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Abstract: In this paper, we apply machine learning to forecast the conditional variance of long-term
stock returns measured in excess of different benchmarks, considering the short- and long-term
interest rate, the earnings-by-price ratio, and the inflation rate. In particular, we apply in a two-step
procedure a fully nonparametric local-linear smoother and choose the set of covariates as well as
the smoothing parameters via cross-validation. We find that volatility forecastability is much less
important at longer horizons regardless of the chosen model and that the homoscedastic historical
average of the squared return prediction errors gives an adequate approximation of the unobserved
realised conditional variance for both the one-year and five-year horizon.
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1. Introduction

The volatility of financial assets has important implications for the theory and practice of
asset pricing, portfolio selection, risk management, and market-timing strategies. Therefore, it is
of fundamental interest to measure ex ante, or forecast successfully, the conditional variance of
returns. Of course, the evaluation of the latter and the forecasting itself have been complicated by
the unobservability of the realised conditional variance (Galbraith and Kisinbay 2005). An extensive
amount of research is engaged in analysing the distributional and dynamic properties of stock market
volatility; see, for example, Andersen et al. (2001) and citations therein. The standard approaches
applied include parametric (G)ARCH-type or stochastic volatility models and estimate the underlying
returns based on specific distributional assumptions. Alternatives, especially for data of higher
frequency, are based on constructing model-free estimates of ex-post realized volatilities by adding up
the squares and cross-products of intraday high-frequency returns (Andersen et al. 2001).

The present paper instead uses annual U.S. stock market data to construct excess stock
returns at the one-year and five-year horizon and to examine their model-based variance forecasts.
Note that the risk depends on the investment horizon considered and that different horizons are
relevant for different applications (Christoffersen and Diebold 2000). Little is known about the
forecastability of variance at horizons beyond a year. Here, we take the long-term actuarial view
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and extend the work of Kyriakou et al. (2019a, 2019b). In a two-step procedure, we first apply
machine learning (ML) to predict stock returns in excess of different benchmarks, considering the
short- and long-term interest rate, the earnings-by-price ratio, and the inflation rate. Second, the
squared residuals are used to analyse model-based volatility forecastability. Here, we compare these
forecasts with the forecast implicit in the unconditional residual variance, as proposed, for example,
by Galbraith and Kisinbay (2005). We find that volatility forecastability is much less important at
longer horizons regardless of the chosen model and that the homoscedastic historical average of
the squared return prediction errors gives an adequate approximation of the unobserved realised
conditional variance for both the one-year and five-year horizon.

Our preferred ML technique applied in this paper is local-linear smoothing in combination with
a leave-k-out cross-validation for the following reasons.! First, we are interested in longer-horizon
stock returns based on annual observations and their volatility. Thus, we are not in the high-frequency
context where the number of observations is huge and the set of possible predictive variable
combinations is enormous (and, thus, dimension reduction or shrinkage are indispensable). Our data
set is, instead, sparse and a careful imposition of structure to the statistical modelling process is much
more promising, as shown, for example, by Nielsen and Sperlich (2003) and Scholz et al. (2015, 2016).
Second, the evidence of stock return predictability is much stronger once one allows for nonlinear
functions as documented, for example, in Lettau and Van Nieuwerburgh (2008), Chen and Hong (2010),
or Cheng et al. (2019). Thus, the local-linear smoother is ideally suited as it can estimate a linear
function—the classical benchmark in this context—without any bias. Finally, our procedures are
analytically well studied, i.e., sound and rigorous, statistical tools which let us operate in a glasshouse,
not in a black box—in contrast to other fancier but less clear ML methods.?

Note further that longer horizons are important to long-term investors, such as pension funds
or market participants saving for distant payoffs. These investors are generally willing to take
on more risk for higher rewards and, thus, volatility forecastability is for them of fundamental
interest. Rapach and Zhou (2013) show that longer horizons tend to produce better estimates than
shorter horizons, while Munk and Rangvid (2018) point out that major finance houses today use longer
horizons—up to ten years—to stabilise and improve future predictions. In our paper, we exemplarily
concentrate on the one-year and five-year view.> However, shorter horizons based on monthly, weekly,
or even daily data do not seem to provide the pension saver with good information about future
income as a pensioner. Therefore, these type of short-term predictions—sometimes called investment
robots—are not suitable when a pensioner should define his or her risk appetite.

The remaining of this paper is organized as follows. Section 2 presents our framework for the
purpose of conditional variance prediction. We define the underlying financial model, introduce our
two-step procedure, and present our validation criterion for model selection. In addition, we review
different ways of estimating the conditional variance and discuss bootstrap-tests for the null hypothesis
of no predictability. In Section 3, we provide a description of our data set and of our empirical findings
from different validated scenarios: (i) a single benchmarking approach that uses the dependent
variable transformed with the benchmark, and (ii) the case where both the independent and dependent
variables are transformed with the benchmark (full benchmarking approach). Finally, we take the

Our methodology of validating a fully nonparametric structure can be viewed as one of the simplest and therefore also most
transparent version of machine learning; see Section 2 of Kyriakou et al. (2019a) for more details justifying the label machine
learning for our approach.

Note that the use of a different ML method would come with the cost of losing interpretability, smoothness, or flexibility
due to restrictions on the functional form. A comparison of different ML techniques in finding that one which gives the best
predictions, wins an investment horse-race out-of-sample, or being the most robust method over different periods is out of
the scope of our work.

The choice of the one-year horizon is related to the frequency of the data. In contrast, the five-year horizon is arbitrary but is
intended to be a starting point for actuarial long-term models for real-income savings. Other horizons and related questions
remain for future research.
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long-term view and comment on real income pension prediction. Section 4 summarizes the key points
of our analysis and concludes the paper.

2. A Framework for Conditional Variance Prediction

In this section, we focus on nonlinear predictive relationships between squared residuals of
model-based predicted stock returns over the next T years in excess of a benchmark and a set of
explanatory variables. Our aim is the investigation of different benchmark models and their volatility
predictability over return horizons of one year and five years. We consider four different benchmarks:
the short- and the long-term interest rate, the earnings-by-price ratio, and the inflation rate.

