are  also  introduced  and  their  relation  to  multivariate  Dirichlet  and
simplex splines is established. Expressions for their joint density, the underlying LG-copula, the
characteristic,  moment  and  cumulant  generating  functions  are  given.  A  method  for  simulating
LG sample paths is also proposed, based on the Dirichlet bridge sampling of Gamma processes,
due to Kaishev and Dimitrova (2009). A method of moments for estimation of the LG parameters
is  also  developed.  Multivariate  LG processes  are  shown to  provide  a  competitive  alternative  in
modelling dependence, compared to the multivariate asymmetric VG process considered by Cont
and Tankov (2004) and Luciano and Schoutens (2006), and to its generalization by Luciano and
Semeraro  (2007)  and  Semeraro  (2008).  Application  of  multivariate  LG  processes  in  modelling
the joint dynamics of multiple exchange rates is also considered.

Keywords: LG process; (multivariate) variance gamma process; bilateral gamma process; Dirich-
let spline; B-spline; simplex spline; Dirichlet bridge sampling; cumulants; FX modelling.



1 Introduction
An  important  strand  of  literature  on  financial  modelling  in  recent  years  is  devoted  to
developing more realistic stochastic models incorporating appropriate Lévy processes as
drivers  of  the  price  dynamics  of  financial  assets.  Examples  of  such  processes  are  the
Variance Gamma process introduced by Madan and Seneta (1990) (see also Madan et al.
1998) and the so called Bilateral  Gamma (BG) process considered recently  by Küchler
and  Tappe  (2008).  The  three  parameter  VG  process  of  Madan  et  al.  (1998)  is  con-
structed  by  randomly  changing  the  time  in  a  Brownian  motion  with  certain  drift  and
volatility parameters,  following a Gamma process with unit  mean rate and certain vari-
ance rate parameter. The BG process is a generalization of the VG process and its incre-
ments  have  a  four  parameter  Bilateral  Gamma  distribution,  which  represents  two
Gamma distributions,  one  for  the  positive  and one  for  the  negative  half-lines,  adjoined
together at the origin. Both VG and BG processes are pure jump, infinite activity, finite-
variation, Lévy processes, that inherit these properties from the Gamma processes under-
lying  their  construction.  For  an  excellent  account  on  properties  of  Gamma  processes
which play an important role throughout this paper, we refer to Yor (2007). 

The exponential VG process has proved a successful alternative to Geometric Brownian
motion  in  a  number  of  applications,  for  example  in  option  pricing  (see  Kaishev  and
Dimitrova 2009 and the references therein)  and in credit  risk modelling (see Schoutens
and  Cariboni  2009).  The  ability  of  the  VG process  to  capture  both  upward  and  down-
ward  jumps  as  well  as  very  small  movements  (jitters)  in  stock  prices  have  been  high-
lighted by Stein et al. (2007) who give an extensive list of further references on the VG
model and its applications. 

Many  real  life  financial  applications  require  modelling  the  joint  dynamics  of  multiple,
possibly  dependent  asset  price  processes.  A typical  example  would  be  the  necessity  to
model the joint movement of foreign currencies exchange rates. In such cases, develop-
ing  models  involving  appropriate  multivariate  Lévy  processes,  capable  of  capturing
different  dependence  patterns  is  of  utmost  importance.  In  order  to  meet  such demands,
recently, attempts to extend the VG model to more than one dimension have been under-
taken  in  several  directions.  For  example,  Luciano  and  Schoutens  (2006)  considered  a
multivariate  VG  model,  in  which  dependence  is  achieved  by  applying  a  random  time
change according to a common Gamma process, in the corresponding, differently parame-
terized,  univariate  Brownian  motions.  The  level  of  dependence  in  this  construction  is
controlled only through the Gamma variance rate parameter which imposes some limita-
tions  on  its  flexibility  (see  the  numerical  illustration  in  Section  4).  Further  generaliza-
tions  of  this  construction,  due  to  Luciano  and  Semeraro  (2007)  and  Semeraro  (2008),
allow for a decomposition of the time change in a common and idiosyncratic parts. 

The univariate  BG process  with  its  four  parameters  offers  somewhat extended  flexibil-
ity, compared to the univariate VG. However, to the best of our knowledge, no multivari-
ate versions of the BG process have been considered in the literature.
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In this paper we propose a new class of Lévy processes defined as linear combinations
of independent Gamma processes. In what follows, it will be convenient to refer to such
linear combinations as LG processes. It is directly verified (see Section 2) that both the
Variance Gamma (VG) process and the Bilateral Gamma process are special cases of an
LG process represented as particular linear combinations of two Gamma processes. 

Our aim in this  paper is to introduce univariate  and multivariate  LG processes,  explore
their properties and illustrate how they can be applied in modelling the joint behavior of
empirical  asset  price  processes.  As  the  VG  and  the  BG,  LG  processes  also  preserve
some of the nice features of the Gamma processes used for their construction. They are
pure jump Lévy processes of finite variation which may jump infinitely many times on a
finite time interval. We show that LG processes are intrinsically related to the so called
Dirichlet splines and polynomial B-splines, and posses some of their interesting geomet-
ric properties. In particular, we give explicit expressions, in terms of multivariate Dirich-
let  (B-)  splines,  of  the  joint  density  of  the  LG distribution,  generating  multivariate  LG
processes.  Dirichlet  splines,  which have been independently  introduced by Karlin et  al.
(1986)  and  by  Ignatov  and  Kaishev  (1987,  1988,  1989)  who  call  them  generalized  B-
splines,  are densities  of linear  transformations of Dirichlet  random variables.  When the
shape parameters of the underlying Gamma processes are integer, the corresponding LG
density  is  expressed  in  terms  of  multivariate  simplex  splines,  introduced  by  De  Boor
(1976).  We  give  also  some  new  expressions,  in  terms  of  univariate  Dirichlet  (B-)
splines, for the densities of the VG and BG distributions. The proposed approach allows
for  the  uniform  treatment  of  the  wide  class  of  LG  processes  in  terms  of  multivariate
Dirichlet  (B-)  splines  for  which  methods  of  their  efficient  numerical  evaluation  exist
(see Section 3).

The structure  of  the  paper  is  as  follows.  In  section  2,  we introduce  univariate  LG pro-
cesses,  note  their  relation  to  the  Variance  Gamma  and  Bilateral  Gamma  processes,
explore  their  distributional  properties  and  give  the  Lévy  triplet  and  martingale  condi-
tions, which characterize them. In section 3, we introduce the multivariate version of an
LG process,  establish expressions in terms of multivariate Dirichlet  (B-) splines for the
joint  density  of  its  underlying  joint  LG distribution,  give  its  underlying  LG copula,  its
characteristic, moment and cumulant generating functions. We also provide a method of
moments, based on expressing them in terms of cumulants, for estimating the LG parame-
ter.  In  Section  4  we  illustrate  how  the  multivariate  LG  processes  are  applied  in  mod-
elling the dynamics of the joint  movement of the exchange rates  of a set  of currencies.
Section 5 provides conclusions and some further comments.

2 Linear combinations of Gamma (LG-) processes
Our aim here  will  be  to  consider  a  new class  of  stochastic  processes,  defined as  linear
combinations of independent Gamma processes and explore their distributional and path-
wise properties. 
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For  the  purpose,  denote  by  Git; ai, l,  i = 0, ..., n  a  collection  of  n+ 1  independent

Gamma  processes,  defined  on  a  probability  space  W, , ,  with  mean  rate  ai  l > 0

and  variance  rate  ai  l2 > 0,  where  ai > 0  and  l > 0,  i = 0, ..., n.  For  a  fixed  t,  t > 0,

the density of Git; ai, l is 

fGix; ai, l, t = lai t

Gai t xai t-1 ‰-l x,

where  x > 0.  Let  us  recall  that  the  Gamma  process,  Git; ai, l,  is  a  pure  jump,  finite

variation  process  which jumps infinitely  many times up to  time t  and has  independent,

gamma  distributed  increments.  It  plays  a  central  role  in  contemporary  financial  mod-
elling.  For  a  detailed  account  on the  properties  of  Gamma processes  and their  applica-
tion in finance and insurance, we refer to Yor (2007), Fu (2007), Dufresne et al. (1991),
Dickson  and  Waters  (1993),  Madan  et  al.  (1998).  We  will  use  the  gamma  processes,
Git; ai, l,  i = 0, ..., n,  as  building  blocks  and  define  the  process  of  interest  in  this

paper, as follows

Definition  1.  Given  a  set  of  real  valued  distinct  parameters  d = d0, ..., dn,  define  the

process  LGt; d, a, l, n  as  a  linear  combination  of  the  independent  gamma processes,
Git; ai, l, i = 0, ..., n, i.e.,

(1)LGt; d, a, l, n = d0 G0t; a0, l+ ...+dn Gnt; an, l,
where  a = a0, ..., an.  For  the  sake  of  brevity  we  call  such  linear  combinations,  LG

processes. 

In  what  follows  we  will  sometimes  abbreviate  LGt; d, a, l, n,  to  LGt  and  the  two
notations will be used interchangeably.

