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Abstract—

In this paper, we propose a lightweight trust management system (TMS) for fog-enabled cyber physical systems (Fog-CPS). Trust
computation is based on multi-factor and multi-dimensional parameters, and formulated as a statistical regression problem which
is solved by employing random forest regression model. Additionally, as the Fog-CPS systems could be deployed in open and
unprotected environments, the CPS devices and fog nodes are vulnerable to numerous attacks namely, collusion, self-promotion, bad-
mouthing, ballot-stuffing, and opportunistic service. The compromised entities can impact the accuracy of trust computation model by
increasing/decreasing the trust of other nodes. These challenges are addressed by designing a generic trust credibility model which can
countermeasures the compromise of both CPS devices and fog nodes. The credibility of each newly computed trust value is evaluated
and subsequently adjusted by correlating it with a standard deviation threshold. The standard deviation is quantified by computing the
trust in two configurations of hostile environments and subsequently comparing it with the trust value in a legitimate/normal environment.
Our results demonstrate that credibility model successfully countermeasures the malicious behaviour of all Fog-CPS entities i.e. CPS
devices and fog nodes. The multi-factor trust assessment and credibility evaluation enable accurate and precise trust computation and

guarantee a dependable Fog-CPS system.

Index Terms—Cyber Physical Systems, Fog Computing, Trust Computation, Trust Credibility

1 INTRODUCTION

AS an emerging paradigm, fog-enabled cyber physical
systems (Fog-CPS) combine computation and com-
munication capabilities with the physical space [1]. Fog
computing encourages local data processing and “edge
analytics”. Low latency, location-awareness, local resource
pooling, decentralization, and geographic distribution are
some of the distinguished features of fog computing. De-
spite the opportunities provided by the Fog-CPS, they face
increased security and trust challenges. Recent cyber attacks
on cyber physical systems including Ukrainian power grid
[2], DNS provider Dyn and others underline the threat
of connectivity and vulnerability of resource constrained
devices to be compromised.

Identity and access management can prevent fake enti-
ties from joining a Fog-CPS system. However, it is difficult
to guarantee that entities have not been compromised. In
Fog-CPS systems, the CPS devices can provision low-latency
services from fog nodes in vicinity. Nevertheless, some fog
nodes may not maintain good quality of service (QoS) due to
various factors such as, service cost, energy usage, applica-
tion characteristics, data flow, network status, and malicious
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behaviour of other entities. Without trust mechanisms, such
interactions are subject to risk and uncertainty that an entity
might experience. Considering the above-mentioned chal-
lenges, it is essential that each entity in Fog-CPS must have a
certain level of trust on one another. Trust can be established
by monitoring the interactions of Fog-CPS entities. Precisely,
the trustworthiness of an entity can be assessed on various
dimensions such as service quality, competence, integrity,
benevolence, honesty [3] and capability [4].

1.1 Motivation

To the best of our knowledge, there is no trust model
which considers a hostile environment in Fog-CPS systems.
As the Fog-CPS shares many commonalities with cloud
computing [5]-[9], Internet of Things (IoT) [10] [11], wireless
sensor networks (WSN) [12], and mobile adhoc networks
(MANETSs) [13]-[15] , the models proposed for these systems
are somehow relevant, but they cannot be directly applied
to fog scenarios due to the decentralized and distributed
architecture. Most of the existing studies on IoT, MANETs,
and CPS only assess the trustworthiness of sensor nodes and
CPS devices. However, due to the fog nodes operation in
open and unprotected environments, they are also vulner-
able to cyber attacks and can be compromised. It is there-
fore essential to assess the trustworthiness of all Fog-CPS
entities. Trustworthiness can be assessed based on several
parameters such as quality of service (QoS), capability and
communication features etc.

It is underlined that similar to other distributed systems
namely P2P, MANETSs, and sensor clouds, the Fog-CPS are
also vulnerable to self-promotion, bad-mouthing, oppor-
tunistic service, on-off, collusion, Sybil, and ballot-stuffing
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attacks [16]. These attacks aim to degrade the accuracy
of trust computation model or impact the availability of
TMS itself. For instance, in self-promotion attack, attackers
attempt to increase their own trust by reporting false param-
eters. Bad-mouthing attack occurs when a node gives bad
recommendations about other nodes. In the case of Fog-CPS,
malicious CPS devices can send false parameter reports
regarding their experience with fog nodes to purposefully
decrease their trust.

Additionally, fog nodes can be opportunistic at times
meaning that they will provide good service only for their
own benefit. Similar to opportunistic service, in on-off
attacks, malicious entities can behave good and bad de-
pending upon the situation. Likewise, in collusion attacks,
several compromised CPS devices can collaborate to modify
the trust results of other entities. In Sybil attack, a malicious
node (i.e. CPS devices in Fog-CPS) can create several fake
IDs to report false values of trust parameters. Moreover, in
Fog-CPS, ballot stuffing attack occurs when a CPS device
submits more parameter reports than permitted in a given
time period. These attacks can result into imprecise trust
computation which does not reflect the true actions and/or
performance of Fog-CPS entities. It is therefore essential to
devise countermeasures against these attacks such that the
trust cannot be maliciously manipulated.

Considering the limitations of existing approaches, in
this paper, we propose a trust management system (TMS)
which handles trust computation, management and dissem-
ination. Our proposed trust computation model includes
several components for trust computation and credibility
evaluation of fog nodes and CPS devices. A major advan-
tage of the credibility evaluation is the prevention of Sybil,
collusion, and data anomalies attacks.

