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Abstract

Existing ad hoc network localisation solutions rely either on external location references
or network-wide exchange of information and centralised processing and computation of
location estimates. Without these, nodes are not able to estimate the relative locations of other
nodes within their communication range. This thesis defines a new distributed localisation
algorithm for ad hoc networks of moving nodes. The Relative Neighbour Localisation (RNL)
algorithm works without any external localisation signal or systems and does not assume
centralised information processing. The idea behind the location estimates produced by the
RNL algorithm is the relationship between the relative locations of two nodes, their mobility
parameters and the signal strengths measured between them. The proposed algorithm makes
use of the data available to each node to produce a location estimate. The signal strength
each node is capable of measuring is used as one algorithm input. The other input is the
velocity vector of the neighbouring node, composed of its speed and direction of movement,
which each node is assumed to periodically broadcast. The relationship between the signal
strength and the mobility parameters on one, and the relative location on the other side can be
analytically formulated in an ideal case. The limitations of a realistic scenario complicate this
relationship, making it very difficult to formulate analytically. An empirical approach is thus
used. The angle and the distance estimates are individually computed, together forming a
two-dimensional location estimate. The performance of the algorithm was analysed in detail
using simulation, showing a median estimate error of under 10m, and its application was
tested through design and evaluation of a distributed sensing coverage algorithm, showing
RNL location estimates can provide 90% of the coverage achievable with true locations

being known.
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Chapter 1

Introduction

1.1 Overview

The development of wireless communication technologies in recent decades has led to the
present day ubiquity of wireless networks. The technological advances have not only made
Internet access available from almost any place at any time, they are also constantly making
the design of smaller, more powerful and more autonomous devices possible. People are no
longer the only users of telecommunication networks, this role is rapidly being taken by the
devices themselves. The emergence of concepts like device-to-device (D2D) communication
and the Internet of Things (10T) has led to an increasing number of devices joining local or
global wireless communication networks, enabling them to perform their functions more
efficiently.

Local networks of devices operating on a common task or exchanging information are
used for many different applications. “Smart” appliances in “smart” homes, autonomous ve-
hicles or different types of sensors are being connected among themselves. Infrastructureless,
or ad hoc, networks are being used for the purpose of connecting these devices, as in order to
operate efficiently the devices do not necessarily need Internet connectivity, and the focus

is on the local information exchange. Unlike infrastructure-based networks which are sup-
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ported by a number of base stations (BS) or access points (AP) which provide connectivity
to all users, ad hoc networks are formed and maintained by the nodes themselves.

In addition to the inherent challenges all wireless communication systems face, the
infrastructureless nature of ad hoc networks exposes these networks to further issues. The
connectivity of nodes relies on the topology of the nodes surrounding them, and node
mobility can cause frequent and significant changes in this topology. Without a fixed network
infrastructure, external localisation systems like Global Positioning System (GPS), or specific
ranging hardware in place, estimating locations of moving nodes in ad hoc networks becomes
a challenge.

This research is motivated by the fact that ad hoc networks of moving nodes are often
used for location-related group tasks. If the nodes in such networks are unable to obtain
location information from external sources, their efficiency at performing task at hand is
challenged. Providing nodes with general information about the physical topology of their
neighbours can help increase this efficiency, regardless of the inaccuracy of exact location
estimates produced.

Existing solutions in the field of ad hoc network localisation either assume that some sort
of external localisation is present, in form of beacon, or anchor, nodes which are aware of
their location and are used as references, or that the information from measurements between
nodes across the whole network is exchanged and centrally processed. This thesis, on the
other hand, presents a localisation algorithm which is distributed, i.e. each moving node in an
ad hoc network can run the algorithm itself to produce estimates of its neighbours’ locations.
No presence of external localisation is assumed, and the exchange of information between
nodes is limited to sharing their mobility parameters.

The goal of the proposed Relative Neighbour Localisation (RNL) algorithm is to provide
a location estimate which can be used in location-based cooperative networks, based on

the information available to each node. The basis of the proposed approach is an intuitive
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relation between two nodes’ mobility parameter, relative position and the signal strength
between them. The information used as algorithm input is unreliable as a consequence of
signal propagation effects, and the algorithm aims to provide an insight into the relative
location of the neighbouring node, useful to a location-related application, rather than exact
location of it, as high level of accuracy based on the data available is difficult to achieve.

The designed localisation algorithm can be used in any ad hoc network of moving
nodes. As it does not aim to provide the nodes with exact location of their neighbour, its
contribution is in the fact that it is able to provide a general idea of the physical topology
of the neighbouring nodes, which can be used in situations where other localisation sources
are unavailable and the nodes forming the network are working on a location-related task.
In such scenarios, having information about the general location, or direction, in which the
neighbours are located can be beneficial for efficient task completion (in comparison to a
case in which no location information is present).

The performance of the RNL location estimates has been evaluated using simulation. In
order to ensure the simulation was realistic, a set of tests was performed in an experimental
testbed which was developed. The models used in the simulation were designed and calibrated
using the measurements obtained in the experimental tests. The RNL algorithm was shown
to be able to produce median location estimate error of under 10m. An application scenario
was also designed, in which the RNL location estimates were used in a distributed sensing
algorithm, showing that the coverage obtained based on the RNL location estimates was over
90% of the one achievable if the information about the true locations of neighbouring nodes

were available.
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1.2 Research Contributions

In light of the existing gap in the field of localisation for ad hoc networks of moving nodes,

without the support of external signals or systems, the main contributions of this work may

be defined as:

* Formulation of a principle for distributed localisation in ad hoc networks of moving
nodes. This principle is based on the relationship between the trends in measurements
of the received signal strength from a neighbouring node over time and the neighbour-
ing node’s mobility parameters (speed and direction of movement) on one side, and

the relative location of that neighbouring node on the other.

* Design of a distributed localisation algorithm for ad hoc networks of moving nodes
without the use of any external localisation signals or systems. The proposed algo-
rithm is designed in a way that allows nodes to individually produce estimates of

neighbouring nodes location, without any centralised knowledge.

* Application of the localisation algorithm in a distributed sensing coverage scenario.

1.3 Publications
The following papers have been published throughout this PhD study:

* Cyjetkovic, M., & Rakocevic, V. (2016). Alternative topology construction for coop-
erative data distribution in mobile ad hoc networks. Paper presented at the 2016 8th

International Congress on Ultra Modern Telecommunications and Control Systems

and Workshops (ICUMT), 171-176.

* Cvjetkovic, M., & Rakocevic, V. (2017). Relative localisation algorithm for neighbour

classification in ad hoc networks of moving robots. Paper presented at the Proceedings
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of the First ACM International Workshop on the Engineering of Reliable, Robust, and

Secure Embedded Wireless Sensing Systems, 46-53.

1.4 Thesis Structure

The rest of this thesis is structured as follows: the second chapter provides an overview
of localisation in wireless networks. The need for and the applications of localisation are
presented, followed by the description of the basic principles of different types of localisation
algorithms. Existing solutions for localisation in infrastructure (cellular and WLAN) and
infrastructureless networks are reviewed in the second chapter as well.

The third chapter defines the proposed RNL algorithm for distributed localisation in
ad hoc networks of moving nodes. Theoretical principles of localisation in an ideal case
are presented, followed by a discussion on the limitations existing in a realistic scenario,
and their implications on the application of the proposed localisation approach. Finally, the
design of individual elements and procedures of the RNL algorithm is presented in detail.

Chapter four presents the evaluation of the performance of the RNL algorithm. It starts
with a description of the experimental setup used to gather measurements for designing
realistic models used in simulations. The accuracy results of simulation tests of different
types of location estimates are then presented. Finally, a potential application of the estimates
produced by the RNL is tested in a scenario where distributed sensing coverage is used,
examining the effects of the inaccuracy of RNL location estimates.

The final chapter concludes the thesis, providing a summary of the proposed solution and

its performance, as well as a discussion about possible directions of future work.



Chapter 2

Localisation in Wireless Networks

This chapter presents an overview of different types of wireless networks and the need for
localisation in them. The basics of different localisation approaches are then introduced,
after which an overview of the existing localisation solutions for infrastructure-based and
infrastructureless wireless networks is presented. It concludes with the definition of the

problem this thesis proposes a solution for.

2.1 Wireless Networks and the Need for Localisation

2.1.1 Types of wireless networks

Development of wireless communication using radio waves has made computers and people
(commonly called nodes or users) able to communicate without having a physical connection
to the underlying network. Different systems relying on wireless communication have been
developed, with new applications and services being provided to users constantly, and users
being able to access them from wider areas and almost at all times, even when on the move.
The shift in communication and Internet access paradigms has, on the other hand, introduced

a number of new challenges, the majority of which the traditional, wired, communication
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systems have not had to deal with, with their prominence varying depending on the type of

wireless system in use.

Cell A
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Fig. 2.1 Wireless cellular network

Wireless communication systems can exist as parts of a bigger network with a fixed core,
in which case they are used for extending the range and widening the number of users able to
use its services. This is the case in infrastructure-based networks which are based around an
access point (AP), or a base station (BS). The AP serves as the gateway for wireless users,
providing access to the rest of the network. It usually has a direct wired connection to the
core, but sometimes, in remote areas or for other practical reasons, a point-to-point link
is used to connect it to the rest of the network. Figure 2.1 shows an example of a cellular
network infrastructure. The main sources of issues infrastructure-based wireless networks
face are the user mobility and the effects signal propagation has on signal stability. Specific
routing protocols and handover procedures need to be in place for uninterrupted connectivity
in situations when mobile users switch from the coverage area of one access point to the

coverage area of another one. Power control mechanisms are needed for the user equipment
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(UE) (or mobile station (MS)) to account for the user moving closer or further away from
the AP, and adaptive modulation schemes are used for enabling connectivity in conditions of
varying signal strength. It can be concluded that even with the existence of infrastructure in a
wireless network, there is a number of issues arising from user mobility as well as wireless

signal propagation effects.

\\//\\\\x\

MS MS

MS

MS
Fig. 2.2 Infrastructureless radio network

The other type of wireless communication networks are infrastructureless, or ad hoc
networks. These networks are characterised by self-organisation, as there is no infrastructure
support. The nodes form the network by cooperating among themselves, and all commu-
nication is performed directly between the sending and the receiving nodes. Figure 2.2
represent an example of on infrastructureless network. The absence of any centralised in-
frastructure means that these networks provide greater flexibility and easier deployment, but
it also exposes such networks to additional challenges, on top of the ones inherent to all
wireless communication systems. In the case of mobile nodes, the nodes can move in and

out of communication range of other nodes, sometimes becoming completely unreachable.
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Different routing (mesh), cooperative networking and opportunistic networking protocols are
used for ad hoc networks with interrupted or limited connectivity.

Wireless sensor networks are networks of nodes with sensing capability. The nodes all
measure a certain physical quantity at their location, and the network is then used to distribute
these measurements to designated collection points. Wireless sensor networks are usually
deployed using an ad hoc architecture, as it provides greater flexibility and is simpler to set
up. The nodes in such networks can be either static or mobile, depending on the application

they are designed for.

2.1.2 Localisation fundamentals

As previously stated, wireless technology has enabled network nodes to establish communi-
cation without a physical connection to other network elements, and more importantly, to
remain connected while on the move. Node location thus became a variable and became an
important parameter in many different applications and services. This section represents an
overview of the basic terms and principles used in the field of determining node location in
wireless networks — the process of localisation. It is important to note that all localisation
techniques operate with a certain error, so the term location estimate will be used to refer to
the node location as determined by the localisation technique.

Node location may be needed for different purposes, which may define the parameters of
the localisation technique such as precision, delay, or whether the node or the network are
performing the localisation. Based on the goal towards which a node’s location is estimated,

there are three main categories:

* Node location can be the purpose in itself, i.e. positioning or navigation applications;

emergency services.

* Node location is used for a network application or protocol, i.e. location-based routing,

coverage or sensing.
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* Node location is used for a higher layer application, i.e. location-based services such
as locating nearest businesses of the desired type, asset management, advertising or

gaming.

Positioning and navigation applications have become ubiquitous in the present day, from
end users trying to determine their location or finding their way to a certain location, to
use in autonomous vehicles, logistics and other industries. From the network’s perspective,
in these scenarios, the goal is just providing a location estimate. What this information is
later used for is of no interest to the network. Another very important use of location and a
significant driving force of research in this field is in emergency scenarios. The importance
of locating the users in need of help has led to modern public communication systems having
the capability of estimating user location incorporated in their standards.

Network applications and protocols relying on node location are designed to maintain
connectivity or enable location-related data distribution efficiency in networks of mobile users
with dynamic topology. In cellular radio networks, node location may be used for making
handover decisions for high-speed moving nodes. Ad hoc and relay networks may use node
location for routing purposes, speeding up the process of route discovery or proactively
detecting changes in topology. Wireless Sensor Networks rely on node location for coverage
control — maintaining the whole area of interest covered as well as gathering data from the
sensors in the most efficient way. In all of the scenarios listed above, it is the network itself
which requires the node locations, in order to be able to provide full functionality.

With an increase in usage of wireless communication by mobile users the need for
providing these users with content and services related to their location has arisen. User
localisation made it possible for users in specific locations to be “targeted” by certain content,
to have access to different content based on their location, or to receive recommendations

on different nearby services. Location-based services have also found usage in healthcare,
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transport, logistics and other fields. In such scenarios, the network helps determine nodes’
locations and then passes the information on to the service or application requesting it.
Node locations may be estimated using different reference systems, depending on the

localisation technique used. Here, two possible approaches exist:

* Absolute localisation — a common coordinate system exists which all location estimates

are expressed in.

e Relative localisation — location estimates are made in relation to another device whose

location is known.

The most prominent examples of absolute localisation are satellite positioning sys-
tems like the Global Positioning System (GPS) [1], Global Navigation Satellite System
(GLONASS) [2] and Galileo, collectively referred to as Global Navigation Satellite Systems
(GNSS) [3]. These systems consist of constellations of satellites with well-known locations
in a universal coordinate system. The satellites are equipped with highly stable synchronised
atomic clocks and are constantly transmitting their time and location information. If the
user receives these signals from enough different satellites it is then capable to solve a set of
equations resulting in its position in the universal coordinate system, along with its internal
clock time deviation, which means that these types of systems can also be used for time
synchronisation of the user equipment.

In contrast, relative localisation techniques use either a set of devices with known fixed
locations or mobile devices capable of determining their absolute location, making their
position always known to others. These nodes are called anchors, beacons or landmarks,
and are used to define a “local” coordinate system. Using one of the different techniques
described below, other nodes can determine their location within the established reference

system, and, if necessary and possible, translate this relative location into an absolute one.
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2.2 Localisation Parameters

Localisation techniques may use different types of parameters, which can be split into two

categories:

* Range-based — physical characteristics of the received signal are analysed.

* Range-free — topology formed by links between nodes is analysed.

2.2.1 Range-based localisation

Localisation methods based on signal properties analysis, also called range-based methods,
consider physical properties of the received signals and try to directly translate measurements
of these properties into the distance or angle estimates. The errors in these estimates depend
on the level of precision of the measurements. The signal properties used are signal strength —
in form of received signal strength (RSS) parameter, time of arrival (ToA) or time difference
of arrival (TDoA), or angle of arrival (AoA). In order to perform precise measurements
of these parameters, specific equipment is usually needed, which increases the cost and
complexity of such methods. On the other hand, using such precise measurements increases
the localisation accuracy. Range-based methods approach the localisation problem from a
geometrical perspective, and depending on which of the signal parameters is used in the

problem definition they can be defined as:
* Trilateration — based on RSS or ToA
* Multilateration — based on TDoA

» Triangulation — based on AoA
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2.2.2 Range-free localisation

Localisation methods based on analysing the connectivity and topology of the network,
rather than particular signal properties, are called range-free localisation methods. These
methods are either relying on information from individual nodes’ neighbourhood lists or
routing tables, or they are based on matching patterns of RSS measurements from multiple
sources. It is worth noting that the RSS parameter is not used to estimate distances in pattern
matching algorithms, which is why these methods can still be considered range-free. No
precise measurement of physical signal properties are needed for range-free localisation,
so no additional equipment is needed, as the algorithms can be implemented in any node
capable of wireless communication. This makes the range-free approach cheaper and less
complex to implement, but the accuracy they produce is usually lower than the range-based

ones.

2.3 Localisation Methods

2.3.1 Trilateration

This range-based method determines the unknown user location using distance estimates.
In three-dimensional space, the estimated distance from a transmitter with known location
defines a sphere with the centre in that point and radius equal to the distance estimate, on the
surface of which the user is located. By acquiring multiple (three or more) distance estimates
to transmitters with known locations, the unknown location is calculated as the intersection
of these spheres. The transmitting and receiving roles are interchangeable in this procedure,
so the location is not necessarily calculated by the node with an unknown location, but may
be calculated by the network itself, gathering the measurements from different receivers

positioned in known locations.
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In a simplified model, the process of trilateration assumes solving the following system

of equations:

= (k1 =27+ (1 =3+ (21 —2)

1=/ (2= + (2 =3 + (22— 2)

(2.1)

Fn = \/(xn — %)+ O =)+ (2 —2)°,

where r; is the distance between the transmitter and the receiver , x;,y;,z; are known coor-
dinates of transmitter i, n is the number of available distance estimates, and x,y,z are the
unknown coordinates of the user. Figure 2.3 shows an example of trilateration, using three

reference points and the estimated distances to them.
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Fig. 2.3 Trilateration

Distances can be estimated from the received signal strength (RSS) if the transmitting

power is known, which is a less precise option as signal propagation effects cause fading,
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resulting in a random variation of signal strength at the receiver. Another way to estimate
distances is from the time of arrival (ToA) of the signal, which is a more precise method, but
increases complexity unless the transmitter and receiver clocks are synchronised.

When RSS is used, or ToA measurements are used, with system-wide time synchroni-
sation in place, the minimal number of distance estimates from known locations needed is
equal to the dimensionality of the space in which the location is being determined, d, so
n > d needs to hold for successful trilateration.

In systems where there is no time synchronisation and timing parameters are used, as is
the case with GNSS, the number of unknowns in the system is one greater than the number
of dimensions [4]. The additional unknown is the clock offset, 7, of the receiver, which
is computed at the same time as the spatial coordinates. The offset of transmitter i, 7;, is
considered to be known. For such systems, n > d + 1 needs to hold for trilateration to work.
If that is the case, the concept of pseudorange needs to be introduced [4] and is defined as
the product of the difference in time the signal is transmitted, according to the transmitter
clock, and the time the signal is received, according to the receiver clock and the speed of

light, ¢. Observed pseudorange from transmitter i can be expressed as:

P(t)=(t+7)—(ti+7))c
= (l‘ —ti)C+CT— CT; (2.2)

= pi (l,tl’) +cT—cT;,

where p; (t, ti) is the distance between the receiver at time 7, the time signal is received, and

transmitter i at time ¢;, the time signal is transmitted, and is calculated as:

pi1,1) =\ (5 (1) = x (1)) + 01 (1) =y (1)) + (22 1) — 2 (1)) (2.3)
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A simplified system of pseudorange equations can now be derived as:

P = \/(Xl —x)2+(Y1 —y)2+(z1 —z)2+cr—cr1

b= \/(xz —x)’+ (02— + (22— +et—cn
2.4)

b= \/(Xn—X)2+(yn—y)2+(zn—z)2+cr—cr,,.

In many cases, especially in GNSS, more than the minimum needed number of distance
estimates is available. If that is the case, it is possible to use the over-determination of the
system to increase the precision of the location estimate by means of least squares method as

described in [5].

2.3.2 Multilateration

This range-based method is based on the differences between distance estimates. In three-
dimensional space, the difference in estimated distances between two transmitters with known
locations and the user with an unknown location defines a hyperboloid whose focal points
are located in the two transmitters, on the surface of which the user is located. By acquiring
multiple differences in distances between pairs of transmitters with known locations (three
or more) the unknown location is derived as the intersection of the hyperboloids defined by
them. Again, the devices which location is known may also be receivers, and the user with
an unknown location may be a transmitter of the signal used to estimate the difference in
distance, allowing for this procedure to be performed by either the user itself or the network.

A system of equations of the following form is obtained using the multilateration proce-

dure [6]:

rij = \/(x,-—x)2+ (i —y)* 4 (zi —2)* — \/(xj—x)2+ (y]-—y)2+ (zj—z)z, (2.5)
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where x;,y;,z; are known coordinates of transmitter i, x;,y;,z; are known coordinates of
transmitter j, x,y,z are unknown coordinates of the user, and r; ; is the difference between
the distances between the user and transmitters i and j. Figure 2.4 shows an example of

multilateration, using distance differences between two pairs of reference points.
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Fig. 2.4 Multilateration

The difference in distances between the user and two transmitters with known locations
is calculated using the TDoA parameter. When calculating the difference in the times of
signal arrivals from two different transmitters there is no need for the user clock to be
synchronised to the transmitter clocks, as the user does not need to know the exact time the
signals were sent. This makes the TDoA method much less complex than the ToA method
used in trilateration.

If the transmitters are synchronised among themselves, the minimal number of pairs of
transmitters for which differences in distances are estimated through the TDoA parameter
needs to be greater or equal to the number of dimensions of the space in which the user

location is estimated, resulting in three transmitters for both two-dimensional and three-
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dimensional localisation. In practice, if there is no absolute synchronisation between the
transmitters, one additional transmitter needs to be used as a time reference point, making
four the minimal number of transmitters necessary for three-dimensional localisation.
Similar to trilateration, the availability of more than the minimal number of TDoA esti-
mates needed can help increase the accuracy of the location estimate, discard an ambiguous
solution, or help detect an error in one of the estimates. An extra reference point may
intentionally be used with the purpose of simplifying the process of solving the system of

multilateration equations, given the complexity induced by the square root terms [6].

2.3.3 Triangulation

This range-based localisation method utilises measurements of the angles at which the
signal from the transmitter with unknown location (the user) arrives at receivers with known
locations [7]. A known direction of arrival of the signal defines a half-line with the initial
point in the receiver, and the transmitter is located somewhere along the half-line. Obtaining
two or more angle of arrival (AoA) measurements defines the unknown location of the
transmitter in the intersection of the half-lines. In two dimensions, each AoA measurement

produces the following equation:

X —X;

0; = arctan (y _yl) , (2.6)

where x; and y; are the known coordinates of the receiver i, 6; is the measured angle of arrival
of the signal coming from the transmitter with unknown location coordinates x and y. Figure
2.5 shows an example of triangulation, using AoA measurements of signals received from
three different transmitters.

Precise measurements of the angle from which a signal arrives are possible using antenna

arrays, making this method relatively expensive and impractical to implement on the user side.
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Fig. 2.5 Triangulation

This is why most of the applications of triangulation have the angle of arrival measurement
performed at the fixed receivers at known locations, although some implementations may
work with reversed roles, with the reference points acting as transmitters, and the AoA
measurements performed by the user equipment. More than two reference points are often
used, to reduce the effects of errors made in individual AoA measurements. Additional
complexity is introduced with increasing the number of spatial dimensions in which angula-
tion is performed, as determining an unknown location in three-dimensional space assumes
detecting both the azimuthal angle 6 and the polar angle ¢, so an additional equation is

produced by each AoA measurement:

¢; = arccos (Z — Zi) , 2.7)

r

where:

r= (=) + =i+ (2—2)". (2.8)
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2.3.4 Connectivity based methods

These methods rely on the hop-count metric — the number of nodes through which a packet
travels from node A to node B. This metric can be assumed to indicate the distance between
two nodes, although it may be largely influenced by node density, and may be used in two
different ways: to determine the unknown location of the node based on its proximity to
anchor nodes whose location is known; or to combine such knowledge from all nodes in the
network and compute the overall physical topology of the network. Different algorithms,
which are reviewed in the next section, are used to make the final estimate in the anchor
proximity approach, as well as for combining the hop-count information from multiple nodes

in order to minimise errors.

2.3.5 Pattern matching methods

These methods use the RSS measurements from multiple beacons to determine the unknown
node location. The signal strength measurements are not used as indicators of actual distance
but as characteristics of different parts of the area in which the network is deployed. Pattern
matching can be done based on either probabilistic propagation models or empirical mea-
surement databases which is why the solutions taking the latter approach are often called
fingerprinting methods. A fingerprint is represented by a vector containing RSS measure-
ments for a certain point in the area of interest. This is why such methods need an offline
phase first, a phase in which data is gathered, measurements are taken with a predetermined
resolution, and are stored in a database. The idea behind fingerprinting localisation methods
is for the node with an unknown location to form a vector of measured signal strength values
from all beacons in range, which can then be compared with the existing database. The
fingerprint (or multiple fingerprints) which is the best match to the fingerprint reported by the

user is found, and the location associated with it is returned as the location estimate. Possible
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approaches to pattern matching in different types of networks are described in greater detail

in the next section.