Let us note that  the three parameter Variance Gamma process,  introduced by Madan et
al.  (1998),  is  a  special  case  of  an  LG  process.  To  see  this  recall  that  the  VG  process,
VGt; q, s, n is defined as 

VGt; q, s, n = B G t;
1

n
,

1

n
; q, s ,

where  Bt; q, s  is  a  Brownian  motion  with  drift  q œ   and  volatility  s > 0,  and

Gt; 1
n
, 1
n
  is a Gamma process with mean rate 1 and variance rate n > 0. It is not diffi-

cult to see that the VG process admits the alternative, LG representation 

(2)VGt; q, s, n = d0 G0t; a0, 1+d1 G1t; a1, 1,

where d0 = -
q2+2s2n -q

2
n, d1 =

q2+2s2n +q
2

n; a0 = a1 =
1
n
, which is a special case of

an LGt; d, a, l, n process with l = 1 and n = 1. 
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Equality (2) follows from the fact that the characteristic function of the VG process (see
Madan et al. 1998), can be expressed as

fVGtu = 1

1- i q n u+ 1
2
s2 n u2

1

n
t

=
1

1+ i u d0
a0 t 1

1- i u d1

a1 t

= ‰i u d0 G0t;a0,1 + d1 G1t;a1,1,

where d0  is  the absolute value of d0.  Furthermore, a linear combination of say,  p,  VG

processes is also a LG process, i.e., 

VG1t; q0, s1, n1+ ...+VGp-1t; qp-1, sp-1, np-1 = LGt; d, a, 1, 2 p

where  d = d0, …, d2 p-1,  a = a0, …, a2 p-1  and  d j = -
q j

2+2s j
2n j -q j

2
n j

j = 0, …, p- 1,  d j =
q j-p

2 +2s j-p
2 n j-p + q j-p

2
n j-p,  j = p, …, 2 p- 1  and

a j = ap+ j = 1  n j, j = 0, …, p- 1. 

It can be shown that the Bilateral Gamma (BG) process, recently considered by Küchler
and Tappe (2008), is also a special case of an LG process. The BG processes are associ-
ated  with  the  bilateral  gamma  distribution,  Ga+, l+, a-, l-,  with  parameters
a+, l+, a-, l- > 0, defined as the convolution

Ga+, l+, a-, l- := Ga+, l+ * Ga-, -l-,
where  Ga , l  is  a  generalized  Gamma distribution  with  parameters  a > 0,  l œ  \ 0.
The density of Ga , l is given by

(3)fBGx; a, l = la
Ga xa-1 ‰-l xl>0 x>0 + l<0 x<0,

where x œ  and ÿ  is the indicator function. As can be seen from (3), when l > 0, this

is  the  well-known  Gamma distribution,  concentrating  mass  on  +,  whereas,  for  l < 0,
the generalized Gamma distribution is simply a Gamma distribution on the negative half
axis,  -.  The  corresponding  bilateral  gamma  process,  BGt; a+, l+, a-, l-  is  a  pure
jump Lévy process, whose increments have bilateral gamma distribution and in particu-

lar, for fixed t, t > 0,

BGt; a+, l+, a-, l-~Ga+ t, l+, a- t, l-.
For  further  properties  of  the  BG  distribution  and  processes,  and  some  applications  in
finance, we refer to Küchler and Tappe (2008). 
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It  is  directly  verified that,  the BG process is a four parameter generalization of the VG
process and admits the following representation as an LG process

BGt; a+, l+, a-, l- = d0 G0t; a0, 1+ d1 G1t; a1, 1,
where  d0 = -1  l- ;  d1 = 1  l+  ;  a0 = a-,  a1 = a+,  l = 1  and  n = 1.  As  in  the  case of

VG, linear combinations of BG processes are also LG processes, i.e., 

BG1t; a0
+, l0

+, a0
-, l0

-+ ...+BGpt; ap-1
+ , lp-1

+ , ap-1
- , lp-1

-  = LGt; d, a, 1, 2 p,
where  d = -1  l0

-, …, -1  lp-1
- , 1  l0

+, …, 1  lp-1
+   and

a = a0
-, …, ap-1

- , a0
+, …, ap-1

+ .
2.1 Distributional properties

From Definition 1,  for  fixed t,  say t = 1,  it  is  directly  seen that  the  characteristic  func-

tion, fLGz = ‰i z LGt, of a LG process is given by 

fLGz = 
j=0

n l

l- i d j z

a j

, z œ .

The cumulant generating function, Yu = ln ‰u LGt , u œ  is

Yu = 
j=0

n

a j ln
l

l- d j u
,

where

l

max jœD- d j < u <
l

max jœD+ d j ,

D- = i œ I : sgndi = -1, D+ = i œ I : sgndi = +1, I = 1, ..., n.
The cumulants kw = Yw0 , where 

Ywu = w- 1!
j=0

n

a j d j
w l- d j u-w, w = 1, 2, …

are then obtained as

(4)kw = w- 1!
j=0

n a j

lw
d j

w, w = 1, 2, ….

We can now use (4)  and specify  the mean,  mLG,  the  variance,  nLG,  the  Charliers  skew-

ness, cLG, and the kurtosis, tLG, of LG t as
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LGt = mLG = k1 = 
iœD+

ai di

l
- 

iœD-

ai di
l

,

VarLGt = nLG = k2 = 
iœD+

ai di
2

l2
+ 

iœD-

ai di2
l2

cLG = k3  k232 = 
j=0

n

2 a j d j
3 l-3  

j=0

n

a j d j
2 l-2

32

tLG = 3+ k4  k22 = 3+
j=0

n

6 a j d j
4 l-4  

j=0

n

a j d j
2 l-2

2

.

Let  us now give an expression for the density of LG t.  For the purpose,  we will  need
some notation and background results. Denote by 

Sn = x = x1, …, xn œ n : xi ¥ 0, for all i, 
i=1

n

xi § 1,

the  standard  n-simplex  and  recall  that  the  random  vector  q0, ..., qn,  has  Dirichlet

distribution  a0, ..., an  on  Sn,  with  (real)  parameters  a0 > 0,  ...,  an > 0,  i.e.,

q0, ..., qn œ a0, ..., an,  if  q0 = 1- q1 - ...- qn  and  the  joint  probability  density of

q1, ..., qn with respect to the Lebesgue measure is 

fq1,...,qnx = Ga0 + ...+an
i=0

n Gai 
j=0

n

x j
a j-1

xœSn,

where  x0 = 1- x1 -…- xn.  We  will  use  the  shorter  notation  q0, ..., qn œ 1 if

a j = 1,  j = 0, …, n.  We  will  now  establish  the  following  property  of  a  LG  process,

which will be used in the sequel.

Lemma 1.  For  a  fixed t,  t > 0,  the  process  LGt; d, a, l, n,  defined in  (1),  admits  the

representation

(5)LGt; d, a, l, n = Bt Gt,
where  Gt = i=0

n Git; ai, l,  Bt = d0 q0 + ...+ dn qn  and  the  random  variables

q0, ..., qn,  have  a  Dirichlet  distribution  a0 t, ..., an t  with  (real)  parameters  a0 t > 0,

..., an t > 0, i.e., q0, ..., qn œ a0 t, ..., an t and Bt is independent of Gt.
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Proof.  Representation  (5)  follows  from  the  fact  that,  for  fixed  t,  the  r.v.s  q0, ..., qn,

coincide in distribution with the random variables Git; ai, l Gt, i = 0, ..., n (see e.g.

Wilks 1962), and by the theorem of Sukhatme (1937), the latter are independent of Gt
which yields the independence of Bt and Gt.á
Lemma 1 is fundamental in the study of LG processes since it links their underlying LG
distribution to the classical  polynomial  splines  and in general  to  the so called,  general-
ized  B-splines  (known  also  as  Dirichlet  splines).  This  link,  as  will  be  demonstrated,
provides  a  different,  spline-approximation  insight  into  the  distributional  properties of
LG  processes.  It  is  interesting,  both  from the  theoretical  and  numerical  point  of  view,
since  the  theory  of  polynomial  spline  functions  is  well  developed  (see  e.g.  Schumaker
1981)  and  offers  also  numerically  efficient  recurrence  formulas  for  the  evaluation of
(B-)splines (see De Boor 2001) which, as we will see, can be useful in dealing with LG
distributions. 

In order to follow the link of the distribution of LGt; d, a, l, n to splines, provided by
Lemma 1, let us first note that, for integer values of the parameters a0 t > 0, ..., an t > 0,

the density, fBtx, of the random variable, Bt, coincides with a polynomial B-spline.

This  is  an important  probabilistic  interpretation  of  B-splines,  established  independently
by Ignatov and Kaishev (1985,  1989)  and Karlin  et  al.  (1986).  In  order  to  give a  more
precise  formulation  of  this  result,  which  will  be  used  in  the  sequel,  let  us  recall  some
background  properties  of  polynomial  B-splines.  Let  d = d0, ..., dn  denote  a  set of

distinct  real  values,  called knots  of the spline and denote  by a = a0, ..., an  the set of

their  corresponding  integer-valued  multiplicities.  The  multiplicity  ai = 1, 2, ..,  equals

the  number  of  repetitions  of  the  knot  di  in  the  set  of  possibly  coincident  knots  of  the

spline.  Let  us  recall  that  the  polynomial  B-spline  M x; d0,
a0,

...,
...,
dn
an

 of  order

r = a0 + ...+an - 1  (degree  r- 1)  with  knots  d = d0, ..., dn  of  multiplicities

a = a0, ..., an  coincides  with  a  polynomial  of  degree  r- 1  between  its  adjacent

(distinct)  knots  and  is  defined  as  the  r-th  order  divided  difference  of  the  function

f y = ry- x+r-1, i.e., 

M x; d0,
a0,

...,
...,
dn
an

= d0, ..., dn f y.

