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To investigate the effect of background noise on visual
summation, we measured the contrast detection
thresholds for targets with or without a white noise
mask in luminance contrast. The targets were Gabor
patterns placed at 3° eccentricity to either the left or
right of the fixation and elongated along an arc of the
same radius to ensure equidistance from fixation for
every point along the long axis. The task was a spatial
two-alternative forced-choice (2AFC) paradigm in which
the observer had to indicate whether the target was on
the left or the right of the fixation. The threshold was
measured at 75% accuracy with a staircase procedure.
The detection threshold decreased with target length
with slope —1/2 on log-log coordinates for target lengths
between 30’ and 300’ half-height full-width (HHFW),
defining a range of ideal matched-filter summation
extending up to about 200’ (or about 16X the center
width of the Gabor targets). The summation curves for
different noise contrasts were shifted copies of each
other. For the threshold versus mask contrast (TvN)
functions, the target threshold was constant for noise
levels up to about —22 dB, then increased with noise
contrast to a linear asymptote on log-log coordinates.
Since the “elbow” of the target threshold versus noise
function is an index of the level of the equivalent noise
experienced by the visual system during target
detection, our results suggest that the signal-to-noise
ratio was invariant with target length. We further show
that a linear-nonlinear-linear gain-control model can
fully account for these results with far fewer parameters
than a matched-filter model.
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The visibility of a sufficiently small visual target
increases with its size (Barlow, 1958; Baumgardt, 1959).
This effect, known in the literature as spatial summa-
tion, takes several forms. In the first, called Ricco’s law
(Barlow, 1958; Baumgardt, 1959) or complete summa-
tion, target detection is inversely proportional to target
size. This law applies when the target size is small
enough to fit into the spatial extent of the smallest
receptive field of the target detector mechanisms
(assuming that the receptive field is linear and that the
noise within the target detector is independent of the
visual stimulation). Enlarging target size would in-
crease the overlap between the target and the receptive
field and in turn the response of the target detector in
proportion. However, since the noise level within the
target detector is independent of the target size and
thus constant throughout the experiment, the signal-to-
noise ratio experienced by the visual system should
increase linearly with target size. Thus, assuming a
linear transducer function, the threshold should de-
crease with target size with a slope of —1 on log-log
coordinates as long as the stimulus is smaller than the
receptive field. Thus, the upper limit of such summation
has been used as a psychophysical index of the limiting
receptive field size for contrast processing (Watson,
Barlow, & Robson, 1983; Polat & Tyler, 1999; Tyler &
Chen, 2006; Kao & Chen, 2012).

In the second type of spatial summation, called
Piper’s law the target threshold decreases with the
square root of target size. To explain this law, one can
assume that the observer has complete knowledge of
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the stimulus and uses a single matched filter to detect its
presence (Wiener, 1949). Thus, when the stimulus size
increases, the optimal observer would just employ a
filter with a larger receptive field to detect it. This
optimal strategy can be implemented as a filter
receiving inputs from an array of discrete sensors with
independent and identically distributed noise sources
(Tyler & Chen, 2000). A larger filter would allow
proportionately more sampling on the target within its
receptive field (Green & Swets, 1966). The response of
the matched filter to the target is proportional to the
sum of the responses to the individual samples. Thus,
assuming that there are summation mechanisms
matching each stimulus size, and that the noises in the
local filters are independent and identically distributed,
the mean and the variance of the matched filter
response should increase proportionally with target
size.

Now, in signal detection theory (Green & Swets,
1966), the detectability of a target depends on the ratio
of the mean to the standard deviation of the response.
The threshold should thus decrease with the square
root of target size, giving a —1/2 log-log slope
summation function over the range of available
matching filters. It is suggested that such matched
filters can be implemented as second-order filters'
combining numbers of local filters in proportion to
target size (Tyler & Chen, 2000). Some formulations
thus simply use the square root of the number of local
channels as the dominator of &' calculation (see
Kingdom, Baldwin, & Schmidtmann, 2015). Such
matched-filter behavior may also be called “ideal
summation” behavior (Tanner & Jones, 1960; Tyler &
Chen, 2000).

Another type of spatial summation is often termed
“probability summation” (Pelli, 1985; Meese & Sum-
mers, 2012; Kingdom et al., 2015), which is governed
by a selection or attention mechanism that identifies the
channels with the maximum signal-to-noise ratio across
the array of stimulated local channels (rather than
summing their outputs linearly). It is thus better termed
“max-rule summation.” This process was first analyzed
in relation to the two-alternative forced choice (2AFC)
paradigm by Tyler & Chen (2000), who showed that
under a variety of attention models the summation
curve has a maximum slope of —1/4 on log-log
coordinates, and decreases as the number of local units
being summed increases. Here, we note that the same
mechanism could operate over the outputs of multiple
parallel second-order filters.

