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Abstract: Photonic crystal fibers (PCFs) are the specialized optical waveguides that led to
many interesting applications ranging from nonlinear optical signal processing to high-power
fiber amplifiers. In this paper, machine learning techniques are used to compute various optical
properties including effective index, effective mode area, dispersion and confinement loss for a
solid-core PCF. These machine learning algorithms based on artificial neural networks are able
to make accurate predictions of above mentioned optical properties for usual parameter space
of wavelength ranging from 0.5-1.8 μm, pitch from 0.8-2.0 μm, diameter by pitch from 0.6-0.9
and number of rings as 4 or 5 in a silica solid-core PCF. We demonstrate the use of simple and
fast-training feed-forward artificial neural networks that predicts the output for unknown device
parameters faster than conventional numerical simulation techniques. Computation runtimes
required with neural networks (for training and testing) and Lumerical Mode Solutions are also
compared.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Photonic crystal fiber (PCF) was first proposed by Knight et al. [1] in 1996, which consists of a
core with the periodic arrangement of air holes running along the length of the fiber. The core of
the PCF can be solid or hollow. For a solid-core PCF, there is a positive refractive index difference
between the core and equivalent index of the cladding, and light is guided using the modified
total internal reflection (TIR) phenomenon. On the other hand, hollow core PCF has a negative
refractive index difference between the core and cladding, and light guidance is based on photonic
band gap (PBG) mechanism [2]. Such structures exhibit the novel properties of being low loss and
endlessly single mode propagation. Other specific fiber properties, including effective index (neff),
propagation constant, effective mode area (Aeff), dispersion (D), non-linearity, birefringence and
confinement loss (αc) can be easily controlled by changing the holes size, spacing between them
and number of air-hole rings. The unique properties of PCF over standard optical fibers has
motivated researchers to use PCF for supercontinuum generation [3, 4], Raman scattering [5, 6],
fiber laser [7], optical sensors [8, 9], spectroscopy [10], among other applications.
Accurate modeling and optimization of photonic crystal structures generally relies upon the

numerical methods such as finite difference method [11], finite element method (FEM) [12],
block-iterative frequency-domain method [13], and plane wave expansion method [14, 15].
However, these methods require significant computer resources when dealing with complex
photonic crystal structures which needs to be simulated multiple times to obtain an optimized
design. Such iterative analyses also depend upon the number of input design parameters need to
be optimized.
Recently, machine and deep learning have risen to the forefront in many fields such as

computer vision, robotics, chatbots, natural language processing, among others. Over the past
few years, researchers have also explored the application of machine learning in the field of
photonics including multimode fibers [16], plasmonics [17], metamaterials [18], biosensing [19],
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metasurface design [20, 21], optical communications [22] and networking [23]. Kiarashinejad et
al. [24] proposed a deep learning-based algorithm using the dimensionality reduction technique
to understand the properties of electromagnetic wave-matter interaction in nanostructures. A
geometric deep learning approach has also been reported to study nanophotonics structures [25].
In 2018, extreme learning machine and deep learning were used for computing dispersion
relations [26] and optimization of Q-factors [27] for photonic crystals. Here, we propose to
use machine learning (ML) techniques for computing various optical properties of the PCF. We
combine the finite element simulations and artificial neural networks (ANN) for the quick and
accurate computation. The focus of this paper is to design a simple feed forward multilayer
perceptron (MLP) model which can be trained quickly to estimate the neff, Aeff, D, and αc for a
PCF structure.

This work is organized as follows. Section 2 describes the ANN/MLP concepts and modeling
parameters. Section 3 presents the assessment of the modeled ANN on testing PCF by comparing
their estimations with actual values and computing runtime, and finally the paper is concluded in
Section 4.

2. PCF modeling with ANN

The ANN/MLP architecture parameters are introduced in this section along with the PCF type
that is used for generating the dataset. The first step of the training procedure of an ANN model
is to have a finite and appropriate labeled dataset. This initially generated dataset plays a crucial
role for any ANN model. The accuracy of the model depends upon how well the dataset is
aligned to the problem to be solved. Variant PCFs were simulated by changing some geometric
property values and their optical properties were calculated. In our case, set of PCF geometric
data including diameter of holes (d), separation between center of two adjacent holes (pitch, Λ),
refractive index of core (nc), wavelength (λ), and number of rings (Nr) of a solid-core PCF (as
shown in Fig. 1) were taken as input variables of the labeled dataset.