1.2 Contributions

The contributions of this paper are four-fold. First, a holistic
TMS which provides a trust computation and dissemina-
tion platform is proposed. Second, trust computation is
formulated as a statistical regression problem and random
forest regression is employed to solve it. Third, for trust
computation a hostile environment in Fog-CPS systems is
considered. Additionally, a generic trust credibility evalu-
ation model is proposed to countermeasure the malicious
behaviour of compromised entities. The credibility of each
newly computed trust value is evaluated and subsequently
adjusted by correlating it with a standard deviation thresh-
old. Fourth, the proposed TMS provides a trust distribution
framework to disseminate the trust scores. Any entity which
is part of the Fog-CPS network can query the trust scores of
other entities before making a decision to collaborate.

The rest of this paper is organized as follows. The
related work is presented in section 2. The architecture of
a Fog-CPS systems is discussed in section 3. Our proposed
TMS is elaborated in section 4. The experimental results of
proposed trust management system are presented in section
5. The conclusion and future work are discussed in section
6.

2 RELATED WORK

As fog computing is a new area of research so there are not
many trust models. However, as it shares many common-
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alities with cloud computing, WSN, IoT, and MANET, the
trust models proposed for these systems are considered.

1. Cloud Computing: Majority of the studies compute trust
based on objective trust but some adopt a hybrid approach
[6]-[9] where trust is the fusion of objective and subjective
evidence. The literature identifies two popular methods to
compute objective trust, a) subjective logic [17], and b) real-
time adaptive trust evaluation approach [5] [8]. In adaptive
trust evaluation approaches, the trust computation problem
is modeled as a process of multi-attribute decision making
(MADM) and weights are assigned adaptively either by in-
formation entropy [5] or maximizing deviation method [8];
whereas in subjective logic weights are assigned manually
or subjectively [17].

Nagarajan et. al [9] employ a hybrid trust model which
is based on subjective logic to combine hard’ trust from
measurements and properties and ‘soft’ trust from past
experiences and recommendations to reduce uncertainties.
Gosh et. al [7] propose a framework which combines trust-
worthiness and competence to estimate the risk of interac-
tion. Li et. al [18] propose a trust model for web services
which considers the users’ preferences and the impact of
vicious ratings on trust evaluation. The proposed model is
based on subjective logic and does not consider the real-
time QoS attributes which make it impractical for Fog-CPS.
Recently, Talal et.al [19] propose a reputation based trust
management approach to compute subjective trust of cloud
services.

2. IoT: Namal et. al [10] propose a TMS for cloud-based
IoT applications which employs "Weighted Sum” for trust
aggregation and considers multi-dimensional parameters
namely, availability, reliability, capability, and response time
for trust formation. However, a major limitation of this work
is the inconsideration of security protection against attacks
[20]. Nitti et. al [11] propose a trustworthiness management
system for social IoT. The trust of a service provider is com-
puted by centrality, objective, and subjective trust. Tian et. al
[21] proposed a trust evaluation approach for sensor-cloud
systems in which trust is formulated as a multiple linear
regression (MLR) problem. Average energy consumption,
response time, and package delivery ratio are considered
as features in MLR. Recently, Tian et. al [22] propose a novel
energy-efficient and trustworthy protocol based on mobile
fog computing to evaluate the trustworthiness of sensors.

3. MANETSs: Wang et. al [13] proposed a logistic regression
based trust Model for MANETs. The two classes of logistic
regression classifier are trustworthy (0) and untrustworthy
(1). The probability of trust being in one class or another is
considered as the probabilistic statistical estimation of trust.
Shabut et. al [14] proposed a recommendation based trust
model for MANETs. The proposed model includes a defence
scheme which utilises clustering technique to dynamically
filter out attacks related to dishonest recommendations dur-
ing a time period based on the number of interactions,
compatibility of information, and closeness between the
nodes. Li et. al [12] proposed a trust management scheme
for vehicular ad hoc networks (VANETs). Dempster—Shafer
theory and collaborative filtering techniques are used for
trust aggregation. Trustworthiness of vehicles in VANETs
is evaluated by data and node trust. Recently, Xia et. al
[15] proposed a trust model based on Grey-Markov chain
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Fig. 1: Fog-enabled Cyber Physical Systems

prediction technique to predict trust of nodes in MANET.
The process of node trust assessment is based on node's
historical behaviours, in which the trust decision factors
include the subjective reputation and indirect reputation.

4. Cyber Physical Systems: Interestingly, for CPS, many
different approaches namely trusted computing, game the-
ory, and generic probabilistic graph modelling have been
proposed.

Rein et. al [23] proposed the concept of trust establish-
ment in a cooperative cyber physical system. The proposed
model employs trusted computing and trusted event re-
porting to verify the authenticity of security related events
in critical infrastructures. Pawlick et. al [24] adopt a game
theoretical approach for trust computation in CPS. The
game captures the strategical and adversarial aspects of
CPS security. Yan et. al [25] adopted a perception-oriented
approach to quantify trustworthiness in cyber physical sys-
tems. A multi-dimensional perception approach based on
three major metrics of ability, benevolence, and integrity is
considered.

Discussion: After reviewing the literature, we conclude that
the trust computation is essentially a regression problem
wherein the trust of an entity can be accurately predicted
based on a set of features. For instance, the trust of a
fog node can be estimated based on its computational
and processing capabilities, response time, and task success
ratio. Likewise, the trust of a CPS device can be based
on the its performance and communication features. Re-
gression analysis based schemes perform better than other
trust computation models (for cloud) namely subjective
logic, weighted sum, and adaptive trust evaluation, as they
regress over all records and assign the weights that best fit
the input features. Trust models proposed for cloud comput-
ing do not consider a hostile environment wherein service
providers can be compromised. Considering the advantages
of regression, in this paper random forest regression is
employed for trust computation of fog nodes and CPS
devices. Some works also proposed the trusted computing
technology for trust assessment in CPS devices. However,
trusted computing is equipped with several cryptographic
constructions namely, random number generation, remote
attestation, binding, and sealing. Such computationally ex-
pensive operations are not appropriate for resource limited
CPS devices and loT sensors.