One can assume that the decision mechanism has
access to a fixed number of independent detectors and
is able to detect the target when the response of any of
the monitored detectors is larger than a criterion. Thus,
the 2AFC detectability of the target depends on the
monitored detector with the greatest signal-to-noise
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ratio. As target size increases, there are more monitored
detectors with an increased response and thus the
chance that at least one detector has a large enough
response also increases. Since the detectability is
determined by the detector with the largest response,
the probability of target detection is then governed by
the maximum order statistics, whose mean increases
and the standard deviation decreases with the number
of channels (Pelli, 1985; Chen & Tyler, 1999b). Such
behavior, as shown by computer simulation (Tyler &
Chen, 2000; Meese & Summers, 2012) displays the
property that detection threshold decreases with target
size with a log-log slope of at most —1/4 (see Tyler &
Chen, 2000, for detailed treatment).

Note that different types of spatial summation are
based on how the noise experienced by the visual
system varies with target size. Thus, an estimation of
noise across the range of target sizes would be a good
test for the theories of spatial summation. In the
literature, it is suggested that the equivalent noise
method (Nagaraja, 1964; Kersten, 1984, 1987; Legge,
Kersten, & Burgess, 1987; Pelli, 1990; Lu & Dosher,
1998, 2008; Pelli & Farell, 1999) can be a useful tool for
internal noise estimation.

In a typical equivalent noise paradigm, the experi-
ment measures the 2AFC threshold for a target under
various amount of external noise, typically imple-
mented as random-dot patterns at various levels of
contrast. Thus, the detection is limited by both specified
external and prevailing internal noise sources. When
the external noise level is low, visual performance
would be limited by the intrinsic noise of the visual
mechanisms. Progressive increases in external noise
from this low level would have little effect on the
detection threshold until it approximates that of the
internal noise. On the other hand, when the external
noise level is high, it would swamp the effect of the
intrinsic noise and become the limiting factor for
detection. In this high-noise regime, the detection
threshold would increase in proportion to the external
noise level. As a result, the target threshold versus noise
intensity (TvN) function is expected to be flat at low
external noise contrast and to rise linearly with noise
contrast at high contrasts. The “elbow,” or the
transition between the two regimes, demarcates the
level where the external noise equals that of the intrinsic
noise. Thus, if the threshold change with size, as
discussed already, reflects the change of the signal-to-
noise ratio experienced by the detection mechanism,
one should observe a change of elbow position with
target size.

Past studies on spatial summation have not fully
addressed this issue. Kersten (1984) measured the
detection threshold of Gabor patterns of different
spatial frequency on high contrast noise. However, he
used only one noise level and thus the data were unable
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(A)

(B)

Figure 1. (A). The targets were Gabor arcs, centered at the fixation point, f, of different lengths defined in polar coordinates with
radius r and angle 0. For a better comparison with the literature, we reported the target size in HHFW, or half-height full width. (B)

The target embedded in a binary noise mask.

to provide an estimation of equivalent noise. Nagaraja
(1964) measured the threshold of disks on various levels
of noise. However, he used only three target sizes
spread over a wide range. Thus, it is unclear which
spatial summation regime they were in. Kersten (1987)
varied the background noise level for the detection of
noise targets, concluding that the human visual system
had an unexpectedly high efficiency that could be
adapted to the scale of the stimuli, but only used two
stimulus sizes. We thus overcame the limitations of
previous studies by using a sufficient number of levels
of both target size and noise level for a quantitative
analysis of the equivalent noise behavior for contrast
processing.

Apparatus

All stimuli were presented on two Viewsonic pf75+
15-in. monitors controlled by a Radeon 7200 video
card on an Apple MacPro computer. The Radeon
video card (Radeon Technologies Group, Sunnyvale,
CA) provided a 10-bit digital-to-analog converter
depth that allowed an accurate representation of visual
stimuli at low contrasts. We presented the mask on one
monitor and the target on the other. Lights from the
two monitors were combined by a beam splitter so that
the observer would experience the stimuli from the two
monitors superposed. This arrangement provided the
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advantage of independent control of the contrast of the
target and the noise mask. The viewing field was 13.9°
(horizontal) by 10.4° (vertical) with a resolution of
1,024 horizontal by 768 vertical pixels, giving 48
pixels/® at the 135 cm viewing distance. The refresh rate
of the monitors was 85 Hz, with a mean luminance of
24.25 cd/m?. The luminance of the monitor at each
output setting were measured with a PhotoResearch
PR655 radiometer, which was used to construct a
linearized lookup table.