The B-spline M x; d0,
a0,

...,
...,
dn
an

 has the following explicit representations. If knots are pair-

wise distinct, i.e., their multiplicities a0 = 1, ..., an = 1, then

M x; d0,
1,

...,
...,
dn
1
= n 

i=0

n

di - x+n-1  
j=0, j∫i

n

di -d jn-1
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If some of the knots coincide, i.e., a0 ¥ 1, ..., an ¥ 1, then 

M x; d0,
a0,

...,
...,
dn
an

= 
i=0

n

Dai-1 xidi  ai - 1!,

where xiy = ry- x+d-1 j=0
j∫i

n y-d jn-1 and Dai-1 denotes the ai - 1-th derivative.

The  following  theorem,  due  to  Ignatov  and  Kaishev  (1989)  establishes  an  important
probabilistic  interpretation  of  polynomial  B-splines  which  we  will  use  to  study  the
distributional properties of LG processes. 

Theorem  1.  (Ignatov  and  Kaishev  1989).  The  polynomial  B-spline  M x; d0,
a0,

...,
...,
dn
an

of

degree a0 + ...+an  coincides with the density fBx,  with respect  to the Lebesgue mea-

sure of the random variable

B = d0 q0 + ...+dn qn,

where the random variables  q0, ..., qn  have joint  Dirichlet  distribution with parameters,

a0, ..., an, i.e., q0, ..., qn œ a0, ... an.
Let us note that the Dirichlet parameters a0, ..., an, may in general take real values. In

this case the density, fBx, has been viewed by Ignatov and Kaishev (1987, 1988) as a

generalized  B-spline.  Independently,  Karlin  et  al.  (1986)  have  also  considered  similar
generalization of B-splines. Later, such densities have been named Dirichlet splines (see
Neuman  1994  and  zu  Castell  2002).  Here  and  thereafter,  we  will  use  the  two  terms,
generalized  B-splines  and  Dirichlet  splines  interchangeably.  For  consistency  with  the

polynomial B-spline notation, we will alternatively denote, fBx as Mg x; d0,
a0,

...,
...,
dn
an

, to

stress  its  interpretation  as  a  generalized  B-spline  i.e.  a  Dirichlet  spline.  We  will  make
use of the following properties of generalized B-splines.

Denote by d = d0, ..., dn,  the set  of distinct  knots,  di œ ,  and by a = a0, ..., an  the

set of (positive real) multiplicities of d = d0, ..., dn. Denote also by ài, the integer part

of  ai,  and  by  ai = ai - ài,  its  fractional  part.  Without  loss  of  generality,  assume  that,

ai > 0, i = 0, …, r and that, and ai = 0, i = r+ 1, …, r+m, n = r+m. 
The  generalized  B-spline  can  be  expressed  as  the  following  divided  difference  (see
Ignatov and Kaishev 1988) 

Mg x; d0,
a0,

...,
...,
dn
an

= 
d0,
à0,

...,
...,
dr,
àr,

dr+1,
ar+1,

, ..., dr+m
ar+m

 Hu , if x œ D

0 , otherwise
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where

Hu = Ga0 + ...+ar+m
Gl- 1 Ga0 ... Gar 

Sr

u- x+
i=0

r

di - u yi

+

l-2

y0
a0-1

... yr
ar-1 „ y0 ... „ yr,

l =i=0
r+m ài,  (l ¥ 2), Sr = y0, ..., yr : 0 § yi, i = 0, ..., r, y0 + ... yr § 1  and D  is the set

of all di's for which ài ¥ 1, D denotes the convex hull of D.

The  numerical  evaluation  of  generalized  B-splines  is  facilitated  by  their  representation
in terms of classical polynomial B-splines, due to Kaishev (1991). For further properties
of  generalized  B-splines  (i.e.  Dirichlet  splines)  we  refer  to  Neuman  (1994)  and  zu
Castell (2002).

We can now formulate and prove the following proposition which expresses the density
of LGt in terms of Dirichlet splines.

Proposition 1. For fixed t, the density, fLGtx, of LGt; d, a, l, n is given by

(6)fLGtx = 
0

+¶ la0+...+an t

Ga0 + ...+an t ya0+...+an t-2 ‰-l y Mg
x

y
; d0,
a0 t,

...,
...,
dn
an t

„ y,

where Mg
x
y
; d0,
a0 t,

...,
...,
dn
an t

, is a Dirichlet spline with knots, d0, ..., dn, of (real) multiplici-

ties, a0 t, …, an t.

Proof.  By  Lemma  1,  we  have  that  LGt; d, a, l, n  is  expressed  as  a  product  of  two
independent  random  variables  with  known  densities.  More  precisely,  the  random  vari-
able, Gt = i=0

n Git; ai, l, is gamma distributed with parameters a0 + ...+an t and l,

i.e.,  Gt ~ Gammaa0 + ...+an t, l,  whereas,  by  Theorem  1,  the  density  fBtx, of

the  random  variable,  Bt,  coincides  with  a  generalized  B-spline.  We  will  denote  the
density of Gt, as fGtx.
Thus, we have 

fLGtx = d

d x
PBt Gt § x

=
d

d x
PBt § x Gt

=
d

d x


0

+¶

PBt § x  y fGty „ y

= 
0

+¶

fBtx  y fGty 1

y
„ y .

The result now follows, noting that
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(7)fGty = la0+...+an t

Ga0 + ...+an t ya0+...+an t-1 ‰-l y,

and that fBtx  y coincides with a generalized B-spline, Mg x  y; d0,
a0 t,

...,
...,
dn
an t

. á

Several properties of the process LGt; d, a, l, n easily follow from Proposition 1. 

Corollary 1. If ai t are integer valued, the density, fLGtx, of LGt; d, a, l, n is given

by

(8)fLGtx = 
0

+¶ la0+...+an t

Ga0 + ...+an t ya0+...+an t-2 ‰-l y M
x

y
; d0,
a0 t,

...,
...,
dn
an t

„ y,

where  M x
y
; d0,
a0 t,

...,
...,
dn
an t

,  is  a  polynomial  B-spline  with  knots,  d0, ..., dn,  of  multiplici-

ties, a0 t, …, an t.

Corollary  2.  The  density  of  the  increments,  LGt + h; d, a, l, n- LGt; d, a, l, n  ,
h > 0 is given by


0

+¶ la0+...+an h

Ga0 + ...+an h ya0+...+an h-2 ‰-l y Mg
x

y
; d0,
a0 h,

...,
...,

dn
an h

„ y.

Proof. We have

LGt+ h; d, a, l, n- LGt; d, a, l, n =
d0G0t+ h; a0, l-G0t; a0, l+ ...+ dnGnt+ h; an, l-Gnt; an, l,

which,  for  fixed  t  and  h > 0,  is  a  linear  combination  of  gamma  variates

gi = Git+ h; ai, l-Git; ai, l with density 

fgix; ai, l, h = lai h

Gai h xai h-1 ‰-l x.

Obviously, for fixed t and h > 0 we can write

LGt + h; d, a, l, n- LGt; d, a, l, n = d0 g0 + ...+dn gn 
i=0

n

gi 
i=0

n

gi,

Hence,  the  Corollary  follows  in  view  of  the  independence  of  i=0
n gi  from

d0 g0 + ...+dn gn i=0
n gi, by the theorem of Sukhatme (1937). á
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We  conclude  this  section  by  noting  that  the  following  proposition  which  is  a  direct
consequence  of  the  scaling  property  of  the  gamma distribution  provides  an  alternative
way  of  expressing  the  underlying  LG  distribution,  as  a  linear  combination  of  n+ 1
gamma variates with different shape and scale parameters. 

Proposition 2. The process LGt; d, a, l, n admits the representation 

(9)LGt; d, a, l, n = sgnd0 G0t; a0, l  d0 + ...+ sgndn Gnt; an, l  dn .
It has to be noted that extensive literature exists which deals with the distribution underly-
ing  (11),  in  the  special  case  when  sgnd j = +1,  j = 0, …, n.  In  the  latter  case,  an

explicit  formula  for  the  density  of  LGt; d, a, l, n  when  t  is  fixed,  t > 0,  is  given  by

Moschopoulos (1985).

2.2 The Variance Gamma and the Bilateral Gamma special cases

New expressions  for  the  density  of  the  Variance  Gamma,  VGt; q, s, n  and  the  Bilat-
eral  Gamma processes  directly  follow from their  LG representation,  Proposition  1  and
Corollary 1. We have

Corollary 3. For fixed t, the density, fVGtx; q, s, n, of the Variance Gamma process,

VGt; q, s, n is given by

(10)

fVGtx; q, s, n = 
0

+¶ 1

G2 t  n y2 tn-2 ‰-y

Mg
x

y
; -

q2 + 2s2  n - q
2

n,

tn

q2 + 2s2  n + q
2

n

tn
„ y,

where Mg x
y
; ÿ

tn , ÿ
tn coincides with a classical polynomial B-spline of degree 2 t

n
- 2 if t

n

is  integer.  Recall  that  a  different  expression  for  the  density  fVGtx; q, s, n,  has  been

given by Madan et al. (1998) as follows

fVGtx; q, s, n = 
0

+¶ 1

s 2 p y
‰
-

x-q y2

2s2 y
1

n
t

n G t  n
ytn-1 ‰-

y

n „ y.