TABLE 1: Notations and their Meanings

Notation Description

FA Fog Assist Node

CPS Cyber Physical Device

AX time window for trust evaluation

t time stamp for QoS evidence gathering

o (fi) instant trust of ith fog node at time ¢

Ttasfog Fog node objective trust computed by FA

Teps— fog Fog node trust based on CPS device experience

Tog Fog node trust

Teps— fog CPS device trust based on fog node experience

c(, f;) parameter report sent by ith CPS device for jth fog node
o Standard Deviation of Trust 7" over a time window A\

3 FoG-CPS ARCHITECTURE

Fig. 1 illustrates the architecture of our proposed TMS. It is
based on the three-layer architecture proposed by Open Fog
Consortium and other studies [26]-[29]. A Fog-CPS consists
of three layers namely, CPS devices, fog and cloud. These
layers are arranged in an increasing order of computing
and storage capabilities. The CPS devices layer has two types
of devices, mobile CPS devices and fixed CPS devices. The
fog layer consists of network equipment, such as routers,
bridges, gateways, switches and base stations, augmented
with computational capability, and local servers. The fog
layer has two types of entities namely fog nodes and “Fog
Assist” (FA) nodes.

The FA nodes are dedicated for entity registration, ser-
vice orchestration, provisioning, and trust management. It is
assumed that FA is protected by security measures namely,
encryption, authentication and access control, firewalls and
intrusion detection systems. A few recent studies [28] [30]
also advocate the need of dedicated nodes for service
orchestration and consider them secure even if Fog-CPS
system deployment is in an open and hostile environment.
As shown in Fig. 1, the fog layer is divided into several
geographical regions with each being managed by a FA
node. The region-based approach enables the dissemination
of trust among Fog-CPS entities in different regions. The
cloud layer is a consolidated computing and storage plat-
form that provides various applications for the acquisition,
processing, presentation and management of the Fog-CPS
system.

7 .
CPS Devices Fog Assist

Trust Evidence Database

Trust Credibility

. .
Evaluation Fog Node Trust : O

Computation st

. i cps T:u:t [} cPs Device 840
: omputation Objective Trust M Parameter =
| — = Computation | Monitoring
Trust } : : :
I o

Parameter o

200606

Fig. 2: Fog-CPS Trust Management System

4 PROPOSED TRUST MANAGEMENT SYSTEM

In a trust relationship, the trustor is an entity which
shares some of its assets and /properties with another entity
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TABLE 2: Fog Node Trust Parameters

Fog Assist CPS Device

FA Trust Parameters CPS Trust Parameters

CPU frequency Energy Consumption
Memory size Response Time
Hard disk capacity Bandwidth

Current CPU utilization rate
Current memory utilization rate
Current hard disk utilization rate

Average response time

Average task success ratio

namely trustee for the benefit of a third party. Precisely,
in Fog-CPS systems, the fog nodes and CPS devices are
the trustor and FA (as it is managing TMS) is the trustee.
Moreover, the beneficiary can be the Fog-CPS system users
and/or other entities. Next, we present our proposed TMS
as shown in fig. 2. It consists of eight modules namely, 1)
QoS Monitoring and Service Matching, 2) Objective Trust
Computation, 3) Trust Parameter Monitoring, 4) CPS Device
Parameter Monitoring, 5) Data Anomalies Detection, 6) CPS
Trust Computation, 7) Trust Credibility Evaluation, 8) Fog
Node Trust Computation and 9) Trust evidence Database.
The different modules of TMS enable FA to accurately and
precisely compute the trust of fog nodes and CPS devices
respectively. For fog nodes, trust is computed by aggregat-
ing the QoS evidence monitored by FA, and the CPS device
parameters reflecting their experience with the fog nodes.
Likewise, the trust of CPS devices is computed based on
communication features monitored by fog nodes. Trust Pa-
rameter Monitoring module is installed in each CPS device
and fog node. It quantifies the latency, energy consumption
and bandwidth utilized in communication between the fog
nodes and CPS devices, and vice versa.

QoS Monitoring and Service Matching module assists
FA in evaluating the service quality and finding the services
matching the user requirements. The QoS evidence is later
fed into the Objective Trust Computation module in order
to compute the objective trust. FA subsequently stores all the
monitored parameters and trust results in the Trust Evidence
Database.

Moreover, any anomalies in parameters monitored by
fog nodes and CPS devices are detected by Data Anomalies
Detection component prior to being incorporated into CPS
Trust Computation. Next, the Trust Credibility Evaluation
module finds the discrepancies in trust computed in consec-
utive time instances. The trust inconsistencies are analyzed
to prevent the malicious behaviour of Fog-CPS entities.
Lastly, the objective and CPS trust are sent to the Fog Node
Trust Computation module to compute the final trust of fog
nodes. The details of each of these modules are given below.
Table 1 lists the notations used throughout this paper.

4.1 QoS Monitoring and Service Matching

As the name suggests this module includes features for
monitoring the service quality parameters and matching
the services as per the given requirements. As discussed
in section 4, there are two types of CPS devices namely,
fixed and mobile. Generally, the service matching is not
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required in fog scenarios where fixed CPS devices are de-
ployed. Because the interactions among devices are already
established. The entities function as per the requirements
of specific application scenario. However to generalize the
TMS, a service matching feature is added such that the pro-
posed TMS can also be applied to fog scenarios with mobile
CPS devices. For service matching, a set of requirements
are taken as input and subsequently the resource matching
is carried out on the available fog nodes. FA selects highly
trusted fog nodes based on their trust values.

However, for trusted service matching, it is essential to
monitor the real-time service parameters of fog nodes. In the
interactive process, this module dynamically monitors the
service parameters and is responsible for getting run-time
service data. The FA monitors four kinds of parameters (see
Table 2) namely, fog node specification, average resource us-
age, average response time, and average task success ratio.
The fog node specification profile includes CPU frequency,
memory size, and hard disk capacity. The average resource
usage information consists of the current CPU utilization
rate, current memory utilization rate, current hard disk
utilization rate, and current bandwidth utilization rate.

