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On the relation between Transversal and Longitudinal Scaling in Cities

Fabiano L. Ribeiro1,2, Joao Meirelles3,

Vinicius M. Netto4, Camilo Rodrigues Neto5, and Andrea Baronchelli2

Given that a group of cities follows a scaling law connecting urban population with socio-economic
or infrastructural metrics (transversal scaling), should we expect that each city would follow the
same behavior over time (longitudinal scaling)? This assumption has important policy implications,
although rigorous empirical tests have been so far hindered by the lack of suitable data. Here, we
advance the debate by looking into the temporal evolution of the scaling laws for 5507 municipalities
in Brazil. We focus on the relationship between population size and two urban variables, GDP
and water network length, analyzing the time evolution of the system of cities as well as their
individual trajectory. We find that longitudinal (individual) scaling exponents are city-specific, but
they are distributed around an average value that approaches to the transversal scaling exponent
when the data are decomposed to eliminate external factors, and when we only consider cities with a
sufficiently large growth rate. Such results give support to the idea that the longitudinal dynamics is
a micro-scaling version of the transversal dynamics of the entire urban system. Finally, we propose a
mathematical framework that connects the microscopic level to global behavior, and, in all analyzed
cases, we find good agreement between theoretical prediction and empirical evidence.
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I. INTRODUCTION

An unprecedented abundance of data has significantly
advanced our understanding of urban phenomena over
the past few years [1–4]. These advances were also en-
abled by the work of many theorists from different areas,
such as physicists, urbanists and complex systems scien-
tists, among others, who brought new insights and theo-
ries to the field, resulting in a significant step towards a
new science of cities [5].

A crucial finding concerns the scaling properties of ur-
ban systems. Empirical evidence has shown that an ur-
ban variable, Y , scales with the population size N of a
city, obeying a power law of the kind Y ∝ Nβ , where β
is the scaling exponent quantifying how the urban met-
ric reacts to the population increase [6–12]. On the one
hand, the data revealed that socioeconomic urban vari-
ables such as the number of patents, wages, and GDP
present a superlinear behavior in relation to the popula-
tion size (β > 1). Using the language of economics, one
might say that this kind of urban variables exhibits in-
creasing returns to the urban scale. On the other hand,
infrastructure variables such as the number of gas sta-
tions and length of roads scale sublinearly with the pop-
ulation size (β < 1). Finally, there is a third class of vari-

ables related to individual basic services, such as house-
hold electrical and water consumption, and total employ-
ment, which scales linearly with population size (β ≈ 1).

Among the various attempts to explain such behavior
in urban phenomena [13–15], one of the most successful
was proposed by Bettencourt and colleagues [16]. This
theory proposes that urban scaling is a result of an inter-
play between urban density and diversity, which are re-
lated to economic competition and knowledge exchange,
respectively. This is a consequence of the interaction be-
tween the individuals that compose a city, resulting in
innovation, economic growth, and economies of scale.

As these scaling laws have been observed in different
countries [6–8, 10, 17–22] and periods of time [23, 24],
some works also claimed that such patterns are, in fact,
the manifestation of a universal law that would generally
govern cities regardless of their context, culture, geog-
raphy, level of technology, policies or history [9, 16, 20–
22, 25]. The universality proposition has been challenged
[26–28], but most evidence seem to confirm the generality,
while exceptions are normally explained by local partic-
ularities [10, 18, 29, 30]. According to this proposition,
in the long term, the general performance of a particular
city would be greatly independent of individual - politi-
cal - choices: the total amount of social interactions be-
tween its citizens would guide, to a great extent, the city
towards the observed scaling behavior. This proposition
is unprecedented in urban science and the identification
and validation of such universal dynamics could help ur-
ban policymakers to identify opportunities and improve
the life quality of dwellers.