2.1. One-Year Predictions

Let P; denote the (nominal) stock price at the end of year t and D; the (nominal) dividends
paid during year t. We investigate stock returns S; = (P + D;)/P;_1 in excess (log-scale) of a given

benchmark Bt(fi:
Yt(A) =In 7?;) , (1)
B4
where A € {R, L, E, C} with, respectively,
R _ 4, Re poy_. Le e _ B o _ CPL
B =1+ B =ltqe B =15 B =Gy

using the short-term interest rate, R;, the long-term interest rate, L, the earnings accruing to the index
in year t, E;, and the consumer price index for year ¢, CPI;. The predictive and fully nonparametric
regression model for a one-year horizon is then given by the location-scale model

Y = m(X1) + (X)) @)
where
m(x) = E(YW|X = x) and v(x) = Var(YY|X = x), x € R ©)

are unknown smooth functions for the conditional mean and variance, resp., {; are serially uncorrelated
zero-conditional-mean random error terms, given the past, with the conditional variance of one, and
X;_1 is a g-dimensional vector of available explanatory variables.*

Our aim is to forecast the conditional variance of excess stock returns Yt(A) based on model (2)
and popular explanatory variables with predictive power reported in the literature, for example,
the dividend-by-price ratio, d;_1 = D;_1/P;_1, the earnings-by-price ratio, ¢;_1 = E;_1/P;_1,
the short-term interest rate, r;_1 = R;_1/100, the long-term interest rate, /;_1 = L;_1 /100, inflation,
1 = (CPLi_q1 — CPI;_3)/CPI;_, the term spread, s;_1 = I;_1 — r;_1, and lagged excess stock return,

(A)
Y, .
Based on (2), in a two-step procedure, we first estimate Yt(A) = m(X;—1) as in
Kyriakou et al. (2019b), and, in a second step, we estimate 7(X;_1) from
v(x) = E(YA) —m(X))?|X = x), x € RY, @

using the squared residuals ¢ := (Yt(A) —1i1(X¢_1))? as the dependent variable and a local-linear
smoother in both steps. The estimates 7z and 7 depend on smoothing parameters (bandwidths) & and g,

4 Note that the set of explanatory variables in (2) could be different or overlapping for the mean and variance function.
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respectively. As we are interested in predictions, we take the values which minimize the out-of-sample
prediction error using cross-validation. More details are provided in Section 2.4.%

2.2. Longer-Horizon Predictions

For longer horizons T, we consider the sum of annual continuously compounded returns:

(A) _ (4)
z - Yt+i :
i=0
Note that we use here overlapping returns Zt(A), which require a careful econometric modelling.

For illustrative purposes, assume a linear relationship in (2) between Yt(A) and X;_1, as well as the

persistence of the forecasting variable (treating the variables as deviations from their means):
A
Y =X +& and Xi =X+

with ¢; = v@(Xt_l)l/ 27; similar to the error term in (2) and a parametric specification for the
conditional variance vy(-), and 7; being white noise. The T-year regression problem that is implied by
this pair of one-year regressions is now

Zt(A) = Yt(A) +o.t Yt(f%q = (BXi—1+8t) +... + (BXes1—2 + Gt7-1)
T-1T-1-i

T-1 . T-1
= B Z V' X1+ p Z 2 Vi + Z Gtvi = ¢Xi 1+ 1,
i=0 i—0  j=0 i=0

i.e., the excess stock return for the year t over the next T years can be decomposed in a predictive part
depending on the variable X;_; and an unpredictable error term ;. In estimating the conditional
mean and variance functions for the T-year returns Zt(A>, we use nonparametric models because they
can capture possible misspecification due to violation of the linear models assumed above. Thus,

we set up our predictive nonparametric regression model in the same fashion as in (2)

Zt(A) =m(X;_1) + v(X—1)" 2wy, ®)
where
m(x) = E(ZW|X = x) and v(x) = Var(ZW|X = x), x € RY ©)

are the unknown smooth conditional mean- and variance-function. The predictive variables X under
consideration are the same as for the one-year horizon. The important difference between Equations (2)
and (5) is now that the error process §; := v(X;_1)'/%w; in Equation (5) will be serially correlated by

5 For a description and statistical properties of the local-linear smoother, see, for example, Section 2.3 in Kyriakou et al. (2019b).

Note further that the smoothing parameters /1 and g are separately chosen in each step.
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construction.®” For a discussion on asymptotic properties of our nonparametric estimators of model
(5) and (6), see Section 2.3 in Kyriakou et al. (2019b).

Based on (5), our two-step procedure consists now of, first, estimating Zt(A) = M(X;—1), and
second, estimating 7(X;_1) from

v(x) = E((ZW —m(X))*|X =x), x € RY, @)
using the squared residuals &2 := (Zt(A) —1i1(X;_1))? as the dependent variable and a local-linear

smoother again in both steps.

2.3. Alternative Ways in Estimating the Conditional Variance Function

For the estimation of the conditional variance or volatility function of a response variable Y
in a location-scale model similar to (2) or (5), four different approaches are mainly proposed in the
literature: the direct, the residual-based, the likelihood-based, and the difference-sequence method.

(i) The direct method uses the variance expressed as the difference of the first two conditional
moments (see, for example, Hardle and Tsybakov 1997): Var(Y|X = x) = E(Y?|X = x) — E(Y|X = x)2.
Both parts of the right-hand side are separately estimated and, thus, the result is not necessarily
nonnegative and also not fully adaptive to the mean function.®

(ii) The residual-based method consists of two stages—first, estimating the conditional mean
function m(-) and calculating the squared residuals & = (Y — 7(X))2. Second, estimating the
conditional variance function v(-) by regressing 2 on a set of explanatory variables X. There exist
different variants of residual based methods for the second step.”?

(iii) The preferred estimators of Yu and Jones (2004) build on a localised normal likelihood and
use a standard local-linear form for estimating the mean, a local log-linear form for estimating the
variance, and allow for separating bandwidths for mean and variance estimation.

(iv) Finally, examples for the difference-sequence method in a fixed design can be found for
the homoscedastic case in Wang and Yu (2017) and citations therein. Wang et al. (2008) analyse
for the heteroscedastic case the effect of the unknown (smooth) mean function on the estimation
of the variance function. They also compare the performance of the residual-based estimators to
a first-order-difference-based estimator. Their results indicate that it is not desirable to estimate
the variance function based on the residuals from an optimal estimator of the mean in case the
mean function is not smooth. Wang et al. (2008) recommend instead an estimator for the mean with
minimal bias.

Our flexible location-scale model in (5), could be easily extended to time-lags of higher order. However, in the
empirical application in Section 3, we see that, for example, for real-earnings—the main driver of real-returns—an
ARI1-type model is ideally suited. This is in line with findings from Kothari et al. (2006). Note further that one
might expect risk and return to be somehow related (see, for example, Merton 1973). The parametric GARCH-in-Mean
process captures this idea (Linton and Yan 2011). However, the inclusion of an interaction of mean and variance in
a fully nonparametric fashion is out of the scope of this paper. To our knowledge, only semiparametric versions
where either the mean or variance function is modeled parametrically can be found in the literature, see, for example,
Linton and Perron (2003); Pagan and Hong (1991); Pagan and Ullah (1988).

For possible solutions to the problem of autocorrelation, see, for example, Xiao et al. (2003), Su and Ullah (2006),
Linton and Mammen (2008), or more recently Geller and Neumann (2018). The implementation and analysis of these
techniques remain for future research. In our approach, we account for autocorrelation in the validation criterion with a
leave-k-out strategy, where k = 2T — 1; see Section 2.4.

It does not estimate the volatility function as efficiently as if the true mean were known.