Stimuli

The target (Figure 1) was an elongated Gabor patch
arced along the circumference of an invisible circle of 3°
radius centered at the fixation (f in Figure 1A). That is,
the target was defined by

G(r,0;09,¢;) = L+ L * ¢, * cos(2nfr)

* ex —M * ex —6—2
P 20,2 P 2092 )°

where r and 0 were the radius and the angle of a pixel in
the polar coordinates (as noted in Figure 1A); L was
the mean luminance of the display; ¢, was the contrast
of the target; f was the spatial frequency of 2.5 ¢/°; o,
and o,y were the scale parameters (standard deviation)
of the Gaussian envelope along the radius and
circumference respectively; and the center of the Gabor
arc, u, was at +3° and —3° visual eccentricity for
patterns presented on the left or right of screen
respectively. The parameters o, and g4 controlled the
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size of the stimuli. The value of ¢, was fixed at 0.14° of
visual angle while g varied from 0.5 to 40° along the
circumference. Thus, the targets were Gabor arcs with a
range of lengths from 1° to 80° circumferential angle.
This arrangement allowed the stimuli to remain at the
same cortical magnification factor regardless their
length (see Robson & Graham, 1981). For better
comparison with the results of the previous studies, we
subsequently specify the length of the targets by their
half-height at full-width (denoted HHFW in Figure
1A) of the Gaussian envelope, which is (-In(0.5)*2)%>
*u* g9="17.06 * gy, where gy 1s in arc radians and
HHFW is in degree of visual angle. Figure 1B
illustrates what an observer might see in a high-noise
trial.

The masks were binary noise patterns covering the
whole display. The luminance of each pixel was drawn
from a binomial distribution with equal probability
outcomes and scaled by a contrast factor, ¢,,. That is,
the noise mask

N(x,y) =L+ Lxcy*B(0.5x,y),

where ¢,, denotes the mask contrast and B denotes
sampling from a binomial distribution. The noise was
updated for each trial.

Procedure

We used a spatial 2AFC to measure the target
threshold. On each trial, the target was presented either
to the left or to the right of the fixation. On each trial, a
200 ms long auditory tone signaled the start of the trial,
followed by a 295 ms stimulus presentation, and then
by the response interval lasting until a valid response
was recorded. The next trial started 800 ms after the
response. The task of the observer was to respond
whether the Gabor arc target was to the right or the left
side of the display.

In each run, the noise contrast and the target size
were the same, although the noise pattern updated for
each trial. There were six possible noise contrasts
(20*1log;o(c,,) =—0, =26, —-22,—18,—14,—10 dB) and 10
target sizes, making a total of 60 test conditions. The
target contrast in each trial was determined by the ¥
threshold-seeking algorithm (Kontsevich & Tyler,
1999), which was to measure the threshold at 75%
correct response level. There were 40 trials following
two practice trials in each run. Each reported datum
point was an average of four repeated measures. The
sequence of test conditions and repetition were all
randomized.

Two observers participated in this study: YYH was
one of the authors and DTJ was a paid observer naive
to the purpose of the experiment. Both participants had
normal or corrected-to-normal visual acuity (20/20).
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Length summation

Figure 2 shows the length summation functions, or
the variation of threshold as a function of Gabor arc
length, at a range of noise levels. Each row shows the
data for one observer, while each column shows the
data split into two subsets for clarity. The smooth
curves are fits of our model discussed as follows. The
following qualitative characterization of the data is
supported by the statistical assessment through the
model fitting described in the Discussion.

Above about —20 dB, increases of mask contrast
increased detection threshold. Conversely, the detection
threshold decreased with target size with a log-log slope
of approximately —1/2 (thick dashed line) at all noise
levels. Such —1/2 slope summation is commonly
observed in spatial summation with periodic patterns
(Polat & Tyler, 1999; Tyler & Chen, 2006; Kingdom et
al., 2015), faces (Tyler & Chen, 2006) and texts (Kao &
Chen, 2012). There were telltale signs of the function
asymptoting to a —1 slope (dotted line in Figure 2) for
small target sizes and a trend of flattening more than
the slope of —1/2 for the largest sizes. Such flattening
may be consistent with the —1/4 slope summation
observed with spatial summation with random dots
(Tyler & Chen, 2006) or periodic pattern extended
along the axis orthogonal to its orientation (Robson &
Graham, 1981; Polat & Tyler, 1999). To quantify these
trends, we fit a generic three-component model (Tyler
& Chen, 2006), which considers all three types of
spatial summation, to the data. That is,

threshold
= ((a1 — log(size))* + (az — 0.5 log(size))*

1/4
+ (a3 — 0.25 1og(size))4)