A key open question is the difference in the scaling
properties of single cities and systems of cities. Does an
individual city growing in time follow the same scaling
pattern observed for a snapshot of a group of cities? In
the last years, few works have accurately focused on the
dynamics of individual cities [31–34], while a growing lit-
erature has been concentrating on the scaling properties
of a set (system) of cities. We call the former longitudi-
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nal scaling properties, which take into account the evolu-
tion of individual cities in time, and the latter transver-
sal scaling across an urban system, i.e., computed from
the set of cities that compose the system. Some recent
works addressed this issue, reaching no unanimous con-
clusion. For example, Depersin and Barthelemy analyzed
the scaling exponent in time delays in traffic congestion
in 101 US cities and found longitudinal scaling to be
path-dependent on the individual evolution of cities and
unrelated to the transversal scaling, challenging the uni-
versality proposition [32]. In turn, Hong et al. argued
that longitudinal and transversal exponents are corre-
lated, but it is essential to eliminate global effects and
properly measure the longitudinal scaling exponent [33].
Another work has found that the power-law scaling of 32
major cities in China could adequately be characterized
for both transversal and longitudinal scaling [34]. More
recent work also analyzed such an issue for the wage in-
come in Sweeden and found superlinear scaling for both
longitudinal and transversal scaling, but the former was
characterized by larger scaling exponents [31].

Here, we will present our analysis of the transversal
and longitudinal behavior of GDP and water network
length (socio-economic and infrastructure variables, re-
spectively) for 5507 Brazilian municipalities. Our main
results show that the longitudinal scaling exponents are
different from each other, as suggested by Depersin and
Barthelemy’s work [32], but they are distributed around
an average that approaches the transversal scaling expo-
nent when the data are decomposed to eliminate external
factors and when we consider only subsets of cities with a
sufficiently large growth rate. Such results give support
to the idea that the longitudinal dynamics is a micro-
scaling version of the transversal dynamics of the entire
urban system.

The paper is organized as follows: having posed the
research problem in this section, we shall unfold our
method and data used to assess the evolution of two dif-
ferent urban metrics in section (II), namely GDP and
water network length as a function of population size in
different periods of time (from 1998 to 2014) for 5507
municipalities in Brazil. Section (III) brings details of
the theoretical approach used to describe the dynamics
of such properties as an analogous problem of particles
in a vector field, applied in a way to render the relation
between longitudinal and transversal scaling exponents
clearer. In this section, we also explore the implications
of our findings, along with potential contributions. Fi-
nally, we draw our conclusions in section (IV).

II. EMPIRICAL EVIDENCE

Data of the Brazilian Urban System and its Scaling
properties

The data presented here refer to 5507 Brazilian mu-
nicipalities, with contiguous dense surrounding areas ag-

gregated in single spatial units from the totality of 5570
Brazilian administrative divisions. Data were collected
from the website of the Brazilian Institute of Geography
and Statistics (IBGE)[35] and from the water-sewage-
waste companies national survey (SNIS)[36]. The present
work will be restricted to two urban metrics, one for each
scaling regime: i)GDP, a socio-economic variable that
presents a superlinear behavior typically with the pop-
ulation size and ii)water supply network length, an in-
frastructure variable which has a sublinear behavior typ-
ically.

A recent work [10] has shown that over 60 variables
for the Brazilian urban system are well described by a
power-law equation of the form:

Yi(t) = Y0(t)Ni(t)
βT . (1)

Here, the time-dependent variables Yi(t) and Ni(t) are
relative to the city i; the former represents some urban
metric (for instance GDP or water network length) and
the latter represents the city population size. The two pa-
rameters in Eq. (1) are the intercept parameter Y0(t) and
the transversal scaling exponent βT , which are obtained
by the fit of this power law with the urban system data.
These two parameters have to do with the macro-scale
properties of the urban system and, at first, do not repre-
sent the particularities of a single city - the micro-scale.
As we will show in the next sections, the intercept param-
eter is a time-dependent variable, while the transversal
scaling exponent can or cannot be time-dependent.