Examples of these variants are: (i) Applying a local-linear kernel smoother in both stages (Fan and Yao 1998). The result is
again not necessarily nonnegative but asymptotically fully adaptive to the unknown mean function. (ii) Using the local
exponential estimator to ensure nonnegativity (Ziegelmann 2002). (iii) Implementing a combined estimator (a multiplicative
bias reduction technique), where a parametric guide captures some roughness features of the unknown variance function
(Glad 1998; Mishra et al. 2010). (iv) Utilising a re-weighted local constant estimator maximising the empirical likelihood
such that it becomes a bias-reducing moment restriction (Xu and Phillips 2011).
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In the empirical part of this paper in Section 3, we show the results of the residual-based method
applying a local-linear kernel smoother in both stages. As a robustness check, we have implemented
in the second step the local-exponential estimator (Ziegelmann 2002) and the combined estimator
(Mishra et al. 2010) getting almost always very similar results.!’ We do not consider: (i) the direct
method, since it is not fully adaptive to the mean function, (ii) the re-weighted local constant estimator
(Xu and Phillips 2011) due to its asymptotic similarity to the local-linear method, (iii) the method based
on the assumption of normal error terms (Yu and Jones 2004), since skewness and excess kurtosis
are common properties of stock returns, and (iv) the difference-sequence method, since it was not
convincingly performing in a small sample study, the mean functions are rather smooth in our problem,
and bias reduction is key due to sparsity.'!

2.4. The Validation Criterion for the Choice of Smoothing Parameters and Model Selection

For the nonparametric technique applied in this study, we require an adequate measure of
predictive power. In-sample measures, such as the classical R? or the adjusted R?, are not appropriate
because they either prefer the most complex model or need a degrees of freedom adjustment which
is an unclear concept in nonparametric estimation. Furthermore, our focus lies on prediction. Thus,
we are interested in the out-of-sample performance of a model and not in how well it explains the
variation inside the sample. Therefore, our preferred measure estimates the prediction error directly.

For the purpose of model selection and optimal bandwidth choice, we use the validated R?,
introduced in the actuarial literature by Nielsen and Sperlich (2003) and based on a leave-k-out
cross-validation. Note that this criterion is very similar to the forecast content function of
Galbraith (2003) and Galbraith and Kisinbay (2005) defined as the proportionate reduction in the
mean square forecast error achievable relative to the unconditional mean forecast.

Our validation criteria for the first and second step are defined as

2 2z — ) 2 (& —00)?
RV,m - ]. - _ and RV,V - 1 - ? (8)
NPARE AR L& -,

t t

Note that leave-k-out estimators are used: #z_; and 7_; for the nonparametric functions m and v,
resp., Z (_?) and éT_t for the unconditional mean of Zt(A) and 2, resp. These are computed by removing
k = 2T — 1 observations: (T — 1) before the tth time point, ¢ itself, and (T — 1) after t. We need to
exclude k = 2T — 1 data points due to the construction of the dependent variable over a horizon of T
years, i.e., we use for the one-year horizon the classical leave-one-out estimator, while, for example, for
the five-year horizon the leave-nine-out estimator. Note that the validated R%/ measures the predictive
power of a model in comparison to the predictive power of the cross-validated historical mean.
Thus, positive values imply that the regression model based on explanatory variables outperforms the
corresponding historical average over T years. Negative values in the first step of our approach suggest
that the historical mean return should be preferred over a model-based approach, while negative
values in the second step indicate a constant homoscedastic conditional variance forecast. Note further
that the numerator in the ratio of R%,,m and R%/,V corresponds to the classical cross-validation criterion.
Thus, choosing the bandwidth which minimizes this criterion for a given set of explanatory variables
is equivalent in maximizing the validated R?,. This means that we can use the validated R?, as a single
criterion for both purposes: model and bandwidth selection.!?

10
11

Those results are available upon request by the authors.

There is also a lack of studies using the difference-sequence method in a random design and in multivariate problems as in
our case.

Model selection in the sense of composition of the set of explanatory variables.
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It is well known from the literature that cross-validation often requires to omit more than one
observation and, possibly, additional correction when the omitted fraction of data are considerable
(see, for example, Burman et al. 1994). In addition, when serial correlation arises, as in our longer-
horizon application, and the structure of the error terms is ignored, De Brabanter et al. (2011)
show that automatic methods for the choice of smoothing parameters, such as cross-validation or
plug-in, fail. The problem is that the chosen bandwidths become smaller for increasing correlations
(Opsomer et al. 2001), and the corresponding model fits become progressively more under-smoothed.
The bias of the predictor reduces this way and, as it contributes in a squared fashion to the prediction
mean squared error—the numerator of the ratio in (8), R%, increases (not because the fit is good
but due to the ignored correlation structure). A misleading decision on the bandwidth or model
specification, as well the set of preferred covariates is the consequence. To overcome those problems,
Chu and Marron (1991) propose the use of bimodal kernel functions. Such functions are known to
remove the correlation structure very effectively, but the estimator 771 suffers from increased mean
squared error, as discussed in De Brabanter et al. (2011). They also propose correlation-corrected
cross-validation that consists of, first, finding the amount of data k to be left out in the estimation
process when a bimodal kernel function is used; and, second, applying the actual choice of the
smoothing parameter using leave-k-out cross-validation with a unimodal kernel function. In our
application, we can skip the first step because k is known by construction. For example, in the five-year

(4) _

case, we have Z; Y(A) +...+ Yt( ) . Now, we want to exclude the complete information included

at time ¢, i.e., skip all Z§ ) that include any of Yt( ), el Yt(fi,
)

leave-nine-out set of Zt(f S, Zt(ﬂ (see, for example, Kyriakou et al. 2019b, Figure 1).

it is easy to see that this amounts to a

2.5. A Bootstrap-Test: No Predictability vs. Predictability of the Conditional Variance

We test the null of no predictability of the conditional variance applying the tests proposed by
Kreiss et al. (2008) (hereafter KNY-test) and Scholz et al. (2015) (hereafter SNS-test). Formally, this is
equivalent to say that, under the null, v is a constant function, which essentially corresponds to the
historical average of the squared residuals, i.e., constant volatility. In particular, let v(-) be the true
volatility function as in (2) or (5) for some specified set of regressors X;, i.e., (4) or (7) holds. Let 22 be
the sample mean of the squared residuals from step one in our approach. The KNY-test is based on

[heo-2]

for some weighting function w, which has been studied by several authors and statistics have been
derived from the above, for example, in Hardle and Mammen (1993) or Kreiss et al. (2008). We use the

the distance

w (x) dx, 9

statistic derived in Equation 2.3 of Kreiss et al. (2008)

2
w(x)dx, (10)

hWZT/‘1 iKh (x — X;) (é%—?z)
J|TH&

where K}, (x) is a symmetric kernel smoother with bandwidth /. The bandwidth is selected using R?, for
the Nadaraya-Watson kernel estimator rather than a local-linear one. We choose w to be proportional
to the uniform density with support in the range of the sample data and replace integration by the
mean over uniform independent observations X, Xé, eeey Xf\] in the range of the data:

T 2

1ZI< Xi—x) (& -2)

hq/?. N

L

=1

(11)

Then, the error in the integral is O (N - 2) (Geweke 1996). Under the null, the above test
statistic T is small. This choice could lead to a statistic whose power is lower than the one in
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Hérdle and Mammen (1993) due to some implicit over-smoothing resulting in the weight function w
(see comment in Kreiss et al. 2008, just after their Equation 2.5). Power may also improve by using
a local-linear smoother in the test. However, the theory for this has not been developed yet, so we
refrain from such extension.