For the density of the Bilateral Gamma process we have , 

Corollary  4.  For  fixed,  t > 0,  the  density,  fBGtx,  of  the  Bilateral  Gamma  process,

BGt; a+, l+, a-, l-, is given by

(11)fBGtx = 
0

+¶ 1

Ga- +a+ t ya-+a+ t-2 ‰-y Mg
x

y
; -l--1,

a- t
l+-1

a+ t
„ y.
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where  Mg x
y
; ÿ
a- t

, ÿ
a+ t

  coincides  with  a  polynomial  B-spline  of  degree  a- t+a+ t- 2 if

the  parameters,  a- t, a+ t,  are  integer.  For  comparison with  (11),  for  t = 1,  the  density,
fBGtx given by Küchler and Tappe (2008) is

fBGx = l+a+ l-a-

l+ + l-a++a-2 Ga+
xa0+a12-1 ‰-xl+-l-2 Wa+-a-2,a++a--12xl+ + l-,

where Ww,mz is the Whittaker function defined as

Ww,mz = zw ‰-z2

Gm-w+ 1  2 
0

+¶

tm-w-12 ‰-t1+ t

z

m+w-12

„ t

for m-w > -
1

2
.

In conclusion,  let  us  note  that  expressions  (6),  (8)  (10)  and (11),  involving generalized
or polynomial B-splines, are numerically appealing, due to the recurrent computation of
polynomial  B-splines  (see  De Boor  1976)  and  the  cubature  formula  for  generalized  B-
splines (i.e. Dirichlet splines) in terms of polynomial B-splines, due to Kaishev (1991).

2.3 The Lévy triplet and related properties

As  known,  (see  e.g.  Cont  and  Tankov  2004,  Section  3.4),  the  characteristic  triplet,
g, A, k,  i.e.,  the  Lévy  triplet  of  a  (multivariate)  Lévy  process,  comprised  by,  a  (real)

vector g, a positive definite (covariance) matrix A and a positive measure k, related to its

Lévy-Itô  decomposition,  uniquely  determines  its  distribution.  Following  the  Lévy-
Khinchin  representation  formula,  it  is  possible  to  express  the  characteristic  function,
fLGz = ‰i z LGt, of a LG process, in terms of its corresponding Lévy triplet g, A, k
and deduce some path-wise properties. The following Proposition gives the Lévy triplet
of an LG process.

Proposition 3. LGt; d, a, l, n is a Lévy process with characteristic triplet g, 0, kL G,
where the Lévy measure kL G„ x is given by

(12)kL G„ x = 
iœD-

ai ‰
-l

x
di

x x<0 + 
iœD+

ai ‰
-l

x

di

x
x>0 „ x

with D- = i œ I : signdi = -1, D+ = i œ I : signdi = +1, I = 0, ..., n and
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(13)g =
1

l


iœD+

ai di 1-‰
-
l

di - 
iœD-

ai di 1-‰
-

l

di < ¶ .

Proof.  Since  LGt; d, a, l, n  is  defined  as  a  linear  combination  of  the  gamma  pro-
cesses,  Git; ai, l,  i = 0, ..., n,  which  are  Lévy  processes,  LGt; d, a, l, n  is  also  a

Lévy process (see, e.g. Theorem 4.1 of Cont and Tankov 2004). Expression (12) for the
Lévy measure kL G „ x follows from the additivity property of the Lévy measure (see e.g.

Proposition 5.3, Theorem 4.1 and Example 4.1 of Cont and Tankov 2004) and representa-
tion (11), noting that the Lévy measure of the process bit = sgndi Git; ai, l  di  is

kbi„ x = ai exp-l x  di 
x

x<0, di<0 +
ai exp-l x  di 

x
x>0, di>0 „ x.

Clearly, there is no Brownian motion component in the definition of LG t; d, a, l, n,
hence the second parameter of the characteristic triplet is 0. 

Due  to  the  fact  that,  the  drift  parameter  of  the  gamma process,  Git; ai, l,  is  0,  from

Corollary 3.1 of Cont and Tankov (2004), we have that

(14)g = 
x §1

x kL G„ x,

 and by substituting (12) in (14) we obtain (13). á

From  the  analytical  properties  of  its  characteristic  triplet,  g, 0, kL G,  it  is  straightfor-

ward to deduce that the LG process has piece-wise constant trajectories,  is a process of
finite variation and infinite activity (i.e.,  may have infinitely many small jumps). These
path-wise  properties  are  in  fact  inherited  from  the  gamma  processes,  underlying  the
definition  of  an  LG  process  (see  Definition  1).  Let  us  also  note  that,  the  LG  process
offers  extended  flexibility  in  controlling  its  Lévy  measure,  kL G„ x,  compared  to  the

VG and BG processes. In the case of an LG process, one can manipulate its parameters
and alter its Lévy measure, kL G„ x so that the distribution of the size of only the posi-

tive jumps, or only the negative jumps changes, (see Fig. 1, right panel). This may often
be desirable  in practical  applications,  but  is  not  possible  for  the VG process.  Changing
the  VG  parameters,  q,  s  and  n,  affects  both  the  positive  and  the  negative  parts  of  its
Lévy measure, which is illustrated in Fig. 1, left panel.
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Fig. 1  left panel:  Lévy measure of a VG process for the following four sets of parame-
ters q = -0.29, s = 0.19, n = 0.25 (solid line);  q = -0.99, s = 0.19, n = 0.25, (dashed);
q = -0.29, s = 0.99, n = 0.25 (dotted) and q = -0.29, s = 0.19, n = 0.95 (dot-dashed);
right panel: The LG Lévy measure for l = 1, and the following three sets of parameters
d0 = -0.11,  d1 = 0.04,  a0 = a1 = 3.99  (solid  line);  d0 = -1.13,  d1 = 0.04,

a0 = a1 = 3.99 (dashed); and d0 = -0.11, d1 = 0.04, a0 = 11.98, a1 = 3.99 (dotted);

As  known,  (see  Proposition  3.18  of  Cont  and  Tankov  2004)  the  exponent  of  a
(univariate) Lévy process with characteristic triplet, g, A, k is a martingale if and only

if,  x ¥1
‰x k„ x < ¶ and

(15)
A

2
+g+

-¶

+¶

‰x - 1- x  x §1 kL G„ x = 0.

Based on this result, Propositions 4 and 5 establish the conditions for the exponent of an
LG process to be a martingale a property which is important in financial applications.

Proposition  4.  Given  n ¥ 1,  ai > 0,  di ∫ 0,  i = 0, …, n,   x ¥1
‰x kL G„ x < ¶ if

l > maxiœD+ di.
Proof. It can be directly verified, substituting kL G„ x from (12) that, for x > 0,

(16)
x ¥1

‰x kL G„ x = 
iœD+


1

+¶ ai exp- xl  di - 1
x

„ x.

We have that,


1

+¶ ai exp- xl  di - 1
x

„ x = ¶ ai E1l  di - 1 < ¶, if l > di

diverges, otherwise
,

where  E1l  di - 1  denotes  the  Exponential  Integral  (defined  in  section  5.1.4 of

Abramowitz  and  Stegun  1972),  evaluated  at  l  di - 1 > 0,  from  where  it  can  be  seen

that, in order for the sum in (16) to converge, the condition l > maxiœD+ di needs to be

imposed. 

Kaishev, V.K. Stochastic processes induced by Dirichlet (B-) splines   15



Similarly, it can be verified that, for x < 0, we have that 


x ¥1

‰x kL G„ x = 
iœD-


1

+¶ ai exp- x l  di + 1
x „ x = - 

iœD-

ai Eil  di - 1 < ¶,

where  Eil  di - 1  denotes  the  Exponential  Integral  function  (defined  in  section  5.1.2

of Abramowitz and Stegun 1972), evaluated at l  di - 1 < 0, from where it can be seen

that, in order for the sum in (16) to converge, no additional conditions on the parameters
l  and di need to be imposed. á

Proposition  5.  There  exist  n ¥ 1,  ai > 0,  di ∫ 0,  i = 0, …, n  and  l > maxiœD+ di  such

that, the expLGt; d, a, l, n is a martingale, i.e.,

(17)
-¶

+¶

‰x - 1 kL G„ x = 0.

Proof.  Clearly,  the necessary  condition,  l > maxiœD+ di,  established by Lemma 4,  can

be  met  for  arbitrary  positive  real  parameters  di,  i œ D+.  The  necessary  and  sufficient

condition  (17),  for  expLGt; d, a, l, n  to  be  a  martingale,  directly  follows from (15)

and (14), noting that, for a LG process, A = 0. For the integral in (17), we have

(18)


-¶

+¶

‰x - 1 kL G„ x =


-¶

0

x 
j=0

¶ x j

 j+ 1! 
iœD-

ai
‰
-l

x
di

x „ x+
0

+¶

x 
j=0

¶ x j

 j+ 1! 
iœD+

ai
‰
-l

x

di

x
„ x =


iœD+

ai 
j=0

¶


0

+¶ x j

 j+ 1! ‰
-l

x

di „ x- 
iœD-

ai 
j=0

¶


-¶

0 x j

 j+ 1! ‰
l

x

di „ x =


iœD+

ai 
j=0

¶ di

l

j+1 1

j+ 1
- 

iœD-

ai 
j=0

¶

-1 j di
l

j+1 1

j+ 1
=

- 
iœD+

ai ln 1-
di

l
- 

iœD-

ai ln 1+
di
l

,

where ln1- di

l
 is well defined, given that, l > maxiœD+ di, as required by Proposition

4. It is not difficult to see that the right-hand side of (18) vanishes if n ¥ 1, the sets D-

and D+ have equal cardinality and if 

-ai- ln 1+
di- 
l

= ai+ ln 1-
di+

l
,

where i- œ D- and i+ œ D+, which holds true if
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(19)-ai- = ai+, di-  = -
di+ l

di+ - l
and l > maxiœD+ di.