4.2 Objective Trust Computation

The trust of a fog node is computed by aggregating the
trust computed from QoS evidence and the experience of
CPS devices. The objective trust is computed from directly
monitored QoS evidence. Random forest regression [31] is
employed to predict the objective trust of a fog node based
on the QoS parameters listed in table 2. In prediction prob-
lems, the regression models are trained over a substantial
number of samples in order to improve the accuracy. So for
objective trust computation, the first task was to generate
the trust labels corresponding to a set of service parameters.
The trust label is assigned based on average task success
ratio and service quality. Trust gets a high value if the
average task success ratio is high and the fog node fulfilled
the service request by maintaining the acceptable service
quality vice versa.

Following this, the random forest regression is executed
to predict the objective trust at a given time instance based
on the service parameter features. As the QoS features are
high dimensional (i.e. each sample has multiple features to
consider). At each node in a tree, the optimization happens
by selecting one feature randomly and optimizing for it.
This process is repeated multiple times until the best feature
is found and subsequently split at that node. Once this
happened, the data is split based on that feature and each
split is passed to the two nodes below.

Let F' = {f1, f2, ..., fn} denote n trusted fog nodes in
a Fog-CPS environment. The instant trust degree oy(f;)
of f; at time instance ¢ is predicted using random forest
regression procedure explained above. The prediction of
o(f;) at ¢ is based on the QoS parameters quantified at
that time instance. Subsequently, objective trust is calculated
using Eq. (1):

AN

Tra—sfog =0 x s(fi) = Z(Ut(fi) x st(fi)), (1)

t=1
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where s(£,) = {s1(f),52(£): s sa( £} and - s1(f) = 1.
s¢(f;) € [0,1] is the weight assigned to each instant trust
degree o:(f;) and is given by Eq. (2).
_ -1
sf) = U @
A=+

t=1

s is a time-based attenuation function which assigns more
weight to o4 (f;) computed at recent time instances.

4.3 Trust Parameter Monitoring

A ”Trust Parameter Monitoring” module is installed in each
CPS device and will enable them to quantify the utilization
of energy, bandwidth and response time when communicat-
ing with a fog node.

4.4 CPS Device Parameter Monitoring

Similar to CPS devices, the fog nodes also monitor a few
parameters for each CPS device which is connected to it.
Both fog nodes and CPS devices evaluate each other on
same set of parameters. The fog nodes subsequently report
them to FA which computes the trust for CPS devices.

4.5 Data Anomalies Detection

After the multi-dimensional parameters (table 2) related to
communication features are reported by CPS devices and
fog nodes. The data anomalies are identified by comparing
the parameter values with the predefined range. If a param-
eter value falls within the range, then it is considered for
trust computation otherwise not.

4.6 CPS Trust Computation

This module computes the trust of CPS devices for fog
nodes. The instant degree of trust based on a set of param-
eters is predicted by the random forest regression model.
Precisely, regression evaluates the relationship between pa-
rameters and trust. Subsequently, the CPS trust T¢ps_, foq Of
a fog node f; is computed using Eq. (3)

P
; C(Zv f J )
Tc s og — = (3)
ps— fog D

where c(i, f;) is the trust computed from the ith report sent
by the CPS devices provisioning services from a fog node f;
and p is the total number of reports. Additionally, it is noted
that similar to fog nodes, the trust of CPS devices T'fog—cps
is also computed using Eq. (3).

4.7 Trust Credibility Evaluation

As discussed in section 1.1, the Fog-CPS systems can be de-
ployed in open and unprotected locations and are therefore
at the risk of compromise. Moreover, such distributed sys-
tems can also be subject to collusion, on-off, bad-mouthing,
and self-promotion attacks. Compromised entities might
try to change the trust of other nodes by reporting false
parameters. For instance, in collusion attacks, the attackers
can either work alone or in coalitions to increase/decrease
the trust of Fog-CPS entities. Solving this problem is not
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straightforward because on the one hand, it is not easy to
predetermine the number of compromised entities and on
the other hand, it is essential to minimize the impact of
malicious attackers. Keeping these constraints in mind, a
trust credibility evaluation model is designed to adjust the
trust of Fog-CPS entities in three cases whereby the CPS
devices, fog nodes and FA could be compromised.

Case 1 - Compromise of CPS Devices: Compromised CPS
devices may try to change T¢ps— foq by reporting false pa-
rameters. The proposed credibility model and data anoma-
lies detection modules can handle these discrepancies.

Case 2 - Compromise of Fog Nodes: Compromised fog
nodes can report false parameters to change the T'tog—scps-
Similar to case 1, this problem is redressed by monitoring
the rate of change of trust and subsequently adjusting it
based on trust computed in previous time instances.

Case 3 — Compromise of FA: As the TMS model is main-
tained by the FA node so its compromise can lead to
following problems:

- Inaccurate Computation of Trog, Teps— fog and Tog—scps: The
FA computes the trust of Fog-CPS entities and then store it
in the Trust Evidence Database which is publicaly accessible.
So, if an entity finds a discrepancy in its trust score, it can
request the recomputation of trust based on the current
values of parameters. If its request is not entertained then
it can inform all involved fog nodes and CPS devices.