Critical values for T are best derived via wild bootstrap (Hardle and Mammen 1993). For the
bootstrap critical values to be consistent, the procedure needs to be independent of whether the null is
true or not. Hence, in correspondence with Equation 2.10 in Kreiss et al. (2008), forb =1,..., B,

2
, (12)

LY K (X X0) [ul (& -0 (%)

where the u}’s are independent and identically distributed random variables with a mean of zero and
a variance of one, for example, uf ~ N(0,1). To decide if we reject or not, we use as critical values the
corresponding quantiles of the empirical distribution'?,

. 1
b

The consistency of the procedure for stationary sequences is given in Kreiss et al. (2008).

An alternative version for a wild bootstrap test is the SNS-test proposed in Scholz et al. (2015).
There the B bootstrap samples are constructed using the residuals under the null, ) := &2 — 2, and
ul’s as above, such that

é%’b =824 t? . u?.

Then, in each bootstrap repetition b, the cross-validated mean is calculated of the é?’b, t=1,...,T,
as well the estimates of the predictor-based model ?” , in order to get R%/’E’V like in (8). Critical values
are chosen from corresponding quantiles of the empirical distribution function similar to (13).

Both tests have their own merits. We expect the KNY-test to be more conservative and potentially
with less power in comparison to the SNS-test but with clear and well-established asymptotic theory.
For more discussion on standard smoothing based tests and other examples for tests of the variance

function, see, for example, the survey of Gonzales-Manteiga and Crujeiras (2013).

3. Empirical Application: Conditional Variance Prediction for Stock Returns in Excess of
Different Benchmarks

3.1. The Data

In this paper, we extend the analysis of Kyriakou et al. (2019b), who considered the forecasting
of long-term stock returns, to conditional variance predictions. Thus, we base our predictions on
the same annual US data set which is provided by Robert Shiller and can be downloaded from
http:/ /www.econ.yale.edu/~shiller/data.htm. It includes, among other variables, the Standard
and Poor’s (S&P) Composite Stock Price Index, the consumer price index, and interest rate data
from 1872 to 2019. We use here an updated and revised version of Shiller (1989, chp. 26), which
provides a detailed description of the data. Note that the risk-free rate in this data set (based on the
six-month commercial paper rate until 1997 and afterwards on the six-month certificate of deposit rate,
secondary market) was discontinued in 2013. We follow the strategy of Welch and Goyal (2008) and
replace it by an annual yield that is based on the six-month Treasury-bill rate, secondary market, from
https:/ /fred.stlouisfed.org/series/TB6MS. This new series is only available from 1958 to 2019. In the

13 The symbol 14 denotes the indicator function of an appropriate condition A4, i.e., it is one when A is true and zero otherwise.
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absence of information prior to 1958, we had to estimate it. To this end, we regressed the Treasury-bill
rate on the risk-free rate from Shiller’s data for the overlapping period 1958 to 2013, which yielded

Treasury-bill rate = 0.0961 + 0.8648 x commercial paper rate

with an R? of 98.6%. Therefore, we instrumented the risk-free rate from 1872 to 1957 with the predicted
regression equation. The correlation between the actual Treasury-bill rate and the predictions for the
estimation period is 99.3%. Table 1 displays standard descriptive statistics for one-year and five-year
returns as well as the available covariates.

Table 1. US market data (1872-2019).

Max Min Mean Sd Skew Exc. kurt
S&P stock price index P 2789.80 325 27758 558.13 2.43 5.50
Dividend accruing to index D 53.75 0.18 6.04  10.56 2.45 6.00
Earnings accruing to index E 132.39 0.16 13.96 26.31 243 5.35
Dividend-by-price d 9.88 1.17 431 1.71 0.46 0.25
Earnings-by-price e 17.75 1.72 7.28 2.75 1.05 1.39
Short-term interest rate r 14.93 0.07 3.97 2.50 0.96 2.34
Long-term interest rate / 14.59 1.88 4.53 227 1.81 3.63
Inflation 7 20.69 —15.65 2.23 5.96 0.26 1.60
Spread s 3.64 —-3.71 0.56 1.32 —0.05 0.02
One-year excess stock returns Y (R) 4239 5826 458 1728 —0.57 0.68
One-year excess stock returns Y(©) 54.04 —48.81 641  18.05 —0.40 0.64
Five-year excess stock returns Z (R) 107.27 —78.54 23.49 36.69 —0.14 —0.37
Five-year excess stock returns Z (©) 12296 —57.34 32.34 3642 —0.05 —0.40

3.2. Single Benchmarking Approach

In this section, we consider a single benchmarking approach as in Kyriakou et al. (2019a, 2019b),
i.e., only the dependent variable S; is benchmark adjusted, as shown in (1), while the independent
variable(s) is (are) measured on the original (nominal) scale. The models (2) and (5) are estimated in
both steps with a local-linear kernel smoother using the quartic kernel. The optimal bandwidths are
chosen by cross-validation, i.e., by maximizing the corresponding validation measure given by (8).
Given that we apply a local-linear smoother, it should be kept in mind that the nonparametric method
can estimate linear functions without any bias. Thus, the linear model is automatically embedded
in our approach. This is an important observation as the linear model is the usual benchmark in
financial applications. In addition, in case that the true (but in advance) unknown function is really
linear, our approach would exactly pick the line against all other functional alternatives. We study
the R%,,V values based on different validated scenarios shown for the one-year horizon in Table 2
and the five-year horizon in Table 3. Here, the same predictive variables X;_; are used in both steps
of our approach. Note that we have only about 150 observations in our records. The small sample
size clearly limits the complexity of our analysis in the sense of using higher dimensional vectors of
explanatory variables. In what follows, we consider only one- and two-dimensional models. For a
discussion on sparsely distributed annual observations in higher dimensions and ways to circumvent
the curse-of-dimensionality, see, for example, Kyriakou et al. (2019a).