Hence,  for  a  fixed  n ¥ 1,  one  can  always  chose  a  set  di,  i œ D+  and  select  values,  l,

di-,  i- œ D-,  and  ai,  i œ I,  according  to  (19),  so  that  (18)  vanishes,  which  completes

the proof of the asserted existence. á

Remark 1. Propositions 4 and 5 state that, it is possible to select the parameters n, d, a
and l of a LG process in such a way that the exponent, expLGt; d, a, l, n, is a martin-

gale. However, it is not difficult to see from the LG representation, (3), of a VG process
that, there does not exist a set of VG parameters, q, s, n for which expVGt; q, s, n
is a martingale.

We conclude  this  section  by  briefly  indicating  that  the  (univariate)  LG process  can  be
used  for  modelling  asset  price  dynamics.  Define  the  (risk-neutral)  asset  price  process,
St as

(20)St = S0 expr- q+w t + LGt; d, a, l, n
where r - the (constant) risk-free rate, q - the dividend yield, and the constant w is cho-

sen so that St = S0 expr- q t, i.e.

(21)w = 
iœD+

ai log 1-
di

l
+ 

iœD-

ai log 1+
di
l

which  follows  from Proposition  5.  We therefore  require  l > maxiœD+ di.  Note  that,  in

the special case of the VGt; q, s, n process (21) yields

w =
1

n
log 1- q n-

s2 n

2
,

where 1 >
q2+2s2n +q

2
n (which implies 1 > q +s2  2 n).

The model given by (20) can be used in (exotic) option pricing and pricing participating
life insurance contracts.  Due to volume limitations,  details  of how this  is  done are out-
side the scope of this paper and will appear elsewhere. 

3 Multivariate LG processes
In  what  follows  we will  consider  the  multivariate  generalization  of  univariate  LG pro-
cesses, defined in Section 2, which, as we will illustrate in Section 4, can be very useful
in modelling the joint dynamics of possibly dependent prices of multiple assets. We start
with the following definition. 
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Definition 2.  Define the multivariate  LG process,  LGt = LG1t, …, LGst',  s ¥ 1
as

(22)

LG1t = d1,0 G0t; a0, l+ ...+d1,n Gnt; an, l
ª

LGst = ds,0 G0t; a0, l+ ...+ds,n Gnt; an, l,
where  d j = d1, j, ..., ds, j ',  d j œ s,  j = 0, ..., n,  are  pairwise  distinct,  n ¥ s,  l > 0,

a = a0, ..., an,  a j > 0,  j = 0, ..., n  and  G jt; a j, l,  j = 0, ..., n  are  independent

Gamma processes defined on a probability space W, , . 
Multivariate LG processes are illustrated graphically in Fig. 2 where we have simulated
sample paths from two and three dimensional LG processes with coordinates 

LG1t = -5 G0t; 1, 20- 2 G1t; 10, 20+ 2 G2t; 30, 20,
LG2t = -2 G0t; 1, 20+ 1 G1t; 10, 20+ 2 G2t; 30, 20,

with mLG1
= 1.75, nLG1

= 0.46,  mLG2
= 3.40, nLG2

= 0.34 and

LG1t = -5 G0t; 1, 20- 2 G1t; 10, 20+ 2 G2t; 30, 20,
LG2t = -6 G0t; 1, 20- 3 G1t; 10, 20+ 1 G2t; 30, 20,
LG3t = -3 G0t; 1, 20- 1 G1t; 10, 20+ 1 G2t; 30, 20,

with  mLG1
= 1.75, nLG1

= 0.46,  mLG2
= -0.3, nLG2

= 0.39,  and  mLG3
= 0.85, nLG3

= 0.12

respectively,  where  mLGi, nLGi  i = 1, 2, 3  are  the  corresponding  (marginal)  mean  and

variance  rates.  As  can  be  seen  from  Fig.  2  all  coordinates  jump  together,  which  is  a

consequence of the fact that  for a fixed t,  a multivariate LG process represents  a linear

transformation  of  a  set  of  Gamma  processes,  in  this  case  these  are  G0t; 1, 20,
G1t; 10, 20 and G2t; 30, 20. It should also be noted that simulation of a multivariate
LG is  straightforward  since  it  requires  simulating  Gamma sample  paths  which  is  done
very  efficiently,  applying  the  Dirichlet  bridge  sampling  method,  recently  proposed  by
Kaishev and Dimitrova (2009).
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Fig. 2 Sample paths of a two and three-dimensional LG processes. 
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Before proceeding further, we will need to introduce the following notation. For a given
set A Õ s, Ax, A, volsA, dimA denotes the indicator function, the closed convex

hull, the s-dimensional Lebesgue measure and the dimension respectively. By x, y, z, …

we  denote  elements  (vectors)  in  the  Euclidean  space  s  s ¥ 1,  i.e.,  x = x1, …, xs '

where,  ',  means  transposition  and  we  use  subscripts  to  index  vectors,  i.e.,
x j = x1, j, …, xs, j ',  j = 0, 1, ….  We  denote  by  x ÿ y = i=1

s xi yi  the  inner  product of

x, y œ s.

3.1 Distributional properties

In  what  follows,  we  study  distributional  properties  of  multivariate  LG  processes  and
establish their relation to multivariate splines. For the purpose we will need to introduce
multivariate B-splines, known also as simplex splines. A simplex spline is a multivariate
version  of  the  univariate  polynomial  B-spline  defined  in  Section  2.1.  Simplex  splines,
were first introduced by De Boor (1976) as follows.

Definition  3.  (De  Boor  1976).  Let   = y0, ..., yr  be  any  r-simplex  in  r,

r = sär-s, such that y j s = d j, j = 0, ..., r, i.e., the first s coordinates of y j  agree

with  the  vector  d j œ s,  s ¥ 1.  The  multivariate  (simplex)  spline  M x; d0, ..., dr  is

defined as 

M x; d0, ..., dr = volr-su œ  : u s = x  volr.
Note  that  Definition  3  allows  for  coalescent  knots,  d0, ..., dr  of  which  say,

n + 1 < r+ 1  knots,  d0, ..., dn  may  be  distinct  with  corresponding  multiplicities

a0, ..., an.  If  there  are  d0, ..., dn  pairwise  distinct  knots  with  multiplicities  a0, ..., an,

M x; d0, ..., dr,  will  be  alternatively  denoted  as  M x; d0,
a0 ,

..., dn
..., an

, v œ s  and  also  as

M x1, ..., xs; d0,
a0 ,

..., dn
..., an

.

The simplex spline, M x; d0, ..., dr is a piecewise polynomial of total degree not exceed

ing  r- s  with  r- s- 1  continuous  derivatives  when  the  knots,  d0, ..., dr  are  in  general

position.  The  knots,  d0, ..., dr,  are  said  to  be  in  general  position  if  for  j = 1, ..., s  and

for arbitrary, different indexes 0 § i1, ..., i j+1 § r, we have

det

1 d1,i1 ... d j,i1

1 d1,i2 ... d j,i2

ª ª ... ª
1 d1,i j+1

... d j,i j+1

∫0.

The numerical evaluation of multivariate simplex splines is facilitated by the following
recurrence relation, due to Micchelli (1980)
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(23)M x; d0, ..., dr = r

r- s

j=0

r

l j M x; d0, ..., d j-1, d j+1, ..., dr,

whenever r > s and the numbers, l j œ , are such that, x = j=0
r l j d j, j=0

r l j = 1.

For  further  properties  of  simplex  splines  see  e.g.,  Neamtu  (2001),  Cohen  et  al.  (2001)
and Prautzsch et al. (2002).

We  will  now  recall  that  simplex  splines  have  a  nice  probabilistic  interpretation  estab-
lished  independently  by  Karlin  et  al.  (1986)  and  Ignatov  and  Kaishev  (1985,  1989)
which we will exploit in studying the properties of multivariate LG processes. Given the
set  of  knots  D = d0, ..., dr,  d j = d1, j, ..., ds, j ',  d j œ s,  j = 0, ..., r,  consider  the

random vector B = B1, ..., Bs ', defined by

(24)B = d0 q0 + ...+ dr qr,

with  coordinates  Bi = di,0 q0 + ...+di,r qr,  i = 1, ..., s,  where  the  random  vector

q = q0, ..., qr ',  is  Dirichlet  distributed  with  parameters  a = 1, ..., 1,  i.e.

q0, ..., qr œ 1. 
It  will  be  convenient  to  view the  vectors  d0, ..., dr  as  points  in  s,  s ¥ 1.  Note  that  in

(24), we allow some of the points d0, ..., dn to coalesce. Let us assume that only n+ 1 of

them  are  pairwise  distinct,  say  d0, ..., dn,  each  repeated  with  multiplicity  a0, ..., an,

a0 + ...+an = r+ 1.  Then,  given  the  set  of  distinct  knot  parameters,  D = d0, ..., dr,
following a well known property of the Dirichlet distribution (see e.g., Wilks 1962), the
random vector B = B1, ..., Bs ', defined by (24), can be rewritten as

(25)B = d0 q0 + ...+ dn qn,

with  coordinates  Bi = di,0 q0 + ...+di,n qn,  i = 1, ..., s,  where  the  random  vector

q = q0, ..., qn ',  is  Dirichlet  distributed  with  parameters  a = a0, ..., an,  i.e.,

q0, ..., qn œ a0, ..., an. 
Assume  also  that  the  parameters  a,  D,  r,  and  n,  are  such  that  the  distribution  of  the

linear  transformation  B  and  its  marginal  distributions  exist  and  are  non-degenerate.

Denote  by  fBx  the  density  of  B.  The  following  result  establishes  the  probabilistic

interpretation of simplex splines.