2.4 Existing Localisation Solutions in Radio Networks

2.4.1 Infrastructure-based networks

Localisation of users in infrastructure-based networks is done using both the range-based
and range-free methods. The choice of localisation techniques depends on the type of
network and the limitations imposed by the technology used in different networks. Cellular
networks are equipped with the type of infrastructure which supports precise measurements
and synchronisation may be present, so lateration techniques are often used. On the other
hand, Wireless Local Area Networks (WLANS) are based on infrastructure which does
not usually allow for such precise measurement, so pattern matching is the most common
type of localisation algorithm used in these networks. As the networks evolved, so did the
localisation techniques with them, adapting to the changes in communication technology,
which resulted in many different implementations of the principles described in the previous
section.

The main driving force behind localisation in cellular networks is the need for accurate
location estimates in emergency situations, especially when users are located indoor, as GNSS
systems tend to provide lower accuracy in such environments. Accuracy and availability
requirements are usually defined by government bodies, such as the American Federal
Communications Commission (FCC). The latest set of requirements issued by the FCC can be
found in [8], where it is stated that network operators should provide 50 metres x,y accuracy
for a steadily increasing percentage (40-80%) of emergency service calls over the period of 2

to 6 years. In wireless networks, because of their relatively low price and public availability,
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localisation has found its main use in remote healthcare, security and asset management [9],

as well as in the gaming and augmented reality-based industries.

Range-based localisation in cellular networks

The cover term for localisation methods using the known locations of the BSs as the base
for determining user location is Cell-ID (CID) (defined in [10]) in GSM (Global System for
Mobile communications) networks, and Enhanced Cell-ID (E-CID) in UMTS (Universal
Mobile Telecommunications System) and LTE (Long Term Evolution) networks (defined
respectively in [11], [12]). Ranging methods are widely used in public mobile networks,
regardless of the network generation, and most lateration techniques are implemented under
the CID and E-CID names.

Cell-ID represents the identification number of the cell currently serving the MS. It
may be used as a parameter for localisation purposes on its own [13], in combination with
range estimates of lower [14, 15] or higher accuracy [16, 17]. On top of these basic GSM
implementations, additional algorithms and procedures have been applied in UMTS networks
to improve accuracy and availability by managing channel utilisation [18] or forcing handover
procedure [19-21]. Further improvements came with LTE networks, as localisation-specific
signals [22, 23], multiple propagation detection [24], and device collaboration [25] have been
introduced. The locus of the location estimate produced using the information from a single
BS CID and a range estimate is shown in Figure 2.6, with both the omnidirectional and sector
antennas cases. The precision of the range estimate defines the thickness of the circular
ring or ring sector. Regardless of the fact all ranging solutions share the same mathematical
principles, the technology used to obtain location estimates is the most significant factor in
defining their accuracy.

The most basic localisation method using the knowledge of the serving cell is just

assuming the MS is located at the serving BS coordinates. An experimental study of
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Fig. 2.6 Localisation using cell-ID and ranging

this approach is presented in [13]. Although extremely simple, this method is inherently
imprecise, because it reduces all the points within a cell to the location of the BS serving it.
The error produced by this method is closely related to the size of the cell, which means that
it can range from tens of metres in dense urban conditions, to several kilometres and more in
suburban and highway conditions respectively.

Use of additional parameters, like 7iming Advance (TA) and received signal strength
(RXLEV), in GSM networks was experimentally analysed in [14]. TA is a parameter
used for synchronisation of user transmissions with corresponding TDMA (Time-Division
Multiple Access) slots. It is a discrete-valued parameter ranging from 0 to 63, with each step
corresponding to 550 metres of distance between the MS and BS, and as such can be used for
ranging the MS. When omnidirectional antennas are used, the CID+TA parameters result in
a circular ring centred in the BS, with a width of 550 metres, and the location estimate is, as
in the case of localisation with CID only, the location of the BS. If the serving cell is a sector
one, i.e. the antenna has a limited width of radiation, the location estimate is calculated in
the direction of the antenna at the distance obtained by the TA parameter. With the inclusion

of RXLEV parameter from up to 6 neighbouring cells, the precision of the location estimates
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is increased, as this parameter is used to estimate the distance from the neighbouring cells,
reducing the possible error.

Round Trip Time (RTT) measurements are used for the ranging localisation technique
proposed in [15]. With the assumption of equivalent channel characteristics between each
BS in range and the MS, it is possible to derive the ratio of distances between the MS and
two BSs from RXLEV measurements of the signals coming from the two base stations.
Such ratio defines a circle on which the MS is located, and the final location estimate is
produced by finding the intersection of multiple circles, each produced by a pair of RXLEV
measurements from BSs in range of the MS.

Lateration methods for localisation in GSM networks are based on measurements of ToA
and TDoA and further adaptations [16]. When using TDoA measurements, the geometric-
time difference is used to determine the user location. This value is calculated as the
difference between the observed time difference which is measured by the MS, and the
real-time difference which is the relative synchronisation difference between the two BSs
used for TDoA measurement. Similar calculations are performed when ToA parameter is
used in GSM, in this case with the help of additional location measurement units, which are
used to calculate the offset of the MS internal clock.

Timing parameters measurements may also be taken by the network, as analysed in [17].
To avoid the problem of MS synchronisation with the rest of the network, ToA measurements
are taken by different BSs, and then the TDoA is calculated. Simulation evaluation shows
expected results of the suburban environment being more suitable for ranging methods, as
the effects of multipath propagation have a deteriorating effect on the precision of ToA
measurements in urban conditions. This results, for example, in localisation accuracy in
suburban conditions with only 3 BSs being almost equal to the accuracy of localisation using

8 BSs in urban surroundings.
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While in GSM adjacent cells use different frequencies, in UMTS all cells work on the
same frequency. This causes the problem of interference in UMTS networks, which arises
when MSs need to take measurements from BSs other than the one serving them. In order to
mitigate such interference, time aligning of the idle downlink periods of each BS is proposed
[18]. With this technique implemented, the MS is able to measure the signal from BSs further
away, without interference, increasing the number of different measurements available for
the localisation process, and consequently increasing the accuracy of the location estimate
produced.

Different solutions using the combination of CID and RTT parameters have been proposed
and implemented in UMTS networks. The accuracy of such methods depends greatly on
the geometry of the BSs surrounding the MS, as well as the different sector configurations
and widths of cell spacing, as this dictates with how many different BSs the MS is able to
communicate [19]. Whether or not the MS is in the state of handover impacts the number of
different measurements at its disposal, which results in higher localisation precision when the
MS is measuring RTT associated with different CIDs, compared to the case when it is only
communicating with one BS and has access to only one CID and one RTT measurement. A
simple way of improving the accuracy of the CID+RTT method is to force the MS to perform
handover, by changing the threshold value for adding a new BS to the active set. Two similar
implementations are proposed in [20] and [21], where the threshold for adding a new BS to
the active set is decreased incrementally until there are three BSs in the active set. In case the
third BS is not available, the procedure is terminated when the threshold reaches a preset
minimum value.

Uplink TDoA (UTDoA) is a ranging technique based on TDoA measurements performed
on the signal arriving from MS to different Location Measurement Units (LMUs), which are
synchronised and usually placed on BS sites. An implementation of this technique using High

Speed Uplink Packet Access (HSUPA) — the data upload protocol used in UMTS networks —
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is evaluated in a series of indoor field tests in [26]. The accuracy is shown to be 57 and 28
metres 67% of the time in urban and suburban environments respectively.

The development of LTE brought along solutions for the issues arising from low Signal to
Interference plus Noise Ratio (SINR) levels of signals identifying individual cells. Positioning
Reference Signals (PRS) as well as interference management techniques (such as low-
interference subframes) have been introduced to transmissions from the BSs, with the aim of
enabling a greater probability of users being able to hear the BS. PRSs are signals transmitted
for the sole purpose of localisation. During the transmission of PRS, no other data is
transmitted and their transmissions from different BSs are coordinated in order to avoid
interference. This can be seen in Figure 2.7, where one resource block of an LTE resource
grid is shown for normal and positioning subframes. The theoretical limits of localisation
accuracy using these localisation-dedicated signals and interference cancellation techniques
are investigated in [22]. It is shown that without coordination of positioning signals precision
between 20 and 40 metres can only be achieved in cell-border areas, while the errors go up
to 100 metres closer to base stations. Using interference cancellation the range of errors
is limited to between 10 and 40 metres, while network coordination reduces theoretical
errors below 1 metre. Allowing the PRS greater frequency width and not using this part
of the spectrum for other transmission reduces the spectral efficiency of the network, but
theoretically can reduce the positioning errors below 1 centimetre. Experimental performance
analysis of Observed TDoA (OTDoA) technique in an urban scenario is presented in [23]
using channel measurements. A localisation error of under 20 metres in 50% of the time and
63 metres in 95% of the time is achieved. It is shown that the FCC localisation accuracy
requirements can be met using this technique, although special equipment was used for
channel measurements instead of the actual UE, and perfect synchronisation of different base

stations existed in the field trial.
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Fig. 2.7 Resource block of an LTE resource grid

Timing measurements are susceptible to multipath propagation effects. These effects can
be reduced in LTE by detecting the first arriving path, i.e. the Line Of Sight (LOS) path, as
this is the direct, shortest path. This way, the precision of ToA and TDoA measurements can
be increased. Signals other than PRS may be used for ranging purposes, but PRS is shown
to have better performance in [24]. Using PRS produces lowest distance estimation errors
from ToA measurements. This accuracy depends on the channel width, and may not always
be enough to fulfil the standardised requirements, in which cases additional control signals
need to be used in order to improve the estimate accuracy to meet the FCC requirements. A
vehicle tracking algorithm using LTE ToA measurements based on Cell-specific Reference
Signal (CRS) (shown in Figure 2.7) is presented in [27]. CRS is a signal whose transmission
is mandatory, and as such is suitable for opportunistic ranging measurements. ToA estimators

both with and without Non-Line Of Sight (NLOS) components in multipath propagation
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conditions have been field tested, and localisation precision of 20 metres in 50% of the time,
with full coverage, has been shown.

A collaborative approach to improving localisation in LTE networks is proposed in [25].
Apart from the standard OTDoA measurements of signals coming from the base stations,
it is proposed that the users perform ranging measurements among themselves as well. As
there is no synchronisation among the users, the RTT measurements are used to estimate
the distance between the users. It is shown that combining the two sets of measurements is
beneficial for the process of localisation, even with low SINR levels of the PRS signal. As
the number of collaborating nodes increases, so does the possibility of producing a unique
location estimate, without ambiguity, and the localisation accuracy.

As the accuracy of cellular system based localisation increased with the advances brought
by LTE technology, so did the number of proposed solutions for indoor positioning based
on LTE. Indoor localisation is a specific problem, as the alternatives in the form of various
global navigation satellite systems do not exist, unlike in the case of outdoor positioning.
The required level of precision also may be higher for indoor localisation, i.e. it is not just
enough to estimate the location in 2D coordinates, it may be necessary to distinguish the
exact room or floor of a tall building the user is located at.

An indoor positioning solution based on LTE TDoA measurements is presented in [28]. A
particle filter composed of a transition model based on an indoor pedestrian movement model
and a TDoA measurement model is used to calculate the likelihood of different possible states
and to select the ones most consistent with the measurements to produce the final location
estimate. Root mean square errors of 5 and 2 metres are shown using an experimental
setup, without and with the knowledge of the initial location and the building floor plans
respectively. Floor detection using LTE TDoA measurements is shown to be feasible in [29],
using femtocells. A simplified model of the TDoA measurement precision in such a scenario

is developed and tested with assumptions of synchronised femtocells. Vertical accuracy of
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below 1 metre is shown to be possible, although these results are likely to be worse in a
realistic scenario.

An indoor localisation algorithm based on a particle filter and femtocells is proposed
in [30]. Uncertainty about the exact locations of the femtocells is assumed and, depending
on this uncertainty the femtocells either aid (if certain) or cooperate (if uncertain) in the
localisation process. Cooperation between different MSs is another part of this solution, and
RTT (two-way ToA) measurements are used for this type of cooperation, while TDoA is
used for measurements from the BSs. It is shown that the use of femtocells and other MSs
increases localisation accuracy in indoor scenarios compared to only using macro BSs.

The errors in location estimates produced by the ranging techniques for mobile networks
described above are caused by multiple factors: BS geometry and density, use of omnidirec-
tional versus sector antennas, resolution and uncertainty of the distance estimates produced
by the time measurements, multipath propagation of signals coming from BSs (particularly
in urban environments) causing uncertainty of the correlation between the signal strength
and the actual distance from MS to BS, as well as affecting RTT measurements. With the
development of the newer generations of public cellular networks, some of the adverse effects
these factors caused, like the resolution of TA measurements, have been mitigated. Some
issues, on the other hand, like multipath propagation, are inherent to all wireless commu-
nication techniques, and the uncertainty caused by them cannot be fully avoided, although
NLOS signal conditions have been shown to be detectable in LTE networks. More precise
measurements becoming available with newer generations of communication technologies
aim to reduce these uncertainties and apply advanced algorithms to detect errors and further
process them.

Apart from estimating user location on their own, cellular networks can also provide
assistance for GPS localisation. Assisted-GPS (A-GPS) is a localisation technique based

on GPS, with assistance from the cellular network [31]. The assistance comes in the form
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of sharing information on which satellites and at which frequencies the user may expect to
receive data from, thus reducing the time needed for the location estimate to be produced.
This also increases the time the MS can spend listening to GPS signals, allowing it to hear
lower strength signals than it would normally be able to.

Use of Cell-ID parameter for conserving energy the amount of energy GPS consumes
is proposed in [32]. This localisation algorithm aims to limit the usage of energy-hungry
GPS, and use the information about the CIDs through which the user moves over time to
determine its location. A database of the CID readings along routes taken by the user, with
occasional GPS readings, is maintained. The database is later used to compare the sequence
of CID readings without GPS, and, if significant matching is discovered, compute the user
location with precision greater than the one offered by the basic CID technique. Such an
approach exploits the patterns user mobility exhibits, both in spatial and temporal domains,
which may limit its applicability in scenarios where new routes are being used, or when the

user is not on the move constantly.

Pattern matching methods in cellular networks

Another big family of solutions for positioning in cellular networks are pattern matching
solutions which can be divided into ones modelling signal propagation using analytical
propagation models [33, 34] and fingerprinting ones, although these two approaches can
complement each other, as in [33].

A one-to-one mapping between the MS location and the vector of received signal strength
measurements is assumed to exist in [33] and the performance of localisation based on this
assumption is evaluated. This work shows the limits of such an approach, depending on
measurement uncertainty, BS geometry and the number of available BSs in range. For a cell

with a 1 kilometre radius, the simulated localisation accuracy in 67% of the time is shown to
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be 250 metres. The standard method of collecting measurements in the field and creating a
database to compare the new measurement to is proposed for practical implementation.

A localisation solution for users with measurement information only available from
the BS they are currently connected to is proposed in [34]. A Bayesian method is used to
calculate the density of user location based on which BS is currently serving the user, the
known locations of this and surrounding BSs, and a signal propagation model. To further
improve the precision of this method, additional information is built into their model, like
RTT measurement value and sector antenna directions. IT is shown that an improvement of
20% for the mean error is achieved compared to just placing the user uniformly in an arc
calculated based on RTT and BS sector information.

Fingerprinting methods, like the ones proposed for outdoor [35] and indoor [36], use
in cellular networks, assume the existence of a database of measurements taken before the
deployment of the localisation system, during the offline phase, which presents the main
drawback of such approach. This workload can be reduced by dividing the area of interest
in a grid, thus reducing the number of needed measurements at the expense of precision
[37, 38], or by applying machine learning techniques [39] to learn about the propagation
parameters in the given environment. Accuracy of pattern matching can also be increased
using cell-ID and RTT measurements [40—44], adding WLAN networks RSS measurements
to the fingerprints [45] or device-to-device cooperation [46]. Accuracy of the propagation
model-based approach depends on how well the analytical or empirical model used is
able to describe the environment, as well as how diverse the environment itself is, while the
accuracy of the solutions using fingerprint databases depends on the number of measurements,
especially when the variance of RSS measurements in a single location (or grid cell) is high.

A database correlation method for GSM networks is proposed in [35]. Storing of signal
or channel properties relative to individual locations in a database is done with the goal

of using this information to compare it to any new measurements performed by the user
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(or the network for the user) needing a location estimate. Apart from acquiring the actual
measurements, which may be a difficult task, a possibility of using mathematical models of
signal propagation for the areas of interest is also proposed. The accuracy of this method is
shown to be 44 and 74 metres in urban and suburban environments respectively.

Use of GSM fingerprinting for indoor localisation is analysed in [36]. Algorithms relying
on single cell measurements, 6 different cells, and 35 different GSM channels are compared.
It is shown that by applying a greedy feature selection algorithm to remove the cells whose
signals are either too stable across different locations or are too noisy, i.e. varying over time,
can significantly increase the localisation precision. K nearest neighbour method is used to
compute the user location as a centroid of the locations of the K closest training points from
the database.

In order to avoid having to perform a large number of measurements from many different
locations in the area of interest to populate the fingerprint database, some solutions apply the
gridding approach (shown in Figure 2.8), as in [37]. The whole area of interest is divided into
grid cells, the size of which represents the trade-off between accuracy and complexity. All the
measurements taken inside one cell are put together, and a histogram of RSS measurements is
created for each BS for each cell. The centroid of all measurement points inside a cell is used
as the location estimate for that cell. The algorithm is able to provide a more precise estimate
by analysing each individual fingerprint from the selected cell, using nearest neighbours
method. Field tests have shown this method to achieve a median error of 42 and 28 metres in
rural and urban scenarios respectively.

Another solution employing gridding approach as units for fingerprint matching is
proposed in [38]. This solution addresses 3D localisation by creating a separate grid for each
floor of a building. On top of the standard pattern matching between user measurement and

the collected database, this algorithm introduces correlation tests for points surrounding the
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Fig. 2.8 Illustration of the gridding approach used in fingerprint localisation

chosen estimate to ensure the validity of the estimate. This addition is reported to achieve a
localisation error of 21 metres in 67% of the time.

Avoiding the initial effort of compiling a database of fingerprints associated with known
locations can be done using machine learning, as in [39]. Both semi-supervised and unsuper-
vised learning methods are proposed. The supervised learning method is making use of a
small amount of labelled training data and spatial interpolation to extend the “knowledge”
about location across unlabelled fingerprints, while the unsupervised one makes use of
propagation models to estimate expected signal measurements at different locations. The
semi-supervised method is shown to be more accurate than methods relying on labelled data
only when using the same amount of training data, while the unsupervised model based on a
well-fit propagation model performs even better.

Fingerprinting based on the cell ID parameter is proposed in [40]. Each CID value is
associated with a polygon region in which the user is located based on the given CID. This
approach is illustrated in Figure 2.9. A polygon contraction algorithm which provides a
balance between accuracy, i.e. keeping the polygon as small as possible, and confidence,

1.e. keeping the polygon big enough for a certain level of confidence that a CID reading
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corresponds to the correct polygon. Additionally, handover regions may be used for defining
additional polygons, thus increasing accuracy. Using simulation, the algorithm is shown to
be able to produce location estimate the size of a quarter to a half of the cell size with high
confidence, which is an improvement to the basic CID technique. An improvement to this
algorithm is presented in [41], using RTT measurements. The RTT measurement provides
a circular strip around the BS, in which the user is located. The intersection of the cell
polygon and the circular strip provides a more precise estimate of the user location, even with
information from only one BS available for positioning. With measurements from multiple
BSs at disposal, this method becomes an adaptation of triangulation, where each BS produces
an arc, rather than a full circle. In experimental field tests, an accuracy of 78 metres in 67%
of the time, availability of 95%, and positioning time of under 0.2 seconds in 65% of the time
have been shown. A further improvement [42], dealing with contraction of narrow polygons
created as the intersection of the original cell polygon and zones assigned to RTT and TA
measurements, was shown to be helpful particularly in LTE scenarios with unfavourable
geometry of BSs. An addition to this algorithm, enabling it to produce three-dimensional
location estimates is presented in [43]. Polygon corners with two-dimensional coordinates
are added an altitude dimension based on additional estimates from any lateration technique
(OTDoA, UTDoA), and shape conversion is performed on the polygon with altitude into a
3D point with ellipsoidal uncertainty.

An energy efficient CID and RSS pattern matching algorithm enhanced with sensor
information for tracking mobile users on a map is proposed in [44]. Fingerprints containing
cell ID and signal strength are first assigned to grid cells and the user movement over time is
then smoothed. The output obtained that way is then analysed together with phone sensor
data (if available) which may indicate the speed of movement, or the user making a turn, to

best match the sequence of location cells to particular road segments on a map.
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Fig. 2.9 llustration of the cell polygon regions

Fingerprinting methods can combine measurement data from different network tech-
nologies, like the LTE and WLAN combination examined in [45]. Including the additional
WLAN network measurements to the LTE network measurements is experimentally shown
to increase the accuracy compared to using just LTE measurements. The 67% accuracy for
the method with combined data is 16 metres using a 20 metre grid, and 25 metres using 40
metre grid.

Device-to-device communication is emerging as a standard part of the latest releases
of LTE network standards and is being exploited as a tool for improving pattern matching
based localisation. In [46], fingerprint matching is used only to find candidate points for
the user location, but the final estimate is computed based on cooperation between users,
which perform RTT measurements. These measurements are used to choose the most
likely candidate point as the estimate. This cooperative process is shown to improve the
accuracy of location estimates, which grows with every additional user participating in RTT
measurements.

The lower implementation complexity of pattern matching localisation solutions, in

comparison to range-based solutions, comes at the cost of lower accuracy. As can be
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concluded from the works mentioned above, the fingerprinting positioning error is being
reduced with the development of new mobile networks and localisation algorithms, which
are using parameters other than just signal strength, as well as concepts such as user device
cooperation. This leaves efficiency of the offline data collection process as the main issue of
this method, which is a problem that is currently being addressed mostly by using propagation
models, to either fill the gaps in the training data or create the whole training dataset, thus

completely removing the need for an offline phase.

Wireless Local Area Networks

The architecture of WLAN networks is similar to that of cellular networks, in the sense that
there exist fixed access points which provide network access to users in range, and through
which all of the communication flows. On the other hand, the fact that WLANSs are mostly
deployed in indoor environments increases the chances of multipath signal propagation, the
range and coverage of the individual APs are significantly lower than those of the BSs, which
means that accurate range-based localisation is difficult to perform in WLANSs. This, along
with the fact that the number of available APs in range can easily be much greater than
the number of BSs, increasing the number of reference points for fingerprinting methods
compared to cellular networks, are the main reasons why most of the localisation solutions

for WLANSs are based on range-free, pattern matching algorithms.

Range-based localisation in Wireless Local Area Networks

Among the few localisation methods that are not based on pattern matching algorithms,
there are solutions which try to estimate distance between APs and users based on timing
measurements [47], fitting the set of RSS measurements into a system of physical constraints
[48], or more indirectly, through propagation models [49, 50], or by defining different

contours around APs which correspond to different RSS measurement values [51].
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Performing timing measurements in early WLAN networks is proposed in [47], where
Direct Sequence Spread Spectrum (DSSS) and Orthogonal Frequency Division Multiplexing
(OFDM) standards for wireless networks are examined. Synchronisation between AP and
user is instrumental for successful timing measurement, and depending on the type of packets
used for these measurements, different errors in distance estimates can be expected, ranging
from tens to hundreds of metres. Multipath propagation and NLOS conditions additionally
degrade the ranging performance.

An algorithm which analyses the RSS measurements between users and different APs
is proposed in [48]. Assuming all of these measurements are constrained by the physics
of signal propagation, a genetic algorithm is used to estimate the positions of APs, their
transmit power and the path loss exponents, from the set of RSS measurements. This solution
only requires occasional ground truth calibration, which is obtained by means of GPS, as
the algorithm itself solves the relative locations of APs and users, and need a reference to
produce location estimates in global coordinates. The advantage of such an approach is that
the actual AP locations do not need to be known, which distinguishes this solution from other
RSS-based solutions.