Transversal Scaling

Fig. (1) shows the GDP as a function of the population
size for different years (from 1998 to 2014) of our Brazil-
ian municipality subset. The straight lines in Fig. (1)
are the best fit (by the maximum likelihood method) of
the Eq. (1) for different years. The transversal scaling
exponent βT (the slope) of each line in Fig. (1) is always
greater than one, indicating a persistent superlinear be-
havior. Moreover, the best fit lines are visually paral-
lel, that is, βT is approximately constant, even with the
time evolution of studied municipalities, which reveals
the robustness of the scaling exponent. These facts can
be observed in more detail in Fig. (2-a), which presents
the time evolution of βT for the Brazilian municipality
subset. The transversal scaling exponent stays approxi-
mately constant even with the intercept parameter Y0(t)
continuously increasing with time (see Fig. (2-b)).

Fig. (2) also presents the time evolution of the
transversal scaling exponent βT for the water supply net-
work length (in blue). In this case, βT is not constant and
decreases over time, as seen in Fig. (2-a) while remain-
ing smaller than 1, which was expected given it refers
to an infrastructure variable. According to the available
data, it is hard to establish whether its value will stabi-
lize or not. The fact that this variable is not constant
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FIG. 1: Scaling relation between population and GDP for
Brazilian municipalities, from 1998 (blue) to 2014 (yellow).
The straight lines are the best power-law equation fits for
each year (by the maximum likelihood method). The straight
lines are virtually parallel, which shows that the transversal
scaling exponent is constant and robust. The scaling exponent
is always greater than 1 for all years, with a mean β̄T = 1.04.
It reveals a superlinear scaling property, compatible with the
fact that the GDP is a socio-economic urban variable. The
numeric time evolution of the transversal scaling exponent
and the intercept parameter are shown in Fig. 2.

could suggest that the urban system is still out of bal-
ance with respect to this urban metric, as suggested by
Pumain’s theory [14]. Moreover, the data suggest that
the intercept parameter Y0(t) of this urban metric, as
it was observed in GDP, maintains a continuous growth
through the observed time frame (see Fig. (2-c)).

Longitudinal Scaling

We now focus on the individual evolution of Brazilian
municipalities. Fig. (3) presents different ways of ob-
serving the longitudinal dynamics of the GDP and the
population size for the municipalities subset. Fig. (3-a)
presents the raw longitudinal trajectories, while Fig. (3-
b) presents them re-scaled as Yi(t)/Yi(t0), as a function
of Ni(t)/Ni(t0), following the idea proposed in [32]. The
re-scaled form allows us to compare in one single image
the slopes of the municipalities’ trajectories. Here, t0 is
the first year that the data are available. One can see
that municipalities experience different slopes, and in all
cases, the exponent is greater than the transversal one
(given by βT and represented by the dark red line in

Fig. (3-b)). Similar evidence was reported recently by
Depersin and Barthelemy [32], which analyzed the tem-
poral dynamics of delay in traffic congestion in US cities.
They observed as we did here, that the individual dy-
namics do not collapse in a single and universal curve,
suggesting that longitudinal scaling in cities is not gov-
erned by a single universal scaling exponent as the global
system is.

Individual municipalities are being pushed by the
growth of the global intercept parameter Yi(t) and will
rise in the lnY−x− lnN plane, having higher slopes than
the global one. One way to deal with this is to decom-
pose the longitudinal trajectory, graphing not lnYi(t)
in the ordinate, but instead. lnYi(t) − lnY0(t), that is
ln(Yi(t)/Y0(t)), in order to eliminate global effects, as
suggested by [33]. The decomposed longitudinal trajec-
tory is shown in Fig. (3-c), and its re-scaled form is pre-
sented in Fig. (3-d). The slopes observed on the decom-
posed and re-scaled form of the longitudinal trajectories
are compatible with the transversal slope, represented by
the dark red line in Fig. (3-d).