Theorem 2. (Ignatov and Kaishev 1985, 1989). Let d0, ..., dn  be fixed pairwise distinct

vectors in s, n ¥ s, with dimension dimd0, ..., dn = s, then the density fBx with

respect  to  the  s-dimensional  Lebesgue  measure  of  the  random  vector  B,  defined  as  in

(25), coincides with the simplex spline 

Kaishev, V.K. Stochastic processes induced by Dirichlet (B-) splines   20



M x; d0,
a0 ,

..., dn
..., an

with knots d0, ..., dn having (integer) multiplicities, a0, ..., an, a0 + ...+an = r+ 1. 

As in the univariate  case,  the Dirichlet  parameters a0, ..., an,  may in general  take real

values.  In this  case the density,  fBx,  has been viewed by Ignatov and Kaishev (1987,

1988) as a multivariate generalized B-spline i.e., as multivariate Dirichlet spline. Indepen-
dently,  Karlin  et  al.  (1986)  have  also  considered  similar  generalization  of  multivariate
simplex splines. For some further properties of multivariate Dirichlet splines see Karlin
et al. (1986), Ignatov and Kaishev (1987, 1988) and Neuman (1994).

The following proposition gives for fixed t > 0 an expression for the joint density of the
multivariate LG process in terms of multivariate Dirichlet splines.

Proposition  6.  Let  d0, …, dn,  d j œ s,  n ¥ s,  be  pairwise  distinct  and  let

dim d0, …, dn = s, then the density of LG is 

(26)

fLGx1, ..., xs =


0

+¶ la0+...+an t

Ga0 + ...+an t ya0+...+an t-s+1 ‰-l y Mg
x1

y
, ...,

xs

y
; d0,
a0 t,

...,
...,
dn
an t

„ y,

where G ÿ  is the gamma function and Mg
x1

y
, ...,

xs

y
; d0,
a0 t,

...,
...,
dn
an t

 is a multivariate Dirich-

let spline with knots D = d0, …, dn, of multiplicities a0 t, ... an t.
Proof. We have that the multivariate LG process can be represented as

(27)LGt; D, a, l, n = Btä Gt
where  Bt  is  defined as  in  (25)  and has  a  joint  density  fBtx,  which,  by  Theorem 2,

coincides  with  a  generalized  B-spline,  and  where  the  random  variable,
Gt = i=0

n Git; ai, l,  independent  of  Bt,  is  gamma  distributed  with  parameters

a0 + ...+an t and l. Thus, we have 

fLGx1, ..., xs = ∑

∑x1 … ∑xs

PB1 täGt § x1, …, Bs täGt § xs

=
∑

∑x1 … ∑xs

P B1 t § x1

Gt , …, Bs t § xs

Gt
= 

0

+¶ ∑

∑x1 … ∑xs

P B1 t § x1

y
, …, Bs t § xs

y
fGty „ y
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= 
0

+¶

fBt
x1

y
, …,

xs

y
fGty 1

ys
„ y .

The result  now follows,  in  view of  (7)  and  noting  that,  by  Theorem 2,  fBt x1

y
, …,

xs

y


coincides with a multivariate Dirichlet spline, Mg
x1

y
, ...,

xs

y
; d0,
a0 t,

...,
...,
dn
an t

. á

In  case  ai t,  i = 0, ..., n,  are  integers  then  Mg ÿ   is  a  classical  multivariate  polynomial

simplex spline,  given by Definition  3 and its  evaluation  can  be successfully  performed
using  e.g.  Michelli's  recurrence  (23).  When  the  multiplicities  ai t,  i = 0, ..., n  are  non-

integer, to the best of our knowledge, the evaluation of multivariate Dirichlet splines has
not  been  sufficiently  explored.  Recurrence  formulas  for  the  moments  of  multivariate
Dirichlet splines and simplex splines have been established by Neuman (1994).

In  order  to  provide  some  insight  into  the  dependence  properties  of  multivariate  LG
processes, next we give its underlying copula.

Proposition 7. The copula CLGu1, ..., us, is given as 

(28)

CLGu1, ..., us =


-¶

FLG1

-1 u1
… 

-¶

FLGs

-1 us


0

+¶ la0+...+an t

Ga0 + ...+an t ya0+...+an t-s+1 ‰-l y

Mg
x1

y
, ...,

xs

y
; d0,
a0 t,

...,
...,
dn
an t

„ y „ xs … „ x1,

where ui œ 0, 1, and 

FLGi
x = 

-¶

x


0

+¶ la0+...+an t

Ga0 + ...+an t ya0+...+an t-2 ‰-l y Mg
x

y
; d j,0,
a0 t,

...,
...,
d j,n
an t

„ y „ z,

i = 1, ... s.

Proof. Expression (28) follows from the Sklar's Theorem and expressions (26) and (6).á

Let  us  note  that  the  LG  copula  CLGu1, ..., us  is  related  to  the  (new)  class  of  the  so-

called  Dirichlet  (B-)  spline  copulas,  introduced  by  Kaishev  (2006  b).  Both  B-spline

copulas and LG copulas are quite flexible, and by controlling the knots, D, of the Dirich-
let  spline,  and  their  multiplicities,  a,  one  can  model  and  reproduce  a  wide  range of
dependence structures arising in financial applications. This is illustrated in section 4, on
the  example  of  multivariate  FX  modelling.  For  further  results  and  applications  of  B-
spline copulas see Kaishev (2006 b).
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The  next  proposition  gives  the  characteristic  function  of  a  multivariate  LG  process,
which  will  be  needed  in  order  to  develop  a  method of  moments  for  estimating  the  LG
parameters.

Proposition  8.  The  characteristic  function,  fz,  of  the  multivariate  LG  process,

LGt = LG1t, …, LGst' given by Definition 2 is 

(29)fLGz = 
j=0

n l

l- i d j ÿ z
a j

,

where d j = d1, j, …, ds, j' œ s, j = 0, …, n , z = z1, …, zs' œ s and l > 0 .

Proof.  From Definition  2,  for  fixed  t,  say  t = 1  and  z = z1, …, zs' œ s,  it  is  directly

seen that the characteristic function 

fLGz = ‰i z ÿLGt = ‰i j=0
n d jÿ z G jt;a j,l 

= 
j=0

n

‰i d jÿ z G jt;a j,l = 
j=0

n l

l- i d j ÿ z
a j

,

which completes the proof of the asserted expression for fLGz. á
In order to develop a method of moments for estimating the LG parameters, we will give
here the moment generating function (mgf)

MLGz = ‰z ÿLGt = 
j=0

n l

l- d j ÿ z

a j

,

and the cumulant generating function (cgf)

(30)KLGz = log MLGz = 
j=0

n

-a j log 1-
1

l
d j ÿ z

of the LG random vector. 

3.2 LG parameter estimation: method of moments

There are two sources of difficulty related to estimating the parameters of a multivariate
LG process, given an appropriate data set. Firstly, it is the curse of dimensionality, i.e.,

the dimension s  may be very high which is  typically  the case in some credit  risk mod-

elling  applications.  Secondly,  the  underlying  dependence  pattern  may  be  rather  com-
plex,  requiring  significant  number,  n+ 1  of  knot  parameters  in  each  coordinate,  and
hence a large number of parameters overall. 
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Due  to  the  latter  difficulties,  the  calibration  of  a  multivariate  LG  process,  based  on
maximum likelihood  estimation  utilizing  expression  (26),  is  not  so  straightforward  and
may  require,  developing  a  special  purpose  optimization  algorithm,  using  exhaustive
numerical  optimization methods such as,  adapted simulated annealing.  Development of
such methods is outside our scope and will  be a subject of another paper. Here we will
develop a method of moments for the estimation of the LG parameters, which is simpler
to implement and as will be illustrated in section 4, serves well the purpose of calibrat-
ing an FX model driven by a multivariate LG process. 

In order to develop a method of moments for the estimation of LG parameters, we will
need the  following piece  of  general  multivariate  cumulant  theory,  provided  by McCul-
lagh (2008). In what follows we shall somewhat depart from the notation used so far and
use  the  notationally  convenient,  Einstein's  summation  convention  in  order  to  denote
scalar products.  Thus, zr Xr  denotes the linear combination z1 X1 +…+ zs Xs,  where Xi,

i = 1, …, s  are  the  coordinates  of  a  random  vector  X = X1, …, Xs.  The  square  of  a

linear  combination  zr Xr2 = zr1
Xr1

 zr2
Xr2

 = zr1
zr2

Xr1
Xr2

 is  a  sum  of  s2  terms  and

for higher powers, zr Xrl = zr1
… zr2

Xr1
… Xrl

 is the sum of sl terms. Following McCul-

lagh (2008), we denote kr = Xr the components of the mean vector, kr1 r2
= Xr1

Xr2
,

r1, r2 = 1, …, s  the  components  of  the  matrix  of  second  moments,
kr1 r2 r3

= Xr1
Xr2

Xr3
, r1, r2, r3 = 1, …, s, the elements of the third moment matrix and

so on, for the elements of the matrices of higher order moments. The Taylor expansions
of  the  moment  generating  function,  MX z = ‰zr Xr,  and  the  cumulant  generating

function, KX z = log MX z, are then given as 

MX z = 1+ zr1
kr1
+

1

2!
zr1

zr2
kr1 r2

+
1

3!
zr1

zr2
zr3
kr1 r2 r3

+…

and

(31)KX z = zr1
kr1
+

1

2!
zr1

zr2
kr1,r2

+
1

3!
zr1

zr2
zr3
kr1,r2,r3

+…,

where  kr1
 denotes  simultaneously  first  order  moments  and  first  order  cumulants.  The

coefficients  kr1,r2
,  kr1,r2,r3

, …  in  the  expansion  of  KX z  are  the  corresponding  second

third  and  higher  order  cumulants.  Note  that,  the  latter  are  distinguished  notationally
from the corresponding moments, kr1 r2

, kr1 r2 r3
, … by the commas separating subscripts.

