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Abstract

Empirical analysis is often the first step towards the birth of a conjecture.
This is the case of the Birch-Swinnerton-Dyer (BSD) Conjecture describing
the rational points on an elliptic curve, one of the most celebrated unsolved
problems in mathematics. Here we extend the original empirical approach, to
the analysis of the Cremona database of quantities relevant to BSD, inspecting
more than 2.5 million elliptic curves by means of the latest techniques in data
science, machine-learning and topological data analysis.

Key quantities such as rank, Weierstrass coefficients, period, conductor,
Tamagawa number, regulator and order of the Tate-Shafarevich group give rise
to a high-dimensional point-cloud whose statistical properties we investigate.
We reveal patterns and distributions in the rank versus Weierstrass coefficients,
as well as the Beta distribution of the BSD ratio of the quantities. Via gradient
boosted trees, machine learning is applied in finding inter-correlation amongst
the various quantities. We anticipate that our approach will spark further re-
search on the statistical properties of large datasets in Number Theory and
more in general in pure Mathematics.
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1 Introduction and Summary

Elliptic curves E occupy a central stage in modern mathematics, their geometry and
arithmetic providing endless insights into the most profound structures. The cele-
brated Conjecture of Birch and Swinnerton-Dyer [BSD] is the key result dictating the
behaviour of E over finite number fields and thereby, arithmetic. Despite decades of
substantial progress, the proof of the conjecture remains elusive. To gain intuition, a
highly explicit and computational programme had been pursued by Cremona [Cre],
in cataloguing all elliptic curves up to isogeny and expressed in canonical form, to
conductors into the hundreds of thousands.

Interestingly, a somewhat similar situation exists for the higher dimensional ana-
logue of elliptic curves considered as Ricci-flat Kähler manifolds, viz., Calabi-Yau
manifolds. Though Yau [Yau] settled the Calabi-Yau Conjecture [Ca], much remains
unknown about the landscape of such manifolds, even over the complex numbers.
For instance, even seemingly simple questions of whether there is a finite number
of topological types of Calabi-Yau n-folds for n ≥ 3 is not known – even though
it is conjectured so. Nevertheless, because of the pivotal importance of Calabi-Yau
manifolds to superstring theory, theoretical physicists have been constructing ever-
expanding datasets thereof over the last few decades (cf. [HeBook] for a pedagogical
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introduction).

Given the recent successes in the science of “big data” and machine learning, it is
natural to examine the database of Cremona [Cre2] using the latest techniques of Data
Science. Indeed, such a perspective has been undertaken for Calabi-Yau manifolds
and the landscape of compactifications in superstring theory in high-energy physics,
ranging from machine-learning [He] to statistics [Doug,HJP]. Indeed, [He,KS,CHKN,
Rue] brought about a host of new activities in machine-learning within string theory;
moreover, [He, HeBook] and the subsequent work in [BHJM, ACHN, HL, JKP, HK,
BCDL,?] introduced the curious possibility that machine-learning should be applied
to at least stochastically avoid expensive algorithms in geometry and combinatorics
and to raise new conjectures.

Can artificial intelligence help with understanding the syntax and semantics of
mathematics? While such profound questions are better left to the insights of Turing
and Voevodsky, the more humble question of using machine-learning to recognizing
patterns which might have been missed by standard methods should be addressed
more immediately. Preliminary experiments such as being able to “guess”- to over 99%
accuracy and confidence - the ranks of cohomology groups without exact-sequence-
chasing (having seen tens of thousands of examples of known bundle cohomologies)
[HeBook], or whether a finite group is simple without recourse to theorem of Noether
and Sylow (having been trained on thousands of Cayley tables) [HK] already point
to this potentiality.

In our present case of number theory, extreme care should, of course, be taken.
Patterns in the primes can be notoriously deceptive, as exemplified by the likes of
Skewe’s constant. Indeed, a sanity check to let neural networks predict the next
prime number in [He] yielded a reassuring null result. Nevertheless, one should not
summarily disregard all experimentation in number theory: after all, the best neural
network of the 19th century - the mind of Gauß - was able to pattern-spot π(x) to
raise the profound Prime Number Theorem years before the discovery of complex
analysis to allow its proof.

The purpose of this paper is to open up dialogue between data scientists and
number theorists, as the aforementioned works have done for the machine-learning
community with geometers and physicists, using Cremona’s elliptic curve database as
a concrete arena. The organization is as follows. We begin with a rapid introduction
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in Section 2, bearing in mind of the diversity of readership, to elliptic curves in light
of BSD. In Section 3, we summarize Cremona’s database and perform preliminary
statistical analyses beyond simple frequency count. Subsequently, Section 4 is devoted
to machine-learning various aspects of the BSD quantities and Section 5, to their
topological data analyses and persistent homology. Finally, we conclude in Section 5
with the key results and discuss prospects for the future.

2 Elliptic Curves and BSD

Our starting point is the Weierstraß model

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6 (2.1)

of an elliptic curve E over Q, where (x, y) ∈ Q and the coefficients ai ∈ Z. The
discriminant ∆ and J-invariant of E are obtained in a standard way as

∆(E) = −b2
2b8 − 8b3

4 − 27b2
6 + 9b2b4b6 , j(E) =

c3
4

∆
(2.2)

where b2 := a2
1 + 4a2, b4 := 2a4 + a1a3, b6 := a2

3 + 4a6, b8 := a2
1a6 + 4a2a6 − a1a3a4 +

a2a
2
3 − a2

4 and c4 := b2
2 − 24b4. Smoothness is ensured by the non-vanishing of ∆ and

isomorphism (isogeny) between two elliptic curves, by the equality of j.

An algorithm of Tate and Laska [Tat, Las] ∗ can then be used to bring the first
3 coefficients a1,2,3 to be 0,±1, transforming (2.1) into a minimal Weierstraß model.
∗ In particular, consider the transformation between the coefficiens ai and a′i between two elliptic

curves E and E ′:

ua′1 = a1 + 2s,

u2a′2 = a2 − sa1 + 3r − s2,

u3a′3 = a3 + ra1 + 2t,

u4a′4 = a4 − sa3 + 2ra2 − (t + rs)a1 + 3r2 − 2st,

u6a′6 = a6 + ra4 + r2a2 + r3 − ta3 − t2 − rta1.

for u, s, t ∈ Q, then relating the points (x, y) ∈ E and (x′, y′) ∈ E ′ as

x = u2x′ + r , y = u3y′ + su2x′ + t

yields u12∆′ = ∆ and hence j′ = j, and thus the isomorphism.
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Thus, for our purposes, an elliptic curve E is specified by the pair of integers (a4, a6)

together with a triple (a1, a2, a3) ∈ {−1, 0, 1}. From the vast subject of elliptic curves,
we will need this 5-tuple, together with arithmetic data to be presented in the ensuing.

2.1 Rudiments on the Arithmetic of E

This subsection serves as essentially a lexicon for the quantities which we require,
presented in brief, itemized form.

Conductor and Good/Bad Reduction: The conductor is the product over all
(finite many) number of primes p - the primes of bad reduction - where E reduced
modulo p becomes singular (where ∆ = 0). All other primes are called good
reduction.

Rank and Torsion: The set of rational points on E has the structure of an Abelian
group, E(Q) ' Zr × T . The non-negative integer r is called the rank, its non-
vanishing would signify an infinite number of rational points on E . The group
T is called the torsion group and can be only one of 15 groups by Mazur’s
celebrated theorem [Maz], viz., the cyclic group Cn for 1 ≤ n ≤ 10 and n = 12,
as well as the direct product C2 × Cn for n = 2, 4, 6, 8.