Fig. 1: Cross-section of a solid-core hexagonal PCF with five rings of air holes.

Subsequently, neff, Aeff, D, and αc values were calculated using Lumerical Mode Solutions for
more than 1000 samples, which were considered as the output variables of the labeled training
dataset. Aeff, D, and αc values can be defined by using the following equations [28]:

Aeff =

( ∬
Ω
|Ht|2 dxdy

)2∬
Ω
|Ht|4 dxdy

(1)

D = –
λ

c
d2 Re(neff)

d λ2
(2)
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αc = 8.686 × 106 k0 Im(neff) dB/m (3)

where Ht is the transverse magnetic field vector, Ω is the area enclosed within the computational
domain. Re and Im stand for the real and imaginary parts, respectively. c and k0 are the free-space
speed of light and wavenumber, respectively.
An ANN/MLP model with 3 hidden layers and 50 nodes/neurons in each layer was used

throughout this paper, as shown in Fig. 2. These hidden layers were fully interconnected, which
means each node/neuron of a layer is connected to each node/neuron in the following layer. 10%
of data samples were randomly selected from the training dataset and allocated as the validation
dataset to provide unbiased evaluation while tuning the ANN model parameters (weights and
biases). Rectified linear unit (ReLU) [29] activation function and Adam [30] optimizer were
used for approximating the non-linear function and to optimize the weights during the training
process, respectively. ANN model predicts some outputs after each iteration/epoch. The mean
squared error (MSE) value between this predicted and actual output was then calculated and
back-propagation phenomenon [31] was used repeatedly to update the weights of the hidden layers
for each epoch. Choosing the above-mentioned parameters are based on our prior experience
of similar problems and a thorough study has been carried out in our previous work [32]. It
has been observed that 3 hidden layers with 50 nodes in each layer were sufficient to quickly
obtain a stable MSE for the considered PCF design. We avoided further increase in the number
of layers and nodes to reduce the computational loading. Similarly, ReLU activation was chosen
as it was performing better than other non-linear activation functions such as Sigmoid and Tanh
(hyperbolic tangent). Adam optimizer was chosen over LBFGS and stochastic gradient descent
(SGD) optimizers to optimize the weights values during the ML training process as it also
performs well for a relatively large dataset. The number of epochs to be taken was decided by
the user when MSE converges to an acceptable value. After optimizing the model having stable
MSE value, we generate suitable outputs for the new input data which was not provided during
the training process.

Fig. 2: Artificial neural network (ANN) representation with one input layer (5 input nodes), three
hidden layers (50 nodes in each layer), and one output layer (4 output nodes).
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3. Numerical Results and Computation Runtimes

In this section, we validate the trained ANN model by evaluating their outputs for a solid-core
PCF at unknown design parameters, and finally the computational runtimes of ANN model are
compared with the numerical simulations.

3.1. Effective Index (neff)

Figure 3 shows a scatter plot of the neff values of dataset used for training of the ANN model.
Predicted values of neff obtained from the ANN model are plotted against their actual values
from FEM simulations. Each circle represents a single datapoint. For a well trained model, these
values should be aligned closer to the y=x line (shown by a black solid line).
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Fig. 3: The scatter plot of training dataset produced by ANN for different epochs, comparing neff
values from the simulation (x-axis) and the ANN predictions (y-axis) along with the ideal linear
model (y = x). Inset shows the mean squared error (MSE) obtained with epochs when training
the ANN model.

It can be stated that for epochs = 1000, model is not yet well trained as the neff values (shown
by blue circles) in the parameter space of 1.15-1.30 are not close to the y=x line. This can also be
explained from the MSE curves for both training and validation datasets shown in the inset of Fig.
3. Here, MSE gives the average squared difference between the estimated and true values. In
this case, with the particular set of optimized weights and biases of the ANN model, we noticed
that there is a little difference between the MSE of training and validation datasets. Predictions
are closer to the original values when MSE values are smaller. It can be observed that MSE
for training dataset decreases with epochs from 0.31113 for epoch = 1 to 0.00367 for epochs =
1000. For epochs = 2500, this MSE reduces further to 0.00134. This implies that neff scatter plot
should be more closer to y=x line for epochs = 2500 or larger, as can be seen by red circles. We
run the ANN model till 5000 epochs at which this MSE reaches a stable value of 0.00065. For
epochs = 5000, the trained ANN model for predicting neff agreed reasonably well with the actual
neff values, being closest to the y=x line, as shown by green circles.
Next, in Fig. 4 we have compared actual and predicted neff for different epochs using the

trained ANN model at an unknown PCF parameters, Λ = 1.5 μm, d/Λ = 0.7, and Nr = 4. It should
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Fig. 4: Comparing actual (simulation) and predicted (ANN model) neff for different epochs at an
unknown pitch, Λ = 1.5 μm, d/Λ = 0.7, and Nr = 4.