Modelling signal propagation in indoor settings is considerably more difficult than doing
so in outdoor conditions, which is why the authors of [49] propose using a dynamic path
loss model for each AP, which learns from the data collected from RSS measurements
performed at known locations. An illustration of RSS values for a propagation model based
on measurements is shown in figure 2.10, where the darkness of the colour signifies the
strength of the signal, and the dots represent experimental measurements. It is shown that
taking the propagation parameters uncertainty into account and using a probabilistic approach
results in higher accuracy than assuming these parameters are known and fixed. Bayesian-
based path loss parameter calibration method for localisation using RSS measurements is

presented in [50] as well. A particle filter is used along a state transition model to estimate
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the user location. The model learns continuously and shows a decrease in location estimate
error over time. Again, it is shown that better localisation accuracy is achieved by allowing
for the path loss parameters to be dynamically estimated, rather than assuming them to have

fixed values.

Fig. 2.10 Illustration of a propagation model

A combination of lateration and fingerprinting is proposed in [51]. Instead of translating
RSS measurements into distance estimates, this system uses reference points. For each
RSS measurement from a single AP, a contour of reference points with the same RSS
value is produced. These contours are used the same way circles are in classic trilateration
technique. Device calibration is done using signal correlation, to accommodate for the
use of heterogeneous devices, without the need for offline calibration. In order to fight
multipath propagation, this algorithm assigns higher weights to contours from APs with

higher measured signal strength.
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Pattern matching localisation in Wireless Local Area Networks

The body of work concerning fingerprinting localisation in WLANS is vast, especially
compared to the one relating to lateration, which, as can be concluded from the works
listed above, is mainly based on propagation models, rather than precise timing or signal
strength measurements for distance estimation. As the fingerprinting solutions used in
cellular networks, the fingerprinting solutions for WLANS are usually assuming an offline
data collection phase. In general, the approach to forming the fingerprint database is similar
to the one described in [52]. To accommodate for the dynamics of the environments, some
solutions propose creating multiple databases [53] or collecting RSS measurements over time
to form histograms corresponding to each reference point instead of exact, unique values
[54, 55]. While these approaches result in an increase of measurements to be obtained in the
offline phase, there exist solutions which propose the use of probabilistic signal propagation
models [56, 57], to reduce the effort for database creation. The accuracy of fingerprinting
methods can be increased, but this increase usually comes at the expense of the increased
system complexity as well. Location tracking and prediction [58—60] assumes additional
system elements for tracking and prediction to be implemented, while reducing the effects
of noise on the RSS measurements can be achieved by either additional distance estimation
being performed [61] which assumes either very precise RSS measurements or additional
ranging hardware, or by using multiple interfaces on a single device [62], which is in itself a
more complex approach.

One of the earliest fingerprinting solutions for WLANs was proposed in [52]. The offline
phase considers performing measurements in reference points throughout the area of interest.
As in any standard fingerprinting procedure, the offline measurements are used to find the
closest (one or more) reference points based on the unknown location measurements. As an
alternative to collecting online data, the use of a radio propagation model is presented. This

method sacrifices localisation accuracy but simplifies the setup procedure significantly. An
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enhancement to this system is presented in [53], where continuous user tracking is used for
disambiguation of potential user locations. In order to account for various environmental
conditions, multiple radiomaps (sets of fingerprints) have been created. In order to calibrate
the system for the correct radiomap to be used, a simple test is performed. As each AP is at a
known location, by estimating its location as if it were a user in an unknown location, using
signal strength from all other APs, the model which gives highest accuracy is determined.

Fingerprinting methods may also function on a probabilistic basis, like the one described
in [54] and [55], where RSS measurements are observed over time at reference point locations,
and histograms of these measurements are stored. These histograms are then used to
characterise the individual AP signal strength throughout the area covered by the reference
point. When a user with an unknown location performs RSS measurements, its location
is estimated in the form of a probability distribution, according to the a priori knowledge
obtained during the reference point measurements. This solution also introduces location
clustering in order to reduce the complexity of calculating the location estimate probability
distribution. Locations which are covered by a certain number of common APs are placed in
the same cluster, thus reducing the number of possible location candidates from the whole
set of reference points to only the subset of points which share the same APs with the
measurement performed at an unknown location.

As previously discussed, one of the main drawbacks of the fingerprinting method is
the amount of effort needed for collecting reference data in the offline phase. One way of
reducing the workload of the offline phase is by using a propagation model, as in [56]. The
algorithm proposed in this paper is using a small number of actual reference measurements
to train a nonparametric model to produce the full fingerprint database. An experimental
setup was used for evaluation, and it was shown that localisation using the proposed method
outperforms the traditional fingerprinting algorithm using actual measurements to create the

radiomap. Furthermore, the proposed method is able to maintain similar levels of accuracy
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with only 5% of the original training data. It was noted that some APs broadcast more
than one Medium Access Control (MAC) addresses, and that aggregating these separate
signal measurements can help in cases when only partial training measurements are available.
A similar approach is proposed in [57]. A clustering method is used to divide the whole
localisation area into sub-regions based on sparse measurements and the proposed regional
propagation model is used to reconstruct the database of the whole area.

A probabilistic location tracking algorithm using a nonparametric information filter is
presented in [58]. This solution aims to improve the accuracy of fingerprint radiomap-based
location estimates by predicting the future user location using the filter. Once an expected
location is computed, the algorithm can decide which APs are relevant to the localisation
process, as well as which reference points are part of the possible region of interest, in
which the user is assumed to be located based on the prediction. Predicted location is also
used to detect possible RSS measurement outliers, which are discarded in order to prevent
the error to be propagated through the prediction mechanism. Applying restrictions on the
output of the localisation process based on previous location estimates in also part of the
algorithm proposed in [59]. A similar method of creating a region of interest in which the
location estimate is allowed to be placed is used. This solution utilises Kalman filter to
reduce localisation errors, assuming linear movement of the user with the unknown location.
In order to accommodate for the errors Kalman filter produces when users make turns, it is
necessary to have map data of the area in which the system operates. In [60], the optimal user
location estimate is computed using particle swarm optimisation technique. This localisation
algorithm also uses Kalman filter to process the estimates and reduce the errors by tracking
the user location over time.

Distance bounds are fused with the standard fingerprinting procedure in [61] to reduce
the effects of noisy RSS measurements. The distance information may be spatial, i.e. as a

result of ranging using direct communication with some anchor nodes in the surroundings, or
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temporal, i.e. the target itself estimates the distance it has traversed over a certain period of
time, by means of internal navigation system available in many modern devices. Using this
additional distance information, the expected signal difference between the unknown user
location and all reference points is computed. Given the set of these differences, optimal
values of weights determining the contribution of each reference point to the final location
estimate are estimated.

Mitigating the effects of noise and fading on RSS measurements by using multiple
wireless interfaces is proposed in [62]. The authors test a different number of multiple
interfaces on the same user device, using different positions and orientations. A low correla-
tion between measurements performed at the same time and location by different interfaces
with the same hardware is observed, which suggests a high impact of noise and fading to
these measurements. Different interface measurements are combined in one in order to
acquire RSS values which exhibit greater stability over time. Several methods for combining
individual measurements are tested. A clear improvement in localisation accuracy is shown
as the number of interfaces increases.

Fingerprinting methods are susceptible to issues induced by device heterogeneity, as
different wireless interfaces on different devices are likely to report varying values of the
RSS measurement under the same conditions. This can easily result in reference points far
from the true location of the user whose location is estimated being recognised as nearest
ones to the measurements obtained by the user device. Furthermore, because of this variance,
reference points from completely different regions of the area in which the localisation
system operates may appear as equally valid candidates. A number of calibration solutions
have been proposed, to adjust radiomaps in a way that location estimate does not depend
on the type of hardware used by the user being localised. In [63] a linear approximation
is used to map RSS measurement performed by any hardware into one obtained by the

hardware used during the offline phase which is the reference measurement contained in
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the radiomap. Supervised calibration, in manual and quasi-automatic variants, as well as
unsupervised automatic calibration, are proposed. Manual calibration assumes assigning
ground truth values of user location to a certain number of measurements, while quasi-
automatic calibration is done by applying different values for linear coefficients, making
use of the fact that wrong values produce RSS measurements which do not match any of
the reference points. In an attempt to completely remove the user input from the calibration
procedure, automatic calibration is running simultaneously with localisation and tracking of
the user but is reported to perform worse than the supervised calibration variants. A solution
for RSS variance based on devices calibrating themselves during the online phase is presented
in [64]. This solution uses histograms of the reference and the RSS measurements made
by the user device. These probability distributions are used to compute the linear mapping
coefficients which allow the measurements performed on the user device to be translated
into the one obtained by the reference device. The localisation results using this calibration
method are much closer to the ones obtained using a device-specific radiomap, showing
significant improvement compared to non-calibrated results.

The variance of RSS measurements is caused not only by the user device differences but
also by the placement of the device, the direction of movement and temporal environmental
changes, as shown in [65]. In order to solve the variance problem, a tracking system based on
RSS peak detection is proposed. This approach avoids the need for calibration, by assuming
that regardless of the differences in RSS measurements performed by different devices, in
different positions or directions and at different times, the peak value of the received signal is
preserved around the same location. As the peaks in RSS measurements appear sporadically,
the availability of this localisation system over time is maintained by including the internal
navigation system (accelerometer and digital compass) information to the algorithm.

The authors of [66] investigated the behaviour of different wireless chipsets and con-

cluded that even devices from the same vendor can report significantly different RSS readings.
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In addition, even measurements from a single device were not consistent over time. This
type of issue can reduce the applicability of fingerprinting localisation methods, by rendering
the radiomap information measured in the offline phase useless in many online use scenarios.
Some devices exhibited temporal patterns, which suggests that applying filters may increase
the suitability of measurements, while others produced measurements which were indepen-
dent of the distance to the APs. Interference is pointed out as one of the possible causes for
inconsistent measurements, as the less occupied 5 GHz band was found to be more suitable
for RSS measurements than the 2.4 GHz one.

Performance of fingerprinting algorithms is influenced by the metric used for comparing
the fingerprints stored in the radiomap to the ones obtained by the users with an unknown
location. In [67], a comprehensive analysis of different ways of measuring the distance
between fingerprints in RSS space is presented. The Euclidean distance, which is most
often used, may not be appropriate, given the possibility of measurements from certain
APs may be missing in some RSS vectors. Authors point out the common practice of
treating the signal level measurements expressed in decibels as if they are linear, rather than
logarithmic values. It is demonstrated that using Sgrensen distance and an alternative RSS
value representation achieves better localisation results compared to the standard Euclidean
distance and linear RSS representation combination. Additionally, the practice of removing
weak AP measurements was shown not to benefit the performance of localisation.

Fingerprinting methods for localisation in WLAN:Ss listed in the brief overview presented
above aim to improve the accuracy of location estimates. While they achieve that to a
lesser or greater extent, some large location estimate errors cannot be totally avoided, as
noted in [68]. The presence of noise and fading, the density of reference points and APs,
RSS variance, device heterogeneity and dynamic environment are all recognised as possible
sources of localisation errors. Furthermore, the way decibel measurements are treated is

listed as a source of error (as earlier noted in [67]), as well as the uncertainty introduced by
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quantisation of RSS values. It is concluded that existing fingerprint methods mostly operate

well in areas close to APs, in comparison to peripheral regions of the localisation area.

2.4.2 Infrastructureless networks

The main reason localisation of nodes in infrastructureless networks is a challenging task is
the lack of a centralised infrastructure of fixed communication points such as APs or BSs,
which results in a supporting system of localisation references being nonexistent. The nodes
in such networks are usually not assumed to be equipped with the technology capable of
performing accurate ranging measurements, as following the spirit of easy deployment and
low maintenance that ad hoc networks are designed in, the nodes are usually simple and low
cost. Furthermore, if node mobility is assumed, this challenge only becomes more difficult
as the topology of the network is highly dynamic with the nodes coming in and out of each
other ranges making all measurable relations between them very unstable.

Many localisation solutions have been proposed which are based on using dedicated
localisation nodes, called beacons or anchor, the location of which is known. Such approach
to localisation results in some solutions which are in principle very similar to the ones
existing in infrastructure-based networks, particularly ones employing lateration based on
direct distance estimates from timing or RSS measurements or fingerprinting approaches,
as the beacon nodes represent a sort of localisation infrastructure. Having this in mind, the
literature review presented below will focus on distributed range-based and connectivity-
based localisation solutions in ad hoc networks. Infrastructureless wireless networks have
found one of the main uses in sensing applications, which is why most of the localisation
solutions are proposed for Wireless Sensor Networks (WSNs), but are mainly applicable to

any ad hoc network in general.
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Localisation based on single hop connectivity

Nodes in ad hoc networks can determine their location based on the information about
which anchor they can receive signals from, i.e. inside the range of which anchor they are
located. Different implementations of this approach are proposed in [69-72]. The precision
and accuracy of such solutions are highly dependent on the number, distribution and the
transmission range of the anchor nodes, as well as the environment in which they operate.

Localisation based on proximity to anchor nodes is proposed in [69]. Each anchor emits
beacon packets at a known rate and the nodes in the network are listening for these packets.
Knowing the rate of beacons being sent, and the number of beacons received from an anchor
over a period of time, each node can determine the ratio of received beacons. Based on a
preset threshold of received ratio of beacons, the node determines whether it is located within
an anchor’s range or not. The node then estimates its location as the centroid of the locations
of the anchors within whose range it is located in. Resulting accuracy of the location estimate
greatly depends on the ratio of the anchor density and their range. Furthermore, the anchors
are assumed to be located in a deterministic way, on the vertices of a square grid. A more
general solution based on the same idea, allowing non-uniform anchor placement, is proposed
in [70]. An improvement to localisation accuracy is achieved by computing a rectangular
area bounding the intersection region of the anchor ranges within which the node is located,
as shown in Figure 2.11. Instead of finding the centroid of anchor node locations, a centroid
of this bounding box is now used as the final location estimate.

Another geometrical connectivity-based approach is presented in [71]. Instead of using
anchor ranges, the nodes run the point-in-triangle test, trying to determine whether they are
located inside or outside a triangle formed by three anchors. I order to perform this test,
nodes exchange RSS measurements from anchors with their neighbours, to determine if any
of their neighbours are simultaneously closer to all three of the selected anchors. In case

there is no neighbour satisfying the condition above, the node concludes it is located inside
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Fig. 2.11 Illustration of an estimative rectangle of ranges intersection

the triangle. This approach assumes anchors with much greater range than regular nodes, in
order for them to cover as much of the localisation area as possible, so the nodes can have
a greater number of three-anchor combinations forming triangles. A square grid over the
whole localisation area is formed, and each square is given a score, which is initially zero.
The score is increased for every positive constraint covering it, i.e. a triangle the node has
estimated it is within, and a decreased for each negative constraint, i.e. one which the node
has estimated it is outside of. The final location estimate is calculated as the centroid of the
grid squares with the highest score.

The solution presented in [72] introduces virtual force refinement of the location estimate
derived by the positive connectivity constraints. Anchor ranges are used to determine portions
of space in which the node may be located. Again, estimative rectangles are used to represent
these portions of space. Instead of creating a square grid covering the whole area of the
network, this algorithm only considers a square grid within the estimative rectangle and
estimates the location of the node as the centroid of the squares which have the highest score,
similarly to the previously listed solution. The negative constraints are observed as virtual

forces, by analysing the locations of anchors whose range the node is not within, relative
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to the location of the anchors which the node can hear. These virtual forces determine how
much and in which direction the location estimate of the node should be corrected. The
information about the anchors which the node cannot hear is obtained from neighbouring

nodes, through multi-hop communication.

Localisation based on hop-count

While the solutions described above rely on single hop connectivity information, there is a
family of solutions, based on the approach of [73], which consider multi-hop connectivity
information and use hop-count to estimate distances between nodes. The distances individual
communication hops cover can have high variance, leading to inaccurate location estimates,
which is a problem tackled by hop-count analysis [74-76] or by using RSS measurements-
based ranging in addition to the hop-count metric [77-79].

In the algorithm proposed in [73] (DV-hop), the anchor nodes with known location
propagate messages throughout the network, using multi-hop communication. Once an
anchor receives a message from another anchor, it can determine the number of hops the
message has traversed, and by knowing the other anchors and its own location, calculate
the average length of a communication hop. On the other hand, regular nodes maintain
their routing tables, containing hop counts to different anchors. The length of a hop is
propagated from each anchor, enabling nodes to estimate their distance to anchors, and
ultimately, perform triangulation to estimate their location. In addition, the authors propose
neighbouring nodes measuring the distance to their neighbours using RSS. This method has a
higher resolution than simple hop count but is more sensitive to signal strength uncertainties.
Finally, a pure triangulation approach is proposed by nodes estimating their location based
on distance estimates to neighbouring nodes which have already estimated their locations.

A number of improvements to the DV-hop algorithm have been proposed. The one in [74]

deals with hop count to distance mapping by deriving the expected hop progress, the distance
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in the direction of the anchor node that an average hop a packet traverses on the path from a
node towards the anchor. It is shown that the expected hop progress is determined by network
parameters such as node density and transmission range and that it is possible to directly
calculate it from expected node connectivity. As the messages from anchors propagate the
network, the hop count is incremented in a usual way, and the hop progress is updated by
each node based on its own number of neighbours. A simulation-based evaluation shows that
using expected hop progress to estimate the distance to anchors improves the localisation
accuracy compared to the basic setup. Scaling the hop distance based in an optimal way
with respect to all anchors in the network is proposed in [75]. The algorithm works based on
propagating hop count values between all anchors throughout the whole network, so each
node can be aware of all the distances and hop counts between the anchor nodes, and is
able to compute the right scaling factor which will be used to map hop counts into distances
to anchor nodes. Two different adaptations to the mapping of hop counts into distances in
heterogeneous networks, i.e. networks where nodes’ communication range is not uniform, is
proposed in [76].

The idea of using hop count to estimate the distance between nodes is also used in
[77], where a two-step localisation algorithm is presented. In the first step, similarly to
DV-hop the anchors broadcast their location and the messages are propagated to all nodes,
enabling them to convert the hop count into distance using the average hop distance. In
the second, refinement stage, the nodes estimate the distances to their neighbouring nodes
and perform triangulation. The location obtained in that way is assigned a confidence level
based on the number and topology of the immediate neighbours, as well as their location
confidences. Individual node’s location confidence level determines the weight with which
constraints involving this node will be regarded by the neighbouring nodes when performing
triangulation. Hop counts conversion to distance from the anchor by finding the average of

neighbourhood hop count to the anchor is proposed in [78]. The authors also propose the
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use of quantisation of RSS measurements to improve the resolution of the distance estimates
compared to the one produced by hop count conversion. In [79], the authors propose adding
RSS measurements as a method of improving the distance estimates. Distance estimates are
first produced by an adaptation of the original hop count method, referred to as virtual hop
count, which accounts for the fact that the distance corresponding to individual hops should
not be a fixed value. Then, RSS measurement-based distance estimates are generated and
compared to the virtual hop ones. Nodes are marked as good or bad, based on how well the
two sets of distance estimates match, and this assigned quality is used to weight an individual

node’s contribution to localisation calculations.

Localisation based on network-wide information

The approach of fitting estimated distances or hop-counts between all pairs of neighbours into
a topology which would satisfy these proximity constraints is popular for localisation in ad
hoc networks. One of the few solutions which do not assume the existence of anchor nodes
is [80], which relies on nodes individually forming local coordinate systems and patching
them together as the algorithm advances. While this approach is sensitive to the precision of
distance estimates between single hop neighbours, in [81] a number of anchors are introduced
to help reduce the errors arising from inaccurate distance estimates. Multidimensional scaling
[82, 83], semidefinite programming [84, 85] and other optimisation techniques have been
proposed [86—88] to improve the process of solving the system of proximity constraints. The
main drawback of the solutions from this category is that they assume full knowledge of all
single hop distance estimates or connectivity information, which limits them to networks of
static nodes. During the time needed to propagate this information across the whole network,
if node mobility is introduced, this information may become outdated. Solutions from the
DV-hop family can, in general, suffer from the same issue, although hop distance estimates

can be updated much more dynamically than full network topologies.
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An algorithm based on distance measurements between neighbouring nodes is presented
in [80], where each node starts by building its own coordinate system based on choosing two
neighbours and deriving their relative positions using the cosine law to compute the angles of
the triangle it forms with them. The same process of using triangle properties is carried on to
determine the locations of all of the two hop neighbours it has information about. This results
in each node having a local coordinate system which it is a centre of and has an arbitrary
direction. Using the relative coordinates of nodes present in two different nodes’ coordinate
systems, these two nodes can align the directions of their relative coordinate systems by
rotating or reflecting them, after which it is possible to merge these two locally centred
coordinate systems into one. Repeating this procedure among nodes leads to the formation
of a universal coordinate system, in which each node can compute its own and other nodes’
locations using one node as the universal reference. Error mitigation is performed by the
residual weighing algorithm, which reduces the difference between the estimated location
of the node and the one conforming to the constraints of the measured distances by its
neighbours.

A collaborative multilateration localisation algorithm is proposed in [81]. Similarly to the
solution in [80], this algorithm has nodes determining the distance between themselves but
introduces a portion of anchor nodes which have accurate information about their location,
which helps reduce errors and their propagation as the nodes exchange location and distance
estimates. The algorithm starts by forming of collaborative subtrees, i.e. configurations
of nodes or anchors which, given their neighbourhood, have a uniquely possible location
solution. Only these nodes are allowed to participate in the second phase of obtaining
initial location estimates based on estimated distances from ranging measurements between
neighbouring nodes. The final location estimates, both for the nodes participating in the

second phase and all other nodes, are produced by minimising the difference between
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measured distances and the ones computed from initially estimated locations. Kalman filter
is used to update the location estimates using the measured distances.

Multidimensional scaling is a technique often used for node localisation because of its
ability to compute spatial structures in the data it is presented with. Two similar algorithms,
one based on connectivity (hop count) [82], and the other [83] based on distance estimates,
use this technique estimate node locations. The two algorithms follow roughly the same
steps. First, random locations are assigned to all nodes. Then the difference between the
distances of assumed node locations and the estimated ones are reduced. The set of relative
location estimates of all nodes which are produced as a result of this step later needs to be
aligned with absolute locations using certain nodes whose positions are known. Location
estimate alignment may involve shifting, rotating or reflection of coordinates and at least
three nodes with known location are needed for this procedure. The algorithm proposed
in [83] can also work for individual node localisation, rather than working on the set of all
nodes at once. The node requiring localisation estimates relative locations of its one-hop
neighbours, and this one-hop neighbourhood procedure is repeated until three anchor nodes
are reached, after which the starting node is able to align its relative location to an absolute
one. During this procedure, the nodes along the paths to anchors are also able to acquire their
absolute location estimates.

Semidefinite programming is another technique which can be used to compute node
locations based on distance estimates and known anchor locations, as shown in [84]. The
algorithm works by converting the quadratic distance constraints into linear ones. Again, the
function which is minimised is the one representing the sum of errors between the estimated
locations and the constraints imposed by distance estimates between nodes. An improvement
to this method is proposed in [85], where a gradient search method is used to compute the
location estimates more accurately. This is done by moving the location estimate of each

node in the direction opposite to the gradient direction of the sum of error square function
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after the initial estimates have been produced by the original method. It is shown that the
gradient search method cannot work on its own, as in the case of just placing each node’s
estimated location in the origin of the coordinate system, the final outcome of this method
produces much greater errors in location estimates. This is because the gradient search is
only able to converge towards the local minimum. A technique similar to gradient search,
called simulated annealing is proposed in [86]. This technique, unlike the gradient search,
can take the convergence outside of the local minimum, by temporarily increasing the error,
in order to reach the global minimum. Having the ability to do so, makes this technique a
viable standalone solution for location estimate computing. As in other solutions based on
estimating locations based on distance estimates between nodes, the problem of ambiguous
node locations may arise, that is, a node or a group of nodes may be located in two different
locations, both of which satisfy the distance constraints. In [87] a solution to this problem is
proposed. If the node is placed in the wrong neighbourhood, i.e. is close to nodes to which
it has no direct distance measurement to a refinement procedure is initiated. The minimum
error of the ambiguous location estimate is defined and included in the new cost function
which is then minimised to solve the location ambiguity. Minimisation of the variance in
one hop neighbour distance in connectivity based localisation is proposed in [88], where
initial estimates obtained using the standard hop count method are refined so that each node
is pushed towards the location in which it would have uniform distances to its neighbours.