Equating the coefficients in the expansion of 

KX z = log 1+ zr1
kr1
+

1

2!
zr1

zr2
kr1 r2

+
1

3!
zr1

zr2
zr3
kr1 r2 r3

+…

to the  corresponding  coefficients  in  the  expansion  (31),  it  can  be  seen  that  each  of  the
moments  kr1 r2

,  kr1 r2 r3
,  … can  be  expressed,  as  a  sum over  partitions  of  the  subscripts,

where each term in the sum is a product of cumulants, as follows
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(32)kr1 r2
= kr1,r2

+ kr1
kr2

(33)
kr1 r2 r3

=

kr1,r2,r3
+ kr1,r2

kr3
+ kr1,r3

kr2
+ kr2,r3

kr1
+ kr1

kr2
kr3
= kr1,r2,r3

+ kr1,r2
kr3

3+ kr1
kr2
kr3

(34)kr1 r2 r3 r4
= kr1,r2,r3,r4

+ kr1,r2,r3
kr4

4+ kr1,r2
kr3,r4

3+ kr1,r2
kr3
kr4

6+ kr1
kr2
kr3
kr4

,

where  the  numbers in  the  square  brackets  indicate  a  sum over  distinct  partitions  of  the

subscripts, having the same block sizes. Note that there are s equations kr1
= kr1

 relating

the first order moments to the first order cumulants. In general, there are sk  equations for

the moments of order k = 1, 2, … however, there are only 
s+ k - 1

k
 distinct equations

which coincides with the number of distinct moments of order k. Equations, (32) - (34),

have  been  given  by  McCullagh  (2008).  Here  we  further  give  the  sets  of  equations,
relating the fifth and the sixth order moments with the corresponding cumulants

(35)
kr1 r2 r3 r4 r5

= kr1,r2,r3,r4,r5
+ kr1,r2,r3,r4

kr5
5+ kr1,r2,r3

kr4,r5
10+

kr1,r2,r3
kr4
kr5

5+ kr1,r2
kr3,r4

kr5
15+ kr1,r2

kr3
kr4
kr5

10+ kr1
kr2
kr3
kr4
kr5

,

(36)

kr1 r2 r3 r4 r5 r6
= kr1,r2,r3,r4,r5,r6

+ kr1,r2,r3,r4,r5
kr6

6+
kr1,r2,r3,r4

kr5,r6
15+ kr1,r2,r3,r4

kr5
kr6

15+ kr1,r2,r3
kr4,r5,r6

10+
kr1,r2,r3

kr4,r5
kr6

60+ kr1,r2,r3
kr4
kr5
kr6

20+ kr1,r2
kr3,r4

kr5,r6
15+

kr1,r2
kr3,r4

kr5
kr6

45+ kr1,r2
kr3
kr4
kr5
kr6

15+ kr1
kr2
kr3
kr4
kr5
kr6

.

In  what  follows  we  will  derive  expressions  for  the  cumulants  of  the  random  vector

LGt, in terms of the unknown parameters, D, a, l and n. By substituting these expres-

sions in the right-hand side of equations (32)-(36) and equating the theoretical moments,
kr1

,  kr1 r2
,  kr1 r2 r3

, …  to  their  corresponding  empirical  counterparts,  one  can  solve  the

appropriate  set  of  equations  and  obtain  estimates  of  the  unknown  parameters.  In  what
follows  we  will  elaborate  further  on  the  details  related  to  this  method.  The  following
proposition  gives  an  expression  for  the  cumulants  of  LG t  in  terms  of  the  unknown

parameters, D, a, l and n.

Proposition 9. The cumulant, kr1,…,rw of the random vector LG t is 

(37)kr1,…,rw = w- 1!
j=0

n a j

lw
dr1, j dr2, j …drw, j,

where w = 1, 2, …, ri = 1,…,s, i = 1, …, w.

Proof.  The cgf  of  the  random vector,  LG t  can be expressed  as  in  (31).  On the  other
hand, from (30), we have
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KLGz = 
j=0

n

a j -log 1-
1

l
d j ÿ z

= 
j=0

n

a j
1

l
d j ÿ z+

1

2

1

l
d j ÿ z

2

+
1

3

1

l
d j ÿ z

3

+…

= 
j=0

n a j

l
d j ÿ z+

1

2

a j
12

l
d j ÿ z

2

+
1

3

a j
13

l
d j ÿ z

3

+…

= 
j=0

n a j

l
dr1, j zr1

+
1

2

a j
12

l
dr1, j zr1

a j
12

l
dr2, j zr2

+

1

3

a j
13

l
dr1, j zr1

a j
13

l
dr2, j z2

a j
13

l
dr3, j zr3

+…

(38)

= zr1 
j=0

n a j

l
dr1, j +

1

2!
zr1

zr2 
j=0

n a j
12

l
dr1, j

a j
12

l
dr2, j +

1

3!
zr1

zr2
zr3

2!
j=0

n a j
13

l
dr1, j

a j
13

l
dr2, j

a j
13

l
dr3, j +…

Hence, comparing the coefficients of the corresponding terms zr1
,  zr1

zr2
,  zr1

zr2
zr3

,… in

(31) and (38) we have 

kr1,…,rw = w- 1!
j=0

n a j
1w

l
dr1, j

a j
1w

l
dr2, j …

a j
1w

l
drw, j

= w- 1!
j=0

n a j

lw
dr1, j dr2, j … dr3, j,

which coincides with the asserted expression (37). á

We can now use (37) in order to express the cumulants on the right hand side of equa-
tions  (32)-(36)  and  therefore,  express  the  theoretical  moments,  kr1 …rw  in  terms  of  the

unknown  parameters,  D, a, l  and  n.  Then,  equate  the  theoretical  moments,  kr1 … rw  to

their  empirical  counterparts  and  solve  with  respect  to  D, a, l,  assuming  n  is  appropri-

ately  chosen.  It  will  be  instructive  to  make the  definition  of  the  moments,  kr1 … rw  a  bit

more precise.
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Definition 4. For b = b1, …, bs' œ s, define the moment, X1
b1 X2

b2 … Xs
bs, of order

b, b = b1 +…+ bs of the random vector LGt as

X1
b1 X2

b2 … Xs
bs = 

s
xb fLGx „ x = kr1 … rb1

rb1+1 … rb1+b2
… rb1+…+bs-1+1 … rb,

where  xb = x1
b1 x2

b2 … xs
bs  and  r1 = … = rb1

= 1,  rb1+1 = … = rb1+b2
= 2,  …,

rb1+…+bs-1+1 = … = rb = s.

The empirical moments of LG t can now be defined as follows.

Definition  5.  For  b = b1, …, bs' œ s,  define  the  empirical  moment  k̀r1 … rb  of  order

b, as

k̀r1 … rb =
1

N

l=1

N

x1,l
b1 …, xs,l

bs,

where x1,l …, xs,ll=1
N  is a sample of N  i.i.d observations on LG t. 

In  order  to  estimate  the  parameters  D, a, l,  based  on  x1,l …, xs,ll=1
N ,  we  apply  the

method of moments and solve 

(39)µ kr1 … rbD, a, l = k̀r1 … rb, b = 1, 2, 3, …

with respect to D, a, l. 

Remark  2.  Note  that  there  are  
s+ k - 1

k
 distinct  moments  of  order

b = k = 1, 2, 3, … .  In  an  application,  one  would  need  to  select  the  number  of  equa-

tions, p, in (39), to be equal to the number, s+ 1än+ 1 + 1, of unknown parameters,

D, a, l,  starting  from moments of  order  1  and increasing  up to  a  maximum order  k*,

where k* = inf k : p § j=1
k s+ j- 1

j
 .

The method of moments described here is illustrated in section 4 on the example of FX
modelling.

4 Modelling the joint dynamics of exchange rates
Let  S1t,  S2t,…, Sst,  t ¥ 0,  be  the  exchange  rates  of  a  set  of  s  currencies  against  a

common  reference  currency.  We  are  interested  in  modelling  the  joint  dynamics of
S1t, S2t, …, Sst ,  over a finite time interval  0, T.  We view S jt,  as the price of a

risky asset with dynamics 

S jt = S j0 exp X jt, j = 1, …, s,
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where  X jt,  j = 1, …, s  are  the  coordinates  of  an  appropriate  s-variate  stochastic  pro-

cess  driving  the  joint  FX dynamics.  In  what  follows  we will  compare  and  contrast  the
modelling  results  we  obtain,  under  two  alternative  choices  for  the  processes
X jt, j = 1, …, s, a multivariate VG model proposed by Luciano and Schoutens (2006)

and a multivariate LG process, defined as in Definition 2. 

In Fig. 3, we give the (historic) joint co-movement of the exchange rates of three curren-
cies  (s = 3,  the  Euro (EUR),  the  GB Pound (GBP) and the  Japanese  Yen (JPY) to  the
US Dollar as the reference (domestic) currency for the period 30.06.2008-30.06.2009.

230608 101108 300309

1.0

1.2

1.4

1.6

1.8

2.0

300608 - 300609

EURUSDGBPUSD JPYUSD*100

Fig.  3  Joint  co-movement  of  the  exchange  rates  of  GBP/USD,  EUR/USD,   and
JPY/USD, viewed from top to bottom. 