where threshold is in dB units, and a;, a,, and a3 are
intercepts for each component. This model, with 18 free
parameters for each observer, explains 97% of the
variation in the averaged data with root mean squared
error (RMSE) 0.97 dB overall. Removing the —1/2
slope component in the model degrades the best fit
dramatically (RMSE 1.48, F(12, 82) =9.03, p <
0.0001). Removing the —1 slope component but
keeping others in the model reduces goodness-of-fit
(RMSE 1.19, F(12, 82) = 3.38, p =0.0005). Removing
the —1/4 component, on the other hand, shows a barely
significant effect on the fit (RMSE 1.13, F(12, 82)=2.4,
p =0.01 = o). Thus, there was strong support for full
summation (for small Gabor arc lengths) and weak
support for attentional, or probability, summation (for
large Gabor arc lengths).
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Figure 2. Gabor arc length summation functions at different noise level. The smooth curves are fits of our model. The dashed line
denotes the —1/2 slope threshold reduction while the dotted line has a —1 slope. The error bars are one standard error of measurement.

For illustrative purposes, Figure 3 shows the fit of
the three-component model to the summation curve
averaged across mask contrast and observers. As
expected, the full summation (—1 slope) and attentional
summation (—1/4 slope) are at the extremes of the
curve. Without the ideal summation component (—1/2
slope), it cannot capture the nature of the data. One can
ask whether our data may be accounted for by a model
with a single channel with limited receptive field size. In
such a case, the summation curve would have a slope
transitioning directly from —1 to 0. However, as shown
in the blue curve in Figure 3, this model deviates from
our data dramatically further than other generic models
tested here. Finally, fitting the data with just the ideal
summation model of a channel matching every stimulus
size, giving a —1/2 slope, can explain as much as 96.4%
of the variability, with RMSE 1.25. Thus, the
summation data are mostly in the ideal-summation
range, though with some deviation at the extremes.

Target threshold versus noise mask contrast
(TvN) functions

Figure 4 shows the TvN functions for the two
observers as a function of target size. Different colors
and symbols represent TvIN functions measured for the
various target sizes. The smooth curves are the fits of
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our model described below. At all target sizes, the TvN
functions were flat at low mask contrast and then
increased with a slope of about 0.5 at high mask
contrast (Figure 4A). This functional form is consistent
with previous noise masking studies (Legge et al., 1987,
Pelli, 1990; Lu & Dosher, 1998).

The mask contrast at which the “elbow,” or
transition from the flat to the rising segment, occurs is
usually considered to be a measure of the level of
intrinsic noise. The formulation, according to Legge et
al. (1987), is E =k (N¢q + Neyi), where E, or threshold
energy, is the squared threshold; N, or the external
noise, is the squared masking noise contrast; and k, a
scale constant, and Ngq, the equivalent noise estimate,
are the two free parameters for each curve. We
estimated the elbow for each TvN function by fitting
the equivalent noise model to each TvN function.
Figure 5A shows the equivalent noise fits for the same
data as in Figure 4A. The R* of the fits was 0.97. We
thus obtained a reliable estimation of the equivalent
noise according to this standard model.

Figure 5B shows the estimated level of the equivalent
noise, expressed in mask contrast s (i.e., the “elbow”),
as a function of target size for the two observers (YYH:
blue circles and DJT: red crosses). The equivalent noise
estimate was practically constant for all target size: The
slopes of the regression lines in Figure 5B were not
significantly greater than zero (two-tailed #(1) =—0.18,
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p=0.44 for YYH and #(1) =-1.26, p =0.21 for DTJ).
As a result, the TvN functions for different target sizes
appeared as vertically shifted copies of each other. We
thus conclude that there was no evidence of any
dependence of the level of equivalent noise on target
size. Nagaraja (1964), as re-analyzed by Pelli (1990),
also showed that equivalent noise did not change with
the area of a disk.

Supplementary material

Supplementary File S1 is a Microsoft Excel file that
tables all our data. Different sheets are data for
different participants respectively. In each sheet, the
first column is target size, the second, pedestal contrast,
the third, measured target threshold, and the fourth,
the psychometric function slope estimated by PSI. Each
condition has four measurements, one for each row.

In this study, we measured the contrast detection
threshold for Gabor arc targets of various lengths
embedded in different levels of noise. We found that, at
all noise mask contrasts, the contrast detection
thresholds decreased with target size with a slope
approximating —1/2 on log-log coordinates. Thus, most
of our summation data were consistent with Piper’s law
and hence were in the ideal summation range. As
discussed earlier, a key implication of these spatial
summation functions, given the conventional theory
(Tanner & Birdsall, 1958; Tyler & Chen, 2000), is that
the noise limiting the visual processing for target
detection increases with target size at a rate approxi-
mating the square root of the signal strength.