- Tampering the QoS and CPS device Parameters: A com-
promised FA node can also change the parameter values
reported by the Fog-CPS devices. This can be addressed by
the making the “Trust Evidence Database” accessible to the
relevant entities. The fog nodes and CPS devices can verify
and/or compare their reported set of parameters to those
stored in the Database. The discrepancy could be reported
back to the FA node and the involved entities. To address
all these cases of compromise, trust credibility evaluation is
applied in all computationsi.e. Ttoq, Teps—s fog aNd Trog—cps
by default. Hence, any “large” differences will be adjusted.
Precisely, when new CPS devices and fog nodes are taking
part in the network their trust value is expected to be 0.5.
While the network operates trust values will be increased or
decreased. Trust credibility evaluation model analyses the
change in T during consecutive time instances [to,?] and
subsequently recomputes the trust in recent time instance ¢
using Eq. (4):

Ty =Ty, £ 0T, 4

where ¢ is the standard deviation in 7' over a time window
AM. The standard deviation ¢ informs about the spread of
the possible values of trust. o is computed by Eq. (5):

T — 2
N DY Mu) 5)

where p is mean of trust 7 at a time instance t. The
standard deviation should be taken/considered for every
newly calculated trust value. If the trust T in recent time
instance t is less than the previous time ¢y and the difference
is greater than o then the T in ¢ is increased otherwise it is
decreased.
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TABLE 3: Simulation Parameters

Parameters Values
No: of Fog Nodes 2

No: of CPS devices connected with each fog node 20

No: of FA nodes 1

No: of regions 2

No: of Cloud Providers 1

No: of Simulation Instances 5

4.8 Fog Node Trust Computation

Having discussed objective and CPS trust modules. The next
task is to aggregate them to compute trust of a fog node
and to assign weights to objective and CPS trust. Through
weight assignment, it is easy to define the proportion of CPS
and objective trust in computing the trust of a fog node. Fog
node trust is calculated as follows:

Tfog =0 X Tcps—)fog + (1 - 6) X Tfa—>fog (6)

where § is the weight of Teps—sfog, and, (1 — ) is the
weight of T'rq—, foq. If we set § = 1, the weight of T'¢q—; foqg
becomes 0, and the equation 6 will only consider CPS trust.
However, many studies [32]-[34] show that objective trust
Tta—fog is a helpful component in building a dependable
trust relationship. When the system is highly dynamic and
most CPS devices are malicious, the objective trust T, foq
should be set with a high weight. Intuitively, the value of
Teps— fog calculated above should have a higher weight if
the number of rating CPS devices is higher.

4.9 Trust Evidence Database

FA stores the trust values of each fog node and CPS device in
the trust evidence database. Any device can look up and/or
query FA and acquire the trust scores of other entities and
based on which makes a decision to collaborate.

5 EXPERIMENTAL EVALUATION

In this section, the results of trust computation are pre-
sented.

5.1 Implementation Environment

As discussed in section 4, the Fog-CPS consists of three
layers, CPS devices, fog and cloud. Communication between
these layers is possible in four different ways, 1) device to
device, 2) device to fog node, 3) fog node to fog node, and,
4) fog node to cloud service provider. For evaluating our
proposed TMS, we have simulated a generalized Fog-CPS
network (see fig. 3) in iFogSim [35]. Moreover, the random
forest regression model is trained and tested in Spyder 3.2.6.
It is a scientific Python development environment which is
packaged in Anaconda. All benchmarks were executed on a
Windows machine running Windows 10 with Python 3.6.4.
on Intel (R) Core(TM) i5-4310U CPU@2.000GHz with 8.0 GB
RAM.

The simulation parameters are listed in table 3. There is
one cloud service provider and one FA. Moreover, there is
one fog node in each region of fog layer. Twenty CPS devices
are provisioning services from each of the fog nodes. CPS
devices belong to different Fog-CPS application scenarios
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namely, weather forecasting, health monitoring, energy con-
sumption, and vehicular ad hoc networks (VANETs) etc. The
QoS parameters for fog nodes and CPS devices are acquired
from iFogSim [35] simulator. For experimental purposes, the
simulation model quantifies the multidimensional QoS pa-
rameters in following three cases, 1) CPS device to fog node
communication, 2) fog node to CPS device communication,
and 3) FA monitoring fog nodes. A communication loop
is created wherein a CPS device provisions a service (i.e.
compute, storage, network, and software) from a fog node
and subsequently reports its experience in the form of a set
of parameters.

5.2 Random Forest Regression Training and Testing

As discussed in section 4.2, that random forest regression
is employed to compute the trust of fog nodes and CPS
devices. Next, we discuss how the regression model is
trained and tested for accurate prediction of trust. The
iFogSim [35] simulator quantifies the QoS parameters but
it does not generate their corresponding trust labels. In
order to generate the trust labels, we run the simulated Fog-
CPS model (see Fig. 3) 30 times, acquired the QoS param-
eter values. For fog nodes, FA monitors the average CPU,
memory, disk utilization, average task success ratio, and
average response time. Whilst the CPS devices monitor the
communication features namely, response time, bandwidth,
and energy consumption.

As 20 CPS devices are connected to each fog node, in
each simulation, every device is sending 20 reports thus
totalling to 400 reports for one fog node. Eventually, for both
fog nodes, 24,000 reports are sent in 30 executions of simu-
lation. Likewise, FA also monitors the service quality once
during each run of simulation thus generating 60 samples
for both fog nodes. All the acquired QoS parameters are
subsequently averaged to find the normality and based on
which the trust labels are generated for each set of service
features. Precisely, the objective trust gets a high value if the
average task success ratio is high and the fog node fulfilled
the service request by maintaining the acceptable service
quality vice versa. Likewise, the CPS trust assigned a higher
value if the parameters reported by CPS devices are in a
given range which is quantified by averaging the parameter
values in 30 runs of simulations.