As  can  be  seen,  examining  Fig.  3  visually,  there  are  different  degrees  of  inter-depen-
dence in the three FX trajectories. The exchange rates GBP/USD and EUR/USD  exhibit
stronger mutual correlation while at the same time, each of them is less correlated with
the  JPY/USD  exchange  rate.  This  is  confirmed  also  if  one  analyses  Fig.  4-5  which
provide scatter plots and histograms of the corresponding log returns at unit time inter-
vals, lnS jt  S jt- 1, t = 1, 2, ... given by

lnS jt  S jt - 1 = X jt- X jt- 1 ªd X j.

Examining  Fig.  5  one  can  see  that  the  (marginal)  distributions  of  the  corresponding
(historic) daily log returns seem to exhibit heavier tails than in the normal case, which is
a bit  more expressed for the EUR/USD and JPY/USD. As has been noted by Daal  and
Madan (2005), a univariateVG density is an appropriate choice for fitting empirical FX
data.

The two dimensional scatter plots of the three pairs of log returns given in Fig. 4, show
that  the  pair  GBP/USD  versus  EUR/USD  exhibits  positive  dependence  with  stronger
upper  tail  dependence,  the  pair  JPY/USD  versus  EUR/USD  looks  evenly  scattered
around the origin, while the pair JPY/USD versus GBP/USD looks somewhat negatively
correlated.
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Fig.  4  Bilateral  scatter  plots  of  the  empirical  log  returns  EUR/USD,  GBP/USD  and
JPY/USD. 

First,  we  model  the  co-movement  of  the  three  FX  rates,  EUR/USD,  GBP/USD  and
JPY/USD,  indexed  by  j = 1, 2, 3  respectively,  applying  the  multivariate  VG  process,

proposed by Luciano and Schoutens (2006), as follows

S jt = S j0 exp m j t + B G t;
1

n
,

1

n
; q j, s j  = S j0 exp m j t+VG jt; q j, s j, n,

where BGt; 1
n
, 1
n
; q j, s j  is a Brownian motion with drift q j  and volatility s j, for the

j-th currency, j = 1, 2, 3, and Gt; 1
n
, 1
n
 is a common Gamma process with mean rate 1

and variance rate n, and m j is a drift parameter. Obviously, there are 10 unknown parame-

ters in total in this model and this is the maximum possible number of parameters for a
three dimensional application s = 3. Denote by Z j = lnS jt  S jt- 1 the correspond-

ing log returns. Then, it is not difficult to see that the joint density of the log returns for
the three currencies is given as 

(40)fZ1,Z2,Z3
z1, z2, z3 = 

0

¶ n-1n

G1  n y1n-1 ‰-
y

n 
j=1

3 1

s j y
j

z j -m j - q j y

s j y
„ y.

where j is the standard normal pdf. In order to calibrate the three dimensional Luciano

and  Schoutens  (2006)  VG  model,  we  have  fixed  n = 1  and  have  used  the  method of
maximum  likelihood  in  order  to  estimate  the  unknown  parameters,  m j , q j, s j

j = 1, 2, 3.  In  Fig.  5,  we  give  the  histograms  of  (historic)  daily  log  returns  and  fitted

marginal VG jt; q j, s j, n densities and, as can be seen, they fit reasonably well the data.

In  Fig.  6  we  give  the  two  dimensional  scatter  plots  simulated  from  the  corresponding
fitted three dimensional VG distributions. As can be seen from Fig 6 if one compares it
with  the  corresponding  empirical  scatter  plots  of  Fig  4,  the  10  parameter,  Luciano  and
Schoutens  (2006)  model  fails  to  capture  the  underlying  dependence  in  the  data,  espe-
cially for the EUR/USD, GBP/USD  pair of currencies.
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Fig.  5  Marginal  VG densities  fitted  to  (histograms  of)  historic  daily  log  returns  of  the
exchange rates of EUR/USD, GBP/USD and JPY/USD. 
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Fig.  6  Bilateral  scatter  plots  of  the  simulated  three  dimensional  VG  log  returns
EUR/USD,  GBP/USD  and  JPY/USD,  upper  panel:  254  simulated  data  points;  lower
panel: 2540 simulated data points.

Secondly, we model the co-movement of the three FX rates, EUR/USD, GBP/USD and
JPY/USD, applying the multivariate LG process, proposed in this paper, as follows

(41)S jt = S j0 expLG jt; d j,0, …, d j,n, a, l, n,
where j = 1, 2, 3, n = 3, l = 1, a = 1, 1, 1, 1 and d j,0, …, d j,n, are the 12 knot parame-

ters. Note that 12 is the minimum possible number of knot parameters, since four is the
minimum number of knots which span a volume in 3 s = 3. For the purpose of estimat-
ing, d j,0, …, d j,3, j = 1, 2, 3, we consider the joint distribution of the corresponding log

returns, Z j , j = 1, 2, 3, which is a three dimensional LG distribution.
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Fig.  7  Marginal  LG  densities  fitted  to  (histograms  of)  historic  daily  log  returns  of  the
exchange rates of EUR/USD, GBP/USD and JPY/USD. 

We have used the method of moments, developed in section 3.2, in order to estimate d j,i,

j = 1, 2, 3,  i = 0, 1, 2, 3,  by  equating  the  first,  second  and  third  order  theoretical

moments,  kr1
,  r1 = 1, 2, 3,  kr1 r2

,  r1 = 1, 2, 3,  r2 = 1, 2, 3,  r1 < r2,  kr1 r2 r3
,

r1 = r2 = r3 = 1, 2, 3, of the random vector Z1, Z2, Z3, given by (32) and (33), to their

empirical counterparts, following (39).
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Fig. 8 Bilateral scatter plots of the simulated LG log returns EUR/USD, GBP/USD and
JPY/USD,  upper  panel:  254  simulated  data  points,  lower  panel:  2540  simulated  data
points.

In  Fig.  8,  we  give  the  two  dimensional  scatter  plots  simulated  from the  corresponding
fitted three dimensional LG distributions. 
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Comparing the scatter plots from Fig. 8 with the corresponding empirical scatter plots of
Fig. 4, the 12 parameter, LG model captures the underlying dependence in the data, both
for GBP/USD, EUR/USD and GBP/USD, JPY/USD pairs of exchange rates. As can be
seen  from  Fig.  8,  the  multivariate  LG  vector  can  take  any  value  in  3  but  the  scatter
plots reveal a triangular shape inherited from the domain of the three dimensional Dirich-
let spline, namely the pyramid configuration defined by its four knots, d j, j = 0, 1, 2, 3

in 3. In contrast to the Luciano and Schoutens (2006) VG model, for which the num-
ber of parameters is limited to a max of 10, it is possible to increase the number of LG
parameters,  say  to  six  knots  d j  j = 0, 1, 2, 3, 4, 5 and  use  the  method  of  moments  in

order to get a better estimate of the underlying dependence structure.

In  Fig.  9,  we  give  sample  paths  simulated  from  the  three  dimensional  LG  model  (41)
which illustrates the higher correlation between the EUR/USD and GBP/USD which has
also been empirically observed (see Fig. 3).
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Fig. 9 Joint co-movement of the exchange rates of EUR/USD, GBP/USD and JPY/USD
simulated from the LG model. 

5 Comments and conclusions 
The  proposed  (univariate)  LG  process  is  a  more  flexible  generalization  of  the  well-
known VG process and the BG process since it allows to use any number of parameters
according  to  the  requirements  of  a  particular  application  and  control  both  the  positive
and the negative parts of the corresponding Lévy measure. 

An enlightening link between the LG distribution, and (univariate) B-splines and Dirich-
let splines is established and alternative formulas for the density of the VG and BG are
given. The use of a LG process, as the driver of a stock price dynamics, in pricing exotic
options and participating life insurance contracts is briefly indicated.

The  proposed  multivariate  generalization  of  the  LG  process  is  very  flexible,  since  it
allows to incorporate any required number of parameters and to model complex depen-
dence patterns between asset price processes. It is a competitive alternative to multivari-
ate  Lévy  copulas  and  other  multivariate  generalizations  of  the  VG  process,  based  for
instance, on a common random time change in a multivariate Brownian motion. 
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We have also explored some of the properties of multivariate LG processes in terms of
multivariate  simplex  B-splines  and  Dirichlet  splines.  In  particular,  we  have  given
explicit  expressions  of  the  joint  LG density  and  the  underlying  LG  copula  function  in
terms of Dirichlet splines, and also the LG characteristic, moment and cumulant generat-
ing functions.  The latter  have been used in section 3.2 to develop,  a  reasonably  simple
method of moments, based on their relation to cumulants, for the purpose of calibrating
the LG model parameters.

We have also illustrated the modelling power of a multivariate LG process on the exam-
ple of FX modelling of the exchange rates of three currencies, the EUR the GBP and the
JPY to the US Dollar.  Results demonstrate that in contrast  to the three dimensional, 10
parameter  VG  model,  proposed  by  Luciano  and  Schoutens  (2006),  the  three  dimen-
sional, 12 parameter LG model, captures better the different (bilateral) patterns of depen-
dence  between  the  FX  rates  of  the  three  currencies  although  there  is  still  scope  to
improve its performance by introducing additional parameters.

Ongoing research is related to exploring market consistent LG parameter calibration and
properties of the LG copula, which is a new promising member of the relatively limited
family  of  multivariate  copulas,  richly  enough  parametrized  so  as  to  capture  complex
dependence  patterns  in  truly  multivariate  financial  and  insurance  applications.  It  is
worth  mentioning  that  yet  another  new  class  of  copulas,  related  to  the  LG  copulas,
called  Dirichlet  (B-)  spline  copulas  have  been  proposed  and  explored  by  Kaishev
(2006b).
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