The shape of the TvIN functions is typical of the
noise masking literature (Kersten, 1987; Pelli, 1990; Lu
& Dosher, 2008): the target threshold is flat at low
mask contrast and rises up when the mask contrast is
greater than a critical value. The noticeable feature of
our data is that all TvN functions started to rise at
similar mask contrasts. As a result, the TvN functions
for different target sizes are essentially vertically shifted
copies of each other on log-log coordinates. Since the
“elbow” of the TvN function indicates the level of
equivalent noise estimated in conventional equivalent
noise theory (Legge et al., 1987; Pelli, 1990), our TvN
function result would imply that the internal noise does
not change with target size.

The usual interpretation of the —1/2 slope summa-
tion derived from the ideal observer analysis (Tanner &
Jones, 1960; Green & Swets, 1966) is that the observer
has complete knowledge of the stimulus and uses a
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Figure 3. Example fits of four generic models to thresholds as a
function of Gabor arc length, averaged across mask contrasts
and observers (black dots). The ideal observer model of a —1/2
slope (red dashed line) deviates mildly at the two ends of the
curve. A model of a single channel size with attentional
summation across space (green dashed curve), implying the
transition from a slope of —1 to —1/4, gives a strongly different
function shape from the data. A similar one single channel
model without attentional summation (blue solid curve),
implying a slope transition from —1 to —0, gives an even worse
fit. Only a three-component model with slopes of —1, —1/2, and
—1/4 (black solid line) gives an accurate account of the
summation behavior over the full range of sizes.

matched filter to detect its presence (Wiener, 1949). As
discussed in Introduction, both signal and noise level
(expressed as variance) in the system increase propor-
tionally with size (Tyler & Chen, 2000). In the common
formulation of equivalent noise analysis, E =k (N¢g +
Nexi), Where E, or threshold energy, is the squared
threshold; N, or the external noise, is the squared
masking noise contrast; k, a scale constant, and N, is
the equivalent noise estimate. Here, the equivalent
noise should contain all the noise experienced by the
system during the detection task except that from the
external noise mask. At first glance, since the noise in
the system increases with Gabor arc length, one would
expect the “elbow” position to increase with target size
(shown as the black dashed line in Figure 5B).
However, this prediction requires an independent
sampling of noise from the target and the mask, in
which the noise from the target increases with size while
that from the mask depends only on its contrast. This is
possible only if the dominant noise in the system during
target detection is intrinsic to the matched filter after
the sampling of the stimuli, or late noise. In this
scenario, the increase of noise with size is solely due to
the increase of the matched filter size. However, this
late noise prediction is inconsistent with our result that,
as shown in Figure 5, the equivalent noise estimate
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Figure 4. The target threshold versus mask contrast (TvN) functions for two observers (Panels (A) and (B) respectively) and at various
Gabor arc lengths (see legend). The error bars represent 1 standard error of measurement. The smooth curves are our full model fits.

derived from the “elbow” position was the same for all
target sizes we tested.

One way to resolve this conflict is to assume that the
dominant noise occurs at the sampling of the stimuli.
That is, as the target size increases, the system is able to
take more samples on the target. However, since the
target is embedded in the noise mask, the mask would
affect every sample of the target. Thus, the effect of the
noise mask should also increase with target size. Since
the effects of noise produced by both target and mask
increase with the square root of target size, the noise
from the mask would surpass that from the target at
the same mask level regardless target size. As a result,
the “elbows” of the TvN functions would occur at a
constant size regardless target size. However, this
solution would imply that the effect of external noise is
target dependent. Accepting this extension would imply
that the system is operating on the signal-to-noise ratio
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of the optimum filter size rather than a fixed noise
threshold, which is natural behavior in a 2AFC task.
On the other hand, Lu and Dosher (1998) proposed
a gain-control model for noise masking, in which the
target pattern was first processed by a linear template,
with the d’ being controlled by the template output
divided by the square root of the sum of all stimulus-
related noise sources. This model offers more flexibility
in interpreting data than the conventional equivalent
noise model. For instance, our result of vertical shift of
the TvN functions could be explained as due to
different sensitivities of the visual system to targets of
different size without a change in the internal noise.
Such sensitivity changes are also consistent with the
decrease of threshold with target size. However, the Lu
and Dosher model offers no explanation as to why the
threshold reduction should have a slope of —1/2. To
account for this, it would be necessary to implement a
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Figure 5. (A) The equivalent noise analysis fits to the same data as Figure 4A. (B) The resulting equivalent noise estimates are
expressed in mask contrast as the function of target size. Blue circles: YYH; red crosses: DTJ. Blue and red solid lines are regression
lines for YYH and DTJ, respectively. Dashed line shows the prediction from the late noise ideal summation, in which the noise
experienced by the target detector increases with the square root of size. See Discussion for detail.

deus ex machina with prior knowledge of the stimulus
size to control internal noise sources to match to
stimulus extent, which is an arbitrary construct in the
absence of further assumptions.