be noted that the generated input training dataset did not have any value corresponding to Λ = 1.5
μm. Generally, the neff of the fundamental mode of PCF decreases with the increase in λ. For
epochs = 1000, ANN model was not able to predict the actual pattern (shown by black solid line)
well, and the predicted values (shown by blue filled circles) steered away from the actual values
as λ increases from 1.4 μm to 1.8 μm. When epochs were increased to 2500 or 5000, MSE for
training dataset reached to a more stable value of 0.00134 and 0.00065, respectively. Hence,
predicted and actual values were closer for both cases having a lower error. This also shows that
5000 epochs were sufficient for the training.

3.2. Effective Mode Area (Aeff)
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Fig. 5: (a) The scatter plot of training dataset produced by ANN for different epochs, comparing
Aeff values from the simulation (x-axis) and the ANN predictions (y-axis) along with the ideal
linear model (y = x), (b) Comparing actual (simulation) and predicted (ANN model) Aeff for
different epochs at an unknown pitch, Λ = 1.5 μm, d/Λ = 0.7, and Nr = 4.
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Aeff plays an important role in context of waveguiding properties in PCF, and can be calculated
by using Eq. 1. A smaller Aeff is useful in applications with enhanced fiber nonlinearity, while a
large Aeff can be useful in high power transmission applications.

Here, we use the previously trained ANN model to predict the Aeff values of the solid-core PCF.
Figure 5a shows that how well the dataset was trained for Aeff values for epochs equal to 1000,
2500, and 5000, shown by blue, red and green circles, respectively. It can be seen that some
datapoints for epochs equal to 1000 and 2500 were not well trained, especially when Aeff values
were greater than 4 μm2. When the epochs were increased to 5000, these datapoints became
closer to y=x line. We could increase the epochs to a higher value but this would increase the
simulation time, and may also lead to the overfitting problem. This trained ANN model was then
used to predict the Aeff values at an unknown PCF parameters, Λ = 1.5 μm, d/Λ = 0.7, and Nr = 4,
as shown in Fig. 5b. Aeff data corresponding to these parameters was never recorded or provided
during the training of the model. However, our ANN model was still able to predict them. Figure
5b shows the curve of actual and predicted Aeff values for epochs = 1000, 2500, and 5000. When
epochs were increased from 1000 to 5000, predicted Aeff values became closer to actual values,
which is also justified by the fact that MSE decreased with increase in epochs, as shown in inset
of Fig. 3. However, it was noted that even for epochs = 5000, solutions were not very accurate.
Next, effect of data length or its distribution is studied.
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Fig. 6: Comparing actual (simulation) and predicted (ANN model) Aeff for different datasets at
an unknown pitch, Λ = 1.5 μm, d/Λ = 0.7, and Nr = 4.

Figure 6 compared the actual and predicted Aeff values for two different datasets with epochs
= 5000. Dataset-2 composed of all the values of dataset-1 and had some additional datapoints
especially in the wavelength range from 1.3-1.7 μm, where previous predictions were poor. It
can be seen that the error between the actual and predicted values was further reduced when
ANN model was trained using dataset-2 (shown by red circles) in comparison to initial dataset-1
(shown by green diamonds), which clearly shows improved predictions in the higher wavelength
range. Figures 5b and 6 show that both number of epochs and dataset play an important role
during the training of the ANN model.

3.3. Dispersion (D)

The chromatic dispersion (D) of a PCF is an important parameter for many applications, such as
supercontinuum generation, and considered here next which may be calculated using Eq. 2. The
D depends on the second order derivative of neff with respect to λ.