Lets call βi the scaling exponent of the i-th city, that is,
the slope of the (raw) trajectories described in Fig. (3a-b)
calculated using the longitudinal evolution of Yi(t) with
Ni(t). Similarly, we can compute the individual decom-
posed scaling exponent, say βdeci , computed using the de-
composed longitudinal trajectory described in Fig. (3c-
d). Fig. (4) presents the distribution of the individual
slope, for both sets {βi}i and {βdeci }i, for GDP and wa-
ter supply network length, for all studied municipalities.
One can see that the decomposed individual slopes for
GDP are distributed around the global slope, suggesting
that the decomposed version of individual trajectories
recover the transversal phenomena for GDP in Brazilian
municipalities. Moreover, it suggests that regardless of
each municipality having different dynamics, that is, dif-
ferent longitudinal scaling exponents βdeci , their distribu-
tion presents a mean value compatible with the transver-
sal scaling exponent.

However, in the case of the water supply network
length, the average of the distribution of the non-
decomposed data is closer to the transversal slope than
the decomposed one, suggesting that decomposition
don’t recover the transversal scaling exponent for every
urban variable. It is possible that this is the case because
the transversal scaling exponent βT for water network
length is not stable across the studied years. These re-
sults suggest that the decomposition alone is not enough
to infer that the individual and the global systems follow
the same scaling properties in every case. In the next
sections, we will introduce a theoretical approach that
suggests that, in order to have an agreement between
transversal and longitudinal scaling, it is also necessary
to consider a new ingredient: the city growth rate.
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a) b) c)

FIG. 2: a) Time evolution of the transversal scaling exponent βT for the GDP (green) and water supply network length
(blue) for Brazilian municipalities. In the GDP case, there is no significant change of this parameter over the years and the
regime (superlinear) is always sustained. In the case of water supply network length, βT is always smaller than 1, which is
expected, given the infrastructure nature of this metric, and it is decreasing over time. b) and c) present the time evolution of
the intercept parameter Y0(t) for GDP and water supply network length, respectively. The intercept parameter is constantly
growing for both urban metrics.

III. THEORETICAL APPROACH

In this section, we present a theoretical approach to de-
scribe urban metrics dynamics. In order to do so, we will
treat the dynamics of the urban metrics as an analogous
problem of particles in a vector field. Fig. (5) presents
the plane lnY -x-lnN and the two-dimensional “move-
ment” of one single city – a “particle” – as a result of the
vectors acting in the horizontal or vertical direction.

In the horizontal direction there is a vector represent-
ing an increase in the city’s population size. It is coloured
in green in Fig. (5) and has a magnitude ∆ lnNi(t), where
we have introduced the compacted notation:

∆ lnNi(t) ≡ lnNi(t+ ∆t)− lnNi(t), (2)

as it was suggested in [33]. In the vertical direction of
this plane we have vectors acting on the increment of the
urban metric (GDP or water supply network length, for
instance). We will consider, by hypothesis, that there
are at least two distinct vectors acting in this direction.
The first, let’s say Fint, represented by the red vector
in Fig. (5), is an extensive quantity Whose magnitude
is a direct response to the increase in population size.
This vector has to do with the agglomeration effect that
came from the interaction between the individuals who
belong to this single city. The second, let’s say Fext,
represented by the blue vector in Fig. (5), is the result
of all external mechanisms such as, for instance, some
wealth/knowledge that comes from other cities or re-
gions; it can also represent the result of the interaction
between individuals who belong to this single city with
dwellers from other cities; or even some individual incor-
porated ability that increases the individual productivity.

Therefore, the resulting vector acting on the vertical
direction of the plane, say Ftot, is the sum of these two

vectors, that is:

Ftot = Fint + Fext, (3)

which has a magnitude

Ftot = ∆ lnYi(t) ≡ lnYi(t+ ∆t)− lnYi(t). (4)

The action of this vector field (in the horizontal and
vertical directions) during a time interval ∆t conducts
to a “displacement” ∆r(t) of this city (or particle) in
the two-dimensional plane lnY -x-lnN . But let us try to
identify these vectors with the empirical variables avail-
able.