Train-Test Split: Random Forest Regression model from
“sklearn. ensemble” with parameters n_estimators = 50
and max_depth = 6 is used. After statistical analysis of the
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TABLE 4: Trust Results

1D Tcpsﬁ,fog Tfaﬂfog Tfog Time
0.60 0.59 0.70 t1
0.64 0.67 0.74 ta
0.80 057 0.89 ts

FNv 569 0.77 0.74 ta
0.59 0.60 0.73 ts
0.54 0.63 0.69 to
0.60 0.50 0.79 t1
0.58 0.90 0.58 t2
0.80 0.55 0.67 3

FN2 53 0.58 0.63 ta
0.75 0.78 0.82 5
0.59 0.76 0.83 to

datasets, a train-test split ratio of 70-30 is used. The goal with
the test set is to capture the total variance in the data which
is essentially the total number of examples to learn. As the
CPS device dataset has a high number of training examples
and a few number of features, the variance in that dataset
could be captured with a lower training set. However, due
to a small objective trust dataset, a high ratio of training-
test split was required. So to be consistent in experimental
evaluation, same ratio of 70-30 is used is used for both
datasets. In the proposed TMS, Random Forest Regression is
employed to predict both objective trust T4, foq and CPS
device trust Teps—; fog. The mean square error (MSE) is zero
(0) in case of T4, o4 as this dataset is very small having
only 60 samples, out of which 70% (42 samples) are used
for training and rest (18) for testing. So, achieving zero MSE
with a non-linear regression model is justifiable. However,
it was also expected that the regression model might show
different accuracy results with a bigger dataset. In the case
of CPS device trust Tips—s fog, for example, the MSE is 0.12
meaning that the model predicted 88 % of the trust labels
accurately.

5.2.1 Trust Results

Having trained the regression model, we next computed
final trust of fog nodes and CPS devices based on models
discussed in section 4. For these set of experiments, the
QoS parameters are quantified in six different time periods
with an increment of ten minutes in each subsequent time
instance. Precisely, the first time period was 20 minutes, the
second 30 minutes, and so forth. The experimental results
are divided into three categories, 1) TMS Results - Hostile
free Environment, 2) TMS Results - Hostile Environment,
and 3) Comparative Analysis.

5.3 TMS Results- Hostile free Environment

In this experiment, it is assumed that all Fog-CPS entities
operate legitimately conforming the system/protocol speci-
fications. The trust values of both fog nodes and CPS devices
are presented. For fog nodes, there are three results namely,
CPS trust Teps—, foq, Objective trust T's,—, oq, and fog node
trust Ty, listed in Table 4. Hereinafter, the notations CP.S;,
FN;, t; denote ith CPS device, fog node, and time instance
respectively.

5.3.1 CPS Tiust Tepss fog

Fig 4(a) illustrates the trust of a CPS device for fog node
F N, based on energy consumption, response time, and
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bandwidth predicted using random forest regression model.
The trust of a CPS device in first time instance t; is 0.79, to
is 0.84, t3 is 0.72, t4 is 0.78, t5 is 0.62, and t¢ is 0.74.

Fig. 4(a) also illustrates the final CPS trust Teps—; foq for
fog nodes F'N and F'N» computed using Eq. (3) presented
in Sec. 4.6. The CPS trust for both fog nodes F'N; and F'Ny
is also listed in 1st column of Table 4. As can be seen from
Fig. 4(a), in all time instances, the CPS trust T.ps_ o4 Of
both fog node F'N; and F' N is trustworthy i.e. greater than
threshold 0.5.

5.3.2 Objective Trust Ty, foq

Fig. 4(b) lists the objective trust T4, ro4 Values of fog nodes
computed using Eq. (1) presented in Sec. 4.2. The second
column of Table 4 also lists the Ty, foq. As it can be seen
that in the 1st time instance ¢;, the fog node FN; has
slightly higher objective trust T's,—, o4 than fog node F'N.
In the 2nd time instance ¢5, F'N 2 has higher objective trust
Tta— fog than F'N 1. Whereas in the 3rd time instance ¢3, the
objective trust T, roq Of both fog nodes is almost equal.
Moreover, in 4th time instance the objective trust T'¢,—; foq
of N is again greater than fog node F'N,. Likewise in
5th and 6th time instances, the objective trust Tfq_, foq Of
fog node F'N, is greater than fog node FIN;. Overall as
per the QoS evidence, the performance of both fog nodes is
trustworthy.

5.3.3 Fog Node Trust Ty,

Having computed the CPS and objective trust scores, the FA
aggregates them to compute the final trust of fog nodes T'to4
using Eq. (6) presented in Sec. 4.8. Again according to our
assumption, both the fog nodes and CPS devices operate
honestly; and therefore assigned equal weight § = 0.5 in
Eq. (6). Fig. 4(c) illustrates the final trust T, of two fog
nodes. The third column of Table 4 lists the fog node trust
T'to4. FA also compute a trust score of all CPS devices which
are getting services from different fog nodes. Both fog nodes
and CPS devices assess each other on same set of parameters
i.e. energy consumption, bandwidth, and response time.

5.4 TMS Results- Hostile Environment

In section 4.7, the compromise of Fog-CPS entities and its
impact on trust computations was discussed. This experi-
ment is designed to elaborate the effectiveness of the trust
credibility model. The credibility in Case-1 is evaluated
wherein the the CPS devices are considered compromised.
However, similar results will be produced for compromised
FA and Fog nodes when the environment changes. Follow-
ing this, we present the trust of fog nodes computed in a
hostile environment by taking into consideration several
attacking scenarios. Precisely, six attacking scenarios are
considered whereby a percentage of parameter reports sent
by CPS devices are considered malicious. Hereinafter, the
notation A; is used to denote ith attacking scenario.

In the first attacking scenario A;, there are 0% malicious
parameters i.e. all CPS devices are honest. In the second
attacking scenario Ay, 10% parameters are considered ma-
licious. Likewise, in the third As, fourth A, and fifth As
attacking scenarios, 25%, 50%, and 75% parameters are ma-
licious. Lastly, in the sixth attack scenario Ag, all parameters
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are malicious. The attacking scenarios are designed such
that effectiveness of credibility model can be evaluated
in different configurations of hostile environments. Subse-
quently, we demonstrate how our trust computation model
maintains the accuracy of trust results even in presence of
malicious CPS devices.