The scatter plot showing training of the ANN model for D is shown in Fig. 7a. It can
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Fig. 7: (a) The scatter plot of training dataset produced by ANN for different epochs, comparing
D values from the simulation (x-axis) and the ANN predictions (y-axis) along with the ideal linear
model (y = x), (b) Comparing actual (simulation) and predicted (ANN model) D for different
epochs at an unknown pitch, Λ = 1.5 μm, d/Λ = 0.7, and Nr = 4.

be observed that at epochs = 1000, shown by blue circles, predicted D values significantly
deviates from actual D values, especially when D is less than -400 ps/km.nm. This error was
reduced if the model was trained till epochs = 2500 (red circles) or 5000 (green circles). But, at
epochs = 5000, we could still observe some datapoints were not close to y=x line when D was
less than -600 ps/km.nm. This error comes from the neural network modeling as there were
insufficient datapoints in the parameter space of D between -1200 and -600 ps/km.nm. This
leads to underfitting of the trained model for D values. Model was more biased to be trained
towards D values greater than -300 ps/km.nm, as there were more datapoints. Increasing the
datapoints in the lower D range further improves the training and accuracy of the ANN model for
D calculations.

Actual and predicted D values at an unknown Λ = 1.5 μm, d/Λ = 0.7, and Nr = 4 are shown
in Fig. 7b. At epochs = 1000, error or gap between the simulated and ANN values was more
because ANN model was not able to learn the curve shape well, and predicted it almost like
a straight line. Increasing the epochs to higher values of 2500 (red triangles) or 5000 (green
diamonds) reduced this error gap. It can be noted that epochs = 5000 were sufficient to predict
the D pattern in this case.

3.4. Confinement Loss (αc)

All PCF suffers from confinement loss, (αc) which depends on the imaginary part of the complex
effective index, neff, and can be computed by using Eq. 3.

Figure 8 displays the predictions of αc of the fundamental mode with actual values when using
the trained ANN model. It can be seen that for different epochs values of 1000, 2500 and 5000,
the scatter plot looks significantly different. Majority of the scatter plot values lie in αc ranging
from 0-10 dB/cm for epochs equal to 1000, 2500 and 5000 as shown by blue, red and green
circles, respectively. Only a few values were present for αc greater than 20 dB/cm for different
epochs mentioned, and these values were not close to y=x line which means data corresponding
to these higher αc values were not well trained. To understand the reason behind this, we need
to see the general trend of αc with λ for a particular set of PCF parameters, as shown by a blue
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Fig. 8: The scatter plot of training dataset produced by ANN for different epochs, comparing αc
values from the simulation (x-axis) and the ANN predictions (y-axis) along with the ideal linear
model (y = x).

line in Fig. 9. We have shown corresponding αc values at a regular interval of 0.1 μm. It can
be clearly observed that for λ in the range 0.8-1.4 μm, αc values were quite small and similar,
while it suddenly shoots up when λ was greater than 1.5 μm. This implies that when dataset was
recorded for different Λ, d/Λ, Nr, and λ, majority of the output αc values lied in one zone, with
only a small number of values in the another zone. When majority of the values lie in one zone,
the ANN model become biased towards these values. Similar thing happened in our case when
training the ANN model for αc values of the PCF.
The solution proposed to avoid this problem in our case was to take the logarithm of the

initially collected αc values when dataset was collected for different variations in Λ, d/Λ, Nr, and
λ. Taking the logarithm converts the values to new set with more regular intervals, which can be
trained efficiently by the ANN model. This can be observed by a red line in Fig. 9, which is the
logarithm of the values of the blue line. A red line represents the logarithm of the general trend
of αc with λ for the particular set of PCF parameters. Now, this logarithmic values of αc was
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Fig. 9: Actual values of αc from the simulation and in logarithm with wavelength for a general
case.
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Fig. 10: (a) The scatter plot of training dataset produced by ANN for different epochs, comparing
αc values in logarithm from the simulation (x-axis) and the ANN predictions (y-axis) along with
the ideal linear model (y = x), (b) Comparing actual (simulation) and predicted (ANN model) αc
in logarithm for different epochs at an unknown pitch, Λ = 1.5 μm, d/Λ = 0.7, and Nr = 4.