The data presented in the previous section suggest that
we have an empirical law that governs the cities, which
can be described by the expression (1). If this equation
is a law, then any theory that is formulated to describe
scaling properties in cities must be constrained to follow
it. As this equation holds for any time t, we can write it
for the next time instant t+ ∆t, that is:

Yi(t+ ∆t) = Y0(t+ ∆t)Ni(t+ ∆t)βT (t+∆t). (5)

Then, by extracting the logarithm of the ratio Yi(t +
∆t)/Yi(t) and using Eqs. (1) and (5) we are conducted
to:

∆ log Yi(t) = log

(
Y0(t+ ∆t)

Y0(t)

)
+ (β̄T + ε)∆ logNi(t).

(6)
where we used the compacted forms defined on (2)
and (4). Moreover, we also introduced β̄T as the av-
erage value of the transversal exponent during the time
interval ∆t, and the parameter ε, which is a quantity pro-
portional to the difference βT (t+∆t)−βT (t). In fact, the
data analysis suggests that ε is sufficiently small for the
cases we are studying here, so it will be neglected in our
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a) b)

c) d)

FIG. 3: Different forms to see the longitudinal dynamics of the GDP and the population size for all Brazilian municipality
subsets. Each trajectory represents the time evolution of one single urban area, from the year 1998 to 2014. a) log-log plot of
the time evolution of the raw data of GDP as a function of the population size. The dark red straight line is the power-law
equation, with the average transversal scaling exponent β̄T = 1.05. b) log-log plot of the re-scaled form of the longitudinal
dynamics, which allows us to compare the slopes of the cities’ trajectory. This graph shows us that cities have different slopes,
and they are greater than β̄T , represented by the dark red line. c) Decomposed longitudinal trajectory, which allows seeing
the dynamics without global effects. d) Decomposed and re-scaled form of the longitudinal dynamics, which shows that the
individual slopes are compatible with the transversal scaling exponent, represented by the dark red line. The distribution of
the individual slopes (for raw and decomposed data) can be seen in Fig. (4).

analyses. When βT (t) is constant, as it is approximately
the case for GDP dynamics, then ε = 0.

The elements of Eq. (6) can be identified with the vec-
tors presented in Fig. (5) and consequently with Eq. (3).
It allows us to identify:

Fext = log

(
Y0(t+ ∆t)

Y0(t)

)
(7)

and

Fint = (β̄T + ε)∆ logN(t). (8)

The external vector, since it is directly computed from
the ratio between the final and initial intercept param-
eter, can be interpreted as a measurement of the global
growth of the urban metric. In this sense, the value given
by (7) is an average value of the external vector. That
is: typically, a city in the system has an external vector

magnitude given by the value computed from (7). In the
last section, when we decomposed each city’s evolution
into a relative change, we removed external factors act-
ing on each city and considering only internal factors (the
ones that come from agglomeration effects). In relation
to the magnitude of the internal vector, it is an extensive
variable; that is, it is a direct response to the increase of
the population size. These results suggest that, in order
for the urban metric to depend only on the population
size (under the form Y = cte · NβT ), it is necessary for
βT to be constant (ε → 0) and Fext → 0, which means
absence of global growth. That can be the case for some
urban metrics, but of course, it is not the case for GDP
and many other variables. Our theoretical approach sug-

gest that βdeci 6= βT when ε 6= 0, which was observed in
our empirical data for the water supply network length.
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FIG. 4: Histogram of the longitudinal scaling exponent sets {βi}i (raw data) and {βdec
i }i (decomposed data) for GDP and

water network length for all Brazilian municipality subsets. For GDP (on the left), the decomposed data are distributed around
the transversal scaling exponent βT (vertical dashed line), suggesting that it makes sense to decompose this urban variable.
However, in the case of water network length (on the right), the distribution of the raw (non-decomposed) data is closer to the
global slope than the distribution of the decomposed one, suggesting that decomposition is not working for this urban variable.