The trust credibility model is evaluated in two cases where
CPS devices send parameters with high and low values to
change the trust of fog nodes. Two cases, C1 and Cs, of
credibility evaluation are formulated as follows:

In the first case, C, the malicious CPS devices send pa-
rameters with very high values in the range of [0.8 - 1] and
very low values in the range of [0.05 - 0.2] in all attacking
scenarios. In the second case, C5, the CPS devices send
parameters with an increment and decrement of 0.1 (i.e
slightly changing the values from threshold value of 0.5).
Precisely in each attacking scenario, the respective percent-
age of malicious CPS devices send parameters reports with
an increment and decrement of 0.1.

Our credibility model analyzes the rate of change in
Teps—fog in consecutive time instances and subsequently
adjusts the CPS trust in current time instance using Eq.
(4). However, for finding an appropriate value of o, the
standard deviation in a hostile free environment during
six time instances [t1, 2, ..., tg] is computed using Eq. (5).
Similarly, the standard deviation in two hostile environ-
ments (i.e. credibility cases) is also computed. Lastly, final
standard deviation is computed by the difference among
three standard deviations. Following above computational
procedure, we found o = 0.03 and subsequently used it
in credibility evaluation model. Next, we present the trust
results in two credibility cases.

5.4.1 Credibility Evaluation Case-1

In the first case, C';, we elaborate how credibility model
maintains accurate and precise computation of CPS trust
Teps—fog and fog node trust Tyoq. Both results with or
without credibility are presented. It is noted that the at-
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tacking scenarios take place in different time instances i.e.
[t1,ta, ..., ts]. However, the results do not mention the time
instances but they should be considered when analyzing the
results.

Teps—fog and Tfog trust results without considering
the credibility are shown in fig. 5. When malicious CPS
devices report high trust values, T, o4 increases in each
subsequent attacking scenario as shown in fig. 5(a). As a
result, Tf,4 is also increasing. Similarly, in case of low
trust values, the T¢ps—rog and Ty, are decreasing with
increasing percentage of malicious CPS devices in different
attacking scenarios.

Fig. 6 illustrates the CPS trust T.ps— oy and fog node
trust Tf,, computed by considering the credibility model
in the first case. From fig. 6(a), it can be observed that CPS
trust is increasing with high trust values in each attacking
scenario due to increasing percentage of malicious devices.
It has increased from 0.54 in A; to 0.80 in Ag which subse-
quently increased the fog node trust T%,,. However, due to
the credibility model, there has not been a dramatic increase
in trust. Likewise, fig. 6(b) shows the CPS trust Tips—; fog
and fog node trust T't,, computed when the malicious CPS
devices send low values of trust. Again, it can be observed
that CPS trust Tcps—s foq sharply decreases from 0.54 in A;
to 0.23 in Ag. Fog node trust T'to4 is also changing due to
change in Teps_; foq, it dropped from 0.73 to 0.60.

It can be analyzed that without credibility model ma-
licious CPS devices can easily increase/decrease the trust
of fog nodes and subsequently push trust to highest 1
and lowest 0 values. It is therefore essential to compute
the credibility of Ti,s—rog and adjust any discrepancies
accordingly.

5.4.2 Credibility Evaluation Case-2

The second case Cy of credibility evaluation is designed
to check the robustness of credibility model in detecting
smaller changes in CPS trust. In this experiment, the ma-
licious devices are slightly changing the parameters values
with an increment and decrement of 0.1. In other words,
in case of high trust, if in A;, all devices are sending
parameters values between 0.5 and 0.6. In second attacking
scenario As, 10% would send values between 0.6 and 0.7;
while the rest of them will report values between 0.5 and
0.6. Likewise, in A3, 25% would send values between 0.7
and 0.8; while the rest of them will report values between
0.5 and 0.6. The same happens to low trust wherein CPS
devices try to slightly decrease the trust in each subsequent
attacking scenario.

Fig. 7(a) shows the CPS and fog node trust computed
without considering the credibility model. It can be ana-
lyzed that there has been a slight increase in CPS trust
Teps— fog in each attacking scenario. CPS trust increases
from 0.54 in A; to 0.66 in Ag. Fog node trust T'toq is also
changing accordingly. Similar to high trust, the malicious
CPS devices can also collude to decrease the Tps—, foq-
Fig. 7(b) shows the trust when CPS devices are sending
parameter values which result into lower trust. Again, it can
be observed that CPS trust T¢ps_, fo4 is decreasing from 0.54
to 0.25 in each subsequent attacking scenario. The decrease
in Teps— fog also decreased the T'y,, which dropped from
0.74 in Ay to 0.60 in Ag.
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The trust results computed with credibility model are
shown in fig. 8. Again, both conditions of devices increas-
ing and decreasing the CPS trust are considered. Fig. 8(a)
illustrates the results with high trust. It is noted that the
credibility model successfully identifies change in trust in
consecutive time instances and/or attacking scenarios and
adjusts it accordingly. Overall the CPS trust Tcps_, foq Te-
mained between 0.54 to 0.56. As a result, Ty, also did not
decreased much. However, the change in T'f,4 is due to the
objective trust T’y fo4 in the specific time instance.

Fig. 8(b) shows the CPS and fog node trust when CPS
devices are colluding to decrease the trust of fog nodes.
The CPS trust is decreasing as more and more devices are
sending values between 0.5 and 0.1 in different attacking
scenarios. As a result of this, the CPS trust decreased from
0.54 to 0.36. It is underlined that CPS trust without cred-
ibility reached 0.25 in Ag (see fig. 7(b)) , however due to
the credibility model it did not change so low this time.
Moreover, due to credibility model the fog node trust 7o
remained between 0.76 to 0.67.

5.4.3 Resilience against Attacks

The Fog-CPS systems can be vulnerable to many attacks
as explained in section 1, with the aim of attackers to
degrade the accuracy of trust computation model or impact
the availability of the TMS . For example, in collusion
attack, the malicious attackers can collaborate together to
increase/decrease the trust of fog nodes. Likewise, in self-
promoting and bad-mouthing attacks, the compromised
devices report positive and negative parameters to change
the trust of fog nodes.