trained by the ANN model like we were training the neff, Aeff and D, and αc. During testing of the
PCF at unknown parameters, we first used the ANN model trained using logarithm of αc values,
and in the final step we took the anti-logarithm to obtain the predicted αc values and compared
its accuracy with the actual αc values.
Comparison of the predicted and actual αc values in logarithm during training of the ANN

model is shown in the Fig. 10a. For different mentioned epochs, it can be observed that the
scatter plot values are now closer to the y=x line, showing a well trained model. Without taking
the logarithm of αc values, the same ANN model was not trained well as shown earlier in Fig.
8. The αc values in logarithm from the simulation and ANN models for different epochs at an
unknown Λ = 1.5 μm, d/Λ = 0.7, and Nr = 4 are shown in Fig. 10b. As the epochs were increased
from 1000 to 2500 to 5000, error decreased for αc in logarithm values.
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Fig. 11: Comparing actual values from the simulation and ANN model for different epochs at an
unknown pitch, Λ = 1.5 μm, d/Λ = 0.7, and Nr = 4 or 5.

9



Next, we used the trained ANN model to predict and compare the αc values for different
epochs with the actual αc values. The same trained model can be used to efficiently predict αc
for different Nr = 4 or 5 at an unknown Λ = 1.5 μm, d/Λ = 0.7, as shown in Fig. 11. But before
comparing, we took anti-logarithm as we trained the ANNmodel with αc in logarithm values. For
Nr = 4 and epochs = 1000, it can be seen that predicted αc values (shown by blue filled circles)
were still far from actual αc values (shown by solid black line). As epochs were increased to
5000 (shown by green diamond symbols), the estimations became closer to the actual αc values.
Similarly, we have shown the predicted and actual αc values when Nr = 5 was taken for epochs =
5000. Predicted and actual values of αc closely matched as shown by orange star symbols and
dotted black line, respectively. This implies that ANN model performs better when logarithm of
αc values were taken to train the model, and 5000 epochs were sufficient to closely predict the
actual values for a PCF structure.

3.5. Computing Performance

The computational platform used in this study was a laptop with Intel Core i7 CPU @ 2.80 GHz,
16 GB RAM having windows 10 operating system. The runtime to train the artificial neural
network model depends on the training parameters including dataset size, number of hidden
layers, number of neurons in each hidden layer and number of epochs, among others. For our
particular model using 3 hidden layers with 50 nodes in each layer running for 5000 epochs, it
took around 20 seconds to train the model with the generated dataset. Once the training was done,
model weights and parameters were saved in the computer. Next step was to predict the output
for unknown inputs, which takes only a few milliseconds to compute. This prediction was carried
out using the already saved weights rather than first training the ANN again. On the other hand,
the numerical computation using Lumerical Mode Solutions requires a few minutes for each
point to be calculated, and can take even longer if a denser mesh is considered. The quantitative
analyses comparing simulation times between Lumerical Mode Solutions for different number of
mesh elements with training and testing times for the ANN model has been shown in Table 1.
Multiple outputs can also be predicted simultaneously within milliseconds with the ANN model
when sets of input parameters were given, while it can take even longer in numerical simulations
where sweeps might be required for it.

Table 1: Simulation times with Lumerical Mode Solutions and ANN model.

Lumerical Mode Solutions

(Number of Mesh Elements)
ANN model

120 X 120 250 X 250 500 X 500 1000 X 1000 Training Testing

Time taken 12 seconds 44 seconds
2 minutes

50 seconds

8 minutes

30 seconds
20 seconds 5 milliseconds

4. Conclusion

In summary, machine learning techniques have been employed to accurately predict the important
properties for a silica core photonic crystal fiber design. This paper has shown that how we can
predict the effective index, effective mode area, dispersion and confinement loss of a photonic
crystal fiber within milliseconds, in contrast of needing few minutes with numerical simulations.
Three hidden layers with 50 neurons in each layer were used throughout the code, which offer rapid
convergence and sufficient accuracy in predicting outputs for unknown geometric dimensions.
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The comparison between actual and predicted values in computing various optical properties were
shown, and the errors between these values decreased when number of epochs were increased, as
the mean squared error value reduces with number of epochs. The authors believe that these
machine learning models are an efficient alternative and have potential to support computation
solvers for both forward and inverse problems. In the future, the code can be easily extended to
different core material as well as the hollow core photonic crystal fiber.

Code and Data Availability

We have used the open source machine learning framework - PyTorch [33] to build and test our
artificial neural networks. The datasets and complete Python code used to generate the presented
results during the current study are available via https://github.com/sunnychugh/
ML_PCF. An additional dataset for testing purposes is also provided at the mentioned link.
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