Another topic in ad hoc networks localisation is network deployment in irregular areas.
Such areas cause the issue of holes appearing in topology which distort the relationship
between the hop-count metric and the distance between two nodes. To solve this problem,
partitioning of the network [89], analysing the deviation of the shortest path between nodes
around the hole [90, 91] and reliable anchor detection [92-95] have been proposed.

An improvement to the algorithm from [82], enabling it to deal with irregularly shaped

regions where the physical topology of nodes exhibits “holes” is presented in [89]. In order
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to do so, the improved algorithm is decentralised unlike the original, centralised one, and is
able to put together patches of relative maps which have been created independently based
on the number of common nodes in them. This algorithm is able to solve the problem of
the discrepancy between the Euclidean distance and hop count for certain node, which is
common in the conditions described above, when physically near nodes have a high hop
count in the shortest network path between them. Another method for mitigating the negative
effects the presence of holes in node topology produces is presented in [90]. This algorithm
works with only three anchor nodes, and it does not assume the creation of partial maps and
their stitching together. It works by detecting the holes in topology and creating virtual holes
around the nodes which are located at hole edges. This manipulation allows the algorithm
to calculate the angles at which the shortest path between two nodes is bent in order to go
around the hole and accurately estimate the real difference between two nodes based on this
information and the standard hop count approach. Anisotropic topology detection is also
examined in [91]. Reliable anchors are detected by the degree of hop count deviation to
the expected one, given the known anchor locations, and reliable anchor pairs are used for
location estimates. The same problem is approached in [92], where anchors are classified
based on the hop count patterns packets arriving from them exhibit. Once an anchor is
classified, different distance estimation technique is used. The work presented in [93] deals
with both nonuniform node distribution as well as the irregularity of the region in which the
nodes are located, by determining reliable anchors. In [94] a similar algorithm dealing with
sparse anchor distribution is proposed. A Pascal triangle solution for localisation based on
average neighbour distance, hop progress and angle at which the shortest path between two

nodes bends in anisotropic regions can be found in [95].
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Infrastructureless networks localisation summary

Depending on the type of approach, the accuracy of localisation algorithms designed for ad
hoc networks may be influenced by a number of factors. The solutions relying on anchor
nodes are mostly dependent on the number, density and location of these nodes, especially in
irregularly shaped network topologies. As in many cases in cellular networks positioning,
higher accuracy is much easier to achieve closer to the reference points. Nodes with a high
number of neighbours are usually easier to locate correctly as the potential for cooperation
in localisation and error minimisation is greater, which is why the density of regular nodes
also plays a significant role in overall accuracy. On the other hand, solutions which avoid the
use of anchor nodes rely heavily on the nodes having the ability to estimate distances among
themselves with significant accuracy, or the network topology being uniform enough that the

variance in the relationship between actual distance and the hop count metric is low.

2.5 Summary and Problem Definition

Several conclusions may be drawn from the review of literature in the field of localisation in
wireless networks. Infrastructure-based networks, be it cellular networks or WLANSs, are
completely dependent on their infrastructure, and as such, it seems a natural direction for the
localisation algorithms aimed to operate in these networks to make use of this infrastructure.
The benefit of having network infrastructure in place is that it offers, with more or less
adjustment to the basic network architecture, a powerful system for performing, storing
and analysing a number of different measurements on the scale of all nodes in the network,
regardless of the type of localisation approach taken. The network can also then compute or
provide aid in computing the node location estimates.

Ad hoc network, on the other hand, given their infrastructureless nature, rely completely

on direct communications between the nodes. This makes them inherently void of any sort
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of support when it comes to determining node locations. If no localisation infrastructure is
placed in the network, such as anchor nodes, the information nodes can gather themselves
through direct communication needs to be used in a centralised way, as is the case with
anchor-free algorithms, e.g. gathering the set of all distance estimates between neighbouring
nodes pairs, and solving the system of equations for unknown node locations given these
constraints.

It can be concluded that, for the above-mentioned reasons, the existing solutions for node

localisation in ad hoc wireless networks make one, or both, of the following assumptions:

1. There exist some reference points (anchors) in the network whose location is known.

2. There exists a mechanism for nodes to (relatively) precisely measure the distance to

neighbouring nodes.

Furthermore, even the nominally decentralised localisation solutions for ad hoc networks
are never decentralised to the level of an individual node, i.e. they only consider dividing the
network into regions and running the same centralised algorithm on these smaller parts of
the network. This means that nodes are always relying on some global set of information,
obtained by either all other nodes in the network or at least their neighbourhood.

Having the previous in mind, the problem which this thesis is proposing a solution for can
be formulated as determining locations of single hop neighbours in wireless ad hoc networks
of moving nodes, without the use of external reference signals (like GPS) or systems (like

anchor nodes).

The next chapter deals with the theoretical background of the proposed localisation
solution, its application in a localisation algorithm in a realistic scenario, and the detailed
description of the proposed Relative Neighbour Localisation (RNL) algorithm and each of

its elements.



Chapter 3

Decentralised Localisation Algorithm

Design

Drawing on the conclusions made in the previous chapter about the lack of a distributed,
anchor-free localisation algorithm for ad hoc networks of moving nodes, the Relative Neigh-
bour Localisation (RNL) algorithm is proposed. The goal of this algorithm is to enable nodes
to estimate the locations of their neighbouring nodes in a highly dynamic environment using
only signal strength measurements and the neighbouring nodes’ mobility parameters, without
the use of any external localisation signals or systems. It is based on the relationship of the
trends in signal strength and the direction and speed of movement of the neighbouring node
on one side and the relative location of that node on the other. The RNL algorithm estimates
the relative angle and the distance at which the neighbouring node is located independently
and then produces the two-dimensional location estimate from them.

This chapter first presents an introduction about the assumed network model, the theo-
retical principle of localisation using the above-mentioned algorithm inputs (signal strength
and mobility parameters) and how the relationship between these inputs and the relative

neighbour location can be estimated under the influence of the uncertainties present in a
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realistic case. It then presents the RNL algorithm, defining each of its parts and the process

of estimate computing in detail.

3.1 Introduction

3.1.1 Network model

The network model which is adopted for the remainder of this thesis assumes the following:

* mobile nodes which are moving completely independently of each other,
* nodes are assumed to move in paths composed of straight line segments,

* no global information about the location of the nodes exists; only relative locations are

considered,
* the network is fully distributed, there is no hierarchy or clustering,

* each node is aware of its speed and direction of movement (i.e. is equipped with an

accelerometer and compass),

* each node is broadcasting its velocity vector (the speed and the direction of movement)

to its one-hop neighbours.

The constraints imposed by the decentralised approach to localisation are reflected on the
choice of parameters used in order to estimate node locations and imply the use of values
obtainable by each node individually as algorithm inputs. The most obvious choice for a
parameter is signal strength as it is something any node is capable of measuring on its own
and, in theory, depends on the distance between the sender and the receiver. The analysis of
the fluctuations in the signal strength caused by the radio wave propagation effects and the
imprecision and inaccuracy of the measurements are outside the scope of this work and are

something that is taken as given.
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Two assumptions about node mobility are made. The first one is about each node having
knowledge of its velocity vector and broadcasting it periodically. This means that nodes are
aware of neighbouring nodes speed and direction of movement, and can use this velocity
vector as the second algorithm input. The second assumption is that nodes’ velocity vector
can be considered constant for considerably long periods of time, and only changing at
discrete time instances.

In the interest of simplifying the analysis of the localisation principle, it will be assumed
that node A, which is estimating a neighbouring node’s location is stationary, and that only
the neighbouring node B is moving. Figure 3.1, where 54 and 53 are vectors describing the
movement of nodes A and B over a unit time period respectively, (i.e. c?A) = 15 x V4, where
V4 is the velocity vector of node A), shows the transformations allowing this perspective shift
from a scenario of both nodes moving to one where node A is stationary. This also means
that the conclusions of this analysis can be applied back to the case when both nodes are

moving, using the relation shown in (3.1).
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Fig. 3.1 Relation between velocity and position vectors
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3.1.2 1Ideal case localisation

This section presents the process of localisation of a neighbouring node in an idealised
scenario. The following analysis derives expressions for the relative angle at which the
neighbouring node is located (the location angle) and the distance at which it is located using
measured signal strength and the neighbour’s mobility parameters

Considering, for the moment, an ideal case of free space wireless radio communication,
ignoring radio wave propagation effects, making signal strength purely a function of distance
between the sending and receiving node. Using the Friis transmission formula [96], the ratio

between the emitted (F;) and received (P,) signal strength can be expressed as:

P, A \?
L —pD, (=), 2
P ! (47ra’) (-2

where D; and D, are the directivities of the transmitting and receiving antennae respectively,
A is the wavelength and d is the distance between the sending and receiving nodes. Assuming
that the transmission power is known, and that the antennae directivities are also known, the

distance d between the two nodes can be expressed as:

A [BD.D,
d=—
4w P.

(3.3)

Figure 3.2 represents the process of node A trying to determine the location of node B.
Stationary node A receives the first broadcast of velocity vector vi from moving node B at

time ¢t = 0 (Figure 3.2a) and measures the signal strength as ssg, where ss; is the level of
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signal (ss) at time ¢ = i expressed in decibels-milliwatts, calculated as:

ss = 10log (3.4)

),
LmW’
At this point node A has an estimate of the distance dj to node B from ss¢, using (3.3).

This places the possible locations of node B on a circle of radius dp with a centre in node A,

denoted Cy.
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(c) Possible movements of node B (d) Possible locations of node B

Fig. 3.2 Localisation in the ideal case
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Attime r =T, where T is the interval of the velocity vector broadcasts, node A receives
another broadcast from node B and measures the signal strength as ss7, which translates
to distance dr (Figure 3.2b). Based on the new distance the location of node B must be
somewhere on the circle of radius dr with centre in node A, denoted C7. Observing the
possible locations at times t = 0 and ¢ = T and the velocity vector vé narrows down the
location of node B att = T to maximum of two points on Cr (Figure 3.2c and Figure 3.2d),
as that is the number of points on Cy from which vector Vi points to Cr.

This can be formalised analytically, with the following set of equations. A common
reference (or zero angle) is assumed, and all other angles are measured with respect to it. The

following notation is used: s is the distance covered by node B over a period of 7" seconds

(ie. s=T X |vB

), 0; is the direction of the velocity vector of node B at time t = i, and ¢ is
the angle of the line between node A and node B at time ¢ = i. Figure 3.3 represents these

values and their relation to distances dy and dr.

do

Fig. 3.3 Calculating the angle o

From the trigonometrical law of cosines for the triangle shown in Figure 3.3:

do* = dr® + s> — 2drscos 8y, (3.5)
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the value of angle &7 can be derived as:

(3.6)

(dT2+s2—wh2)
Or = arccos | —————— | .

2dr*
This equation has two solutions, denoted 67, ,. Given this ambiguity, the value of angle o is

also ambiguous and calculated as:
or, , = or + 5T1~2 (3.7)

which is shown in Figure 3.3 as well. The two values of a correspond to one of the points
from Figure 3.2d each. Only one of them represents the frue location of node B at time T,
while the other one represents what will be referred to as the symmetrical location of node
B at time T. The symmetry between these two point is exhibited with respect to the line
defined by the position of node A and the angle 67. The relation between the ambiguous

relative angle values (shown in Figure 3.4) is the following:

o, = 6r — (ar, — 6r) 48)

o, = 207 — ar, .

At this point, the ambiguous relative location of node B, i.e. its location in the Cartesian

coordinate system with node A in origin, is computed as:

X7, = dr cos aTl,Z (3 9)

Y, = dr sin (XTL2 .

In order to resolve this ambiguity, and reduce it into the true location of the node, more
information is needed. This information is obtained from a change in direction of movement

of node B. Once a broadcast with a different velocity vector, with direction 6,7 is received
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Fig. 3.4 Ambiguous angle symmetry

at time 27 from node B, node A can, based on possible locations from the previous step,

determine the two possible distances to node B at time 27 as:

dAle = \/de + 52 +cos (OCT1 - 92T) (3.10)

dAsz = \/de +s24cos (OCT2 — 92]‘),

and compare the distance at 27" obtained from sspr. If dor = ciZT] , the angle a7, was the
real angle and if dy7 = cfgrz, the angle oz, was the real one, and the ambiguity is resolved,
allowing node A to continue tracking the unique location of node B. This procedure is shown
in 3.5, where 3.5a shows two possible locations att = 7', and 3.5b and 3.5¢ show the situation
at t = 2T, after a turn has been detected and the new distance has been estimated, with

possible locations one and two having been recognised as the real location, respectively.

3.1.3 Real case limitations

The analysis presented above is based on the assumptions of ideal free space propagation, no

interference and ideal measurements of the parameters involved available. In order to show
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Fig. 3.5 Resolving the ambiguous location after a turn

the applicability of the described relation between the change in signal strength, mobility
parameters and relative locations of two nodes, it should be investigated in a generalised,
realistic case.

By removing the ideal free space signal propagation assumption the presented localisation
principle is faced with its first obstacle. Real world signal propagation means that the signal
strength will be a function of factors other than just the distance between the sending and the
receiving node. Different obstacles and environment configuration can influence the path of
radio waves, causing them to reach the receiver via multiple paths. Multipath propagation
and signal shadowing are responsible for fluctuations in the strength of received signal,
known as fading. The effects of fading on measures signal strength are shown in Figure 3.6,
which shows the received signal strength fluctuations over time.

The second assumption made in the ideal scenario is having absolutely precise measure-
ments of signal strength and speed and direction of movement. In a realistic scenario the
devices measuring these parameters are either not sensitive enough, not precise enough, or
both.

The imperfections of the real world scenario complicate the relationship between the

distance and received signal strength, and the expression from (3.3) can no longer be assumed
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Effects of fading on signal strength measurements
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Fig. 3.6 Effects of fading on signal strength measurements

to hold. While a number of experimental models have been proposed based on averaging
the signal strength measurements from a transmitter at a known distance over time, thus
stabilising this relationship and producing relatively accurate distance estimates [97-99],
a certain error is unavoidable. This makes it impossible to apply the idealised approach
described in the previous section, especially having in mind the mobility of both the receiver
and transmitter, as even small errors in two consecutive distance estimates shown in Figure
3.3 could result in large errors of the calculated location angle.

Having these hindering factors in mind, a conclusion can be drawn that localisation in a
realistic case based on the dependency between the signal strength, the node mobility and
the relative locations described in the previous subsection can be expected to produce less
precise results, or in other words, there would be more uncertainty compared to the ideal
case. The effects of fading along with the lack of absolutely precise measurements all add to
the unreliability of location estimation.

Given the network model, the presented theoretical basis on which the proposed locali-
sation algorithm should work and the limitations on the realistic implementations of it, the

research problem for this PhD work can be more precisely defined as follows: determining
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single-hop neighbour relative location relying only on its mobility parameters (velocity

vector) and the performed signal strength measurements.

3.2 Algorithm Overview

Given the uncertainties present in a realistic scenario, it would be very difficult, if not
impossible, to derive an analytical form of the localisation algorithm, such as the one shown
in section 3.1.2. It is, however, assumed that even with the effects of fading and imprecise
measurements, trends in the signal strength measurement can still be identified by smoothing
them over time using moving averages. This means that the relation between the signal
strength and the velocity vector can still be utilised for location estimation in a non-ideal
scenario.

An empirical approach is taken to characterise this complex relation, by using a regression
algorithm called Random Forest Regression (RFR) as the basis of the angle and distance
estimation procedures. This means that the algorithm needs to go through an offline, learning
phase, in which it is fed measurements based on which it learns about the relations between
the measurements available as inputs and the desired outputs. The reasons for choosing this
learning algorithm over others will be presented in section 4.3.

The training of the estimators can be performed using real measurements with known
true locations of target nodes. The input — output pairs obtained in such way, are provided to
the untrained estimators, which analyse the dataset and form mappings from the input values
to the desired outputs. Another method for obtaining a training dataset can be by simulation
methods, carefully choosing the network and environment parameters in such a way that they
correspond to the scenario in which the application of the algorithm is intended. Both the
experimental and simulation datasets have been obtained, details of which are presented in

sections 4.2.2 and 4.2.4.
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3.2.1 Algorithm structure

The Relative Neighbouring Localisation (RNL) algorithm is composed of three parts, or
modules, which can be put together incrementally, to produce the final location estimate. The
first part of the algorithm is the location angle estimation, which is composed of producing
what is called a raw angle estimate and resolving the symmetrical angle issue. The second
part of the RNL algorithm is the distance estimation. Given the outputs of these two parts, a
two-dimensional location estimate is computed. The third part of the algorithm is estimate
sharing. This part, although violating the strict definition of the distributed nature of the
proposed algorithm, is introduced as a method of increasing localisation accuracy, and is
confined to one step neighbours exchanging their location estimates of nodes in their range.
Given the characteristics of the location estimates created by the first two steps of the RNL
and the estimates received through the third step, a final estimate is produced. Figure 3.7
shows the block diagram representation of the full RNL algorithm with its inputs and outputs.

Throughout the rest of this chapter, all the algorithm inputs and outputs will be regarded
in a discrete time domain, with time instances denoted as indexes in square brackets. The
node whose location is being estimated will be referred to as the rarget node, the node
performing the RNL algorithm will be referred to as just root, and the nodes sharing their
estimates with root will be referred to as neighbours. Superscripts will be used to denote
the source of a particular estimate or measurement (if it is not the root node), i.e. which
node has produced it, and subscripts will be used to denote the node estimates are relating
to (if it is not the target node). The following notation will be used for certain values and

measurements:

ss Measured received target node signal strength,
ssavg Average measured received target node signal strength,
Navg Signal strength averaging window size,

0 Direction of movement of the target node, relative to root,
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s Speed of movement of the target node, relative to root,
o True location angle of the target node,
Yr,7Ys Raw location angle estimate produced by the RFR, and its symmetrical angle,
nprev Number of previous averaged signal strength values used as RFR inputs,
0, 0p Ambiguous location angle estimates,
& Unique location angle estimate (after ambiguity is resolved),
d True distance of the target node,
d Estimated distance of the target node,
x,y True target node coordinates, relative to root,
xi, yi True target node coordinates, relative to neighbour i,
X,y Estimated target node coordinates relative to root,
)Eih, ﬁéh Estimated target node coordinates received from node i, relative to root,

Xsn,Ysn, Estimated target node coordinates from all shared estimates.

The relative direction and speed of movement (6, s) are calculated according to Figure 3.1

and equation (3.1), from the relative velocity vector of the target and root nodes (7t, 7,), as

follows:
V= -7
5= \/(st cos 0; — s,cos 6,)2 + (s;8in 6; — s, sin Gr)2 (3.11)
¢ sin 6; — ,-sin 6,
0 = arctan .
s; cos 6, — s5,cos 0,

3.3 Angle Estimation

The estimation of the location angle of the target node is performed in two steps. The first
step assumes producing what is called a raw estimate, using the RFR algorithm. The second

step refers to the resolving (if possible) the location angle estimate ambiguity.
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3.3.1 Raw RFR estimates

The RFR estimator works by producing an output value for a given set of input values, based
on the relationships between these parameters and their values it has formed during the
training stage. It takes the vector of n,,., averaged signal strength values as the first part of

the input, while the second part are the target node mobility parameters:

input(t] = [SSavgt — Nprev + 1], ..., SSavg[t — 1], 8Savg[t], O[t],sin O], cos O[t],s[t]].  (3.12)

The direction angle is present as both the exact value, as well as its sine and cosine values.
This is done because the estimator is unaware of the periodic nature of the angular values, i.e.
the fact that angles 7 and — 7 are the same angle. To overcome this, trigonometric functions
are used, as their values allow for these two angles to be perceived as equal.

The vector input|t] represents one input data point. During the estimator training phase,
the estimator is presented with a dataset composed of input — output pairs of data points. The

output presents the true value of the location angle, in the following form:

out put[t] = [sin a[t],cos a[t]]. (3.13)

Following the same reasoning concerning the periodicity of the angular values as above,
the true location angle is represented by its sine and cosine values. Because of this, there are
two estimators being used, one for the sine value esty;,, and the other one for the cosine value

estqos. The mappings that they are trained to estimate can be defined as:

estgiy - input — sinQ
(3.14)

eSteps 1 Input — cos o,

and the two estimators are shown in Figure 3.8.
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Fig. 3.8 The sine and cosine RFR estimators

During the online phase, after the estimators have been trained, the raw angle estimate &

is produced as:

sin Yg = estsin(input)

COS Vg = eSteos(input) (3.15)
Yr = arctan ( S ¥k ) :
COS Vg

3.3.2 Symmetrical angle problem

As described in section 3.1.2, the presence of ambiguity of location angle estimates is
inevitable even in the ideal case. This means that, given a set of input parameter values, there
exist two location angles which could theoretically correspond to it. The estimators defined
above have no ability to distinguish between these ambiguous values, as they are trained using
the true output (location angle) values. In the process of training, the estimators develop a set
of rules which map the input parameter values into the produced output estimation. These
rules are an interpretation of the relationship between signal strength and mobility parameters
on one hand and the relative location angle on the other. Even for perfectly trained estimators,
the ambiguity of the location angle still exists, as the two possible location angles share the

same relation to the input parameters. The estimator producing a symmetrical instead of
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the true location angle would still not be wrong, as it would have applied these relations
correctly. Figure 3.9 shows an example of RNL raw and symmetrical angle estimates.

Symmetrical angle estimates

—— true angle
----- bearing angle
2n/3{ symmetrical angle
x  raw estimate 1
x  symmetrical estimates x
n/3 X x "
x X
=) X
E X % ¥ %
@ O = RN B X |
= ~
s x Ny .
X "
—/3 i
-2n/3
X
- X
0 2 4 6 8 10 12 14
time [s]

Fig. 3.9 RNL symmetrical angle estimates

RNL algorithm deals with the location angle ambiguity by maintaining two variables &
and &, for each of the two possible values of the location angle. Once the localisation is
initiated, and the first RFR raw estimate y of the target node’s location angle is produced,
this value is assigned to &;. Using equation (3.8), the symmetrical value 7s is calculated,
and assigned to &,. For every consecutive pair of the raw and symmetrical RFR estimates

(vr[t], 5(t]), the following four differences are calculated:

O1r = |0 [t — 1] — e[t]|
Ors = |G [t — 1] — ys]t]|

(3.16)
Sor = |Gt — 1] — ]|

Ors = |Op[t — 1] — ¥st]].

These differences represent the distance between the new estimates and the previous

ones. As the nodes are assumed to be moving in straight lines, the location angle cannot
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change significantly between two estimates, and it is assumed that the difference between the
symmetrical angle and the previous true angle values would be greater than the difference
between two consecutive true angle values. This comparison is referred to as type 1. Con-
sequently, if the smallest of the four differences is 8z or &g, that means that the raw RFR
estimate Yz|f] is the one corresponding to the & [r — 1] angle estimate, and the symmetrical
RFR estimate ys[t] corresponds to the @[t — 1] estimate. The new values of the two angle
estimates are therefore assigned as:

0 [t] = ylr] 5.17)

0 t] = vslt]-
If the opposite is true, i.e. if the smallest of the four differences is calculated to be either d,z
or d;s, the new angle estimates are given the following values:

o [t] = slt] (3.18)

0o[t] = Yrlt].

According to the analysis presented in section 3.1.2, the location angle ambiguity can
be resolved with additional information obtained after the target node makes a change in
the direction of movement. This procedure, from the perspective of the symmetrical angle
handling part of the angle estimation element of the RNL algorithm, is shown in Figure 3.10,
where Figure 3.10a shows the two locations corresponding to the angle estimates before the
turn, &; and &,. Once a change of direction happens, the RFR estimator produces a raw
estimate based on the new input values. At the same time, given the new mobility parameters,
the target node is expected to be located in one of the two locations shown in Figure 3.10b.
This time, the axis of symmetry will be different, resulting in a mismatch between the new

Yz and Y5 values on one side and the previous & and &, values on the other.
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Fig. 3.10 Symmetrical angle ambiguity

Using the calculations shown in equation (3.16), the smallest difference between the

previous and the new estimates can be found. This time, the smallest difference determines

which of the previous location angle estimates was the true one, and which of the newly

produced RFR estimates corresponds to it. This comparison is referred to as type 2. At this

point, the & and &, are discarded, and a unique angle estimate ¢ is introduced, according to



3.4 Distance Estimation 76

the following rule:

A = {d1r, 015, 628, S2s }

1fm1n(A) = 61R — éc[t — 1]

G [t — 1], &ft] = wle]

ifrnin(A) =015 — d[l‘ - 1]

O [t =1, &[r] = yslr] (3.19)

>

ifmin(A) = 6 = @t —1]

ol = 1], &t = velr]

ifmin(A) = s = Gt — 1] = @[t — 1], &)t] = ¥s5t].