L-Function and Conductor: The Hasse-Weil Zeta-function of E can be defined,
given a finite field Fq=pn , as the generating functions zp (the local) and Z (the
global):

Zp(t; E) := exp

(
∞∑
n=1

E(Fpn)

n
tn

)
,

Z(s; E) :=
∏
p

Zp(t := p−s; E) . (2.3)

Here, in the local zeta function Zp(t; E), E(Fpn) is the number of points of E
over the finite field and the product is taken over all primes p to give the global
zeta function Z(s).

The definition (2.3) is applicable to general varieties, and for elliptic curves,
the global zeta function simplifies (cf. [Sil]) to a product of the Riemann zeta
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function ζ and a so-called L-function as

Z(s; E) =
ζ(s)ζ(s− 1)

L(s; E)
, (2.4)

where

L(s; E) =
∏
p

Lp(s; E)−1 , Lp(s; E) :=


(1− αpp−s + p1−2s), p - N

(1− αpp−s), p | N and p2 - N

1, p2 | N

.

In the above, αp = p + 1− counts the number of points of E mod p for primes
of good reduction and ±1 depending on type of bad reduction. The positive
integer N which controls, via its factorization, these primes, is the conductor of
E .

Importantly, the L-function has analytic continuation [TW] to C so that the
variable s is not a merely dummy variable like t in the local generating function,
but renders L(s; E) a complex analytic function.

Real Period: The periods of a complex variety is usually defined to be the integral
of some globally defined holomorphic differential over a basis in homology. Here,
we are interested in the real period, defined as (using the minimal Weierstraß
model)

R 3 Ω :=

∫
E(R)

|ω| , ω =
dx

2y + a1x+ a3

(2.5)

over the set of real points E(R) of the elliptic curve.

Tamagawa Number: Now, E over any field is a group, thus in particular we can
define E(Qp) over the p-adic field Qp for a given prime, as well as its subgroup
E0(Qp) of points which have good reduction. We define the index in the sense
of groups

cp :=
[
E(Qp) : E(Qp)

]
, (2.6)

which is clearly equal to 1 for primes of good reduction since then E0(Qp) =

E(Qp). The Tamagawa number is defined to be the product over all primes of
bad-reduction of cp, i.e.,

Tamagawa Number =
∏
p|N

cp . (2.7)
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Canonical Height: For a rational point P = a
b
, written in minimal fraction form

with gcd(a, b) = 1, a, b ∈ Z and b > 0, we can define a naive height h(P ) :=

log max(|a|, b). Then, a canonical height can be defined as

ĥ(P ) = lim
n→∞

n−2h(nP ) , (2.8)

where nP = P + . . . + P (n-times) is the addition of under the group law of
E . This limit exists and renders ĥ the unique quadratic form on E(Q)⊗R such
that ĥ − h is bounded. An explicit expression of ĥ(P ) in terms of a, b can be
found, e.g., in Eq4 and Eq5 of [BGZ]. The canonical height defines a natural
bilinear form

2 〈P, P ′〉 = ĥ(P + P ′)− ĥ(P )− ĥ(P ′) (2.9)

for two points P, P ′ ∈ E(Q) and as always, P + P ′ is done via the group law.

Regulartor: Given the infinite (free Abelian) part of E(Q), viz., Zr, let its genera-
tors be P1, . . . , Pr, then we can define the regulator

RE = det 〈Pi, Pj〉 , i, j = 1, . . . , r (2.10)

where the pairing is with the canonical height and defines an r × r integer
matrix. For r = 0, R is taken to be 1 by convention.

Tate-Shafarevich Group: Finally, one defines group cohomologies H1(Q, E) and
H1(Qp, E) between which there is a homomorphism (cf. e.g., [Mil]IV.2 for a
detailed description). We can then define the Tate-Shafarevich Group X of E
as the kernel of the homomorphism

X(E) := ker

(
H1(Q, E) −→

∏
p

H1(Qp, E)

)
. (2.11)

This is the most mysterious part of the arithmetic of elliptic curves, it is con-
jectured to be a finite Abelian group. For ranks r = 0, 1, this has been proven
(cf. the survey of [RS]) but in general this is not known.

2.2 The Conjecture

With the above definitions, we can at least present the celebrated
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CONJECTURE 1 (Birch–Swinnerton-Dyer (Weak Version)) The order of the
zero of L(s; E) at s = 1 is equal to the rank r,

Ord
s→1

L(s; E) = r(E) .

That is, the Taylor series around 1 is L(s; E) ∼ c(s−1)r with some complex coefficient
c.

In fact, a stronger version of the conjecture predicts precisely what the Taylor coeffi-
cient c should be:

CONJECTURE 2 (Birch–Swinnerton-Dyer (Strong Version)) The Taylor co-
efficient of L(s; E) at s = 1 is given in terms of the regulator R, Tamagawa number∏
p|N

cp, (analytic) order of the Tate-Shafarevich group X, and the order of the torsion

group T . Specifically, let L(s; E) =
∑
r

L(r)(1;E)
r!

(s− 1)r, then

L(r)(1; E)

r!
=

|X|·Ω ·R ·
∏
p|N

cp

|T |2
.

3 Elliptic Curve Data

BSD arose from extensive computer experimentation, the earliest of its kind, by Birch
and Swinnerton-Dyer. Continuing along this vein, Cremona [Cre] then compiled
an impressive of list of 2,483,649 isomorphism classes of elliptic curves over Q and
explicitly computed the relevant quantities introduced above. This is available freely
online at [Cre2].

3.1 Cremona Database

The database of Cremona, on which the rest of the paper will focus, associates to
each minimal Weierstraß model (given by the coefficients (a1, a2, a3) ∈ {−1, 0, 1} and
(a4, a6) ∈ Z; generically, these last two coefficients have very large magnitude), the
following:
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• the conductor N , ranging from 1 to 400,000;

• the rank r, ranging from 0 to 4;

• the torsion group T , whose size ranges from 1 to 16;

• the real period Ω, a real number ranging from approximately 2.5 · 10−4 to 6.53.

• the Tamagawa number
∏
p|N

cp, ranging from 1 to 87040;

• the order of the Tate-Shafarevich group (exactly when known, otherwise given
numerically), ranging from 1 to 2500;

• the regulator R ∈ Z>0, ranging from approximately 0.01 to 3905.84.

A typical entry, corresponding to the curve y2+xy = x3−x2−453981x+117847851

(labelled as “314226b1” and with ∆ = 2 · 33 · 11 · 238 and j = 2−1 · 33 · 11−1 · 23 · 1993

which are readily computed from(2.2)) would be

(a1, a2, a3, a4, a6) = (1,−1, 0,−453981, 117847851) =⇒

N = 314226 = 2 · 33 · 11 · 232

r = 0

R = 1

Ω ' 0.56262∏
p|N

cp = 3

|T | = 3

|X| = 1 .