Overall, we find for the one-year horizon that only a few variables have small positive validated
R%/Iv’s and thus possibly some low explanatory power. For example, for the benchmarks B(R), B(L),
and B(F), the excess stock return has the largest validated R%,/V values for one-dimensional models
(2.2%, 2.4%, and 1.5%). This finding would support an ARCH-type variance structure. For the inflation
benchmark B(©), the model with the long-term interest rate produces the largest validated R%,,U of
0.5%. When we apply the bootstrap tests introduced in Section 2.5, the KN Y-test does not reject the

null of no predictability for all cases at the 5%-level. The SNS-test rejects the null only for the Yt(fl)
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covariate under the benchmarks B(R), B(L) and B(E) at the 5%-level.}* Note that the two-dimensional
models do not add predictive power as the validated R%,,V values remain in the same low range.
Table 2. Predictive power for the variance of one-year excess stock returns Yt(A): the single
benchmarking approach. The prediction problem is defined in (2). The same predictive variables X;_;
are used in the predictions for the conditional mean and variance function. The predictive power (%)
is measured by R%,/V as defined in (8). The benchmarks B(4) considered are based on the short-term
interest rate (A = R), long-term interest rate (A = L), earnings-by-price ratio (A = E), and consumer
price index (A = C). The predictive variables used are X;_1, given by the dividend-by-price ratio d;_1,
earnings-by-price ratio ¢;_1, short-term interest rate r;_1, long-term interest rate /;_, inflation 7t;_;,

A)

term spread s;_1, excess stock return Yfﬁl , or the possible different pairwise combinations as indicated.

Benchmark B(4) Explanatory Variable(s) X;_1
y(4) d e r ! T S
Short-term rate 2.2 —-1.1 —0.6 —-0.3 0.3 —-1.2 —-0.1
Long-term rate 2.4 —1.2 —0.6 0.3 0.6 —14 —0.1
Earnings-by-price 15 -13 -0.7 —0.1 0.5 -14 0.1
Inflation 0.2 0.1 —-1.3 —-0.4 0.5 —-1.2 —0.6
YW,y (vW,e) (YA, (YA (YW, 1) (YA,
Short-term rate 2.4 19 1.1 2.2 0.1 0.3
Long-term rate 1.5 1.4 1.1 2.1 -0.2 0.1
Earnings-by-price 1.6 1.4 0.9 2.0 -0.2 0.1
Inflation -1.0 —-1.1 —0.6 0.6 2.1 -1.0
(d,e) (d,r) (d,1) (d, ) (d,s)
Short-term rate 2.1 —-1.5 —0.8 -24 -1.5
Long-term rate -2.0 —-1.1 —0.6 -22 —15
Earnings-by-price -1.9 -14 -0.7 -2.3 -1.5
Inflation —-04 -1.0 —-0.2 —-2.3 -1.3
(e,7) (e1) (e, ) (e,s)
Short-term rate -1.0 —-0.4 —2.3 —0.8
Long-term rate —0.6 —-0.2 —2.2 —0.8
Earnings-by-price -1.0 —0.2 —22 —0.8
Inflation —-1.7 —-0.9 —2.2 —-1.6
(r,1) (r, ) (r,s)
Short-term rate 1.3 -1.5 14
Long-term rate 1.3 —1.0 14
Earnings-by-price 14 -15 1.6
Inflation 1.3 -1.5 1.2
Lm (s
Short-term rate —-1.2 14
Long-term rate —-0.9 14
Earnings-by-price -1.0 1.6
Inflation -0.9 1.3
(7,s)
Short-term rate 0.2
Long-term rate 0.2
Earnings-by-price —0.6
Inflation —-0.1

Contrary to the mean prediction, where Kyriakou et al. (2019b) find that five-year predictability
improves over the one-year case, we observe that the majority of predictor based volatility models do

14 The tests were conducted with 1000 repetitions at the 5% significance level for a selected number of cases. We do not present

the p-values of the tests to save space. The results are available upon request by the authors.
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not surpass the constant volatility alternative for the five-year horizon. Even though some models
produce small positive R%/,V values, this time both the SNS- and the KNY-test do not reject the null of
no predictability. Note that our results are in line with Christoffersen and Diebold (2000) who conclude
that volatility forecastability may be much less important at longer horizons.
Table 3. Predictive power for the variance of five-year excess stock returns Zt(A): the single benchmarking
approach. The prediction problem is defined in (5). The same predictive variables X;_; are used in the
predictions for the conditional mean and variance function. Additional notes: see Table 2.

Benchmark B(4) Explanatory Variable(s) X;_1
y(4) d e r l T S
Short-term rate 0.6 —-1.7 —1.7 —-12 —1.0 -2.0 —-3.0
Long-term rate 0.0 -1.5 -1.3 -1.2 -1.1 -1.2 -2.7
Earnings-by-price 0.8 —1.8 —1.1 —1.8 —2.7 —-0.3 —3.8
Inflation -1.0 —3.8 —4.7 -0.7 -15 14 0.5
(YA,a) (yAWe) (YA, (YW (YA, ) (YA
Short-term rate —-2.8 —-2.5 -1.7 -1.7 -1.7 -3.9
Long-term rate —-2.5 —2.1 —1.6 —1.8 —1.2 —34
Earnings-by-price -2.3 -21 -1.2 —4.1 0.4 —-3.4
Inflation —-5.1 —4.7 —1.5 —2.6 0.4 —-0.9
@de) @ @) @dm (s
Short-term rate -3.6 -3.1 —-2.2 -2.8 —4.1
Long-term rate —-3.1 —3.2 —2.7 —2.3 —4.3
Earnings-by-price —4.1 —4.0 —5.3 -23 —4.9
Inflation -5.2 -5.0 —-8.9 -2.5 -3.2
er ) (m (o)
Short-term rate -3.3 -3.3 —-3.5 —49
Long-term rate —-2.8 —-3.3 —-29 —49
Earnings-by-price —45 —5.5 —2.7 —6.5
Inflation —8.5 -7.8 —4.9 —6.4
(r,1) (r, ) (r,s)
Short-term rate —-3.8 -1.7 -39
Long-term rate —4.1 -1.3 —4.2
Earnings-by-price —5.3 —1.9 —54
Inflation -39 0.3 -1.9
(1, m) (Is)
Short-term rate —-1.7 -3.9
Long-term rate -1.3 —4.2
Earnings-by-price —2.6 —54
Inflation -12 —-1.8
(7, 5)
Short-term rate —4.4
Long-term rate —-3.5
Earnings-by-price —4.8
Inflation —0.1

3.3. Full Benchmarking Approach

In the next step, we consider the double benchmarking approach of Kyriakou et al. (2019a, 2019b)
to analyze now whether transforming the explanatory variables can improve the predictions for
the volatility function. Recall that fully nonparametric models suffer in general by the curse of
dimensionality. Problems with sparsely distributed annual observations in higher dimensions, as in our
framework, could be reduced or circumvented by importing more structure in the estimation process.



Risks 2019, 7, 113 12 of 22

Here, we extend the study presented in Section 3.2 transforming both the dependent and
independent variables according to the same benchmark. To this end, in our full (double) benchmarking
approach, the prediction problems are reformulated as

= m(X") +v(x")V2g, (14)
z = m(x) + (X)) w0, (15)

where we use transformed predictive variables

14X,
(7/;1, Xed{derl n}

B4
Xt(f; = St(qu) — lffl(% , A€ {R, L E, C} (16)
Bt(—j) B,
thl

This approach can be interpreted as a simple way of reducing the dimensionality of the estimation
procedure. The adjusted variable Xt(fi includes now an additional predictive variable, the benchmark
itself. Results of this empirical study are presented for the one-year horizon in Table 4 and for the
five-year horizon in Table 5.