Figures 3.10c and 3.10d show the two cases in which one of the two possible locations is
discarded based on the rule defined above.
From this point on, the choice between the raw and symmetrical RFR estimates is made

by comparing them to the last value of the unique angle estimate & as:

) W], it [rle] = afr — 1]] < |ysle] — &lr —1]]
aft] = (3.20)

wll, if yele] — &l — 1][ > [ysle] — afr — 1]]

This comparison is referred to as fype 3. Block diagram of the whole symmetrical angle

handling procedure is shown in Figure 3.11.

3.4 Distance Estimation

The distance to the target node in the RNL is estimated using the same mechanism used in
the angle estimation. During the training phase, the training dataset, composed of input —
output pairs, is presented to the distance estimator. The input vector used is the same one
used in the angle estimation, while the output is the true distance between the root and the
target nodes. Although only one of the input parameters, ss[t]|, can be directly linked to the

distance between the two nodes, the use of additional information has been shown to lead to
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better accuracy in distance estimation. This is further discussed in the next chapter, along
with other evaluation results of the RNL performance. The distance estimator, est;;y, iS

trained to perform the following mapping:

estyis - input — d, (3.21)

and is shown in Figure 3.12. During the online phase, after the estimator has been trained,

the distance estimate d is produced as:

d = estyiy (input) . (3.22)
SIGNAL NEIGHBOUR
STRENGTH VELOCITY
MEASUREMENTS VECTOR
SStn+1 SStn+2 7 SStq SSt 64 sin(6) cos(6) speed

RFR
DISTANCE
ESTIMATOR

Fig. 3.12 Distance estimator
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3.5 Estimate Sharing

Using the angle and distance estimators defined so far, the root node is able to compute the
relative X,y coordinates of the target node. Given the distributed nature of the RNL algorithm
and the uncertainty of the complex relationship between the available measurements used as
algorithm inputs and the location of the target node, the proposed localisation method cannot
be expected to produce high accuracy.

As an attempt to increase the accuracy of the location estimates, an estimate sharing
procedure is defined. The estimate sharing among single-hop neighbours is designed to
include group knowledge into the localisation process, and to detect and possibly avoid
some large errors, by analysing and comparing target node location estimates of multiple
neighbours to the ones locally produced using the angle and distance estimators.

In general, the estimate sharing procedure assumes each node computing its own local
estimates of the relative locations of all of its neighbouring nodes and sharing them, using
periodic broadcasts, with that same group of single-hop neighbours. In the interest of
simplicity, this process will be described assuming there is only one target node whose

location estimates are being shared by nodes whose range it is within.

3.5.1 Computing shared estimates

Each node, before engaging in the estimate sharing procedure, calculates the target node
location estimates relative to itself. Given the angle and distance estimates, the relative
location of the target node is calculated as:

X[t = cf[t] cos (G[t])

) (3.23)
P[t] = d[t]sin (&t]).
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In case the location ambiguity has not yet been resolved, two target node location

estimates are kept:
(3.24)

Once own relative location estimates have been computed, each node broadcasts its
unique or ambiguous location estimate of the target node. As the root node receives these
broadcasts, it needs to take into consideration its own relative location estimates of the node
which is the source of the broadcast, which may also be unique or ambiguous. Assuming
unique location estimates in both of the above cases, and node a sharing its target node
location estimate with the root, the root node calculates the shared estimate in its own
coordinate system as:

~d __ o ad
Xgp =Xg +X

(3.25)

Yon = Ja+ 5%,
where (£,,,) is the root’s estimate of the location of node a, and (£4,y“) is the target node
location estimate produced by node a. In cases where one or both of these location estimates
are ambiguous, this process can result in two or four different coordinate pairs respectively.
A set of all target node location estimates, [E, consisting of the root node’s own and the

estimates received and calculated through the process of sharing, is created as:
E = {(&9)}U{ (&), ) Vi €S,j#1}, (3.26)

where S denotes the set of root node’s neighbours and ¢ is the target node.
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3.5.2 Clustering

Given the inherent uncertainty with which the RNL operates, and which is in the basis of
all the estimates produced, it may be assumed that not all of the estimates in the set [E are
close to the true location of the target node. This is especially so in the cases where location
ambiguity is present, and even more so if there are four different estimates being associated
with one source, as described in the previous subsection. If the nodes are producing relatively
accurate estimates, they can be expected to be close to each other, while the estimates with
low accuracy can be expected to be dispersed around different areas, as each node which
is the source of an estimate observes different values of the target node’s relative mobility
parameters. This rationale can be used to draw a conclusion about which of the estimates may
be the accurate ones, and which ones the erroneous ones, by analysing the shared estimates.

The analysis of the estimate set [E is performed using a clustering procedure. More
precisely, hierarchical agglomerative clustering is used. This process, described in [100],

assumes the following steps:
1. Create single-element subsets (clusters) of the given set,
2. Unite two closest clusters,
3. Add the unity subset to the list of clusters; remove the two which it was created from,
4. Repeat steps 2 and 3 until there is only one cluster.

The closeness of the clusters is examined using Ward’s minimum variance criterion, which
ensures that the clusters selected for merging are the ones which will result in a new cluster
with the smallest variance within its member elements.

As the goal of clustering in RNL estimate sharing is to determine if there is a close group
of estimates, indicating that they are all high accuracy estimates, there is no need to run the

above clustering procedure until the end. What is more interesting given the goal of this
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procedure, is to find the smallest variance cluster of a particular size. This minimum desired
cluster size, denoted as c, is relative to the cardinality of the set of all estimates E, i.e. for a
larger estimate set, a greater number of similar estimates is required for them to be assumed
high accuracy, while for a smaller estimate set this number needs to be reduced in order for a

low variance cluster with a given size to be possible to exist.

ROOT ESTIMATE
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TARGET LOCATION
CLUSTER C

FINAL ESTIMATE

]
]
1
|
|
|
|
]
ROOT NODE : +
I
1
1
1
1
I
I
|
|

®+0

Fig. 3.13 Example of shared estimates and clusters

The first cluster of size ¢ which is produced by the clustering procedure described above,
is guaranteed to be the one with the smallest variance, and is referred to as the chosen cluster,
and denoted as C. This cluster contains what are assumed to be the high accuracy target node
location estimates, and the final target node location estimate can then be computed as the

centroid of all estimates in C:

i X
fon= S €C
5o (3.27)
N i Vsn .
ysh = ’JC“Sh’] S C

The clustering procedure is illustrated in Figure 3.13.
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3.6 Special Case — Estimate Propagation

Both the angle and the distance estimation components of the RNL algorithm rely on the
RFR estimators to produce their outputs. As seen above, the estimation process is defined
to use 71y, signal strength measurements. This means that the RNL is unable to produce
estimates for the first ., seconds after a new neighbour has appeared in range. In order
to avoid not having a location estimate during these periods, shared estimates are used if
present.

A similar issue arises when the relative mobility parameters of the target node change, i.e.
either the root or the target node change their direction or speed of movement significantly.
Once a change in relative mobility happens, the 7., signal strength measurements no longer
correspond to the current relative direction of movement of the target node, and should not
be used as estimator inputs. In this case, if previous estimates produced by the root node
exist, estimate propagation is performed. The last X,y estimates are transformed using the

relative mobility parameters according to the following expressions:

ifr — Hast_turn < Mprey

R[t] = %[t — 1] +scos O (3.28)

J[t] =9t — 1]+ ssin 6.

This way, periods of potential RNL estimate unavailability are avoided.

3.7 Location Tracking

The RNL algorithm produces estimates at each step independently from the previously
generated estimates. This may cause consecutive estimates to be placed in a manner which

does not correspond to the mobility parameters of the target node (i.e. consecutive estimates
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placed at a distance or in a direction which is not possible given the relative speed and the
relative bearing angle of the target node). This can have large location estimate errors as a
result. In order to reduce the impact of this issue, location tracking can be applied.

The information about the target node mobility can be used to correct the location
estimates produced by the RNL. This is done by fitting consecutive RNL location estimates
into an array of estimates which correspond to the laws of movement based on the mobility
information. Each new estimate produced by the RNL during a sequence of constant values
of relative (between the root and the target node) mobility parameters is compared to all the
previous estimates in that sequence, using the following analysis:

Rexp,t] = %[t —k]+scos O
(3.29)

Vexp,t] = Pt —k] +ssin 0,

where X[t — k], §[t — k] is the estimate produced k steps ago, and Xy, [f], Jexp, [t] is what the
latest estimate is expected to be, based only on the relative mobility parameters and the
estimate produced k steps ago.

For a sequence of / estimates, the set of following differences is calculated:
&= Lexp ] = Lli = jll, i.j€{0,....1}, i<, (3.30)

where ]I:exp i = (Rexps Vexp j)and]I: = (%,9). The pair of estimates i, j for which the minimum
value of g; ; is obtained, is chosen as an anchor pair. These anchor points are the two
estimates which are placed in such way that they best fit the relative mobility parameters
and laws of motion, making them most likely to be the most accurate ones. A line in the

direction of movement is drawn so that it is the best fit through the anchor points, and all
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other estimates are then realigned along this line. This results in a set of estimates created

over a single sequence corresponding to the relative mobility parameters of the target node.
3.8 Summary

The idea behind the localisation approach of the Relative Neighbouring Localisation al-
gorithm is the relationship between the trends in signal strength and the relative mobility
parameters of the neighbouring node on one side and the neighbour’s relative location on
the other. This relationship is investigated from an analytical perspective in an idealised
scenario in this chapter, after which the realistic scenario limitations are examined, along
with their impact on localisation procedure. Given the assumed network model and the theo-
retical basis of the localisation principle, the research problem is redefined as determining
single-hop neighbour relative location relying on its mobility parameters and signal strength
measurements.

The modular algorithm design, based on the empirical approach employing the Random
Forest Regression model, is presented followed by detailed definitions of each step of
the algorithm. The basics of the RFR algorithm, as well as the process of selection of
that particular regression method, will be presented in the next chapter. In addition, the
methodology of the performance evaluation process is also described in the next chapter,
along with the simulation and experimental testbed setup. Finally, the next chapter also
presents detailed results of the RNL algorithm performance evaluation and proposes a

potential application scenario for the proposed localisation algorithm.



Chapter 4

Evaluation

4.1 Introduction

In order to evaluate the performance of the Relative Neighbour Localisation algorithm
described in the previous chapter, a series of simulation tests have been undertaken. The
simulations need to be calibrated in such a way that they represent reality as close as possible.
This is achieved by setting the parameters of the models used in the simulation environment
according to the values obtained from the analysis of the measurements obtained using an
experimental testbed. This chapter provides the details of the simulation design, the models
used, as well as the experimental testbed setup, the tests performed and the analysis of the
resulting measurements, used for simulation calibration.

A comparison between a number of regression mechanisms and the process of selection
of the estimators used for location angle and distance estimation is also presented in this
chapter, followed by the results of the performance analysis of the RNL algorithm and each
of its parts, using a series of simulations with different node densities. Finally, an application
scenario for distributed sensing coverage control is presented, followed by the performance

evaluation of the proposed solution basing on the RNL algorithm and its estimates.



4.2 Methodology 87

4.2 Methodology

The main method of performance evaluation of the RNL algorithm are simulations, which
make large scale testing of the algorithm accuracy in different setups of network and algorithm
parameters more feasible in comparison to using an experimental testbed. A simulation
environment has been designed using Python programming language [101]. In order to
calibrate the simulator, a set of real-world experiments have been performed. The data
collected in these experiments was used in the process of algorithm design and to derive the
parameters of the simulation models. Also, the performance of different regression models
was evaluated using the experimental data, in order to choose the one which will be used
for the estimators of the RNL. The simulation scenarios aim to replicate the real-world

uncertainties introduced by the measurements the RNL algorithm is using as inputs.

4.2.1 Simulation setup

In addition to the notation presented in section 3.2, the notation shown in Table 4.1 will be

used for simulation parameters.

Table 4.1 Simulation parameters

Parameter Description Unit
R Dimension of the square area m
re Communication range m
(Muin,Mmax)  Constant mobility parameters range s
N Number of nodes —
dur Simulation duration S

At the beginning of the simulation, N nodes are placed on the R X R square area by
generating each node’s x and y coordinates as uniformly distributed variables, i.e. x,y ~

U (0,R). Node mobility is simulated under the following constraints:

* Nodes are moving at a constant speed of 17,
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* Nodes may not leave the square area,

* Nodes move in a constant direction and constant speed for m ~ U (myin, Mpmax) Seconds;

m is repeatedly generated after each turn,

At the beginning of the simulation, and when a turn is due, i.e. m seconds after
the previous turn, the direction of movement of each node randomly generated as

0 ~U(—m,m),

* A restriction is placed on the selection of 6: if moving in the selected direction for
mmax time would place the node outside the square area, the value is discarded and a

new one is randomly generated.

The simulation is run as an array of discrete events. This means that every second the
locations of all nodes are recalculated, each node updates its neighbourhood list, performs
measurement of the strength of the signal from each neighbour, updates the neighbours’
mobility parameters, and performs the RNL algorithm.

The strong assumptions regarding the mobility of the nodes in the ad hoc network are
made purely for maintaining the simplicity of the simulations. The small variations in speed
and direction of movement of nodes from one measurement period to the other can be
compensated by averaging, as the algorithm relies on the general information about the speed
and direction of movement of the nodes over longer periods of time.

Following are the descriptions of the procedures performed by each node at every

simulation step (every second), from the perspective of node i. Neighbourhood update is
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done according to the following rule:

(
ifj € S;, do nothing
d(i,j)<r. =
\ifjgégi = S;=S;U{j}
. 4.1)
lf]ES, — S,:S,\{]}

d(i,j)>rc = <

ifj ¢ S;, do nothing
\

In the expression above, S; represents the set of neighbours of node i, and d(i, j) the true

distance between nodes i and j. Signal strength from node j € S; is calculated as:
ss’; = pr, — 10nlog,od(i, j) — Xy, (4.2)

where n is the path loss exponent, p7, is the transmitting power (in dBm) and X is a random
variable describing the effects of fading. The derivation of numerical values used in and
the justification of this model is done using the data obtained from a real-world experiment
(described in section 4.2.2) and is presented in section 4.2.4. The transmitting power pr,
is set to 20dBm for all nodes. After calculation, signal strength values are averaged with a
moving window of ng,,. The mobility parameters of each neighbouring node are calculated
according to equation (3.11), using the relative speed and direction of movement expressions.
The choice, training and use of the estimator component of the RNL localisation algorithm
are described in section 4.3.

The basis of the simulation are two classes: Node and Neighbour. The Node class
defines each individual node and holds the information about its true location and mobility
parameters, as well as the set of Neighbour objects. It contains the methods used to move
the node, check the neighbourhood and collect the shared estimates for each neighbour in
range. The objects of the Neighbour class rely on two objects of the Node class each — the

node whose neighbour set it is part of (e.g. node A), and the node which represents the
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neighbouring node itself (e.g. node B). Drawing from these two objects, the true relative
location and mobility parameters are calculated at each step. The Neighbour class also
maintains the location estimates (produced by node A for the location of node B, following
the example notation), shared location estimates (of B produced by A) and the methods
for measuring signal strength, running the RNL algorithm and calculating the location
estimates based on the shared estimates. The code structure of the simulator is shown in
Figure 4.1. The Simulation class is responsible for running the simulation using methods
for generating, moving and initiating measurements of individual nodes. It maintains the

simulation parameters and node list and calculates and stores the localisation errors.

4.2.2 Experimental setup

As previously discussed, the main reason for conducting experimental tests is to quantify the
characteristics of a realistic scenario. The environment parameters extracted from the analysis
of the experimental data are used to design the simulation models, making the simulation
realistic. The real-world experiments are designed to be executable using a reasonable
amount of time, space and effort while providing a significantly large dataset for meaningful
analysis. This approach means that some changes have to be introduced compared to the
scenario investigated throughout this thesis, for practical reasons. One mobile and five
stationary nodes are used, placed in different locations around a school hockey field. The
nodes communicate among themselves by forming a wireless infrastructureless (ad hoc)
network.

The mobile node is broadcasting its direction of movement, and the stationary nodes are
measuring the strength of the signal of the moving node every second. Thirty-six different
straight line routes are taken by the mobile node, moving at constant speed. The average
duration of the routes is around 35 seconds. At different points during the experiment some

stationary node wireless network adapters stop producing meaningful measurements, i.e.
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Fig. 4.1 Simulation code diagram

signal strength reading did not change at all. After discarding these measurements, a set of

4340 distinct data points was obtained.

The ground truth for the locations of the stationary nodes and the coordinates of the

routes taken by the mobile node is obtained using satellite map data. The satellite image

of the testbed location and the positions of the five stationary nodes, as well as four of the

thirty-six mobile node routes, are shown in Figure 4.2.
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Fig. 4.2 Experimental testbed configuration
Map data: Google, The Geoinformation Group

4.2.3 Hardware

Raspberry Pi model 2 B (RPi) [102] computers are used in the experiment as nodes, both
stationary and mobile. The nodes are running a distribution of the Linux operating system -
Raspbian, and are equipped with a USB WiFi adapter each, capable of supporting wireless
communication according to the IEEE 802.11bgn standards. Nodes are powered by external
batteries which allowed for autonomy and full mobility. The information about the direction
of movement of the mobile node is obtained from a digital compass connected to the RPi
board via General-Purpose Input/Output (GP1O) pins. A RPi board with its (GPIO) pins,
USB slots and other connectors is shown in figure 4.3.

The mobility of the single mobile node is achieved by mounting in on top of a robot car.
The robot car is controlled by connecting its servo controller to the GPIO pins of the mobile
node RPi. The servo controller is running the four servo motors, one for each wheel of the
car. Additionally, a line tracking module is placed on the bottom of the car, allowing it to

autonomously follow a straight line. The full mobile node design is shown in Figure 4.4.
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Fig. 4.3 Raspberry Pi model 2 B, adopted from [103]

Fig. 4.4 Mobile node design: 1. Digital compass, 2. USB WiFI adapter,
3. Servo motors, 4. Line tracking module

4.2.4 Simulation parameter modelling

In order for the developed simulator to be representative of the real world, the measurements
obtained using the experimental testbed are analysed and the simulation parameters are

designed so that they reproduce the effects present in the experiment. Two models are
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validated using the real world measurements — the digital compass bearing readings and
the propagation model, i.e. the effects of fading on signal strength relative to the distance

between the sender and receiver.

Bearing readings

The bearing angle readings which were acquired from the digital compass module used on
the mobile node use the direction of the East as the zero reference. As in standard bearing
angle reading, the angle values are increasing clockwise. For practical purposes, the ground
truth of the stationary nodes’ locations and the mobile node routes’ coordinates are calculated
in a coordinate system which is aligned to the edges of the hockey field, as shown in Figure
4.5. The x and y axes are intentionally placed this way so that the angles calculated using this

coordinate system are also increasing clockwise.

Fig. 4.5 The local and global coordinate systems
Map data: Google, The Geoinformation Group

Even though the mobile node is moving in a straight direction, the compass angle readings
expectedly fluctuate over time, mostly due to the slight turns which the robot car needs to

perform when it detects that it has steered off the line it is supposed to be tracking, as well
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as the terrain not being ideally flat. These variations in the reported bearing angle will be
addressed later. For now, the average values across single routes are calculated and compared
to the ones computed using the local coordinate system and the start and end points of each
route. The offset between the local and global reference system-based angle values are shown
in Figure 4.6, where each point on the graph shows one route of the mobile node. The linear
approximation of this relationship is described as y = x — 0.71, which fits the coordinate

system offset described above.
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Fig. 4.6 The offset between the true and measured direction angles

Due to the imperfect calibration and the limited sensitivity and accuracy of the sensor
certain errors in reported bearing angles are present, which can also be noted from Figure 4.6.
The set of differences between all individual bearing readings and true values (compensated
for the coordinate system offset) exhibit a non-analytical distribution, not favourable for
modelling. However, if a more precise and more accurate sensor was used, as well as optimal
calibration and better mobility control, it could be assumed that the mean values of movement
direction angle correspond to the true bearing. In this case, the errors are investigated on
an individual route level, and their distribution is shown in Figure 4.7. Disregarding the

small tail on the left side of the distribution, these errors can be modelled using a Gaussian
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Fig. 4.7 Probability density of bearing errors

distribution with a mean of 0 and variance of 8 x 10 *rad?. This model will be used in the

simulation by adding a Gaussian random variable to the true bearing of moving nodes. The

bearing readings can now be simulated as:

0 = Orue +Xo, Xo ~N(0,8x1077), (4.3)

where 6;,,. 1s the true direction of movement and all values are in radians.

Propagation model

The second, more important model which will arise from the experimental data analysis is
the one regarding radio signal propagation. As previously discussed, multipath propagation
causes signal fading effects, which is the biggest source of uncertainty in the RNL localisation
approach. In order to design the simulation propagation model, a simple path loss model
is first adopted, which allows the baseline expected signal strength to be calculated as a

function of distance. Path loss represents the difference between the transmitted and received
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power. This path loss model (in decibels) is described as:

PL = 10nlog;,d +C, 4.4)

where n is the path loss exponent, d is the distance between the transmitting and receiving
nodes, and C is a constant describing the effects of fading and all other losses combined.
From all the measurements obtained from the experimental testbed (4340 of them), pairs
of true distance and measured signal strength are formed. Graphical representation of the
distance to signal strength mapping is shown in Figure 4.8. Along with all the measurements,
the fitted model corresponding to the equation (4.4), and transmit power of 100mW, which

is equivalent to 20dBm, is shown.
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Fig. 4.8 Experimental distance — signal strength pairs

The fitted path loss equation produced the following values for the path loss parameters:
n=2.39 and C = 56.41dB. Looking at the experimental signal strength values, it can be

concluded that instead of using a constant to describe the effects of fading, a better choice
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would be a random variable. This approach transforms equation (4.4) into:

PL = 10nlog,od + X;. 4.5)

The previously obtained fitted model can be used to design the fading random variable,
by analysing the distribution of the errors made by the deterministic model from (4.4). The
measurements are grouped based on distance, using 0.5 m wide bins and errors are calculated
with reference to the deterministic model-based signal strength calculated for the centre-point
of each bin. These errors in the deterministic model represent the varying effects of fading,

the distribution of which is shown in Figure 4.9.
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Fig. 4.9 Probability density of fading

The effects of fading compared to the deterministic signal strength computation can
be modelled using a Gaussian distribution with mean 0.57dB and variance 27.43dB2.!

The relation between the probabilistic Xy from equation (4.5) and the deterministic C from

I'The author acknowledges the absurdity of squaring decibels, as well as analysing logarithmic values in a
linear way. However, the presented analysis is aimed at describing the numerical effects fading has on signal
strength values in decibels in order for these effects to be accurately modelled in a simulation environment.
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equation (4.4) can be expressed as:

X = C+N(0.57,27.43)

(4.6)
Xy ~N(C+0.57,27.43),
which allows the final path loss simulation model to be expressed as (in decibels):
PL = 10nlog od +Xr, Xy~ N(56.98,27.43). 4.7)

Observing the experimental dataset it can be concluded that signal strength measurements
are reported as integers and mostly odd numbers, due to the characteristics of the wireless
adapters used in the experiment. This would not be the case if a wireless adapter capable of
reporting signal strength measurements with greater granularity was used. Therefore, the
simulated signal strength measurements will not be rounded to whole numbers and no bias
towards odd numbers will be included in the model. A conclusion about the communication
range in the experimental scenario can also be drawn. One way of looking at it is that
the maximum communication distance is around 30m. The other one is related to the
detectable levels of signal strength, the minimum of which is 79dB. In line with the previous
assumption about better performance wireless adapters being used, as well as for practical
reasons, in simulation scenarios, the distance between two nodes will be the limiting factor
for communication range.

The results of simulating signal strength measurements using the path loss model from
(4.7) on the set of experimental distances are shown in Figure 4.10. These results are similar

to the experimentally obtained ones, shown in Figure 4.8.
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4.3 Regression Method Selection

This section will cover the process of selection of the regression algorithm used for location
angle and distance estimation, as described in sections 3.3.1 and 3.4. The choice is made
based on the performance of each technique for the task at hand. In the case of RNL algorithm
the dataset, as previously described, is composed of signal strength measurements, bearing
angles and speeds as inputs, and location angles as outputs. Given the complexity of the
relationship between these parameters in a realistic scenario, an empirical approach is chosen
in order to produce the angle and distance estimates from available measurements. Based on
an offline learning phase, the estimator creates a set of rules which map inputs to outputs.
These rules are later applied in the online phase during algorithm use on any new inputs to

produce the output estimates.