(3.1)

3.2 Weierstraß Coefficients

Let us begin with a statistical analysis of the minimal Weierstraß coefficients them-
selves. It so happens that in the entire database, there are only 12 different sets of
values of (a1, a2, a3), we tally all of the curves in the following histogram, against rank
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and (a1, a2, a3):

(a1, a2, a3)\Rank 0 1 2 3 4

{0,−1, 0} 126135 155604 30236 659 0

{0,−1, 1} 17238 24593 7582 399 0

{0, 0, 0} 172238 213780 40731 698 0

{0, 0, 1} 28440 39235 11187 506 0

{0, 1, 0} 118942 157003 34585 722 0

{0, 1, 1} 18016 27360 9609 426 0

{1,−1, 0} 102769 127198 25793 551 1

{1,−1, 1} 96995 128957 28940 604 0

{1, 0, 0} 66411 98092 25286 612 0

{1, 0, 1} 71309 94595 20907 548 0

{1, 1, 0} 69759 88403 18293 496 0

{1, 1, 1} 67834 91717 21197 458 0

We see that most of the curves are of smaller rank, with only a single instance of
r = 4. This is in line with the recent result of [BS] that most elliptic curves are rank
1; in fact, over 2/3 of elliptic curves obey the BSD conjecture [BSZ].

To give an idea of the size of the a-coefficients involved, the largest one involved
in the database is

~a = {1, 0, 0,−40101356069987968,−3090912440687373254444800} , (3.2)

which is of rank 0.

Even though it is a conjecture that the rank r can be arbitrarily large, the largest
confirmed rank [Elk] so far known in the literature is 19, corresponding (the last term
being a 72-digit integer!) to

a1 = 1, a2 = 1, a3 = −1, a4 = 31368015812338065133318565292206590792820353345,

a6 = 302038802698566087335643188429543498624522041683874493555186062568159847 .

(3.3)
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This extraordinary result is clearly not in the database due to the large rank.

One of the first steps in data visualization is a principle component analysis where
features of the largest variations are extracted. The minimal Weierstraß model gives
a natural way of doing so, since the (a1, a2, a3) coefficients take only 12 values and
we can readily see scatter plot of (a4, a6). Now, due to the large variation in these
coefficients, we define a signed natural logarithm for x ∈ R as

sLog(x) =

 sgn(x) log(x) , x 6= 0

0 , x = 0 .
(3.4)

We present this scatter plot of (sLog(a4), sLog(a6)) in Fig. 1. Therein, we plot all the
data points (i.e., for all different values of (a1, a2, a3)) together, distinguishing rank
by colour (rank 4 has only a single point as seen from the table above).

Figure 1: A scatter plot of (sLog(a4), sLog(a6)) for all 2,483,649 elliptic curves in the Cremona
database. Different ranks are marked with different colours.

The first thing one would notice is the approximate cross-like symmetry, even
within rank. However, this is not trivial because the transformation

(a4, a6) −→ (±a4,±a6) (3.5)

is by no means a rank preserving map. For instance, a single change in sign in a4,
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could result in rank change from 1 to 3:

r({0, 1, 1,−10, 20}) = 3 , r({0, 1, 1,+10, 20}) = 1 . (3.6)

Examples of a similar nature abound. The next feature to notice is that the size of
the cross shrinks as the rank increases. This is rather curious since the largest rank
case of (3.3) has far larger coefficients. This symmetry is somewhat reminiscent of
mirror symmetry for Calabi-Yau 3-folds, where every compact smooth such manifold
with Hodge numbers (h1,1, h2,1) has a mirror manifold with these values exchanged.

3.3 Distributions of a4 and a6
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Figure 2: The distributions of a4 and a6. (A) Probability mass of a4 (blue line)
and a6 (orange line). (B) Joint probability of a4 and a6. The colour indicates the
density of points within each bin (see colour-bar). Note that the figure axes are in
symlog scale (linear scale between −1 and 1, logarithmic scale for other values in the
range). Hence, we can see also the density corresponding to a4 = 0 and a6 = 0 (cross
in the middle). (C) Probability density distribution for the logarithm(in base 10) of√
a2

4 + a2
6 (when a4 > 0 and a6 > 0, filled line), the corresponding Beta distribution

fit with parameters α = 4.1, β = 25.0 and s = 44.1 (dashed line), and the median
value (dotted line).

Fortified by the above initial observations, let us continued with more refined
study of the distribution of a4 and a6. First, let us plot the distribution of each
individually, normalized by the total, i.e., as probability mass functions. These are
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shown in part (A) to the left of Fig 2. Note that the horizontal axes (binning) is
done logarithmically. We see that the distributions of both a4 and a6 are symmetric
with respect to 0 (Fig. 2-A), with a4 spanning ∼ 8 orders of magnitude smaller as
compared to a6. This is just to give an idea of the balanced nature of Cremona’s
data, that elliptic curves with ±a4 and ±a6 are all constructed.

Next, in part (B) of Fig 2, we plot the joint probability mass function of the pair
(a4, a6) with colour showing the frequency as indicated by the colour-bar to the right.
We see that, as discussed in Fig. 1, there is a cross-like symmetry. Here, since we
are not separating by rank, the symmetry is merely a reflection of the constructions
of the dataset, that ±a4 and ±a6 are all present. What is less explicable is that it
should be a cross shape and what is the meaning of the boundary curve beyond which
there does not seem to be any minimal models. For reference, the central rectilinear
cross indicates the cases of a4 = 0 and a6 = 0 respectively.

Finally, we compute the Euclidean distance d :=
√
a2

4 + a2
6 from the origin and

study its probability distribution. This is shown in part (C) of Fig. 2, We find that
half of the data lies within a radius of ∼ 106 from the origin. The logarithm of d can
be well fitted with a Beta probability distribution:

f(x, α, β, s) = K · x
s

α−1 (
1− x

s

)β−1

, (3.7)

with parameters α = 4.1, β = 25.0 and s = 44.1. Thus, whilst there are a number of
coefficients of enormous magnitude, the majority still have relatively small ones.

Differences by Rank: As with our initial observations, we now study the varia-
tion of (a4, a6) with respect to the rank r of the elliptic curves. First, in Fig. 3 parts
A-D, we plot the joint distributions of a4 and a6 for r = 0, 1, 2, 3 respectively. We
can see that they differ signigicantly from each other, under permutation test [PJ] at
confidence level α = 0.01.

Next, Fig. 3 E show the probability distribution functions for our Euclidean
distance

√
a2

4 + a2
6 for the different ranks. We find that the median Euclidean distance

from the center decreases for higher values of r. In fact, we see that the median values
of a4 and a6 increase with the rank r (see Fig. 4D-E which we will discuss shortly).
Again, each is individually well-fitted by the Gamma distribution. In tables 9 and 10
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Figure 3: Different distributions of a4 and a6 for different ranks. (A-D) Joint
probability distribution of a4 and a6 for values of the rank r = 0 (A), r = 1 (B),
r = 2 (C), r = 3 (D). (E) Probability density distribution for the logarithm(in base
10) of

√
a2

4 + a2
6 (when a4 > 0 and a6 > 0, filled lines) for various value of the rank r,

the corresponding Beta distribution fit (dashed lines), and the corresponding median
values (dotted lines).

in the Appendix, we show some statistics of a4 and a6 including their mean, standard
deviation, median, and the number of zero entries, for given rank r and values of (a1,
a2, a3).

3.4 Distributions of various BSD Quantities

Now, the coefficients ai are the inputs of the dataset, each specifying a minimal
model of an elliptic curve, and to each should be associated the numerical tuple
(r,N,R,Ω,

∏
p|N

cp, |T |, |X|) for the rank, the conductor, the regulator, the real pe-

riod, the Tamagawa number, the order of the torsion group and the order of Tate-
Shafarevich group, respectively. It is now expedient to examine the distribution of
“output” parametres.