Recently, multiple stage models have been proposed
to explain various spatial summation phenomena
(Baker & Meese, 2011; Meese & Summers, 2012;
Kingdom et al., 2015). Although there are variations
among the different models, they generally start with a
band of local filters followed by a nonlinear transform,
and an array of summation mechanisms pooling the
nonlinear responses of a number of local filters. In
particular, Meese and Summers (2007) incorporated
local contrast gain control into their model, to account
for the masking effects of the pedestal with various
target-pedestal size combinations (although their later
2012 model eliminated this gain control stage). This
kind of mechanism is an implementation of the divisive
transducer function formalism of Legge and Foley
(1980) or Foley (1994), although the numerator of their
response functions (Meese & Summers, 2007, Equation
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B1) would imply the target and the pedestal being
processed by different local mechanisms. However,
those models were designed to account for spatial
summation for the target alone (Kingdom et al., 2015)
or the target on a patterned pedestal (Meese &
Summers, 2012). It is unclear how these models can
explain the effect of a noise mask.

Model

To fit our new results, we propose a straightforward
model that can account for both for noise masking and
spatial summation. This model contains three elements:
(1) the contrast normalization that accounts for pattern
detection; (2) “ideal” summation; and (3) decision
making under noise. The combination of elements (1)
and (3) would be similar to the model used by Chen and
Tyler (2010) or Chou, Yeh, and Chen (2014) to account
for the TvN functions for the noise masking paradigm,
while element 2 accounts for the areal summation
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Figure 6. Diagram of the gain control model. See text for details.

behavior. Figure 6 shows a diagram of the stages of this
model, which characterizes the local processing for
each point in the visual field. Thus, all the terms in the
model have implicit (X, y) subscripts for their visual
field location.

The first stage is a set of linear filters each with its
own location and form selectivity. The excitation of a
linear filter is then half-wave rectified, raised to a power
and scaled by a divisive inhibition input to form the
normalized contrast energy response of each local filter.
(The divisive inhibition may also be conceptualized as
Bayesian estimator of the recent past information
reaching this detector.) A set of second-order detectors
each sums inputs from the responses of local filters.
Due to this summation process, the second-order
detectors also combine the noise from all their local
filters, whether it is external or intrinsic to the local
filter. Thus, the signal-to-noise ratio in the second-
order detectors is then the combined with the local filter
responses and divided by the combined noise. The
decision variable is determined a max rule to identify
the particular second-order detector with the greatest
signal-to-noise ratio.

In detail, when image information arrives at the
input, it is first processed by local filters. Each local
filter j has a spatial sensitivity profile f(x,y). The
excitation of this linear filter to the i-th image
component C; g{x,y), where g{x,y) defines the contrast
independent spatial variation and i can be either the
target or the mask in our experiment, is given as

Ej = L.5,Cigi(x,0)fi(x,») (1)
Summing over x and y, eq. (1) can be simplified to
Eji = Se;Ci (1)

where Sej; is a constant defining the excitatory
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sensitivity of the mechanism to the stimulus, and i = ¢
or m, for target and mask, respectively.

The output of the linear filters is half-wave rectified
(Foley, 1994; Foley & Chen, 1999; Chen & Tyler,
1999a) to produce the rectified excitation Ej;

Eﬁ = max(Eﬁ/, 0) (2)

where max denotes the operation of choosing the
greater of the two terms.

The response of the j-th local filter is the excitation of
the j-th filter, £}, raised by a power p, in which E; =X,
E;; is the sum of excitations produced by all image
components, and is then divided by a divisive inhibition
term /; plus an additive constant z. That is,

Ri=E[(+2) ()

where /; is the summation of a non-linear combination
of the excitations of all relevant filters to filter j. This
divisive inhibition term /; can be represented as

L=%(5,C)" (4)

where §;; is the weight of the contributions from each
image component to the inhibition term.

At a given location in the visual field, a set of the
second-order detectors pools the responses of the local
filters. Each second-order detector has a different size
of summation field and thus sums different number of
local filters. Suppose that the k-th second-order
detector receives inputs from as many as 7 local filters.
The overall response of k-th second-order detectors, T},
is simply

Tk=>"R; (5)
=1
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The decision is based on the outputs of the second-
order detectors limited by the noise experienced by
these detectors, which, as considered in this paper, has
two sources: (1) the internal noise inherited in the local
filters [¢,7], and (2) the external noise provide by the
noise patterns [o,”]. The variance of the internal noise is
assumed to be constant for all local filters in the model.
Thus, the noise experienced by each second-order
detector from this source is n; 7, according to its
pooling extent, 7.