We find that, in comparison to the single-benchmarking approach in the one-year case, the double
benchmarking improves in 15 out of 82 models (in the sense of producing a positive and higher
R%/,V as before). However, predictability is still questionable. The best model under the long-term

interest rate benchmark B(L) uses the pair (Yt(ﬂ, et(f)l) and yields R%,,V = 3.0, while the best model

under B(E) uses the pair (Yt(f%, lE)l) and yields R%/,v = 2.5. The SNS-test rejects for both the null of no
predictability, while the KNY-test does not. For the rest of the new combinations of predictive variables
in all benchmarks, both tests again do not reject.

For the five-year case, we find that in comparison to the single-benchmarking the double
benchmarking improves in 11 out of 82 models. The best model under B(F) uses df)l and yields
R%/’V = 1.8, while under B(C) the covariates dEE)l and [ t(ﬂ both yield R%,/V = 1.6. Nevertheless, we do
not find any combination of covariates with statistically significant predictive power.
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Table 4. Predictive power for the variance of one-year excess stock returns Yt(A>: the double benchmarking

approach. The prediction problem is defined in (14). The same predictive variables Xfﬁ are used in
the predictions for the conditional mean and variance. The predictive power (%) is measured by R%/,v
as defined in (8). The benchmarks B(4) considered are based on the short-term interest rate (A=R),
long-term interest rate (A = L), earnings-by-price ratio (A = E), and consumer price index (A = C).
f'_qi using the indicated benchmark Bt(f% as shown in (16). X;_q
are given by the dividend-by-price ratio d;_1, earnings-by-price ratio e;_;, short-term interest rate
r¢_1, long-term interest rate /;_y, inflation 71;_1, term spread s;_, excess stock return Yt(fl) , or the
possible different pairwise combinations as indicated. “—” are not applicable cases of matched covariate

The predictive variables used are X

with benchmark. Note: s(R) and I(R) (and their combinations with Y, d, ¢, 7t) have the same R%, by
. . R R

construction of the transformed spread according to (16). For example, 557)1 =(_1—r1)/ BL)l =

(I1+4-1)/1+r_1)—1and lt(fi = (14+1_1)/(1 4 r,_1). The case of s(') and r(L) is similar.

Benchmark B(4) Explanatory Variable(s) X;_1
y(4) 4(4) e(4) 4) 1(4) 7(4) s(4)

Short-term rate 2.2 -0.3 0.7 - -0.2 0.1 -0.2
Long-term rate 24 0.2 —-0.5 —-0.1 - —0.2 —-0.1
Earnings-by-price 1.5 -0.2 - 0.6 -0.2 -0.7 0.0
Inflation 0.2 —-0.9 —-1.2 —-0.3 —-0.2 - —-0.7

(y(A),d(A>) (y(A),e(A)) (y(A),r(A)) (y(A), 1<A>) (y(A), n(A)) (y(A>,S(A))
Short-term rate 0.8 0.7 - 0.2 0.1 0.2
Long-term rate 1.3 3.0 0.1 - —-0.3 0.1
Earnings-by-price 0.2 - 0.7 2.5 0.0 0.1
Inflation -3.1 —14 —-15 -19 - -1.0

(@A), (D)) (@A), r(A)) (@A), 1(A)y (@A) 7(A)  (4(4) 5(A)
Short-term rate -1.3 - 0.9 0.0 0.9
Long-term rate -1.0 0.9 - —-0.7 0.9
Earnings-by-price - -0.3 -0.8 -1.8 0.4
Inflation -1.9 0.7 1.6 - —-0.7

(e, 1Ay (o), 1(A4))  (elA), 7(A))  (e(A),5(A))
Short-term rate - —-0.4 —2.6 —-04
Long-term rate -0.6 - —-2.5 -0.6
Earnings-by-price - - - -
Inflation -1.6 -15 - -1.6

(r(A), 1Ay (p(4), 7(A))  ((4), 5(A))

Short-term rate - - _

Long-term rate - —-1.2 -
Earnings-by-price —-05 —-21 -0.3
Inflation -1.9 - —1.6
(l(A>,n(A)) (1(A>,S(A))
Short-term rate —-14 -
Long-term rate - -
Earnings-by-price —-25 —-0.5
Inflation - -1.7
((4),5(A))
Short-term rate —-14
Long-term rate -12
Earnings-by-price —1.6

Inflation -
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Table 5. Predictive power for the variance of five-year excess stock returns Zt(A): the double

benchmarking approach. The prediction problem is defined in (15). The same predictive variables X t(fi

are used in the predictions for the conditional mean and variance. Additional notes: see Table 4.

Benchmark B(4) Explanatory Variable(s) X;_1
y(4) d(4) e(4) #(4) 1(4) (A) s(4)
Short-term rate 0.6 —2.2 —3.2 - -3.1 —3.2 -3.1
Long-term rate 0.0 -3.4 —-2.8 —-2.8 - -13 —-2.8
Earnings-by-price 0.8 1.8 - —-2.3 —3.2 0.6 —3.8
Inflation —-1.0 1.6 0.3 0.6 1.6 - 0.3
(Y(A),d(A)) (YA, e(A)y  (y(A) Ay (y(4) 1(4))  (y(A), 7(4)) (y(4), s(A))
Short-term rate —-2.1 —4.3 - —4.0 —-1.2 —4.0
Long-term rate —3.8 -3.2 —3.6 - -11 —3.6
Earnings-by-price 1.1 - —-2.8 -3.8 -0.5 -3.4
Inflation 0.3 —-0.8 -03 04 - -1.0
(dA),e(A))  (dA),r(A)) (@A), 1)y (@A), 7(A))  (4(A) s(A))
Short-term rate —3.7 - —5.4 -2.1 —5.4
Long-term rate —4.2 -5.8 - -3.3 -5.8
Earnings-by-price - —0.4 —2.6 0.3 —-3.3
Inflation —4.3 —0.2 —-0.8 - —-0.8
(e, 1A (e(A),1(4))  (e(A), 7(A))  (p(A) 5(A))
Short-term rate - —-59 —4.9 -59
Long-term rate —6.1 - —4.1 —6.1
Earnings-by-price - - - -
Inflation —4.8 —4.1 - =21

(r(A),z(A>) (r(A),n(A)) (7<A),S(A))
Short-term rate - - _

Long-term rate - —-23 -
Earnings-by-price —6.3 —3.2 —6.1
Inflation —-1.0 - 0.5
(14, (A))  (1(4) 5(A))
Short-term rate —34 -
Long-term rate - -
Earnings-by-price —3.6 —6.2
Inflation - 0.5
( (4, S(A))
Short-term rate —3.4
Long-term rate —2.3
Earnings-by-price —4.6
Inflation -