As always, we arrange everything by rank r = 0, 1, 2, 3 and in Fig. 4 show the box
plots of the variation around the median (drawn in red). The boxes enclose 50% of
the distribution, and the whiskers, 95% of the distribution. We see that, as detailed
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Figure 4: Characteristics of the elliptic curves based on their rank. Boxplots
of a1, a2, a3, a4, a6 in parts (A)-(E) respectively; boxplots of N , |T |,

∏
p|N

cp, Ω, R and

|X| in parts (F)-(K) respectively, all for different values of the rank r = 0, 1, 2, 3.
The red line shows the median value, the boxes enclose 50% of the distribution, and
the whiskers, 95% of the distribution.

above, a1,2,3 have only variation [−1, 1] and a4 has many orders of magnitude more
in variation that a6. The conductor N has a fairly tame distribution while the other
BSD quantities vary rather wildly – the is part of the difficulty of the conjecture, the
relevant quantities behave quite unpredictably.

The RHS of Conjecture 2: We now put all the quantities together according to

the RHS of the Strong BSD Conjecture, which we recall to be RHS =
(Ω·R·

∏
p|N

cp·|X|)

T 2 .
We test which statistical distribution best describe this data, by comparing 85 con-
tinuous distribution under the Akaike information criterion. We find that the distri-
bution best describing the data is the Beta distribution (see Figure 5 A):

f(x, a, b) =
Γ(a+ b)xa−1(1− x)b−1

Γ(a)Γ(b)
(3.8)

where Γ is the standard gamma function, a = 1.55, b = 14.28, and the original
variable has been re-scaled such that x = RHS/62.71.

The selected distribution changes for elliptic with a specific rank r. For r = 0,
the selected distribution is the exponentiated Weibull, while for larger values of r,
the selected distribution is the Johnson SB (see Figure 5 B). We find that the median
value of the RHS increases both as a function of the rank r (see Figure 5 C) and N
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Figure 5: The RHS of Conjecture 2. (A) Probability density function of the RHS
(filled blue line) and the corresponding Beta distribution fit (dashed black line). (B)
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and the corresponding best fits chosen with Akaike information criterion (dashed
lines) (C) Boxplot showing the value of RHS for different values of r. The red line
shows the median value, the boxes to the 50% of the distribution, and the whiskers
to the 95% of the distribution.

(see Figure 5 D).

4 Topological Data Analysis

Let us gain some further intuition by visualizing the data. As far as the data is con-
cerned, to each elliptic curve, specified by the Weierstraß coefficients, one associates
a list of quantities, the conductor, the rank, the real-period, etc. The define a point
cloud in Euclidean space of rather high dimension, each of point of which is defined
by the list of these quantities which enter BSD. In the above, we have extracted the
last two coefficients of the Weierstraß form of the elliptic curves and studied them
against the variations of the first three which, in normal form, can only be one of
the 9 possible 3-tuples of ±1, and 0. The normal form thus conveniently allows us
to at least “see” the Weierstraß coefficients because we have projected to two dimen-
sions. However, the full list of the relevant quantities for the elliptic curve has quite
a number of entries and cannot be visualized directly.
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Luckily, there is precisely a recently developed method in data science which allows
for the visualization of “high dimensionality”, viz., persistent homolgy in topological
data analysis [CZCG] (cf. an excellent introductory survey of [OPTGH]). In brief,
one creates a Vietoris-Rips simplex from the data points in Euclidean space, with
a notion of neighbourhood ε (by Euclidean distance). The Betti numbers bi of the
simplex is then computed as one varies ε, whether the values are non-zero for each
i gives a notion of whether non-trivial topology (such as holes) persists for different
scales ε. The result is a so-called barcode for the data. In the ensuing, we will
use G. Henselman’s nice implementation of the standard methods in topological data
analysis, the package Eirene for Julia/Python [Ei].

(a) b0 b1

(b) b0 b1

Figure 6: The barcodes for (a) all the Weierstraß coefficients at Betti numbers 0 and 1;
(b) on the (principle component) coefficients (sLog(a4), sLog(a6)).

4.1 The Weierstraß Coefficients

We begin by studying the barcodes for the full set of five Weierstraß coefficients ai
(as always, we take sLog for a4 and a6 due to their size). Of course, computing the
homology of the Vietoris-Rips complex for over 2 million points is computationally
impossible. The standard method is to consider random samples. Moreover, the
first two Betti numbers b0 and b1 are usually sufficiently illustrative. Thus, we will
take 1000 random samples (we do not separate the ranks since we find there is no
significant difference for the barcodes amongst different ranks) of the coefficients (with
the usual sLog for the last two). The barcodes are shown in part (a) of Figure 6. For
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reference, we also plot the barcodes for the pair (sLog(a4), sLog(a6)) only since a1,2,3

do not vary so much.

4.2 A 6-dimensional Point-Cloud

Let us now try to visualize the relevant BSD quantities (N, r, |T |,
∏
p|N

cp, Ω, R,X)

together. Organized by the ranks r = 0, 1, 2 which dominate the data by far, the
6-tuple

(N, |T |,
∏
p|N

cp, Ω, R,X), r = 0, 1, 2 (4.9)

naturally form three point-clouds in R6. Due to the high dimensionality, we sample
100 random points for each of the r values and compute the full barcodes b0,...,6. It
turns out that the main visible features are in dimension 0. We present these in
Figure 7 and observe that indeed there is some variation in the barcode amongst the
different ranks.

r = 0 r = 1 r = 2

Figure 7: The barcodes for 6-dimensional point-cloud (N, |T |,
∏
p|N

cp, Ω, R,X), with

100 random samples, for r = 0, 1, 2.

4.3 Conductor Divisibility

The factors of the conductor N is of defining importance in the L-function, which
appear to the LHS of BSD, meanwhile, the RHS is governed, in the strong case, by

the combination F :=
|X|·Ω·R·

∏
p|N

cp

|T |2 . It is therefore expedient to consider the point
cloud of the 3-tuple (N, r, F ) organized by divisibility properties of N . For instance,
one could contrast the barcodes for the triple for N even versus N odd. Again, the
features are prominent for dimension 0 and the barcodes are shown in Figure 8.
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N even N odd

Figure 8: The barcodes for 3-dimensional point-cloud (N, r,
|X|·Ω·R·

∏
p|N

cp

|T |2 ), with 200
random samples for even/odd N .

Simiarly, we could group by N modulo 3, as shown in Figure 9.

N ≡ 0 N ≡ 1 N ≡ 2

Figure 9: The barcodes at dimension 0 for 3-dimensional point-cloud (N, r,
|X|·Ω·R·

∏
p|N

cp

|T |2 ),
with 100 random samples, for N distinguished modulo 3.

5 Machine Learning

In [He, HeBook], a paradigm was proposed to using machine-learning, and in par-
ticular deep neural networks to help computations in various problems in algebraic
geometry. Exemplified by computing cohomology of vector bundles, it was shown
that to very high precision, AI can guess the correct answer without using the stan-
dard method of Gröbner basis construction and chasing long exact sequences, both
of which are computationally intensive. Likewise, [HK] showed that machine-learning
can identify algebraic structures such as distinguishing simple from non-simple fi-
nite groups. At over 99% precision, the requisite answers can be estimated without
recourse to standard computations which are many orders of magnitude slower.
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It is therefore natural to wonder whether the elliptic curve data can be “machine-
learned”. Of course, we need to be careful. While computational algebraic geometry
over C hinged on finding kernels and cokernels of integer matrices, a task in which AI
excels. Problems in number theory are much less controlled. Indeed, trying to predict
prime numbers [He] seems like a hopeless task, as mentioned in the introduction.
Nevertheless, let us see how far we can go with our present dataset for BSD.