4.3.1 Regression methods

Regression analysis is used for building models which estimate the relationship between

the independent variables and the dependent variable. In general, the analysis is started by
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analysing a dataset which contains input points (a vector of independent variable values)
with known values of output points (one of the dependent variables). This is referred to as
the offline phase or training of the model. Depending on the regression method used, a set of
rules is constructed based on the relationships the input — output pairs exhibit, describing
in which way the dependent variable depends on the independent ones. These rules can
then be applied to any new vector of input values to produce an estimate of the output value
corresponding to it. The application of the set of rules as an estimator is referred to as the
online phase.

In the case of the estimators used in the RNL algorithm, the independent variables are
the signal strength measurements and the mobility parameters of the target node, and the
dependent variable is one of the three parameters the values of which are estimated: sine
and cosine of the location angle, and the distance of the target node. The values of the
hyperparameters of each of the estimators have been chosen based on the estimation results

achieved, choosing the set of values which provided the best estimates.

Decision Tree Regression (DTR)

Decision trees methods work by dividing the space of all possible values of the input vector
into regions [104], based on individual parameter’s values. During the training phase, each of
the regions is assigned an output value, which is the mean output of all input points belonging
to the region. The splitting of the set of all training data points into regions, or leaves, is
performed in a greedy, top-down manner. A split is defined by the input vector variable it
concerns and its value, based on which the split is made. Data points with the value of that
variable below the split value are assigned into one region, while the ones with the value of
the variable greater than the splitting value are assigned to the other. The variable and its
value which will be used as the splitting criterion are chosen in a way which will result in

minimising the sum of variances of the two resulting regions of data points, i.e. the splitting
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is done by data point “similarity”’. Multiple criteria for stopping the splitting procedure can
be used, some of which are the depth of the tree, the minimum number of data point per leaf,
the minimum number of data points per leaf for it to be split further, or the maximum number

of leaves. An example of data split into regions based on different variable values is shown

in Figure 4.11.
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Fig. 4.11 Illustration of a dataset split into regions

The following values have been used for hyperparameters:

* maximum tree depth — No limit

* minimum samples per leaf — 2

* minimum samples for split — 2

* maximum number of features to be considered for a split — No limit

¢ maximum number of leaf nodes — No limit

Random Forest Regression (RFR)

This regression method represents an example of ensemble learning or a combination of

multiple regressors [105]. It uses multiple DTR estimators, by training each on a randomly
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chosen subset of the original training dataset. Furthermore, at each split, a random subset
of the input vector variables is chosen for consideration. This way, the phenomenon known
as overfitting the model is avoided. Overfitting happens when the model is fit so closely to
the training dataset that it begins to model the noise in the data, rather than just the principal
relationship between the independent and dependent variable. As a result, the model is
incapable of producing good estimates on anything other than the training dataset. The output
of the RFR estimate is calculated as the mean output of each of its DTR estimators.

The following values have been used for hyperparameters:

* number of estimators — 10

* maximum tree depth — No limit

* minimum samples per leaf — 2

* minimum samples for split — 2

* maximum number of features to be considered for a split — No limit

e maximum number of leaf nodes — No limit

K-Nearest Neighbours (KNN)

Given an input with unknown output, which is to be estimated, the nearest neighbour
algorithm [106] searches for the data points from the training set which are closest, according
to the chosen metric (like Euclidean or Manhattan distances). The number £ defines how
many closest neighbours are to be considered. Once the k nearest neighbours have been
found in the training data set, the output is estimated based on their known outputs. Weighing
can be applied so that the contribution of individual neighbours depends on their distance to
the new input.

The following values have been used for hyperparameters:

* number of neighbours — 5

¢ distance metric — Euclidean
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Support Vector Regression (SVR)

This regression method is based on the support vector machine [107]. This algorithm was
originally intended for classification problems, where the outputs can only take discrete
values from a predefined set, rather than any of the infinite real values as in regression
problems. The SVR algorithm works by trying to fit a hyperplane through the data points,
allowing a certain margin around the hyperplane within which the data points can be located.
In order to reduce the complexity of the potential solution, non-linear transformations of
independent variables can be performed before the fitting procedure. The cost function being
minimised is related to the points lying outside the margin, thus producing the best fit to
describe the relationship between the independent and dependent variables.

The following values have been used for hyperparameters:

* kernel type — radial basis function
* stopping criterion tolerance — 0.001

* error penalty parameter — 1

4.3.2 Estimator performance comparison

The estimator performance is first evaluated on the experimental dataset used in section 4.2.2.
All the data points are put together, their order randomised and they are split into ten equal
groups. In each of the ten tests, one of the groups is used for testing, and the other nine
for training of the estimator. The results shown below are cumulative for all of the ten test
runs. As previously described in chapter 3, three separate estimators are used for the sine and
cosine values of the location angle and for distance. Location angle and the relative location
are then calculated from these estimates. Symmetrical angle estimates are calculated using
the raw estimate and the received direction angle. Because symmetrical angle handling is not

implemented in this test, the smaller of the two errors (raw and symmetrical) is always used,
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for both the location angle and the location estimates, making these results better than the
ones that can be expected in the real application of the estimators. Tables 4.2, 4.3 and 4.4
show the angle, distance and location estimate accuracy for three different values of 7,,:
3,5, and 7, respectively, for all of the tested regression mechanisms.

Table 4.2 Estimator accuracy for n,,., = 3 on experimental dataset

CIror

method estimate .
percentile

25 50 75

angle 44.76° 13.02° 31.23° 63.22°
RFR distance 2.55m 095m 1.97m 3.59m
location 894m 3.58m 6.83m 12.15m

angle 50.92° 15.40° 38.46° 75.11°
SVR distance 2.72m 098m 2.13m 3.80m
location 10.11lm 4.00m 8.15m 13.67m

angle 44.98° 11.97° 30.68° 64.40°
KNN distance 249m 0.82m 1.82m 3.48m
location 892m 3.17m 6.57m 12.29m

angle 52.74°  9.72° 37.65° 83.23°
DTR distance 3.16m 0.79m 2.22m 4.48m
location 10.40m 3.55m 8.02m 14.80m

mean

Observing the values presented in these three tables, it can be concluded that increasing
Nprev in general increases accuracy. This is not surprising, but this increase of accuracy comes
at the price of location estimate not being available for a longer time after a new neighbour
appears in range or an existing one makes a turn. This is why the choice of n,,,, = 5 is
made for further testing and implementation, as a balance between accuracy and estimate
availability. Regarding individual estimators performance, the RFR and KNN estimators
achieve higher accuracy than the other methods, and their results are close to each other.

Three issues exist with the experimental dataset — the first one is that it does not include
varying relative speed as there is only one moving node, the second one is that its limited size

(around 3500 data points, depending on individual routes), and the last one is its low variety,
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Table 4.3 Estimator accuracy for 7., = 5 on experimental dataset

method

estimate

CIror

mean

percentile

25

50

75

RFR

angle
distance
location

41.54°
2.43m
8.38m

11.72°
0.90m
3.28m

27.68°
1.91m
6.15m

57.96°
3.42m
11.11m

SVR

angle
distance
location

48.76°
2.60m
9.58m

14.33°
0.90m
3.71m

34.78°
1.97m
7.42m

72.62°
3.63m
12.96m

KNN

angle
distance
location

39.03°
2.23m
7.78m

10.31°
0.72m
2.68m

26.47°
1.63m
5.69m

54.00°
3.11m
10.54m

DTR

angle
distance
location

48.75°
2.85m
9.58m

6.98°
0.68m
2.99m

31.66°
1.91m
6.94m

76.92°
411m
13.52m

Table 4.4 Estimator accuracy for n., = 7 on experimental dataset

method

estimate

€rror

mean

percentile

25

50

75

RFR

angle
distance
location

35.42°
2.33m
7.31m

9.57°
0.84m
2.81m

23.16°
1.79m
5.30m

46.47°
3.29m
9.36m

SVR

angle
distance
location

45.45°
2.50m
8.93m

12.94°
0.83m
3.42m

30.69°
1.87m
6.64m

67.96°
3.52m
12.11m

KNN

angle
distance
location

33.67°
2.03m
6.86m

9.13°
0.62m
2.40m

22.35°
1.47m
4.81m

44.18°
2.84m
8.98m

DTR

angle
distance
location

42.66°
2.69m
8.60m

5.02°
0.63m
2.35m

23.66°
1.63m
5.83m

66.49°
3.88m
12.36m
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as multiple data points belong to the same runs, and the number of different scenarios is low,
which is caused by the nature of the experiment.

In order to test the regressors on a larger scale and include relative node speed as a variable,
the evaluation procedure is performed using datasets obtained through simulation as well.
Two separate datasets are generated, one for training and testing each. The simulation setup
used to generate the datasets is the same as the one described in section 4.2.1. Simulation

parameters for regression techniques performance evaluation datasets are shown in Table 4.5.

Table 4.5 Regression test simulation parameter values

Parameter Value  Unit
R 100 m
Te 30 m
(Muin, Mmayx)  (15,20) S
N 50 -
dur 50 S

At this point, it is worth reiterating that the experimental dataset has its shortcomings
and that simulation dataset-based results are more representative, as well as the fact that in
the estimator tests no handling of symmetrical angles has been applied, and the better of
the two estimates (raw and symmetrical) is always used, for both the location angle and the
location estimates. Table 4.6 shows the same set of estimators on a much larger simulation
dataset (approximately 30000 data points). After including relative speed as a relevant input
as well as having a more diverse training set, RFR estimators shows the best location estimate
accuracy.

In addition, the ratio of the training complexity of the two methods with best accuracy
results, SVR and RFR, is x? : logx. In a hypothetical application scenario in which mea-
surements are taken in order to estimate the signal propagation model parameters, based on

which a simulation dataset can be created and the estimator trained, all at the time of network
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Table 4.6 Estimator accuracy for 7., = 5 on simulation dataset

CIror

method estimate .
percentile

25 50 75

angle 44 .85° 14.71° 34.94° 66.45°
RFR distance 2.82m 1.05m 2.29m 4.07m
location 13.76m 4.85m 10.14m 20.27m

angle 45.52° 15.09° 35.79° 67.17°
SVR distance 3.07m 1.22m 2.53m 4.43m
location 13.95m 53Im 1046m 20.10m

angle 46.13° 15.91° 36.80° 68.31°
KNN distance 3.04m 1.15m 247m 4.37m
location 14.04m 5.27m 10.63m 20.44m

angle 46.86° 16.03° 37.17° 69.07°
DTR distance 3.82m 1.32m 3.0lm 552m
location 14.70m 5.73m 11.49m 21.16m

mean

deployment, or immediately before, this difference can result in big training time difference,

severely hurting the efficiency of the SVR estimator.

4.4 Localisation Results

The performance of the RNL algorithm is evaluated using a series of simulations based on
the simulation setup described above. The simulations consist of a number of nodes moving
around a square area for a period of time. All nodes repeatedly perform the RNL algorithm
on all of the neighbours within their communication range, and all of their estimates are
recorded throughout the simulation. The estimates considered can be grouped into location
angle, distance and relative two-dimensional location. Given the flow of the RNL algorithm,
where the two-dimensional location estimates are calculated from the location angle and
the distance estimates, these two basic estimates can be observed as standalone outputs

of the RNL algorithm, or more precisely, the parts dedicated to their estimation. Only
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with estimate sharing does the two-dimensional relative location become necessary for the
algorithm operation.

Having this in mind, the estimates from each of the categories are examined at different
steps of the RNL algorithm, thus providing insight into the performance of the individual
algorithm blocks, as well as the algorithm as a whole. In line with the distributed nature
of the algorithm, where all estimates are produced relative to the node which is performing
localisation using the RNL algorithm, relative positions of each pair of neighbouring nodes
are calculated at each step of the simulation, and are used to evaluate individual estimates
in each of the categories. The estimates are grouped and analysed at the level of the whole
simulation. The simulation parameters are shown in Table 4.7. Detailed results for each of

the location angle, distance and two-dimensional location estimates are presented below.

Table 4.7 Simulation parameters

Parameter Value Unit
R 100 m
Te 30 m
(Mmin, Miax) (15,20) S
N {20,50, 100} -
dur 50 S

4.4.1 Location angle estimates

The errors in angle estimates are evaluated by calculating the smaller angle between the lines
passing through the root node at the true location angle and the estimated location angle.
This way, it is assured that no error greater than 180° is possible, which is in line with the

periodic nature of the angle quantity. The errors are calculated using the following equation:

sin(oc—aes,)> 4.8)

O, = arctan
ans cos (Q — Olegr)
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where « is the true location angle and ¢, represents a location angle estimate. All errors in
this section will be presented converted to degrees.
Considering first the location angle estimation block on its own, there exist four location

angle estimates of interest:

Yz the raw RFR angle estimate — this is the value calculated based on the outputs of

the RFR sine and cosine estimation blocks,

Qy, 0y the two ambiguous angle estimates — produced as the result of symmetrical angle

processing, before ambiguity resolution is possible,

jo)]

the unique angle estimate — produced as the result of symmetrical angle processing,

after ambiguity has been resolved.

The results of these estimate errors vary only slightly in different simulation runs with a
different number of nodes in the network. This is due to a lower number of nodes resulting in
a lower number of overall estimates, and with an increase in the number of nodes (and total
estimates made), the results start to converge. On the other hand, the fact these differences are
small is expected, as they represent only the standalone performance of the angle estimation
block of the RNL algorithm, without any impact of estimate sharing on them. Table 4.8
shows the estimates errors of the four estimates produced by the angle estimation block (in a

simulation with N = 50).

Table 4.8 Errors of individually produced location angle estimates

CIror

estimate percentile

25 50 75

TR 67.71° 25.95° 57.99° 103.03°
0y 69.49° 26.14° 60.62° 106.86°
[0%) 69.43° 27.07° 60.11° 105.29°
o 56.79° 18.58° 43.87° 85.07°

mean
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Without any processing, the median raw RFR estimate (yz) error is around 58°. The two
ambiguous angle estimates (& 2) perform slightly worse, at around 60°. This deterioration is
due to the fact that these two ambiguous estimates share among themselves the combined
inaccuracy of the raw and symmetrical RFR estimates, and given the fact that the difference
between these two estimates’ errors and the raw RFR estimate error is small (but greater), it
can be concluded that the raw RFR estimates have a slight bias to the true location angle,
compared to the symmetrical one. On the other hand, once the ambiguity is resolvable, and
the symmetrical angle processing block is able to produce a unique estimate, the accuracy
increases significantly, resulting in a median error of under 45°. Comparing the mean and
the median of the estimates errors shows that across all estimates the mean is considerably
greater than the median, suggesting that very large errors can be considered outliers.

Estimate sharing is based on two-dimensional relative location estimates (X, Y1), SO the
shared angle estimates are calculated from the relative location produced as the output of the

estimate sharing block as:

0, = arctan (@) , 4.9)
Xsh

while their errors are calculated using equation (4.8). In the shared estimates analysis, the

following three location angle estimate values are of interest:
Oy, the location angle estimate calculated from the shared location estimate,

Qi the shared location angle estimate when (one of) the locally produced estimate(s)

(own estimates) is part of the cluster chosen in the estimate sharing procedure,

Oic the shared location angle estimate when no locally produced estimate is part of

the cluster chosen in the estimate sharing procedure.

The number of nodes in the network directly impacts node density, and the expected number

of neighbouring nodes with which estimates can be shared. Tables 4.9, 4.10 and 4.11 show
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the errors in own and the three types of shared location angle estimates, for different number

of nodes in the network.

Table 4.9 Errors of shared and locally produced location angle estimates (N = 20)

€rror

estimate percentile

25 50 75

(0% 61.95° 21.82° 47.65° 97.65°
O 61.03° 18.90° 47.31° 96.71°
Goic 57.18° 17.70° 42.75° 88.31°
Onic 68.14° 22.35° 54.22° 109.67°

mean

Table 4.10 Errors of shared and locally produced location angle estimates (N = 50)

CIror

estimate .
percentile

25 50 75

o 56.79° 18.58° 43.87° 85.07°
O 56.06° 18.90° 42.62° 82.89°
Opic 49.85° 15.90° 36.34° 71.72°
Onic 61.50° 22.19° 48.73° 92.17°

mean

Table 4.11 Errors of shared and locally produced location angle estimates (N = 100)

€rror

estimate percentile

25 50 75

04 58.84° 18.43° 44.57° 90.86°
Oy 55.14° 17.70° 40.72° 82.11°
Opic 47.11° 14.26° 32.79° 66.65°
Onic 59.26° 19.90° 45.41° 89.51°

mean

In general, angle estimates from shared location estimates show smaller errors that the
processed unique angle estimates. A greater benefit of estimate sharing is achieved if the

shared location estimates are discriminated based on the presence of on own estimate in the
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cluster of chosen estimates in the estimate sharing step of the RNL algorithm. This is also
where the impact of the node density can be noticed. The median estimate error is reduced
by an increasing amount as the number of nodes in the network (and consequentially, the
number of neighbours) increases. The error reduction is around 5° for N = 20, 8° for N = 50
and 12° for N = 100. Comparing the errors of the initial, raw RFR location angle estimate
and the one obtained by the estimate sharing procedure (with an own estimate contributing
to the shared one), shows the overall benefit of the symmetrical angle and estimate sharing
steps of the RNL algorithm. The relative improvement of median errors for different number
of nodes is shown in Table 4.12. Figure 4.12 shows the step-by-step improvement of the
angle estimates, from raw RFR estimates, over estimates processed for ambiguity, and finally
shared estimates.

Table 4.12 Median angle estimate error reduction: raw to shared

median error
N=20 N=50 N=100

YR 55.38° 57.99°  59.44°
Goic 42.75° 36.33°  32.79°
rel. imp.  0.77 0.62 0.55

estimate

It can be concluded that both the symmetrical angle handling and the estimate sharing
are beneficial to the angle estimation part of the RNL algorithm, reducing the initial estimate

error by as much as 45%.

4.4.2 Distance estimates

The distance estimate errors are evaluated by calculating the absolute difference between the
true distance and the estimated distance to the target node. This means that distance estimate

errors are expressed as positive numbers and are calculated as:

Og = |d —deg|, (4.10)
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Fig. 4.12 Improvement of angle estimates

where d, represents the distance estimate. Unlike angle estimates, the RNL locally (without
the estimate sharing block) produces only one distance estimate, using the RFR distance
estimation block. After sharing the two-dimensional relative location estimates (X, 5,) with
the nodes in range, and calculating the final shared location estimate, the distance component

of the shared estimate can be calculated as:

dg = /22, + 9%, (4.11)

and the error of the shared distance estimate is calculated using equation (4.10). For the

distance estimate analysis, the following four distance estimates are of interest:

d the RFR distance estimate,

A

dy, the distance estimate calculated from the shared location estimate,

A

dyic the shared distance estimate when (one of) the locally produced estimate(s) (own

estimates) is part of the cluster chosen in the estimate sharing procedure,
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~

dyic the shared distance estimate when no locally produced estimate is part of the

cluster chosen in the estimate sharing procedure.

The number of nodes in the network defines the node density and the expected number
of received estimates from neighbours during the estimate sharing procedure. Tables 4.13,
4.14 and 4.15 show the errors in own and the different types of shared estimates for N = 20,

N =50, N = 100 nodes in the network respectively.

Table 4.13 Errors of shared and locally produced distance estimates (N = 20)

error
estimate percentile
mean
25 50 75

d 2.92m 1.00m 2.17m 4.09m
dyy  6.59m 2.22m 5.11m 9.57m
dye  5.92m 1.94m 4.48m 8.46m
Lic 7.82m 2.97m 622m 11.25m

Table 4.14 Errors of shared and locally produced distance estimates (N = 50)

error
estimate percentile
mean
25 50 75

d 3.02m 1.0lm 2.32m 4.24m
dy,  599m 1.97m 4.37m 8.43m
dye 4.62m 1.55m 3.41m 6.43m
lic  7.19m 2.56m 5.54m 10.23m

The main difference between the distance and the location angle estimations is the fact
that the estimate sharing procedure is actually reducing the accuracy of the distance estimates.
This can be explained in two ways. The first one is the fact that the initial, locally made,
already exhibit a relatively high level of accuracy, with the median error always below 2.5m.

Again, as is the case with the angle estimates, the mean error is greater than the median
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Table 4.15 Errors of shared and locally produced distance estimates (N = 100)

CIror

estimate .
percentile

25 50 75
d 3.05m 1.02m 232m 4.27m

mean

dy, 556m 1.75m 3.99m 7.75m
dyic  3.88m 1.26m 2.87m 5.40m
dye ~ 642m 2.14m 4.80m 9.15m

error, suggesting there exist large error outliers. The second reason why estimate sharing
has an adverse effect on the accuracy of distance estimates is that the estimates received
from neighbouring nodes in the process of sharing estimates are computed based on their
location angle and distance estimates. And while the neighbours’ distance estimates are also
relatively accurate, the precision of the two-dimensional relative location estimate is diluted
by the error in the location angle, resulting in the distance estimate component of the shared
estimate to be less accurate than the locally produced one.

On the other hand, the shared distance estimate errors behave in a similar way as the
shared location angle ones. With the increase in the number of neighbours which can share
their estimates, the number of received estimates increases, and the accuracy of the shared
distance estimate increases. Again, when the locally produced estimate is part of the cluster
chosen by the estimate sharing block, the shared distance estimate is more accurate in
comparison to when this is not the case. With the increase of the number of nodes in the
network, the locally produced distance estimate exhibits slight increase across all percentiles,
which can be attributed to the estimate error converging as the overall number of estimates

produced in the simulation increases.
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4.4.3 Location estimates

The two-dimensional location estimates are evaluated by calculating the Euclidean distance
between the true relative location (x,y) and the estimated relative location (Xeg,Yes) of the

target node, according to the following equation:

5loc = \/(xest _x)2 + (yest _y)2. (4.12)

The local location estimates of the target node are calculated from the location angle and
distance estimates as:
£=dcos (&)
) (4.13)
y=dsin(&),
and there may exist one unique or two ambiguous location estimates, depending on the target
node location angle estimate ambiguity. In the process of estimate sharing the unique or
both the ambiguous location estimates are share with the neighbours, and depending on the
ambiguity of the estimate of the neighbour location estimate there may be one, two or four
total locations which participate in the clustering procedure. If the own and shared location

estimates are defined as:

I the locally produced location estimate; from & and d,

A

Ly, the location estimate calculated from the shared estimates,

A

LLoic the shared location estimate when (one of) the locally produced estimate(s) (own

estimates) is part of the cluster chosen in the estimate sharing procedure,

A

Lnic the shared location estimate when no locally produced estimate is part of the

cluster chosen in the estimate sharing procedure.
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the general expression for the location estimate error (equation (4.12)) can be rewritten as:

510c = HL_LeslHa (4-14)

where L = (x,y) is the true relative location of the target node. For the purpose of comparing
own and shared location estimates, only the unique locally produced location estimates are
considered, while both unique and ambiguous location estimates participate in the process of
shared location estimate calculation.

Before presenting the location estimate errors, it is worth reiterating the conclusions of
the previous two sections, where the estimate sharing procedure was shown to significantly
increase the accuracy of the location angle estimates, and reduce the accuracy of the distance
estimate. The errors of location estimates for N = 20, N = 50 and N = 100 nodes in the

network are shown in Tables 4.16, 4.17 and 4.18, respectively.