The variance of the external noise, ¢, is propor-
tional to the square of the contrast noise mask; that is,
o, = w,, C,2, where w,, is a scalar constant that
determines the amount of contribution of the noise
mask to the variance of the response. Pooling these two
noise sources, the variance of the response distribution
in the k-th second-order detector is

o’ = ni (0. +0.%) (6)

In the context of our experiment, the observer
compares the response to the stimuli at the two possible
target locations. The observer can detect the target if
the difference between the response to the target+mask,
T ++m» and that to the mask alone, T} ,,, in at least one
second-order detector is greater than the limitation
imposed by the noise. In practice, we assume that the
noise mask produces little excitation in the local filters
and in turn negligible second-order responses. This
second-order mechanism should be the one whose
receptive field covers the whole target extent and
nothing else. If a mechanism does not cover the whole
target, its response will be smaller than the one that
does. If a mechanism covers a larger area, then it would
suffer the noise from the extra local filters but receive
no extra responses produced by the target. Thus, one
implication of our model is that the matched filter for
the ideal summation is actually the second-order
mechanism with the maximum signal-to-noise ratio. We
thus only need to consider the second-order mechanism
that has the greatest response to the target. Thus, we
can drop the subscript & for this study and focus on the
decision variable given by,

d' = (T = Tw) [(26)"7 ()

The threshold is defined when d’ reaches unity.

For the matched filter, the number of channels it
monitors is simply the target size multiplied by a factor.
That is,

n=rS (8)

where r is a scaling factor and S is the target size, an
independent variable of our experiment, for the
matched filters.

In practice, to avoid overdetermination in the fits, we
set the parameter Se to the target, Se,, to 100 and the

1/2
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contribution the external noise mask, w,,, to 1. We also
found that we could set the inhibition exponent ¢ to 2
and the excitatory and inhibitory sensitivities of the
noise mask, Se,, and Si,,, respectively, to zero without
affecting the goodness of fit. The latter implies that the
external noise mask had little effect on the mean
response of summation mechanisms, but only increased
the variability. In total, there were thus only five free
parameters in the model for the whole data set for one
observer: inhibitory sensitivity of the local detector to
the target (Si,, Equation 5), excitatory exponent and
additive constant of the nonlinear response function (p
and z, respectively, in Equation 4), the level of interval
noise (o, in Equation 7) and scaling factor r (Equation
8).

We used the Powell method (Press, Flannery,
Teukolsky, & Vetterling, 1988) to find the least-square
fits to the data. As shown by the smooth curves in
Figures 2 and 4, this model fits the data well. The root
of mean squared error (RMSE) across the curves was
between 0.97 and 1.30 dB, compatible with the mean
standard error of measurement 0.8 dB, and explained
96.7-97.8% of all variance in the averaged data in the
two observers.

Since the external noise mask had little effect on the
mean response of local filters, with the constraints
discussed already and combining Equations 5 to 8
within the matched filter, the decision variable

d ~ = (S*R)/(S* (aaz + Cm2>)1/2

= (Sl/z * R) /(aa2 + sz)l/z )

If there is no external noise (C,, = 0), the model can be
simplified as

d' ~ = (51/2 " R) /au (10)

and thus becomes a typical ideal summation model that
accounts for the approximately —1/2 slope of the
spatial summation curve. Adding external noise does
not change this slope for the size effect: as shown in the
denominator of Equation 9, its effect does not depend
on noise level. However, it is noteworthy that the
spatial summation curve for our gain-control model
deviates from the —1/2 slope for small target sizes. This
deviation is due to fact that, when the target contrast is
high, the divisive inhibition in Equation 3 outweighs
the additive constant, reducing ¢’ further than that
imposed by the noise. Thus, as illustrated in Figure 7A
for averaged data, our multiple stage model (red solid
curve), incorporating the contrast gain control that is
ubiquitous in models of contrast masking, captures not
just the ideal summation tendency (green dashed line)
but also the deviation at the extremes. Thus, the
prediction of our model is almost indistinguishable
from that of the three-component model (blue curve)
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Figure 7. lllustration showing the comparison of selected model behavior of our multi-stage model with the convention models. (A)
Comparison of our model (red solid curve) with the three-component summation model (blue solid curve) and the ideal summation
model (green dashed line) on the averaged length-summation data from Figure 3. (B) Comparison of estimated equivalent noise from
our multi-stage model, averaged across observers (red solid line) with that estimated by the equivalent noise model (Pelli, 1990;
Legge et al., 1987) and with the prediction from the late noise matched filter model (diagonal dashed line) as shown in Figure 5B. The
equivalent noise fits are averaged across observers for the estimations shown in Figure 5B.