5.1 Predicting from the Weierstraß Coefficients
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Figure 10: Correlation matrix for the quantities characterizing ellipses.
Colours are assigned based on the value of the Pearson correlation coefficient be-
tween all pairs of quantities. The strength of the correlation is also reported for each
pair.

We begin with quantifying the performance of machine learning models in pre-
dicting, one by one, the quantities N ,

∏
p|N

cp, R, |X|, Ω, r, |T |, together with the

RHS of the Conjecture 2, given the Weierstraß coefficients a1, a2, a3, a4, a6 alone.
Straight-away, this is expected to be a difficult, if not impossible task (as impossible
as, perhaps, the prediction of prime numbers). This is confirmed by the correlation
between the Weierstraßcoefficients and the BSD quantities: from the correlation ma-
trix, we see that the relationship is indeed weak (cf. Fig. 10), implying this is not a
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straightforward prediction task. Here, the correlation matrix contains the values of
the Spearman correlation [Pear], that is the Pearson correlation [Pear] between the
rank variables associated to each pairs of the original variables.

Quantity NMAE (XGBoost) NMAE (Dummy) NMAE (Linear)

N 24.842± 0.032 25.175± 0.026 25.158± 0.027∏
p|N

cp 0.028± 0.006 0.077± 0.016 0.058± 0.012

R 0.075± 0.015 0.112± 0.023 0.108± 0.022

|X| 0.023± 0.015 0.044± 0.028 0.043± 0.027

Ω 3.120± 0.099 6.057± 0.189 6.016± 0.189

RHS Conj. 2 7.070± 0.238 7.548± 0.255 7.533± 0.250

RMSE (XGBoost) RMSE (Dummy) RMSE (Linear)

N 114687.179± 63.171 115784.768± 78.329 115774.283± 78.302∏
p|N

cp 273.912± 18.665 286.522± 19.679 285.731± 19.711

R 13.579± 0.886 14.201± 0.552 14.197± 0.555

|X| 6.797± 1.550 6.369± 1.794 6.524± 1.688

Ω 0.449± 0.001 0.584± 0.001 0.583± 0.001

RHS Conj. 2 4.300± 0.002 4.554± 0.004 4.526± 0.003

Table 1: Performance of the regression models. The Normalized Median Ab-
solute Error (NMAE) and the Root Mean Squared Error (RMSE), for XGboost
(left column), the dummy regressor (central column) and a linear regression (right
column). The reported values are averages across 5-fold cross-validations, with the
corresponding standard deviations.

Our analysis relies on gradient boosted trees [BST], using the implementation of
XGboost [XGBoost], an open-source scalable machine learning system for tree boost-
ing used in a number of winning Kaggle solutions (17/29 in 2015). In Appendix B,
we present the similar results using a support vector machine, another highly popular
machine-learning model, and see that the XGboost indeed performs better. Further-
more, based on the learning curves of the XGboost models (discussed in Appendix
A), we have chosen a 5−fold cross-validation, such that the training set includes
80% of the values, and the validation set the remaining 20%.
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5.1.1 Numerical Quantities

First, we train regression models to predict the values of N ,
∏
p|N

cp, R, |X| and Ω.

We evaluate the performance of the regression, by computing the normalized median
absolute error:

NMAE =
median(|Yi − Ŷi|)
max(Yi)−min(Yi)

, (5.10)

where Yi are the observed values and Ŷi are the predicted values, and the rooted mean
squared error:

RMSE =

√∑
(Yi − Ŷi)2

n
, (5.11)

where n is the size of the test set. We desire that both NMAE and RMSE to be close
to 0 for a good prediction.

We compare the result of the XGBoost regression with two baselines: (1) a linear
regression model and (2) a dummy regressor, that always predicts the mean of the
training set. We find that, in all cases, the machine learning algorithms perform
significantly better than the baseline models (see Table 1) with respect to the NMAE
and RMSE. However, XGboost performs only marginally better than the baselines in
predicting the value of N . We report also the so-called Imimportance of the features
for the XGBoost regressor in Fig. 15. Here, importance indicates how useful each
feature is in the construction of the boosted decision trees, and is calculated as the
average importance across trees. For a single tree, the importance of a feature is
computed as the relative increase in performance resulting from the tree splits based
on that given feature [XGBoost].
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Figure 11: Feature importance. Feature importance of the XGBoost regression
models for predicting N (A),

∏
p|N

cp (B), R (C), |X| (D) and Ω (E).
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We see that overall our measures, NMAE and RMSE, are not too close to 0, except
perhaps |X|, for which even a simple linear regression does fairly well. In table 2, we
report the values of the coefficients of the linear regression fit for |X|. What Table 2

coef std err t P>|t| [0.025 0.975]

const 1.5946 0.004 380.761 0.000 1.586 1.603

a1 0.0658 0.005 14.524 0.000 0.057 0.075

a2 -0.0065 0.004 -1.543 0.123 -0.015 0.002

a3 -0.0518 0.005 -11.473 0.000 -0.061 -0.043

a4 -0.6320 0.006 -110.282 0.000 -0.643 -0.621

a6 0.4877 0.006 85.112 0.000 0.477 0.499

Table 2: Prediction of |X|. Coefficients of the linear regression for each of the
features (inputs), with the associated standard deviation, the value of the t statistics
and corresponding p-value. Here, we can reject the null hypothesis that the coefficients
are equal to 0 at significance level α = 0.01, for all coefficients, except the one
associated to a2 (p > 0.01).

means is that |X|' 1.5946 + 0.0658a1 − 0.0065a2 − 0.0518a3 − 0.6320a4 + 0.4877a6.

Predicted variable R-squared Adj. R-squared F-statistic Prob (F-statistic)

N 0 0 95.67 3.86e-101∏
p|N

cp 0.006 0.006 2777 0

R 0.001 0.001 387.2 0

|X| 0.005 0.005 2522 0

Ω 0.005 0.005 2377 0

RHS Conj. 2 0.012 0.012 6143 0

Table 3: Statistics of the linear regression models. We report the R squared,
the adjusted R squared, the F statistics, and the p-value associated to the F statistics
for the different linear models. When the p-value of the F-statistics is close to 0, we
can reject the null hypothesis that the intercept-only model provides a better fit than
the linear model.

Likewise, in table 3, we report the the statistics associated to the linear regression
models for the prediction of the various quantities, where only the Weierstrass coef-
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ficients are used as features (inputs). The low R-squared values indicated that the
regression is not so good in terms of the ai coefficients alone.

5.1.2 Categorical Quantities

Next, we train classifiers to predict the values of r and |T | because these easily fall
into discrete categories: the rank r = 0, 1, 2, 3 and the torsion group size |T | can only
be one of 16 integer values due to Mazur’s theorem. Again, we use a 5 − fold cross
validation, and we evaluate the performance of the classifier, by computing the F1

score:

F1 = 2 · precision · recall
precision + recall

; precision :=
TP

TP + FP
, recall :=

TP

TP + FN
(5.12)

where we have, in the predicted versus actual, the true positives (TP), false positives
(FP), and false negatives (FN). Since we have several possible values for the rank r,
we compute both F1micro, by counting the total TP, FN and FP, as well as F1macro,
the average value of F1 computed across ranks.

In addition, we also compute the Matthew correlation coefficientMCC [Matthew],
to describe the confusion matrix:

MCC :=
TP × TN − FP × FN√

(TP + FP)(TP + FN )(TN + FP)(TN + FN )
. (5.13)

Both F1-scaore and MCC are desired to be close to 1 for a good prediction.