Table 4.16 Errors of shared and locally produced location estimates (N = 20)

€rror

estimate percentile

25 50 75

I 17.00m 6.54m 13.58m 25.12m
Ly,  17.0lm 7.27m 1421m 24.12m
vic  1495m 6.46m 12.82m 20.87m
mie  21.05m 9.25m 18.61m 40.00m

mean

The shared relative location estimates produce smaller errors than the locally produced
ones. This information, combined with the behaviour of the location angle and distance
estimates with and without estimate sharing leads to the conclusion that the main source
of the two-dimensional location estimate error is the location angle part of it. Through
the process of sharing, regardless of the deterioration of the distance estimate, the location
angle component ends up being improved significantly enough for the shared estimate to be

more accurate than the locally produced one. The effects of shared location estimates are
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Table 4.17 Errors of shared and locally produced location estimates (N = 50)

CIror

estimate .
percentile

25 50 75

1 17.06m 5.63m 12.76m 26.39m
Ly,  18.19m  7.98m 15.56m 26.24m
. 1483m 596m 11.72m 21.0lm
nic  20.96m  10.73m  19.20m  29.52m

mean

Table 4.18 Errors of shared and locally produced location estimates (N = 100)

CIror

estimate percentile

25 50 75

I 1578m 5.28m 11.82m 23.48m
Iy, 1623m 6.77m 13.05m 23.35m
vic  1293m 4.80m 9.34m 18.0lm
mie  17.92m  8.25m 15.19m 25.61m

mean

again more notable with the increase in the number of nodes in the network, but the location
accuracy improvements can be seen even in the smallest network simulation (N = 20).

The median error of the locally produced location estimate reduces slightly as the size of
the network increases, again, due to the error converging towards a more stable value with
the increase of the overall number of performed estimates. The simulation results show that
using only locally produced location angle and distance estimates, a median error of under
12m is achievable. Using estimate sharing, and making sure a locally produced estimate is
part of the selected cluster of shared estimates, the median error of two-dimensional location
estimate can be under 10 m, with a high node density, and under 13 m with a lower number
of neighbours available for estimate sharing. The relative improvement of median errors for

different number of nodes is shown in Table 4.19.
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Table 4.19 Median location estimate error reduction: own to shared

median error
N=20 N=50 N=100

i, 13.58m 12.76m 11.82m
T, 12.82m 11.72m  9.34m
rel. imp.  0.94 0.92 0.79

estimate

With N = 100 nodes in the network, an improvement of over 20% of the location estimate
error is achieved by estimate sharing.

Taking all of the results presented above into consideration, it is clear that the estimate
sharing procedure is beneficial for the accuracy of the RNL algorithm. It is obvious that
shared estimates should not be just taken by default, but that their efficiency is tightly related
to the presence of a locally produced estimate in the cluster of chosen shared estimates.
Bearing in mind the effects estimate sharing has on the estimated distance, a simple change
in the estimate sharing procedure is proposed. This change assumes that once the location
sharing process is complete, and the final shared estimate computed, the distance component
of this estimate is substituted by the local distance estimate d (if available), and the two-
dimensional location estimate is recalculated. This way, the overall accuracy of the final
location estimate could increase.

In order to investigate this alternative approach, simulations including this small adjust-
ment in the algorithm code were performed. The relative improvement of median location
errors using the updated estimate sharing procedure is shown in Table 4.20. Figure 4.13
shows the step-by-step improvement of the location estimates, from own estimates to updated
shared estimates.

The results of the repeated simulation test with the change described above show that
the location estimate accuracy can be improved by further several percents compared to the
original estimate sharing procedure, for the scenarios with low and medium node densities,

while in the high node density scenario, there is no further increase. This result is in line with
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Table 4.20 Median location estimate error reduction: own to shared; updated estimate sharing

median error

estimate v 5y N=50 N=100
I, 15.12m 10.57m 12.28m
Tpic 13.97m 924m 9.77m
rel. imp.  0.92 0.87 0.79
10 Accuracy of location estimates
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Fig. 4.13 Improvement of location estimates

the fact that the shared distance estimates in the high node density scenario are already very

close to the ones locally produced by the RFR distance estimator.

4.5 Localisation Application

This section presents a potential application of the location estimates produced by the RNL

algorithm in a Wireless Sensor Network (WSN) scenario. A distributed approach to sensing

coverage control is proposed and the effects of the inaccuracy of the location estimates

produced by the RNL algorithm is such a scenario are investigated.

Sensor networks represent one of the most important applications of wireless networks,

especially infrastructureless ones. The principle they operate on is based on the assumption
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of a group of nodes (sensors), connected through a wireless network, joining resources in
order to work together on a common task. This task can, in general, be described as gathering
relevant information about an area of interest and delivering this information to a dedicated
sink. Each node gathers location-related data which can be in the form of measurements of
certain physical phenomena, or images or video files. In the scenario considered throughout
this thesis, involving independently moving nodes with no access to any external localisation
system, efficient group location-based sensing is a challenge, as node distribution is both
unknown and highly dynamic.

The network design parameters are usually dictated by the nature of the particular task
the sensor network is dealing with. As a result, numerous different protocols and algorithms
for group sensing have been developed over the years. One common goal of most of the
existing solutions is the maintenance of a certain level of the geographical coverage of the
area of interest, and their performance is measured by how efficiently it is achieved. Given
such goal, it can be concluded that information about node locations is crucial in coverage
control, which is the reason why it plays a big part in almost all of the existing solutions for
efficient sensing coverage of the area of interest, regardless of the differences in scenarios

and applications these solutions have been proposed for.

4.5.1 WASN coverage control

In static sensor networks solutions have been proposed along the lines of controlling the
distribution of sensing nodes. Zhang et al. [108] show the relationship between coverage and
connectivity in static sensor networks and propose a distributed density control algorithm. In
[109] a non-uniform deterministic node distribution is proposed. The method of different
subsets of sensing nodes being activated in different rounds to provide k-coverage of the

field of interest is proposed in [110]. Multiple other solutions like the one proposed in [111],
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require the nodes to be aware of their locations, either explicitly, or implicitly as is the case
with deterministic node distribution.

Node location information is critical in mobile and hybrid sensing networks, allowing the
node mobility to be utilised for network topology adjustments, thus maintaining coverage
and connectivity, as proposed in [112, 113]. Paper [114] explores the virtual force approach,
assuming that the movement of the sensing nodes is governed by the imaginary force exerted
on them by other nodes or obstacles in the environment. In [115] mobile sensors are moved
based on bids from static sensors, with coverage efficiency as the metric used for making
movement decisions, while in [116] an algorithm for efficient path planning for a mobile sink
node visiting designated static nodes is proposed. Mobile sensing algorithms in general work
with the assumption that there is a terminal, stable, state towards which the nodes move. No
nodes are allowed to move unless the change of location would improve sensing coverage.
This results in node mobility only existing as a consequence of some changes in the network
(after the initial network setup), without the sensing nodes being actively mobile.

While there are some solutions in the field of localisation-free systems, where nodes
are unaware of their locations, the existing algorithms rely either on RSSI (Received Signal
Strength Indicator) and hop-count based proximity estimates as is the case with [117]. Ina
network with dynamic topology, these metrics are unreliable, and solutions based on them
cannot be expected to provide accurate results. Other localisation-free solutions propose
random node sleeping patterns, as in [118, 119].

Without any location references, the only way to ensure a certain level of coverage of the
area of interest would be to make all nodes send their data — resulting in a flooding-based
mechanism — which is far from an efficient strategy. Furthermore, the design of WSNs
assumes, in general, predetermined or controllable sensor distribution, often such that it
is always possible to achieve complete coverage. In such scenarios, the coverage control

problem becomes one of finding the most efficient way to achieve complete coverage.
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In contrast, in a scenario characterised by independent node mobility and a lack of
centralised control or communication, the coverage control problem becomes one of finding

the highest achievable (not necessarily complete) coverage, while doing it in an efficient way.

4.5.2 Distributed coverage control

The sensing application used to evaluate the effects of using the location estimates produced
by the RNL algorithm considers the same scenario of independently moving nodes com-
municating wirelessly through an ad hoc network. Each node is aware of its immediate
neighbourhood, i.e. one-hop neighbours. It is worth pointing out that the area of interest is
specific to each individual node, in line with the assumed distributed nature of the network.
The area of interest of each node coincides with the node’s communication range, as this is
the area its neighbours can be located in.

As previously stated, the high dynamics and independent mobility of all nodes result
in a system in which there can be no guarantee that complete coverage can be achieved, so
the goal of each node is to learn the most about its area of interest, while still not resorting
to a flooding approach when the number of available neighbours is high, so a certain level
of efficiency is maintained. This efficiency is ensured by the process of selection of the
neighbouring nodes whose sensing data is requested in one period, which is described in the
following analysis.

In the interest of simplicity, the node trying to get coverage information from its neigh-
bours will be referred to as the root node, and the neighbours selected to share their sensing
data with the root node will be referred to as the active neighbours. In an ideal case, from
the sensing coverage perspective, all nodes, including the root node and all its neighbours,
would be distributed along the vertices of a triangular grid of dimension a = r;\/3, where 7,

is the sensing range of each node, as shown in Figure 4.14. Such spacing of the nodes would
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guarantee the optimal coverage, as there would be minimal overlap between individual node

coverage areas, and there would be no gaps in coverage.

Fig. 4.14 1deal triangular grid

In a realistic case, with non-deterministic neighbour distribution around the area of
interest, there may be a large number of nodes whose sensing ranges are overlapping. In
order to efficiently gather sensing data from the area of interest, the active neighbours are
chosen using an empirical approach, which ensures that they are closest to the ideal neighbour
locations. A set G of triangular grids across the area of interest is generated. Each grid has
the same dimension a = ry1/3 with the root node as one of the vertices. The grids differ by
the angle at which they are rotated with respect to the root node location, ranging from 0°
to 60° (due to the symmetry of the grid), in % increments, where g is the total number of
grids. The number of grids is a design parameter and represents the trade-off between the
precision of the active neighbour selection procedure, and the length it may take to complete

this procedure.
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For each grid in G, the following metric is calculated:
;gleigd(vj,n,-), (4.15)

where v; are vertices of the grid, and d(v;,n;) represents the Euclidean distance between the
position of the vertex j of the grid and the estimated location of the node n;. The subset of
nodes for which the lowest metric is obtained is the one which achieves the greatest coverage
of the area of interest, and the nodes from this subset are selected active neighbours, i.e. ones
that will share their sensing data with the root node in that period.

An example of the neighbour selection and resulting coverage is shown in Figure 4.15.
Estimated relative locations of all seventeen neighbouring nodes are shown as crosses, next
to the node numbers. The six nodes selected as active neighbours are shown in red circles,
and the vertices of the grid for which the lowest metric from equation (4.15) was obtained
are shown in blue circles. The communication range (area of interest radius) in this example

is set to 30m, while the sensing range is 15m.

30 e

0 10 20 30

-30
-30 -20

Fig. 4.15 Example of active neighbour selection
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4.5.3 Results

The simulation setup used for evaluating coverage control based on RNL node location
estimates is the same as the one used for the RNL performance evaluation, and is shown in
Table 4.21. In addition to running the localisation algorithm at each step, each node now
also applies the coverage control procedure described above on the location estimates. The

following types of coverage are used in the coverage control performance analysis:

estimated coverage of the selected active neighbours based on their estimated locations
real coverage of the selected active neighbours based on their true locations
best optimal coverage achievable given the knowledge of the true locations of all
neighbours

normalised ratio of real and best coverage

Table 4.21 Simulation parameters — coverage control

Parameter Value Unit
R 100 m
re 30 m
rg {10,15} m
(Mumin, Mumax) (15,20) S
N {20,50, 100} -
dur 50 S

As in the previous simulation, the communication range is set to 30 m, which defines the
area of interest of a particular node as a circle of a 30 m radius with the centre in the node
itself. Three different node densities (N = 20, N = 50 and N = 100) are considered, and two
different scenarios regarding the sensing range are examined, one smaller (10m) and one
greater (15m). This means that a total of six distinct simulation tests have been performed.

The coverage results, using the values described above, are shown grouped by node

density, in Tables 4.22, 4.23 and 4.24, for both the small and large sensing areas.
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Table 4.22 Sensing coverage results (N = 20)

rs = 10m rg=15m
coverage percentile mean percentile
25 50 75 25 50 75

estimated 0.341 0.240 0.367 0.450 0.556 0.430 0.591 0.694
real 0.351 0.252 0.367 0.467 0.558 0.440 0.588 0.702
best 0.390 0.295 0.418 0.500 0.613 0.498 0.649 0.747

normalised 0.906 0.863 1.000 1.000 0.919 0.880 1.000 1.000

Table 4.23 Sensing coverage results (N = 50)

rg=10m rg=15m
coverage percentile mean percentile
25 50 75 25 50 75

estimated 0.527 0.465 0.569 0.658 0.725 0.676 0.790 0.862
real 0.497 0.419 0540 0.629 0.636 0.585 0.677 0.751
best 0.518 0.444 0.552 0.649 0.709 0.648 0.750 0.855

normalised 0.964 0.954 1.000 1.000 0911 0.859 0.933 0.990

Table 4.24 Sensing coverage results (N = 100)

rs = 10m re=15m
coverage percentile mean percentile
25 50 75 25 50 75

estimated 0.707 0.675 0.798 0.861 0.842 0.855 0.938 0.970
real 0.597 0.561 0.654 0.726 0.679 0.637 0.725 0.797
best 0.678 0.607 0.751 0.861 0.805 0.755 0.892 0.967

normalised 0.900 0.841 0.903 0.985 0.861 0.798 0.860 0.927

The values in the tables show the portion of the area of interest that is covered, i.e. is
within a sensing area of one of the selected active neighbours in the given period.

The differences between the estimated and the real coverage are caused by the errors in
the location estimates, seeing as the choice of active nodes is made based on the estimated

positions. The real coverage achieved is almost always smaller than the estimated one, as the
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true locations of the chosen nodes result in a greater overlap in sensing areas than the ones
produced by the localisation algorithm.

The best coverage possible is, as expected, always greater than the real one, but the
interesting results are the normalised ones, which show that, even with the inaccuracies in
the location estimation procedure, these errors do not reduce the efficiency of the coverage
control process critically, so the resulting coverage can be close to the best possible one
for the given scenario. The effects of this are best seen when a higher number of nodes is
present in the network, as there are more possibilities of choosing a wrong node. On the
other hand, the best coverage achievable depends highly on the node density and the sensing

range, which is expected.

4.6 Location Tracking

As described in section 3.7, the accuracy of location estimates can be improved by
applying location tracking over time, during periods, or sequences, of constant relative
mobility parameter values. This improvement has been applied on a single simulation run
with the same parameters as shown in Table 4.7. The procedure of location tracking has been
applied to raw location estimates produced by the RNL, for sequences which contained more
than two estimates, and for which the ambiguity has been resolved. Figure 4.16 shows the
overall reduction of location estimate error achieved by applying location tracking, as the

distribution of errors is considerably shifted toward the smaller values.

Location tracking is best described using a step-by-step view of the procedure. Figure 4.17
shows the location tracking procedure at different steps. In each of the figures representing
a single step in a sequence of constant relative mobility of the target node, the blue dots

describe the raw RNL estimates and the true relative location of the target node is shown in
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Location estimate error distribution
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Fig. 4.16 Location estimate error distribution

red crosses. Following the procedure described in section 3.7 at each step, a pair of anchor
points are chosen, shown in green, based on which the fitted line of corrected estimates is

drawn, shown in purple.
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Fig. 4.17 Location tracking procedure
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Fig. 4.17 Location tracking procedure (cont.)

These corrections are dynamic, and the improvement in location estimate accuracy
they enable can increase over time. This can be noted comparing the raw and the fitted
location estimates to the true location over time, as the errors with great magnitude have
been significantly corrected. Such results are in line with the ones shown in Figure 4.16,
where the biggest difference in raw and corrected estimates is the considerable increase of

the proportion of errors under 10m.



Chapter 5

Conclusion and Future Work

5.1 Conclusion

This thesis presented a distributed localisation solutions for ad hoc networks of moving
nodes without access to external localisation signals or systems. The proposed Relative
Neighbour Localisation (RNL) algorithm is based on the relationship between the trends
in signal strength measurements and the mobility parameters on one side, and the relative
neighbour location on the other. The algorithm enables mobile nodes in ad hoc networks to
produce location estimates of their one-hop neighbours, without relying on any additional
localisation infrastructure.

Ranging methods for localisation are used in networks where the capability of performing
precise measurements exists either by the network infrastructure or specific ranging devices.
The use of reference points is possible when infrastructure is in place, or some nodes are
assumed to somehow be aware of their location. Network-wide information exchange can
be used if the network topology is static enough that it does not change in time information
gathering and processing, as well as the dissemination of the results, is performed. None
of these approaches is applicable to an ad hoc network of moving nodes without access to

external localisation systems.
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The basis of the proposed solution is the intuitive relationship between the mobility of
the neighbouring node, the strength of the signal coming from it, and the relative location
of that node. An ideal case localisation principle has been analytically derived, and the
empirical application of this principle to a realistic scenario was described. The localisation
algorithm is formed of blocks for angle and distance estimation, as well as an additional
estimate sharing block. The operation of each of the blocks and the computation of the final
location estimates were presented in detail.

In order to evaluate the performance of the proposed solution, a simulation environment
has been developed. The simulation models are calibrated based on real-life experimental
results gathered from an experimental testbed. The models were shown to be consistent with
the experimental measurements, thus allowing for realistic large-scale tests to be conducted
using the simulation. It was shown how different steps in the process of angle estimation
improve the angle estimate accuracy, as well as how estimate sharing is beneficial to the
accuracy of the final two-dimensional location estimate. A median location estimate error
of under 10 m was achieved, while the median location angel estimate error was shown to
be around 35°. The location estimates produced by the RNL were applied to a distributed
sensing scenario which was designed. The coverage of the area of interest obtained based on
the RNL estimates was shown to be over 90% of the one achievable in the case true locations

of all of the neighbouring nodes were known.

5.2 Future Work

Several paths for further improvements or application of the RNL algorithm exist:
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* Processing of the location estimates, either by angle and distance components or as
two-dimensional points, could help improve the accuracy of these estimates. The time
series of the location estimates could be fitted into the analytical form of the expected

values of these estimates based on the laws of physics.

* Based on the processing mentioned above, individual estimates can be assigned a
certainty value. Detection of clear peaks in signal strength measurements can be used
as an indicator to the relative location of the neighbour, which can be used to reinforce

some estimates.

» All estimates received through the process of location sharing are treated equally.
Should a certainty-based weighing approach be implemented, different estimates could

participate in the shared location procedure proportionally to their certainty.

* Different application may require less precise measurements, but with higher certainty.
The process of estimate sharing could be expended in such way that it introduces
additional constraints for discarding some estimates as impossible, leaving the final
estimate as a general area or an angle sector in which the node is located with high

certainty.



References

[1]

(2]

[3]

[4]

[10]

[11]

Aboelmagd Noureldin. Global Positioning System, volume 7 of Fundamentals of
Inertial Navigation, Satellite-based Positioning and their Integration, pages 65—123.
Springer-Verlag, US, 2006.

Bernhard Hofmann-Wellenhof, Herbert Lichtenegger, and Elmar Wasle. GLONASS,
chapter 10, pages 341-364. GNSS—global navigation satellite systems: GPS,
GLONASS, Galileo, and more. Springer Science & Business Media, 2007.

John M. Dow, Ruth E. Neilan, and Chris Rizos. The international GNSS service
in a changing landscape of global navigation satellite systems. Journal of geodesy,
83(3-4):191-198, 2009.

Geoffrey Blewitt. Basics of the GPS technique: Observation Equations, pages 10-54.
Geodetic applications of GPS. Nordic Geodetic Commission Sweden, 1997.

Ka W. Cheung, Hing-Cheung So, W-K Ma, and Yiu-Tong Chan. Least squares
algorithms for time-of-arrival-based mobile location. IEEE Transactions on Signal
Processing, 52(4):1121-1130, 2004.

Sreeram Potluri. Hyperbolic position location estimator with TDOAS from four
stations. Master’s thesis, NJIT, 2002.

Peng Rong and Mihail L. Sichitiu. Angle of arrival localization for wireless sensor
networks. In 2006 3rd annual IEEE communications society on sensor and ad hoc
communications and networks, volume 1, pages 374-382. leee, 2006.

Federal Communications Commission. Wireless E911 Location Accuracy Require-
ments. https://apps.fcc.gov/edocs_public/attachmatch/FCC-15-9A1_Rcd.pdf, Feb.
2015. Accessed: 2019-02-12.

Gokhan Kul, Tansel Ozyer, and Biilent Tavli. Ieee 802.11 wlan based real time indoor

positioning: Literature survey and experimental investigations. Procedia Computer
Science, 34:157-164, 2014.

3GPP. Digital cellular telecommunications system (Phase 2+); Mobile radio interface
layer 3 LCS specification Location Services (LCS); (GSM 04.71 version 7.0.0 Release
1998). Technical report, 3GPP, Aug 1999.

3GPP. Universal Mobile Telecommunications System (UMTS); Stage 2 functional
specification of UE positioning in UTRAN (3GPP TS 25.305 version 3.7.0 Release
1999). Technical report, 3GPP, Dec 2001.


https://apps.fcc.gov/edocs_public/attachmatch/FCC-15-9A1_Rcd.pdf

References 136

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[23]

3GPP. LTE; Evolved Universal Terrestrial Radio Access (E-UTRA); LTE Positioning
Protocol (LPP) (3GPP TS 36.355 version 9.4.0 Release 9). Technical report, 3GPP,
Jan 2011.

Emiliano Trevisani and Andrea Vitaletti. Cell-ID location technique, limits and
benefits: an experimental study. In Mobile computing systems and applications, 2004.
WMCSA 2004. Sixth IEEE workshop on, pages 51-60. IEEE, 2004.

Maurizio A. Spirito, Sami Poykko, and Olli Knuuttila. Experimental performance of
methods to estimate the location of legacy handsets in GSM. In Vehicular Technology
Conference, 2001. VTC 2001 Fall. IEEE VTS 54th, volume 4, pages 2716-2720. IEEE,
2001.

Ding-Bing Lin and Rong-Terng Juang. Mobile location estimation based on differences
of signal attenuations for GSM systems. IEEE transactions on vehicular technology,
54(4):1447-1454, 2005.

Yilin Zhao. Mobile phone location determination and its impact on intelligent trans-
portation systems. I[EEE Transactions on intelligent transportation systems, 1(1):55-
64, 2000.

Sven Fischer, Havish Koorapaty, Erik Larsson, and Ari Kangas. System performance
evaluation of mobile positioning methods. In Vehicular Technology Conference, 1999
IEEE 49th, volume 3, pages 1962—-1966. IEEE, 1999.

Motorola. Time Aligned IP-DL positioning technique. Technical report, TSG-RAN
Working Group 1, Ad Hoc 17, Meeting 7, September 1999.

Jakub Borkowski, Jarno Niemeld, and Jukka Lempidinen. Performance of cell ID
RTT hybrid positioning method for UMTS radio networks. In Proceedings of the 5th
European Wireless Conference, pages 487-492, 2004.

Jakub Borkowski, Jamo Niemela, and Jukka Lempiainen. Enhanced performance of
Cell ID RTT by implementing forced soft handover algorithm. In IEEE 60th Vehicular
Technology Conference, 2004. VI C2004-Fall. 2004, volume 5, pages 3545-3549.
IEEE, 2004.

Jakub Borkowski and Jukka Lempidinen. Practical network-based techniques for
mobile positioning in UMTS. EURASIP Journal on Applied Signal Processing,
2006:149, 2006.

José A. del Peral-Rosado, José A. Lopez-Salcedo, Gonzalo Seco-Granados, Francesca
Zanier, and Massimo Crisci. Achievable localization accuracy of the positioning
reference signal of 3gpp lte. In 2012 International Conference on Localization and
GNSS, pages 1-6. IEEE, 2012.

Jonas Medbo, Iana Siomina, Ari Kangas, and Johan Furuskog. Propagation channel
impact on Ite positioning accuracy: A study based on real measurements of observed
time difference of arrival. In Personal, Indoor and Mobile Radio Communications,
2009 IEEE 20th International Symposium on, pages 2213-2217. IEEE, 2009.



References 137

[24] Wen Xu, Ming Huang, Chen Zhu, and Armin Dammann. Maximum likelihood
TOA and OTDOA estimation with first arriving path detection for 3GPP LTE system.
Transactions on Emerging Telecommunications Technologies, 27(3):339-356, 2016.

[25] Reza M. Vaghefi and R. M. Buehrer. Improving positioning in LTE through collabora-
tion. In Positioning, Navigation and Communication (WPNC), 2014 11th Workshop
on, pages 1-6. IEEE, 2014.

[26] TehnoCom. TruePosition Indoor Test Report Wilmington, DE. https://ecfsapi.fcc.gov/
file/7521337391.pdf, 2014. Accessed: 2019-01-15.

[27] Marco Driusso, Chris Marshall, Mischa Sabathy, Fabian Knutti, Heinz Mathis, and
Fulvio Babich. Vehicular Position Tracking Using LTE Signals. /IEEE Trans.Vehicular
Technology, 66(4):3376-3391, 2017.