FIG. 5: Plane lnY -x-lnN , which represents the “movement”
of the city as a particle in a vector field. In the horizontal
direction, we have the vector (green) that represents the in-
crease in population size. In the vertical direction there is
the action of two vectors: Fint (red), which is an extensive
quantity whose magnitude is a direct response to the incre-
ment of the population size related to an agglomeration effect
between the individuals that live in this single city; and Fext

(blue), which is the vector related to some external aspects,
or the interaction between the individuals from this city with
individuals of other cities, or some individual incorporated
ability. The action of this vector field during a time interval
∆t conducts to a “displacement” ∆r(t) of this city (or parti-
cle) in this two-dimensional plane. The two parallel lines are
given by the global system (transversal) power law (Eq. (1))
in t and t+ ∆t.

Relation between transversal and longitudinal
scaling exponents

With the approach presented above, it is possible to
write a relation between the transversal and the longi-
tudinal scaling exponent. Given that the longitudinal
scaling exponent βi is obtained by:

βi =
∆ lnYi(t)

∆ lnNi(t)
, (9)

then if we divide Eq. (6) by ∆ lnNi(t), we have:

βi = βT + ε+
Fext
ln bi

, (10)

where bi ≡ Ni(t+∆t)/Ni(t) is the city population growth
rate. The graphs in Fig. (6) show that this result works
very well when we analyze βi as a function of bi, for both
GDP and water supply network length for the studied
municipalities. It shows a strong dependence between
these two variables.

The result (10) also suggests that if Fext > 0 and
bi > 1, which means that both the intercept parame-
ter (global growth) and the population are growing with
time, then βi will always be greater than the global expo-
nent βT . The increment in the intercept implies a more
accentuated slope of the city trajectory in the plane lnY -
x-lnN (that is, bigger βi) in relation to the transversal
trajectory (related to βT ), in accordance with the empir-
ical observation presented in this study as well as other
evidences presented in recent literature [32–34]. More-
over, longitudinal and transversal scaling will be the same
when only internal factors (agglomeration effects) are
acting on the system (Fext = 0).
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In urban scaling analysis, it is important to know the
value of the scaling exponent because it gives us the effi-
ciency and productivity of the city or the urban system
(given by βi and βT , respectively) since it shows how the
urban metric reacts to an increase in population. For
instance, in socio-economic variables, larger values of β
mean a more productive city, and for infrastructure vari-
able, smaller values means a more efficient city. How-
ever, in the context we are analyzing, cities with very
large values of βi are not necessarily more productive.
In fact, large values of scaling exponents are related to
cities with a very low growth rate (according to Eq. (9)),
so the value of βi is not useful for the main purpose of
seeing how productivity or scaling economies emerge.

However, we believe that the value of βi will informs
about the city’s efficiency when it has a sufficiently large
population growth rate. In order to investigate this, we
computed the average values of the longitudinal scal-
ing exponents β̄i, using only cities with bi greater than
a threshold bc, and later built the graph presented in
Fig. (7), where we can see that β̄i decreases drastically
for greater values of bc, approaching the transversal expo-
nent value for both GDP and water network length. This
result suggests that when we consider a city that has
grown significantly during the time period analyzed, it
is relevant to understand its longitudinal scaling growth
properties as a microscopic version of the macroscopic
growth of the urban system. Another important aspect
of these findings is that only decomposition is not enough
to link globally with longitudinal scaling, as highlighted
in the last section. In fact, decomposition only makes
sense if we consider cities with sufficient growth in a given
period of time, or with constant transversal scaling ex-
ponent βT (ε 6= 0).