For checks, we compare the XGBoost classifier with (1) a baseline classifier, that
predicts always the predominant class in the training set, as well as with (2) a logistic
regression. We find that XGboost performs better than the baseline models for pre-
dicting |T |, but the performance of the prediction of r is comparable to the baselines
(see Table 4).

Analyzing the confusion matrices (see Figures 12 and 13), it appears clear that it
is very hard to predict |T | and r from the Weierstraß coefficients alone. For both the
prediction of r and |T |, the most important predictor is a4 (Figures 12 and 13). This
is the feature that contributed the most to increase the performance of the boosted
tree [XGBoost].
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Quantity F1micro (XGBoost) F1micro (Dummy) F1micro (Logistic)

r 0.502± 0.001 0.502± 0.001 0.502± 0.001

|T | 0.582± 0.001 0.543± 0.001 0.518± 0.001

F1macro (XGBoost) F1macro (Dummy) F1macro (Logistic)

r 0.179± 0.001 0.167± 0.001 0.167± 0.001

|T | 0.097± 0.001 0.059± 0.001 0.080± 0.001

MCC (XGBoost) MCC (Dummy) MCC (Logistic)

r 0.0172± 0.0006 0.0000± 0.0000 −0.0002± 0.0010

|T | 0.1871± 0.0010 0.0000± 0.0000 0.0299± 0.0012

Table 4: Performance of the classification models. The scores F1micro, F1macro,
and the Matthew correlation coefficientMCC, for XGboost (left column), the dummy
regressor (central column) and a logistic regression (right column). The reported
values are averages across 5-fold cross-validations, with the corresponding standard
deviations.
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Figure 12: Prediction of |T |. (A) Importance of the different features (inputs) to
predict |T |. (B) Confusion matrix (normalized by column) showing the fraction of
entries |T | with given predicted |T |. (C) Difference between the confusion matrix
obtained for the XGBoost and the dummy classifier. Results are averaged over a
5-fold cross validation.

5.2 Mixed Predictions

While the results in the previous subsection may seem disappointing in general, they
do present a good sanity check: to obtain all the BSD quantities from the elliptic curve
data in some straight-forward way would be an almost unimaginable feat in number
theory. Nevertheless, in this section, let us build machine learning models to predict
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Figure 13: Prediction of r. (A) Importance of the different features to predict r.
(B) Confusion matrix (normalized by column) showing the fraction of entries with
rank r with given predicted r. (C) Difference between the confusion matrix obtained
for the XGBoost and the dummy classifier. Results are averaged over a 5-fold cross
validation.

the values of N ,
∏
p|N

cp, R, |X|, Ω, r and |T | among themselves, i.e., we consider

as features (inputs) all the quantities characterizing the elliptic curves (except the
predicted quantity), rather than the Weierstraß coefficients alone.

Quantity NMAE (XGBoost) NMAE (Dummy) NMAE (Linear)

N 23.426± 0.031 25.175± 0.026 24.408± 0.039∏
p|N

cp 0.012± 0.003 0.077± 0.016 0.065± 0.014

R 0.014± 0.003 0.112± 0.023 0.089± 0.018

|X| 0.006± 0.004 0.044± 0.028 0.048± 0.031

Ω 2.343± 0.103 6.057± 0.189 5.324± 0.174

Table 5: Performance of the regression models considering as features all
the quantities characterizing an ellipses. The normalized median absolute error
NMAE, for XGboost (left column), the dummy regressor (central column) and a
linear regression (right column). The reported values are averages across 5-fold cross-
validations, with the corresponding standard deviations. Results are considerably
improved compared to table 1.

We present the results in Table 5 of the accuracy measure NMAE by the 3 methods
as in subsection 5.1: machine-learning by XGBoost, dummy regression and linear
regression. To read the table, of each of the 5 quantities given in a row, we use
the other 4 to train the ML in order to predict this row. We see that this is a
significant improvement over the previous subsection and shows that, especially the
XGBoost, the machine-learning can very confidently predict the Tamagawa number,
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Figure 14: True vs Predicted values Results are shown for all the quantities, using
XGBoost (left column) and the Linear model (right column).

the regulator and |X|. The feature importance is shown in Fig. 15 and in table 6, we
report the the statistics associated to the mixed predictions linear regression models.
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Figure 15: Feature importance considering as features all the quantities
characterizing an elliptic curve. Feature importance of the XGBoost regression
models for predicting N (Part A),

∏
p|N

cp (Part B), R (Part C), |X| (Part D) and Ω

(Part E).

A comparison between the predictions of the linear models compared to XGboost is
presented in Figure 14.

Predicted variable R-squared Adj. R-squared F-statistic Prob (F-statistic)

N 0.038 0.038 8999 0∏
p|N

cp 0.054 0.054 12960 0

R 0.042 0.042 9889 0

|X| 0.017 0.017 3891 0

Ω 0.114 0.114 29110 0

Table 6: Statistics of the linear regression models (mixed predictions). We
report the R squared, the adjusted R squared, the F statistics, and the p-value asso-
ciated to the F statistics for the mixed predictions linear models.

Finally, let us use all quantities: the coefficients ai as well as N ,
∏
p|N

cp, R, |X|, Ω

to predict r and |T |. The accuracy measure F1 andMCC (which should be close to 1
ideally) are presented in Table 7 and the feature importance, in Figures 16 and 17. We
see that these are considerably improved compared to those obtained in section 5.1
(cf. Tables 1 and 4). This is somehow to be expected in light of the correlations
observed in Figure 10. In fact, even logistic regressions behave fairly well, with the
F1micro, F1macro, and the MCC scores subtiantially larger than those obtained by
the dummy classifiers (see Table 7). For reference, we include report the hyperplane
equations of the linear regression models to see how each of the quantities can be
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Quantity F1micro (XGBoost) F1micro (Dummy) F1micro (Logistic)

r 0.900± 0.001 0.502± 0.001 0.730± 0.001

|T | 0.908± 0.001 0.543± 0.001 0.567± 0.001

F1macro (XGBoost) F1macro (Dummy) F1macro (Logistic)

r 0.554± 0.001 0.167± 0.001 0.387± 0.001

|T | 0.585± 0.015 0.059± 0.001 0.090± 0.001

MCC (XGBoost) MCC (Dummy) MCC (Logistic)

r 0.8311± 0.0005 0.0000± 0.0000 0.5240± 0.0011

|T | 0.8302± 0.0014 0.0000± 0.0000 0.1364± 0.0009

Table 7: Performance of the classification models considering as features all
the quantities characterizing an elliptic curve. The scores F1macro, F1micro and
the Matthew correlation coefficient MCC, for XGboost (left column), the dummy
regressor (central column) and a logistic regression (right column). The reported
values are averages across 5-fold cross-validations, with the corresponding standard
deviations. Results are considerably improved compared to table 4.

fitted by all the others:

N = 195500.0000− 1526.8435a1 + 288.1786a2 − 806.9174a3 − 122.4328a4 + 16.3690a6+

8047.4199r − 10250.0000|T |+2192.0941
∏
p|N

cp + 3197.1580R + 1293.3455|X|−20330.0000Ω

∏
p|N

cp = 49.7747 + 14.9069a1 + 3.6860a2 + 2.1424a3 − 2.4121a4 + 1.0613a6+

17.8877r + 53.2012|T |+5.3471N − 14.5038R− 4.3689|X|−27.7937Ω

R = 4.0689− 0.0028a1 − 0.1430a2 − 0.2379a3 − 0.2995a4 + 0.1230a6+

2.1850r + 0.4585|T |+0.3910N − 0.7271
∏
p|N

cp − 0.2167|X|−2.1082Ω

|X| = 1.5946 + 0.0517a1 + 0.0094a2 − 0.0195a3 − 0.6322a4 + 0.4875a6−

0.5472r + 0.0112|T |+0.0756N − 0.1046
∏
p|N

cp − 0.1035R− 0.3466Ω

Ω = 0.6065− 0.0252a1 + 0.0113a2 + 0.0160a3 − 0.0030a4 + 0.0019a6+

0.1147r − 0.0717|T |−0.0945N − 0.0530
∏
p|N

cp − 0.0801R− 0.0276|X|

(5.14)
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Figure 16: Prediction of r considering as features all the quantities char-
acterizing an ellipses. (A) Importance of the different features to predict r. (B)
Confusion matrix (normalized by column) showing the fraction of entries with rank
r with given predicted r. (C) Difference between the confusion matrix obtained for
the XGBoost and the dummy classifier. Results are averaged over a 5-fold cross
validation.
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Figure 17: Prediction of |T | considering as features all the quantities char-
acterizing an elliptic curve. (A) Importance of the different features to predict
|T |. (B) Confusion matrix (normalized by column) showing the fraction of entries
with value |T | and given predicted |T |. (C) Difference between the confusion matrix
obtained for the XGBoost and the dummy classifier. Results are averaged over a
5-fold cross validation.

6 Conclusions and Prospects

In this paper, we initiated the study of the data science of the arithmetic of ellip-
tic curves in light of the Birch-Swinnerton-Dyer Conjecture. This is inspired by the
the recent advances in the statistical investigation of Calabi-Yau manifolds, espe-
cially in the context of super-string theory [HJP,ACHN], as well as in the paradigm
of machine-learning structures in geometry [He,HeBook] and algebra [HK]. Whilst
we are still within the landscape of "Calabi-Yau-ness", it is expected that patterns
in number theory should be much more subtle than those in geometry over C and
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in combinatorics. Nevertheless, BSD, residing at the crux between arithmetic and
analysis, might be more susceptible to machine-learning and to pattern-recognition.

From our preliminary examinations on the extensive database of Cremona [Cre,
Cre2] we have already found several interesting features. First, we find that in the
minimal Weierstraß representation, where a pair of coefficients (a4, a6) clearly consti-
tutes the principle component of the data, the distribution thereof follows a curious
cross-like symmetry across rank, as shown in Figures 1 and 2. This is a highly-
non-trivial symmetry since a4,6 ↔ ±a4,6 does not preserve rank. This symmetry is
reminiscent of mirror symmetry for Calabi-Yau threefolds. In addition, the absence of
data-points beyond the boundaries of the cross is also of note, much like that Hodge
plot for the Calabi-Yau threefolds.

Over all, the distribution of the Euclidean distance of (a4, a6) to the origin, as well

as that of the RHS of the Strong BSD, viz., the quantity
|X|·Ω·R·

∏
p|N

cp

|T |2 (cf. conjectures
in Sec. 2.2), are best described by a Beta-distribution, which is selected in both cases
among 85 continuous distributions using the Akaike Information Criterion. Organized
by rank, these distributions also vary.

One further visualize the data, the tuples consisting of the coefficients (a1, a2, a3, a4, a6)

as well as the BSD tuple (N, |T |,
∏
p|N

cp, Ω, R,X) for ranks r = 0, 1, 2 using the

standard techniques from topological data analysis. The bar-codes are shown in Fig-
ures 6 and 7. While the Weierstraßcoefficients show little variation over rank, the
BSD tuple does show differences over r. Moreover, as expected, the divisibility of the
conductor N influences the barcodes.

Finally, emboldened by the recent success in using machine-learning to computing
bundle cohomology on algebraic varieties without recourse to sequence-chasing and
Gŕ’obner bases as well as recognizing whether a finite group is simple directly by
looking at the Cayley table, we asked the question of whether one can “predict”
quantities otherwise difficult to compute directly from “looking” at the shape of the
elliptic curve. Ideally, one would have hoped that training on ai, one could predict
any of the BSD quantities to high precision, as was in the cohomology case. However,
due to the very high variation in the size of ai, one could not find a good machine-
learning technique, decision trees, support-vector machines or neural networks, which
seems to achieve this. This is rather analogous to the (expected) failure of predicting
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prime numbers using AI. Nevertheless, the BSD quantities, when mixed with the
Weierstraß coefficients, does behave well under machine-learning. For instance, the
Matthew correlation coefficient between predicted and true values of r and |T | is
∼ 0.83.

At some level, the experiments here, in conjunction with those in [He,KS,Rue,
CHKN,BHJM,JKP,HK,BCDL,?], tend to show a certain hierarchy of difficulty in how
machine-learning responds to problems in mathematics. Understandably, number
theory is the most difficult: as a reprobate, [He] checked that trying to predict the
next prime number, for instance, seems unfeasible for simple neural networks. On the
other hand, algebraic geometry over the complex numbers seems to present a host
of amenable questions such as bundle cohomology, recognition of elliptic fibrations
or calculating Betti numbers. In between lie algebra and combinatorics, such as
the structure of finite groups, where precision/confidence of the cross-validation is
somewhat intermediate. It is therefore curious that in this paper one sees that a
problem such as BSD, which resides in between arithmetic and geometry, is better
behaved under machine-learning than a direct attack on patterns in primes.
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Appendices

A Learning Curves

To prevent overfitting, we compute the learning curves of the regression (figure 18)
and classification (figure 19) models in section 5.1. We find that 80% of the data is a
good choice for the training set size, suggesting a 5-fold cross validation.
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Figure 18: Learning curves for the regression models. The Normalized Median
Absolute Error as a function of the train set size of the XGBoost regression models for
predicting N (A),

∏
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cp (B), R (C), |X| (D) and Ω (E). The shaded areas correspond

to standard deviation across a 5− fold cross validation.
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B Comparison with SVM

In this section, we compare the performance of the XGBoost models with Support
Vector Machine (SVM) models. SVM models are very long to train, hence we focus,
for this task, on a subset of 100, 000 examples. In table 8 we report the performance
of the regression models used to predict N ,

∏
p|N

cp, R, |X| and Ω. Only in the case of

Ω, the SVM model performs better than XGBoost.

Quantity NMAE (XGBoost) NMAE (Dummy) NMAE (SVM)

N 114881.964± 364.409 115664.993± 384.936 115690.292± 417.181∏
p|N

cp 278.372± 34.807 273.775± 27.528 275.182± 27.412

R 17.493± 4.178 15.124± 4.137 15.417± 4.067

|X| 4.938± 1.156 4.868± 1.223 4.893± 1.218

Ω 0.498± 0.004 0.584± 0.005 0.607± 0.005

Table 8: Performance of the regression models. The normalized median absolute
error NMAE, for XGboost (left column), the dummy regressor (central column) and
Support Vector Machine Regression (right column). The reported values are averages
across 5-fold cross-validations, with the corresponding standard deviations.