[28] Christian Gentner, Estefania Mufioz, Mohammed Khider, Emanuel Staudinger,
Stephan Sand, and Armin Dammann. Particle filter based positioning with 3GPP-LTE
in indoor environments. In Position Location and Navigation Symposium (PLANS),
2012 IEEE/ION, pages 301-308. IEEE, 2012.

[29] José A. del Peral-Rosado, Michele Bavaro, José A. Lopez-Salcedo, Gonzalo Seco-
Granados, Pravir Chawdhry, Joaquim Fortuny-Guasch, Paolo Crosta, Francesca Zanier,

and Massimo Crisci. Floor detection with indoor vertical positioning in LTE femtocell
networks. In Globecom Workshops (GC Wkshps), 2015 IEEE, pages 1-6. IEEE, 2015.

[30] Po-Hsuan Tseng and Ke-Ting Lee. A femto-aided location tracking algorithm in LTE-
A heterogeneous networks. IEEE Transactions on Vehicular Technology, 66(1):748—
762, 2017.

[31] Frank Stephen Tromp Van Diggelen. A-GPS: Assisted GPS, GNSS, and SBAS. Artech
House, 2009.

[32] Jeongyeup Paek, Kyu-Han Kim, Jatinder P. Singh, and Ramesh Govindan. Energy-
efficient positioning for smartphones using cell-id sequence matching. In Proceedings
of the 9th international conference on Mobile systems, applications, and services,
pages 293-306. ACM, 2011.

[33] Anthony J. Weiss. On the accuracy of a cellular location system based on rss measure-
ments. IEEE transactions on vehicular technology, 52(6):1508—-1518, 2003.

[34] Hui Zang, Francois Baccelli, and Jean Bolot. Bayesian inference for localization in
cellular networks. In INFOCOM, 2010 Proceedings IEEE, pages 1-9. IEEE, 2010.

[35] Heikki Laitinen, Jaakko Lahteenmaki, and Tero Nordstrom. Database correlation
method for gsm location. In Vehicular Technology Conference, 2001. VTC 2001
Spring. IEEE VTS 53rd, volume 4, pages 2504-2508. IEEE, 2001.

[36] Veljo Otsason, Alex Varshavsky, Anthony LaMarca, and Eyal De Lara. Accurate

GSM indoor localization. In International conference on ubiquitous computing, pages
141-158. Springer, 2005.


https://ecfsapi.fcc.gov/file/7521337391.pdf
https://ecfsapi.fcc.gov/file/7521337391.pdf

References 138

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[47]

[48]

[49]

Mohamed Ibrahim and Moustafa Youssef. CellSense: An accurate energy-efficient
GSM positioning system. /[EEE Transactions on Vehicular Technology, 61(1):286-296,
2012.

Yao-hui Wang, Hu Li, Xin-long Luo, Qi-ming Sun, and Jin-nan Liu. A 3D finger-
printing positioning method based on cellular networks. International Journal of
Distributed Sensor Networks, 10(7):248981, 2014.

Ayon Chakraborty, Luis E. Ortiz, and Samir R. Das. Network-side positioning of
cellular-band devices with minimal effort. In Computer Communications (INFOCOM),
2015 IEEE Conference on, pages 2767-2775. IEEE, 2015.

Torbjorn Wigren. Adaptive enhanced cell-id fingerprinting localization by clustering
of precise position measurements. [EEE Transactions on Vehicular Technology,
56(5):3199-3209, 2007.

Jenni Wennervirta and Torbjorn Wigren. RTT positioning field performance. IEEE
Transactions on Vehicular Technology, 59(7):3656-3661, 2010.

Torbjorn Wigren. Fingerprinting localisation using round trip time and timing advance.
IET communications, 6(4):419-427, 2012.

Torbjorn Wigren. LTE Fingerprinting Localization with Altitude. In Vehicular
Technology Conference, IEEE 38th, pages 1-5, 2012.

Arvind Thiagarajan, Lenin Ravindranath, Hari Balakrishnan, Samuel Madden, and
Lewis Girod. Accurate, Low-energy Trajectory Mapping for Mobile Devices. In
Proceedings of the 8th USENIX Conference on Networked Systems Design and Imple-
mentation, pages 267-280. USENIX Association, 2011.

Jussi Turkka and Tapani Ristaniemi. Deliverable D6.3 Localization architecture for
multi-layer, multi-RAT heterogeneous network. Technical report, 2015.

Reza M. Vaghefi and R. M. Buehrer. Cooperative RF pattern matching positioning
for LTE cellular systems. In Personal, Indoor, and Mobile Radio Communication
(PIMRC), 2014 IEEE 25th Annual International Symposium on, pages 264-269. IEEE,
2014.

Xinrong Li, Kaveh Pahlavan, Matti Latva-aho, and Mika Ylianttila. Comparison
of indoor geolocation methods in DSSS and OFDM wireless LAN systems. In
Vehicular Technology Conference Fall 2000. IEEE VTS Fall VTC2000. 52nd Vehicular
Technology Conference (Cat. No. 00CH37152), volume 6, pages 3015-3020. IEEE,
2000.

Krishna Chintalapudi, Anand Padmanabha Iyer, and Venkata N. Padmanabhan. Indoor
localization without the pain. In Proceedings of the sixteenth annual international
conference on Mobile computing and networking, pages 173—-184. ACM, 2010.

Henri Nurminen, Jukka Talvitie, Simo Ali-Loytty, Philipp Miiller, Elena-Simona
Lohan, Robert Piché, and Markku Renfors. Statistical path loss parameter estimation
and positioning using RSS measurements in indoor wireless networks. In 2012



References 139

[50]

[51]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

International Conference on Indoor Positioning and Indoor Navigation (IPIN), pages
1-9. IEEE, 2012.

Luigi Bruno, Mohammed Khider, and Patrick Robertson. On-line training of the
path-loss model in Bayesian WLAN indoor positioning. In International Conference
on Indoor Positioning and Indoor Navigation, pages 1-9. IEEE, 2013.

Suining He, Tianyang Hu, and S-H G. Chan. Contour-based trilateration for indoor
fingerprinting localization. In Proceedings of the 13th ACM Conference on Embedded
Networked Sensor Systems, pages 225-238. ACM, 2015.

Paramvir Bahl and Venkata N. Padmanabhan. RADAR: An in-building RF-based
user location and tracking system. In IEEE infocom, volume 2, pages 775-784.
INSTITUTE OF ELECTRICAL ENGINEERS INC (IEEE), 2000.

Paramvir Bahl, Venkata N. Padmanabhan, and Anand Balachandran. Enhancements
to the RADAR user location and tracking system. Microsoft Research, 2(MSR-TR-
2000-12):775-784, 2000.

Moustafa A. Youssef, Ashok Agrawala, and A. U. Shankar. WLAN location determi-
nation via clustering and probability distributions. In Proceedings of the First IEEE

International Conference on Pervasive Computing and Communications, 2003.(Per-
Com 2003)., pages 143—150. IEEE, 2003.

Moustata Youssef and Ashok Agrawala. The Horus WLAN location determina-
tion system. In Proceedings of the 3rd international conference on Mobile systems,
applications, and services, pages 205-218. ACM, 2005.

Simon Yiu, Marzieh Dashti, Holger Claussen, and Fernando Perez-Cruz. Wireless
rssi fingerprinting localization. Signal Processing, 131:235-244, 2017.

Genming Ding, Zhenhui Tan, Jinsong Wu, and Jinbao Zhang. Efficient indoor finger-
printing localization technique using regional propagation model. IEICE Transactions
on Communications, 97(8):1728-1741, 2014.

Azadeh Kushki, Konstantinos N. Plataniotis, and Anastasios N. Venetsanopoulos.
Intelligent dynamic radio tracking in indoor wireless local area networks. IEEE
Transactions on Mobile Computing, 9(3):405-419, 2010.

Anthea W. S. Au, Chen Feng, Shahrokh Valaee, Sophia Reyes, Sameh Sorour,
Samuel N. Markowitz, Deborah Gold, Keith Gordon, and Moshe Eizenman. In-
door tracking and navigation using received signal strength and compressive sensing
on a mobile device. IEEE Transactions on Mobile Computing, 12(10):2050-2062,
2013.

Genming Ding, Zhenhui Tan, Jinsong Wu, Jinshan Zeng, and Lingwen Zhang. Indoor
fingerprinting localization and tracking system using particle swarm optimization and
Kalman filter. IEICE Transactions on Communications, 98(3):502-514, 2015.

Suining He, S-H G. Chan, Lei Yu, and Ning Liu. Fusing noisy fingerprints with
distance bounds for indoor localization. In 2015 IEEE conference on computer
communications (INFOCOM), pages 2506-2514. IEEE, 2015.



References 140

[62]

[63]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

Adriano Moreira, Ivo Silva, Filipe Meneses, Maria J. Nicolau, Cristiano Pendao, and
Joaquin Torres-Sospedra. Multiple simultaneous Wi-Fi measurements in fingerprinting
indoor positioning. In 2017 International Conference on Indoor Positioning and
Indoor Navigation (IPIN), pages 1-8. IEEE, 2017.

Andreas Haeberlen, Eliot Flannery, Andrew M. Ladd, Algis Rudys, Dan S. Wallach,
and Lydia E. Kavraki. Practical robust localization over large-scale 802.11 wireless
networks. In Proceedings of the 10th annual international conference on Mobile
computing and networking, pages 70-84. ACM, 2004.

Christos Laoudias, Robert Piché, and Christos G. Panayiotou. Device self-calibration
in location systems using signal strength histograms. Journal of Location Based
Services, 7(3):165-181, 2013.

Yungeun Kim, Hyojeong Shin, Yohan Chon, and Hojung Cha. Smartphone-based
Wi-Fi tracking system exploiting the RSS peak to overcome the RSS variance problem.
Pervasive and Mobile Computing, 9(3):406—420, 2013.

Gough Lui, Thomas Gallagher, Binghao Li, Andrew G. Dempster, and Chris Rizos.
Differences in RSSI readings made by different Wi-Fi chipsets: A limitation of WLAN
localization. In 2011 International Conference on Localization and GNSS (ICL-GNSS),
pages 53-57. IEEE, 2011.

Joaquin Torres-Sospedra, Raidl Montoliu, Sergio Trilles, Oscar Belmonte, and Joaquin
Huerta. Comprehensive analysis of distance and similarity measures for Wi-Fi finger-
printing indoor positioning systems. Expert Systems with Applications, 42(23):9263—
9278, 2015.

Joaquin Torres-Sospedra and Adriano Moreira. Analysis of sources of large positioning
errors in deterministic fingerprinting. Sensors, 17(12):2736, 2017.

Nirupama Bulusu, John Heidemann, and Deborah Estrin. GPS-less low-cost outdoor
localization for very small devices. IEEE personal communications, 7(5):28-34, 2000.

Lance Doherty and Laurent El Ghaoui. Convex position estimation in wireless
sensor networks. In Proceedings IEEE INFOCOM 2001. Conference on Computer
Communications. Twentieth Annual Joint Conference of the IEEE Computer and
Communications Society (Cat. No. 01CH37213), volume 3, pages 1655-1663. IEEE,
2001.

Tian He, Chengdu Huang, Brian M. Blum, John A. Stankovic, and Tarek F. Abdelza-
her. Range-free localization and its impact on large scale sensor networks. ACM
Transactions on Embedded Computing Systems (TECS), 4(4):877-906, 2005.

Jang-Ping Sheu, Pei-Chun Chen, and Chih-Shun Hsu. A distributed localization
scheme for wireless sensor networks with improved grid-scan and vector-based refine-
ment. /[EEE transactions on mobile computing, 7(9):1110-1123, 2008.

Dragos Niculescu and Badri Nath. Ad hoc positioning system (APS). In GLOBE-
COM’01. IEEE Global Telecommunications Conference (Cat. No. 01CH37270), vol-
ume 5, pages 2926-2931. IEEE, 2001.



References 141

[74]

[75]

[76]

[77]

[78]

[80]

[81]

[82]

[83]

[85]

[86]

Yun Wang, Xiaodong Wang, Demin Wang, and Dharma P. Agrawal. Range-free local-
ization using expected hop progress in wireless sensor networks. IEEE Transactions
on Parallel and Distributed Systems, 20(10):1540-1552, 2009.

Hyunjae Woo, Sangwoo Lee, and Chaewoo Lee. Range-free localization with isotropic
distance scaling in wireless sensor networks. In The International Conference on
Information Networking 2013 (ICOIN), pages 632—-636. IEEE, 2013.

Ahmad El Assaf, Slim Zaidi, Sofiene Affes, and Nahi Kandil. Range-free localiza-
tion algorithm for heterogeneous wireless sensor networks. In 2014 IEEE Wireless
Communications and Networking Conference (WCNC), pages 2805-2810. IEEE,
2014.

C. S.J. Rabaey and Koen Langendoen. Robust positioning algorithms for distributed
ad-hoc wireless sensor networks. In USENIX technical annual conference, pages
317-327, 2002.

Radhika Nagpal, Howard Shrobe, and Jonathan Bachrach. Organizing a global
coordinate system from local information on an ad hoc sensor network. In Information
processing in sensor networks, pages 333-348. Springer, 2003.

Jizhong Zhao, Wei Xi, Yuan He, Yunhao Liu, Xiang-Yang Li, Lufeng Mo, and Zheng
Yang. Localization of wireless sensor networks in the wild: Pursuit of ranging quality.
IEEE/ACM Transactions on Networking (ToN), 21(1):311-323, 2013.

Srdjan Capkun, Maher Hamdi, and Jean-Pierre Hubaux. GPS-free positioning in
mobile ad hoc networks. Cluster Computing, 5(2):157-167, 2002.

Andreas Savvides, Heemin Park, and Mani B. Srivastava. The bits and flops of the
n-hop multilateration primitive for node localization problems. In Proceedings of the

1st ACM international workshop on Wireless sensor networks and applications, pages
112-121. ACM, 2002.

Yi Shang, Wheeler Ruml, Ying Zhang, and Markus P. Fromherz. Localization from
mere connectivity. In Proceedings of the 4th ACM international symposium on Mobile
ad hoc networking & computing, pages 201-212. ACM, 2003.

Xiang Ji and Hongyuan Zha. Sensor positioning in wireless ad-hoc sensor networks
using multidimensional scaling. In IEEE INFOCOM 2004, volume 4, pages 2652—
2661. IEEE, 2004.

Pratik Biswas and Yinyu Ye. Semidefinite programming for ad hoc wireless sensor net-
work localization. In Proceedings of the 3rd international symposium on Information
processing in sensor networks, pages 46-54. ACM, 2004.

Tzu-Chen Liang, Ta-Chung Wang, and Yinyu Ye. A gradient search method to round
the semidefinite programming relaxation solution for ad hoc wireless sensor network
localization. Sanford University, formal report, 5, 2004.

Anushiya A. Kannan, Guoqgiang Mao, and Branka Vucetic. Simulated annealing based
localization in wireless sensor network. In The IEEE Conference on Local Computer
Networks 30th Anniversary (LCN’05) 1, page 514. IEEE, 2005.



References 142

[87]

[88]

[89]

[90]

[91]

[92]

[93]

[94]

[95]

[96]

[97]

[98]

[99]

[100]

Anushiya A. Kannan, Guoqgiang Mao, and Branka Vucetic. Simulated annealing based
wireless sensor network localization with flip ambiguity mitigation. In 2006 IEEE
63rd Vehicular Technology Conference, volume 2, pages 1022—-1026. IEEE, 2006.

Sangwoo Lee, Hyunjae Woo, and Chaewoo Lee. Wireless sensor network localization
with connectivity-based refinement using mass spring and kalman filtering. EURASIP
Journal on Wireless Communications and Networking, 2012(1):152, 2012.

Yi Shang and Wheeler Ruml. Improved MDS-based localization. In IEEE INFOCOM
2004, volume 4, pages 2640-2651. IEEE, 2004.

Mo Li and Yunhao Liu. Rendered path: range-free localization in anisotropic sensor
networks with holes. IEEE/ACM Transactions on Networking (ToN), 18(1):320-332,
2010.

Bin Xiao, Lin Chen, Qingjun Xiao, and Minglu Li. Reliable anchor-based sensor
localization 1in irregular areas. IEEE Transactions on Mobile Computing, 9(1):60-72,
2010.

Qingjun Xiao, Bin Xiao, Jiannong Cao, and Jianping Wang. Multihop range-free
localization in anisotropic wireless sensor networks: A pattern-driven scheme. /IEEE
Transactions on Mobile Computing, 9(11):1592-1607, 2010.

Xuan Liu, Shigeng Zhang, Jianxin Wang, Jiannong Cao, and Bin Xiao. Anchor
supervised distance estimation in anisotropic wireless sensor networks. In 2011 IEEE
Wireless Communications and Networking Conference, pages 938-943. 1EEE, 2011.

Sangwoo Lee, Bonhyun Koo, and Sunwoo Kim. Raps: reliable anchor pair selection
for range-free localization in anisotropic networks. /[EEE Communications Letters,
18(8):1403-1406, 2014.

Sangwoo Lee, Myungjun Jin, Bonhyun Koo, Cheonsig Sin, and Sunwoo Kim. Pascal’s
triangle-based range-free localization for anisotropic wireless networks. Wireless
Networks, 22(7):2221-2238, 2016.

H.T. Friis. Simple Transmission Formula. Proceedings of the IRE, 34(5):254-256,
1946.

Jiugiang Xu, Wei Liu, Fenggao Lang, Yuanyuan Zhang, and Chenglong Wang.
Distance measurement model based on RSSI in WSN. Wireless Sensor Network,
2(08):606, 2010.

Paolo Pivato, Luigi Palopoli, and Dario Petri. Accuracy of RSS-based centroid local-
ization algorithms in an indoor environment. /EEE Transactions on Instrumentation
and Measurement, 60(10):3451-3460, 2011.

Omotayo G. Adewumi, Karim Djouani, and Anish M. Kurien. RSSI based indoor
and outdoor distance estimation for localization in WSN. In 2013 IEEE international
conference on Industrial technology (ICIT), pages 1534-1539. IEEE, 2013.

Joe H. Ward Jr. Hierarchical grouping to optimize an objective function. Journal of
the American statistical association, 58(301):236-244, 1963.



References 143

[101] Travis E. Oliphant. Python for scientific computing. Computing in Science & Engi-
neering, 9(3):10-20, 2007.

[102] Eben Upton and Gareth Halfacree. Raspberry Pi user guide. John Wiley & Sons,
2014.

[103] Raspberry Pi 2 Model B. https://www.raspberrypi.org/products/
raspberry-pi-2-model-b/. Accessed: 2019-02-27.

[104] Gareth James, Daniela Witten, Trevor Hastie, and Robert Tibshirani. Tree-based
methods, pages 303—-335. An Introduction to Statistical Learning. Springer, 2013.

[105] Leo Breiman. Random forests. Machine Learning, 45(1):5-32, 2001.

[106] Naomi S. Altman. An introduction to kernel and nearest-neighbor nonparametric
regression. The American Statistician, 46(3):175-185, 1992.

[107] Gareth James, Daniela Witten, Trevor Hastie, and Robert Tibshirani. Support vector
machines, pages 337-372. An Introduction to Statistical Learning. Springer, 2013.

[108] Honghai Zhang and Jennifer C. Hou. Maintaining sensing coverage and connectivity
in large sensor networks. Ad Hoc & Sensor Wireless Networks, 1(1-2):89-124, 2005.

[109] Xiaobing Wu, Guihai Chen, and Sajal K. Das. Avoiding energy holes in wireless
sensor networks with nonuniform node distribution. /IEEE Transactions on Parallel
and Distributed Systems, 19(5):710-720, 2008.

[110] Habib M. Ammari and Sajal K. Das. Centralized and clustered k-coverage protocols
for wireless sensor networks. IEEE Transactions on Computers, 61(1):118-133, 2012.

[111] Xiaorui Wang, Guoliang Xing, Yuanfang Zhang, Chenyang Lu, Robert Pless, and
Christopher Gill. Integrated coverage and connectivity configuration in wireless sensor
networks. In Proceedings of the st international conference on Embedded networked
sensor systems, pages 28-39. ACM, 2003.

[112] Guiling Wang, Guohong Cao, and Thomas F. La Porta. Movement-assisted sensor
deployment. IEEE Transactions on Mobile Computing, 5(6):640-652, 2006.

[113] Saurabh Ganeriwal, Aman Kansal, and Mani B. Srivastava. Self aware actuation for
fault repair in sensor networks. In /IEEE International Conference on Robotics and
Automation, 2004. Proceedings. ICRA’04. 2004, volume 5, pages 5244-5249. IEEE,
2004.

[114] Nojeong Heo and Pramod K. Varshney. An intelligent deployment and clustering
algorithm for a distributed mobile sensor network. In SMC’03 Conference Proceedings.
2003 IEEE International Conference on Systems, Man and Cybernetics. Conference
Theme-System Security and Assurance (Cat. No. 03CH37483), volume 5, pages 4576—
4581. IEEE, 2003.

[115] Guiling Wang, Guohong Cao, Piotr Berman, and Thomas F. La Porta. Bidding
protocols for deploying mobile sensors. IEEE Transactions on Mobile Computing,
6(5):563-576, 2007.


https://www.raspberrypi.org/products/raspberry-pi-2-model-b/
https://www.raspberrypi.org/products/raspberry-pi-2-model-b/

References 144

[116] Hamidreza Salarian, Kwan-Wu Chin, and Fazel Naghdy. An energy-efficient mobile-
sink path selection strategy for wireless sensor networks. [EEE Transactions on
vehicular technology, 63(5):2407-2419, 2014.

[117] Bang Wang, Cheng Fu, and Hock B. Lim. Layered diffusion-based coverage control
in wireless sensor networks. Computer Networks, 53(7):1114—-1124, 2009.

[118] Santosh Kumar, Ten H. Lai, and J6zsef Balogh. On k-coverage in a mostly sleeping
sensor network. In Proceedings of the 10th annual international conference on Mobile
computing and networking, pages 144—158. ACM, 2004.

[119] Fan Ye, Gary Zhong, Jesse Cheng, Songwu Lu, and Lixia Zhang. PEAS: A robust
energy conserving protocol for long-lived sensor networks. In 23rd International

Conference on Distributed Computing Systems, 2003. Proceedings., pages 28-37.
IEEE, 2003.



	Table of contents
	List of figures
	List of tables
	Nomenclature
	1 Introduction
	1.1 Overview
	1.2 Research Contributions
	1.3 Publications
	1.4 Thesis Structure

	2 Localisation in Wireless Networks
	2.1 Wireless Networks and the Need for Localisation
	2.1.1 Types of wireless networks
	2.1.2 Localisation fundamentals

	2.2 Localisation Parameters
	2.2.1 Range-based localisation
	2.2.2 Range-free localisation

	2.3 Localisation Methods
	2.3.1 Trilateration
	2.3.2 Multilateration
	2.3.3 Triangulation
	2.3.4 Connectivity based methods
	2.3.5 Pattern matching methods

	2.4 Existing Localisation Solutions in Radio Networks
	2.4.1 Infrastructure-based networks
	2.4.2 Infrastructureless networks

	2.5 Summary and Problem Definition

	3 Decentralised Localisation Algorithm Design
	3.1 Introduction
	3.1.1 Network model
	3.1.2 Ideal case localisation
	3.1.3 Real case limitations

	3.2 Algorithm Overview
	3.2.1 Algorithm structure

	3.3 Angle Estimation
	3.3.1 Raw RFR estimates
	3.3.2 Symmetrical angle problem

	3.4 Distance Estimation
	3.5 Estimate Sharing
	3.5.1 Computing shared estimates
	3.5.2 Clustering

	3.6 Special Case – Estimate Propagation
	3.7 Location Tracking
	3.8 Summary

	4 Evaluation
	4.1 Introduction
	4.2 Methodology
	4.2.1 Simulation setup
	4.2.2 Experimental setup
	4.2.3 Hardware
	4.2.4 Simulation parameter modelling

	4.3 Regression Method Selection
	4.3.1 Regression methods
	4.3.2 Estimator performance comparison

	4.4 Localisation Results
	4.4.1 Location angle estimates
	4.4.2 Distance estimates
	4.4.3 Location estimates

	4.5 Localisation Application
	4.5.1 WSN coverage control
	4.5.2 Distributed coverage control
	4.5.3 Results

	4.6 Location Tracking

	5 Conclusion and Future Work
	5.1 Conclusion
	5.2 Future Work

	References