The results presented here must be confronted with
more urban metrics and other countries. Moreover, a
problem resulting from the approach presented in this
section concerns the small number of municipalities that
present bc sufficiently large. For instance, in order to
compute the average β̄i for bc > 4 we used only 13 mu-
nicipality subsets (see Fig. (7-c)). The statistics could
be improved if we were studying an urban system with
more municipalities experiencing higher growth rates,
but maybe such systems don’t even exist. Thus a more
feasible situation for future analyses consists of finding
a way to normalize the longitudinal scaling exponent to
the city’s growth rate.

The external Vector

Eq. (7) represents the average magnitude of the exter-
nal vector, that is, a city within the system will have an
external vector with magnitude typically given by this
value. However, it is interesting to know about the spe-
cific external vector value acting on an individual city.
This is a very difficult matter to be resolved given that
it involves particularities of the city, but we can infer its

answer by the data that we have available.
For instance, we can use the result given by Eq. (10)

to infer the external vector F iext relative to the i-th city.
That is, we can write that:

F iext = (βi − βT − ε) ln bi, (11)

and if βT , βi (given by Eq. (9)) and bi are known, then
it is possible to estimate (assuming ε ≈ 0) the individual
external vector. That is the case presented by Fig. (8),
where each dot represents the value obtained for the ex-
ternal vector of a single municipality, for both GDP and
water network.

Fig. (8) also presents the comparison between this in-
dividual and the average external vector magnitudes. It
suggests an interesting aspect differentiating these two
urban metrics’ dynamics. In the case of GDP, the cities
of all sizes are distributed around the average magnitude
of the external vector. However, in the case of water sup-
ply network length, bigger cities present external vector
smaller than the average. These characteristics imply dif-
ferent dynamics with respect to the transversal exponent,
according to the schematic drawing in Fig. (9), which
presents the plane lnY -x-lnN with two scenarios for the
external vectors. In the first scenario, the external vec-
tor is approximately the same for all cities of the system,
regardless of their size; it implies that the slope of the
fit line (in lnY -x-lnN plane) remains constant. That is
more or less what happens in the GDP context of the
Brazilian municipalities. It suggests an equilibrium situ-
ation, or at least that this urban variable is in a mature
state inside the system.

In the second scenario, the external vector is smaller
for bigger cities, which implies that the slope of the fit
line decreases over time. That is apparently the case for
the water network of the Brazilian municipalities. One
possible explanation is that the system is still out of equi-
librium. That is, water network length in Brazil is not
mature yet, and maybe it will converge to the equilibrium
(when the magnitude of the external vector of all cities
will be around an average value) given enough time. In
any case, in order to have a better understanding of that
aspect, further research about these observations is nec-
essary, which can be achieved by following the evolution
of more urban variables.

IV. CONCLUSION

We analyzed the longitudinal and transversal scaling
dynamics of 5507 Brazilian municipalities, aggregated
with contiguous dense surrounding municipalities from
the totality of municipalities. We showed, using two ur-
ban metrics - GDP and water supply network length
- That the longitudinal scaling exponents are different
from each other, but they are distributed around an av-
erage that approaches the transversal scaling exponent
when we remove external factors (by decomposition) and
when we consider cities that grew sufficiently during the
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FIG. 6: Graph of βi as a function of the population growth rate bi, for both GDP (on the left) and water network length (on
the right). Each dot represents the data of a single Brazilian municipality subset and the red curve is the theoretical prediction
given by Eq. (10) using: ε = 0 for both cases; βT = 1.15 for GDP; and βT = 0.9 for water network length. This result illustrates
the strong dependence between the longitudinal scaling exponent and the population growth rate of the city. It also suggests
that cities with bigger βi are the ones with little or no growth (bi ≈ 1). Moreover, bi < 1 (decreasing population) implies a
negative βi.

analyzed period. We then proposed a formal vectorial de-
scription that describes under which conditions longitu-
dinal (βi) and transversal (βT ) scaling should converge or
where we can expect discrepancies. This result supports
the hypothesis that longitudinal and transversal urban
dynamics could be differently scaled versions of the same
phenomenon. However, in order to have a more conclu-
sive argumentation, further investigation is required with
other urban variables and other countries.
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