C Characteristics of the Weierstraß coefficients.

a1 a2 a3 rank size a4 sa4 median zero entries

0 -1 0 0 126135 -5E+09 7E+11 -8E+03 98
1 1 1 0 67834 -8E+10 7E+12 -2E+04 54
1 1 0 0 69759 -2E+11 3E+13 -1E+04 47
1 0 1 0 71309 -9E+10 1E+13 -2E+04 35
1 0 0 0 66411 -1E+12 2E+14 -2E+04 42
1 -1 1 0 96995 -1E+11 2E+13 -2E+04 41
0 1 1 0 18016 -4E+10 3E+12 -2E+03 38
0 1 0 0 118942 -1E+10 1E+12 -9E+03 108
0 0 1 0 28440 -1E+11 2E+13 -3E+03 546
1 -1 0 0 102769 -2E+11 5E+13 -2E+04 97
0 0 0 0 172238 -6E+09 9E+11 -1E+04 832
0 -1 1 0 17238 -1E+10 1E+12 -2E+03 40
0 -1 1 1 24593 -1E+09 1E+11 -1E+03 65
1 -1 0 1 127198 -1E+11 2E+13 -1E+04 150
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1 0 0 1 98092 -5E+11 1E+14 -7E+03 77
0 1 1 1 27360 -5E+10 4E+12 -1E+03 54
1 0 1 1 94595 -3E+11 6E+13 -7E+03 62
1 -1 1 1 128957 -2E+10 2E+12 -9E+03 40
0 0 0 1 213780 -5E+10 2E+13 -6E+03 962
0 1 0 1 157003 -8E+09 1E+12 -5E+03 164
1 1 0 1 88403 -5E+10 4E+12 -7E+03 107
0 -1 0 1 155604 -1E+10 2E+12 -5E+03 159
0 0 1 1 39235 -5E+10 7E+12 -2E+03 608
1 1 1 1 91717 -3E+10 4E+12 -7E+03 87
1 1 0 2 18293 -2E+08 2E+10 -1E+03 28
1 0 0 2 25286 -5E+07 2E+09 -2E+03 23
1 -1 1 2 28940 -5E+07 6E+09 -2E+03 17
0 -1 0 2 30236 -3E+07 2E+09 -1E+03 44
1 0 1 2 20907 -2E+08 2E+10 -1E+03 17
0 0 0 2 40731 -6E+07 6E+09 -2E+03 126
1 -1 0 2 25793 -6E+08 8E+10 -2E+03 46
1 1 1 2 21197 -7E+07 5E+09 -1E+03 23
0 0 1 2 11187 -2E+07 9E+08 -5E+02 96
0 1 1 2 9609 -1E+08 1E+10 -5E+02 19
0 -1 1 2 7582 -7E+06 2E+08 -3E+02 22
0 1 0 2 34585 -2E+07 9E+08 -1E+03 36
1 -1 0 3 551 -8E+04 1E+06 -3E+02 1
0 0 0 3 698 -2E+04 2E+05 -3E+02 0
1 1 0 3 496 -2E+04 2E+05 -2E+02 0
0 0 1 3 506 -2E+04 2E+05 -2E+02 2
0 -1 1 3 399 -8E+04 1E+06 -2E+02 1
0 1 0 3 722 -8E+03 4E+04 -4E+02 1
0 -1 0 3 659 -1E+04 6E+04 -3E+02 0
1 0 0 3 612 -6E+03 3E+05 -4E+02 1
0 1 1 3 426 4E+03 9E+05 -3E+02 1
1 -1 1 3 604 -1E+04 7E+04 -4E+02 3
1 0 1 3 548 -1E+04 1E+05 -3E+02 3
1 1 1 3 458 -2E+04 4E+05 -2E+02 0
1 -1 0 4 1 -8E+01 NAN -8E+01 0

Table 9: For given values of a1,a2,a3, and r, the table reports the number of elliptic
curves (size), and some statistics of the Weierstraß coefficient a4 including the mean
(a4), the standard deviation (sa4), the median (median) and the number of zero entries
(zero entries)

a1 a2 a3 rank size a6 sa6
median zero entries

0 -1 0 0 126135 -9E+15 4E+18 -5E+02 217
1 1 1 0 67834 -3E+17 9E+19 -1E+03 1
1 1 0 0 69759 -3E+18 6E+20 -7E+02 202
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1 0 1 0 71309 2E+17 2E+20 -2E+03 2
1 0 0 0 66411 -4E+19 1E+22 -5E+03 176
1 -1 1 0 96995 -6E+17 3E+20 -3E+03 1
0 1 1 0 18016 -2E+17 3E+19 -4E+02 2
0 1 0 0 118942 -2E+16 6E+18 -1E+03 226
0 0 1 0 28440 -3E+18 5E+20 -6E+02 1
1 -1 0 0 102769 7E+18 2E+21 -8E+02 206
0 0 0 0 172238 1E+16 6E+18 -8E+02 486
0 -1 1 0 17238 -1E+16 4E+18 -2E+02 1
0 -1 1 1 24593 1E+15 2E+17 1E+01 17
1 -1 0 1 127198 -2E+18 6E+20 -4E+00 271
1 0 0 1 98092 -3E+19 9E+21 5E+01 246
0 1 1 1 27360 -1E+17 4E+19 -2E+00 18
1 0 1 1 94595 1E+19 3E+21 2E+01 27
1 -1 1 1 128957 -2E+14 1E+19 4E+01 15
0 0 0 1 213780 -1E+18 6E+20 -5E-01 604
0 1 0 1 157003 -3E+15 5E+18 2E+01 281
1 1 0 1 88403 -1E+17 4E+19 0E+00 271
0 -1 0 1 155604 2E+15 1E+19 0E+00 301
0 0 1 1 39235 6E+17 1E+20 -2E+01 24
1 1 1 1 91717 1E+17 4E+19 7E+00 17
1 1 0 2 18293 8E+13 1E+16 1E+03 42
1 0 0 2 25286 4E+12 4E+14 1E+04 42
1 -1 1 2 28940 -1E+13 3E+15 1E+04 21
0 -1 0 2 30236 7E+11 3E+14 2E+03 58
1 0 1 2 20907 7E+13 9E+15 3E+03 22
0 0 0 2 40731 -2E+13 3E+15 4E+03 82
1 -1 0 2 25793 7E+14 1E+17 2E+03 57
1 1 1 2 21197 -9E+12 1E+15 5E+03 23
0 0 1 2 11187 1E+12 1E+14 1E+03 26
0 1 1 2 9609 -4E+13 4E+15 2E+03 18
0 -1 1 2 7582 4E+10 8E+12 6E+02 24
0 1 0 2 34585 5E+11 9E+13 5E+03 42
1 -1 0 3 551 1E+08 3E+09 2E+03 0
0 0 0 3 698 -2E+06 2E+08 2E+03 0
1 1 0 3 496 3E+06 9E+07 9E+02 1
0 0 1 3 506 -6E+06 2E+08 1E+03 4
0 -1 1 3 399 1E+08 3E+09 6E+02 3
0 1 0 3 722 1E+06 1E+07 3E+03 0
0 -1 0 3 659 3E+06 3E+07 2E+03 0
1 0 0 3 612 -5E+06 2E+08 3E+03 1
0 1 1 3 426 1E+08 2E+09 1E+03 4
1 -1 1 3 604 3E+06 4E+07 3E+03 4
1 0 1 3 548 5E+06 6E+07 2E+03 4
1 1 1 3 458 5E+07 1E+09 1E+03 2
1 -1 0 4 1 3E+02 NAN 3E+02 0
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Table 10: For given values of a1,a2,a3, and r, the table reports the number of curves
(size), and some statistics of the Weierstraß coefficient a6 including the mean (a6),
the standard deviation (sa6), the median (median) and the number of zero entries
(zero entries)
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