It can be observed that despite having different nature of
attacks, in all cases, trust changes dramatically and therefore
the key to addressing this challenge was to detect and
subsequently adjust the change in trust. In line with this,
a notion of trust credibility evaluation was introduced and
the change in trust is quantified by correlating it with
the standard deviation. We believe that the adoption of a
generalized technique i.e. measuring standard deviation of
trust in hostile and hostile free environments is adequate to
develop a resilient trust management system. Our approach
is also similar to the credibility model proposed in [19]
which countermeasures the Sybil and collusion attacks.

5.5 Comparative Analysis

As the research in fog computing is in its early stages, there
are very few trust models. There is no trust model which
computes trust for both fog nodes and CPS devices. Due to
these limitations, the fog node trust Ty, results of proposed
TMS are not comparable to existing approaches. However,
the CPS trust results are compared with one existing study
[10].

5.5.1 Autonomic Trust Management Framework [10]

In this work, a trust model for dynamic cloud based IoT
systems is proposed. The autonomic trust management
framework is based on IBM 's MAPE-K feedback control
loop. A major limitation of the proposed framework is the
inability to detect the data anomalies. With the current
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proposed model, if the anomalous parameters are incorpo-
rated into trust computation then the resulting CPS trust is
inaccurate and does not fall between -1 and 1, as reported
in Eq. (1) and (2) in section 6 of [10]. However, in our
proposed trust computation model, the data anomalies are
detected. All parameter values which are out of the range
are not considered into trust computation. To evaluate the
limitations of [10], three cases of comparative analysis are
considered, 1) Normal case, 2) Parameters values greater
than Vj,,q; (upper limit of range), and 3) Parameter values
less than V,,;, (lower limit of range). In all cases, the
CPS trust Tips— oy computed by our model is compared
with [10]. In each comparison case, ten samples are taken
randomly and do not belong to a specific attacking scenario
and time instance.
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5.5.2 Comparative Analysis Normal Case

In the normal case, it is assumed that all parameters
are within a given range. Fig. 9 illustrates the CPS trust
Teps—fog Of both models. It can be seen that the CPS
trust computed by our model lies between 0.58 and 0.89.
Similarly, in case of [10], Tcps— foq lies between 0.47 and
0.75. Overall, in normal case, the trust computation in both
models are trustworthy .

5.5.3 Comparative Analysis (> Viyax)

In the second case, the parameter values greater than V;,, 4,
are considered. Fig. 10 shows the CPS trust T¢ps—; foq results.
It can be analyzed that CPS trust computed by our model
lies between 0.1 to 0.5. However, in case of [10], the CPS
trust lies between 0.48 to 0.99. However, there are false
parameters but the autonomic trust model is considering
them therefore resulting into inaccurate results.
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5.5.4 Comparative Analysis (< Viuin)

In third case, the parameter values less than V,,;, are
considered. Fig. 11 illustrates the CPS trust Tcps_, o4 Values
in case-3. It can be observed in Fig. 11 that our proposed
model can detect the data anomalies and therefore compute
accurate CPS trust. However, in case of [10], all trust values
are equal to 1 which is not a correct trust quantification.

Overall it is maintained that the normalization intro-
duced in [10] does not take into consideration the parameter
reports sent by compromised CPS devices. The anomalous
parameter values do not compute an accurate and precise
trust scores. However, our proposed trust credibility eval-
uation model takes care of all these aspects and therefore
computes CPS trust with an improved accuracy and preci-
sion.
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5.6 Trust Overhead Results

Fig. 12 reports the overhead of objective T4, fo4, CPS
Teps— fog, and fog node Ty,4 trust computations in all
attacking scenarios from A; to Ag. It is noted that the
overhead of objective trust 1, roq and fog node T'¢,q in all
attacking scenarios is 0.8 and 0.5 seconds respectively. How-
ever, the CPS T,ps_, o4 trust computations are incurring
different overhead in each attacking scenario. The CPS trust
computation overhead is the summation of time required for
data anomalies detection, random forest regression training
and testing, and trust credibility evaluation. The timing are
different because the random forest regression training and
testing is taking different time in each attacking scenario.
Precisely, T¢ps— foq takes 2.5 sec in Aj, 2.8 sec in Aj, 3 sec
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in Az, 3.25 secin Ay, 3.5 sec in A5, and 4 sec in Ag. Overall,
trust computation in all attacking scenarios [A1, As, . . ., Ag]
takes 3.8, 4.1, 4.3, 4.5, 4.8, and 5.3 seconds respectively.

The trust parameters overhead on CPS devices is mea-
sured as follows. Every CPS device sends 20 reports (con-
sisting of three parameters namely, energy consumption,
bandwidth and response time) to FA in one time unit.
Each report requires 6 bytes for storing three parameters
and subsequently for 20 reports the overhead is 120 bytes.
The above results demonstrate that our proposed TMS is
lightweight and incurs small computation overhead, hence
suitable for large scale and dynamic Fog-CPS.

6 CONCLUSION

In this paper, we proposed a TMS for Fog-CPS systems. The
trustworthiness of CPS devices and fog nodes is evaluated
based on QoS and network communication features by em-
ploying the random forest regression model. A credibility
evaluation model is designed to countermeasure the ma-
licious behaviour (i.e. collusion, Sybil, self-promotion and
bad-mouthing) of compromised entities. The experimental
results are compared with an existing model [10] which
cannot detect and therefore prevent the data anomalies
attack. Our results demonstrate that the proposed TMS
can not only detect the data anomalies but also prevent
other malicious behaviours of compromised entities. Lastly,
considering the recent endeavours to urbanization, more
specifically the research in smart cities, our TMS proposal
is timely and important.
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