that incorporates mechanisms for complete, ideal and
probability summation. Indeed, our model, with only
five free parameters for each observer, performs much
better than the conventional ideal summation model
with six free parameters for each observer. Quantita-
tively, the differential Bayesian information criterion
(ABIC, Wagenmaker, 2007) of the ideal summation
model, relative to our model, was —14.32 (probability
that this model being more likely than ours, p =0.0008)
for YYH and —11.82 (p = 0.0027) for DTJ; and the
three component model, with 18 free parameters for
each observer, had ABIC —22.5 (p < 0.0001) for YYH
and —86.3 (p < 0.0001) for TJ. Thus, taking into
account the number of free parameters, the two generic
models performed much worse than our model.

Another important feature of the model is that its ¢’
is based on the second-order matched-filter summation
mechanism. This output cannot distinguish whether the
variability in the signal is from the internal noise in the
local detector or the external noise in the stimulus. That
is, the integration of the noise sources occurs early in
the local detectors. As a result the denominator of d' is
independent of target size, as shown in Equation 9.
Thus, the constant equivalent noise (Figure 7B) found
in our TvN functions is evidence for the operation of
such second-order summation.

The size-dependent change in the numerator of
Equation 9 also provides an explanation for the
sensitivity change in the Lu and Dosher (1998) model.
This fact also allows us to use fewer parameters to
account for our results than the conventional equiva-
lent noise model, which needs one free parameter for
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each target size (see TvN Function section in Results
and Figure 5A), Thus, with ABIC at —29.75 (p <
0.0001) for YYH and —40.6 (p < 0.0001) for DTJ, the
equivalent noise model was dramatically outperformed
by our model.

As one further comparison, we note that our model
assumes that there is a full range of second-order
detectors available, each with a different range of
spatial summation, the decision-making being based
on the one with greatest signal-to-noise ratio. A
simpler model shown in Figure 3 is that the
summation may be achieved by just one second-order
detector for all target sizes. In this case the noise,
which comes from all the local filters being monitored,
should be a constant, but the signal in such
mechanism would increase in proportion the target
size. This model can be implemented by removing ny
from Equation 6 for noise level to form essentially a
complete summation model (blue curve in Figure 3,
See Spatial Summation in Results). Thus, it is not
surprising that these models are much less likely than
our model (ABIC =-18.42, p =0.0001 for YYH and
—10.22 for DTIJ, p = 0.000).

Conclusion

In this study, we measured the contrast detection
threshold of Gabor arc targets of various lengths
embedded in a range of levels of external noise. We
found that, at all noise mask contrasts, the contrast



Journal of Vision (2019) 19(9):11, 1-13

detection threshold generally decreased with target
length with a slope of approximately —1/2 on log-log
coordinates, and thus was consistent the ideal summa-
tion behavior of Piper’s law up to about 200 arcmin, or
a Gabor arc length of 16 times its center width. Such
ideal summation, in conventional psychophysical the-
ory (Peterson, Birdsall, and Fox, 1954; Tanner & Jones,
1960; Green & Swets, 1966; Tyler & Chen, 2000)
implies that the noise level experienced by the visual
system increases with target size (since if the noise were
constant, the threshold should decrease with a slope of
—1). The TvN functions were all flat at low mask
contrast and rose up when the mask contrast was
greater than a critical value. The critical value, and in
turn the equivalent noise estimates, did not change with
target size. This is consistent with the early noise
version of ideal spatial summation functions (Peterson
et al., 1954; Tanner & Jones, 1960; Green & Swets,
1966; Tyler & Chen, 2000) but not the late noise one.
We proposed a multistage model with three ele-
ments: (1) contrast normalization in local detectors that
accounts for pattern detection; (2) ideal summation
behavior, in which the second order detector with the
greatest signal-to-noise ratio dominates visual re-
sponse; and (3) decision making based on both
combined signal and noise in the best second order
detector. This model accounts for the data better than
the conventional matched-filter summation models
(Green & Swets, 1966; Tyler & Chen, 2000, 2006; see
Figure 7) or equivalent noise formulations (Legge et al.,
1987; Pelli & Farell, 1999; Lu & Dosher, 1998, 2008).
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! Note that we are using the term “second-order” in
the sense of a second layer of summing mechanisms
with more extended summing regions than the initial
layer, with no implication as to whether they incorpo-
rate any form of contrast nonlinearity.
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