3.4. Real-Income Long-Term Pension Prediction

In long-term pension planning or other asset allocation problems optimized with regard to
real-income protection (Gerrard et al. (2019a, 2019b); (Merton 2014)), the econometric models should
reflect those needs and use covariates net-of-inflation. Therefore, we take the inflation benchmark
B(©) and analyse in more detail the best model found by Kyriakou et al. (2019b), which uses the
earnings-by-price variable for the mean prediction and produced a R%/,m = 12.2 for the one-year
horizon and R%,,m = 12.4 for the five-year horizon (see Kyriakou et al. 2019b, Tables 4 and 5) in
the double benchmarking case. For this specific model, we are now interested in finding the set of
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covariates that best predicts the conditional variance.!>"1® The empirical findings in terms of R%,’U
are shown for the one-year horizon in Table 6 and the five-year horizon in Table 7. For the one-year
horizon, we find in the double benchmarking approach when inflation is the benchmark, B(C) that
the dividend-by-price d(C) together with the short-term interest-rate 7(C) or the long-term interest-rate
1(©) are chosen as best predictive variables in terms of R%,,V (2.9% and 2.0%). Note that these values
are rather low and that the SNS-test does reject the null of no predictability for both models, while
the KNY-test does not reject. For all other combinations and also the five-year case, we do not find
evidence for statistical significant predictability of the conditional variance. Therefore, we conclude
that the constant volatility model is appropriate for practical purposes.

Note further that the ratio in our validation criterion for the mean prediction, R%,,m, in (8)
compares the sample variance of the estimated residuals from our model based on earnings-by-price
(the numerator) with the sample variance of the benchmarked stock returns (the denominator). For
the one-year case, we find from Table 1 the latter to be equal to 0.1805% = 0.03258. A simple calculation
using the corresponding Ry ,, = 12.2% leads then to 0.03258(1 — 0.122) = 0.02861 or a standard
deviation of 16.91% for returns based on the earnings-model. This means that the linear expression of
real stock returns in terms of real earnings-by-price presented in Kyriakou et al. (2019b) as

Real one-year stock return = 0.004875 + 1.119 x real earnings-by-price (17)

gives on average 2.4% higher returns at the same risk as the historical mean y(©) 17 Similarly, for the
five-year case, we get from Table 1 that 0.36422 = 0.1326. From the Ry, = 12.4%, we obtain then
0.1326(1 — 0.122) = 0.1162 or a standard deviation of 34.08% for returns based on the earnings-model.
Thus, the linear expression of real stock returns in terms of real earnings-by-price presented in
Kyriakou et al. (2019b) as

Real five-year stock return = 0.2068 + 2.264 x real earnings-by-price (18)

gives on average 6.1% higher returns at the same risk as the historical mean y(©) 18 Figure 1 shows the
estimated nonparametric function 7z (red solid line) for the one-year horizon (left) and the five-year
horizon (right) under the double inflation benchmark for the earnings-by-price covariate together
with the corresponding historical mean (dashed green line). Figure 2 depicts histograms and a kernel
density estimate (red solid line) of the standardized predicted returns for the one-year horizon (left)
and the five-year horizon (right). The similarity for both horizons is striking and driven by the fact that
the ratio of the slope of the regression lines in (17) and (18) with the corresponding standard deviation
given above yields almost the same value of 6.63.

Note that until now we have used the same set of covariates in both steps of our analysis to reduce the overwhelming
number of models. It is also clear that not all combinations of variables are practically relevant. Now, we relax this restriction
for the model with the highest predictive power for the returns.

Tables 6 and 7 also present the results for the short- and long-term interest benchmarks B®) and B(L). However, it is again
hard to find predictability at all in these cases. Note that the benchmark using the earnings-by-price variable B(E) is not
applicable since it matches the covariate and the benchmark in the first step.

Here, we use the Sharpe-ratio for the comparison. From Table 1, we get Y(©) = 6.41% and divide it either by 18.05% or by
16.91%. We obtain 0.355 and 0.379, which corresponds to a difference of 2.4% points.

Here, we use again the Sharpe-ratio for the comparison. From Table 1, we get Y(©) = 32.34% and divide it either by 36.42%
or by 34.08%. We obtain 0.888 and 0.949, which corresponds to a difference of 6.1% points.
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Finally, we consider a simple mean-reverting autoregressive model of order one for the real
earnings-by-price—the main drivers of real returns in Equations (17) and (18)—and estimate it
with ordinary least squares (OLS) 1°:
Change in real earnings-by-price

= —0.715 X (real earnings-by-price — mean of real earnings-by-price). (19)

Note that, for the whole sample period (1872-2019), the mean and standard deviation of real
earnings-by-price are 0.0524 and 0.0595, resp. Moreover, using the current (30/09/2019) value of
real earnings-by-price of 0.0278, model (19) predicts a change in real earnings-by-price of 0.0176,
i.e., an expected value of real earnings-by-price of 0.0454 for 2020Q3, which is still below the
long-term average.?’

We subsequently calculate the correlation between the estimated residuals of models (17) and (19)
to be —0.014. A standard stationary block-bootstrap (Politis and Romano 1994) based on 10,000
repetitions and a block-length of 12 suggests that this correlation is not statistically significantly
different from zero. The correlation structure between returns and their drivers is important while
searching for optimal investment strategies in a dynamic market, see Kim and Omberg (1996).
Gerrard et al. (2019c¢) follow the approach of Kim and Omberg (1996) in a long-term return setting and
show that the above correlation is very hard to estimate with precision. Sometimes, it is negative and,
with a slight change of data, it is positive, and a test would almost always provide that zero correlation
cannot be rejected. When this added insight is provided that zero correlation significantly simplifies
that technical calculation of the optimal dynamic strategy while significantly reducing parameter
uncertainty, the conclusion seems clear: we should work with zero correlation unless there is a strong
argument not to do that. In our case—which is a discrete analogue to the continuous models considered
in Gerrard et al. (2019¢) and Kim and Omberg (1996)—it is, therefore, comforting that we can provide a
simple zero-correlation econometric model to guide the market dynamics. In further work, we expect
the simple econometric model of this paper to be used while generalizing the non-dynamic new
approach to pension products of Gerrard et al. (2019a, 2019b).

The estimated coefficient is significant at the 0.1%-level (with a corresponding standard error of 0.08), the residual standard
error of the regression is 0.0572, and its R? has a value of 0.357.

The following values are used for the calculation of the current real earnings-by-price: P = 2976.74, E = 135.53,
B(©) =1.0173.

20
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Table 6. Predictive power for the variance of one-year excess stock returns Yt(A): the double
benchmarking approach for the conditional mean model with earnings-by price as single covariate.
The prediction problem is defined in (14). The predictive power (%) is measured by R%/,V as defined
in (8). The benchmarks B (4) considered are based on the short-term interest rate (A = R), long-term

(4)

interest rate (A = L), and consumer price index (A = C). The predictive variables used are X;” |

using the indicated benchmark Bt(ﬁ as shown in (16). X;_; are given by the dividend-by-price ratio

d;_1, earnings-by-price ratio e;_1, short-term interest rate r;_1, long-term interest rate /;,_1, inflation
T t d k YA

t—1, term spread s;_1, excess stock return Y,” ;,
are not applicable cases of matched covariate with benchmark. Note: s(R) and

or the possible different pairwise combinations
as indicated. “-”
1(R) (and their combinations with Y, d, e, 71) have the same R%, , by construction of the transformed
spread according to (16). For example, SEE; = (I} — rt,l)/Bt(ﬂ =1+4L41)/(Q+r_1)—1and

lt(fi = (141_1)/(1+7,_1). Similar is the case of s(L) and r(L).

Benchmark B(4) Explanatory Variable(s) X;_1
y(4) d(4) e(A) r(A) 1(4) (4) s(4)

Short-term rate 1.0 0.3 0.7 - 0.1 —-04 0.1
Long-term rate 14 0.1 —-0.5 0.9 - —-0.1 0.9
Inflation 04 —0.6 —-1.2 —04 —0.1 - 0.8

(Y(A),d(A)y (YA, e(A))  (y(A), p(A)y (A 1Ay (y(A), 7(A)) (y(4) 5(4)
Short-term rate 0.6 0.7 - 0.2 —-0.5 0.2
Long-term rate 0.7 2.0 0.7 - —-0.6 0.7
Inflation —-1.7 —1.6 —-15 —-1.7 - —-04

(dA), (D)) (@A), 1Ay (@A) 1Ay (g(A), 7(A)y  (g(4),s(A))
Short-term rate 0.0 - —-0.5 —-04 —-0.5
Long-term rate -1.0 0.3 - —-1.4 0.3
Inflation —-1.9 2.9 2.0 - 1.5

(e, 1Ay (e, 1(4))  (elA), 7(A))  (e(A),5(A))
Short-term rate - 0.5 —2.2 0.5
Long-term rate —-0.7 - —2.5 —-0.7
Inflation —-0.9 -1.7 - —-0.3

(r(A),l(A)) (A, 7(A)y  (#(4) 5(A))

Short-term rate - — _

Long-term rate - —-04 -
Inflation —0.5 - 0.7
(14), (A))  (1(4) 5(A))
Short-term rate 0.1 -
Long-term rate - -
Inflation - -0.2
(rr(4),5(A))
Short-term rate 0.1
Long-term rate —-04

Inflation -
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Table 7. Predictive power for the variance of five-year excess stock returns Zt(A): the double

benchmarking approach for the conditional mean model with earnings-by price as single covariate.

The prediction problem is defined in (15). Additional notes: see Table 6.

Benchmark B(4) Explanatory Variable(s) X;_1
y(4) d(4) e(4) r(4) 1(4) (A) s(4)
Short-term rate 0.1 -1.8 -3.2 - —4.5 —2.5 —4.5
Long-term rate 0.6 -3.9 —-2.8 —4.2 - -11 —4.2
Inflation 0.0 —0.1 0.3 —04 —-0.1 - —2.6
(y(A>,d<A)) (y(A>,e(A)) (y(A),r<A>) (Y4, z(A)) (y(A), n(A>) (y(A),S(A))
Short-term rate —-1.7 —4.6 - —5.7 -3.7 —-5.7
Long-term rate —4.5 —4.5 —4.2 - —-2.5 —4.2
Inflation -1.9 —-1.8 -1.9 -1.7 - -39
(dA), ey (@A), p(A)) (@A), 1Ay (@A), 7(A))  (d(4),s(A)
Short-term rate —6.2 - -7.1 —4.3 -7.1
Long-term rate —4.5 —-7.9 - —5.2 —7.9
Inflation -39 -2.1 —3.2 - —2.8
(e, 1A (e4), 1)) (e(A), 7(A))  (e(A),5(A))
Short-term rate - —-8.1 —5.8 —-8.1
Long-term rate —6.6 - —4.9 —6.6
Inflation -2.8 -34 - —-2.6
(A, 1Ay (p(A) 7(A)) - ((4) 5(A))
Short-term rate - - -
Long-term rate - —5.7 -
Inflation -3.0 - -3.1
(114, (A))  (1(4), 5(A))
Short-term rate —6.5 -
Long-term rate - -
Inflation - —-3.0
(A, 5(A4))
Short-term rate —6.5
Long-term rate —5.7

Inflation
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- - hist. avg
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one-year excess stock return
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-0.2
1
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Figure 1. Double inflation benchmark. Relation between real stock returns and real earnings-by-price.

Estimated nonparametric function i (red solid line) and historical average (dashed green line).

Left: one-year horizon. Right: five-year horizon. Period: 1872-2019. Data: annual S&P 500.
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—— density estimate 2 T —— density estimate
_ —— normal distribution —— normal distribution

15

1.0
1.0

Density
Density

0.5

0.5

0
AW 4 N

T T T T T 1 T T T T T 1
-1.0 -0.5 0.0 0.5 1.0 15 -1.0 -0.5 0.0 0.5 1.0 15

0.0

0.0

standardized predicted one-year excess stock return standardized predicted five-year excess stock return

Figure 2. Standardized predicted stock returns in excess of the inflation benchmark (based on the model
using earnings-by-price as covariate for mean-prediction; double benchmarking). Histogram, kernel
density estimate (red), and fitted normal distribution (green). Left: one-year horizon. Right: five-year
horizon. Period: 1872-2019. Data: annual S&P 500.

4. Conclusions

In this paper, we extend the original working framework of Kyriakou et al. (2019a, 2019b) of
forecasting stock returns to modelling their conditional variance and test for predictability in this
context. We consider returns of one-year and five-year horizons in excess of different benchmarks,
considering the short- and long-term rate, the earnings-by-price ratio, and the inflation rate. We use
popular explanatory variables with predictive power such as the dividend-by-price ratio, the earnings-
by-price ratio, the short- and long-term interest rates, the term spread, the inflation rate, as well as the
lagged excess stock return, in one- and two-dimensional settings, with the returns benchmarked or
also the covariates used to predict them.

In our analysis, we find only little to no evidence of model-based volatility predictability for the
one-year and five-year horizon. Only for a few of the models considered under different benchmarks,
we get validation measures that are positive and significantly different from zero but of a rather small
magnitude. We thus conclude that volatility forecastability is much less important at longer horizons
regardless of the chosen combination of explanatory variables. The homoscedastic historical average
of the squared return prediction errors gives an adequate approximation of the unobserved realised
conditional variance for both the one-year and five-year horizon.

In the practically important double inflation benchmarking case, we find that the model with
the largest predictive power is not only of linear functional form based on real earnings-by-price
but also has a constant variance for both horizons. A simple mean-reverting linear AR1-model for
the real-earnings-by-price allows then to analyse the correlation structure between returns and their
main drivers. We find zero correlation which significantly simplifies the econometric modelling to
guide market dynamics. This is an important observation and a relatively simple starting point when
constructing forecasting models for real-value pension prognoses for long-term saving strategies.
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