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Approximate Analysis of Non-stationary Loss Queues and

Networks of Loss Queues with General Service Time

Distributions

N. Izadya,∗, D. Worthingtona,

aManagement Science Department, Lancaster University, Lancaster LA1 4YX, United Kingdom

Abstract

A fixed point approximation (FPA) method has recently been suggested for non-

stationary analysis of loss queues and networks of loss queues with Exponential

service times. Deriving exact equations relating time-dependent mean numbers of

busy servers to blocking probabilities, we generalize the FPA method to loss sys-

tems with general service time distributions. These equations are combined with

associated formulae for stationary analysis of loss systems in steady state through

a carried load to offered load transformation. The accuracy and speed of the gener-

alized methods are illustrated through a wide set of examples.

Keywords: Queueing, Erlang loss model, Time-dependent arrival rate, Carried

load

1. Introduction

In this paper, we shall be primarily concerned with time-dependent behavior of

non-stationary loss queues denoted by Mt/GI/s/0. The arrival stream is assumed

to be a non-homogeneous Poisson process (the Mt) with deterministic arrival rate

function {λ(t), t ≥ 0}. Service times are independent identically distributed (i.i.d)

random variables following a general distribution (the GI) that are also independent

of the arrival process. There is no extra waiting space (the 0), so customers finding

all s parallel identical servers busy will be cleared from the system without affecting

future arrivals (no retrials).

Let Q(t) denote the number of busy servers in the system at time t. The blocking

probability function, defined by β(t) ≡ Pr{Q(t) = s}, is the most important per-

∗Corresponding Author. Tel: +44(0)1524592721
Email addresses: n.izady@lancaster.ac.uk (N. Izady ), d.worthington@lancaster.ac.uk

(D. Worthington )

Preprint submitted to European Journal of Operational Research June 9, 2010



formance indicator of the system. Due to the independent increments property of

the Poisson process, apart from the time-dependent probability of all servers being

busy, β(t) also represents the conditional probability of blocking at instant t given

that an arrival occurs at t (Massey and Whitt, 1996):

β(t) ≡ Pr{Q(t) = s} = Pr{Q(t) = s| an arrival occurs in (t, t+ dt)}. (1)

The steady-state analysis of the stationary version of the above system, the

M/GI/s/0 queue, with constant arrival rate λ(t) = λ and mean service time 1/µ

gives rise to the following equation (see, e.g. Gross and Harris, 1998, Chapter 5)

lim
t→∞

Pr{Q(t) = i} =
ri/i!∑s
j=0 r

j/j!
, i = 0, . . . , s, (2)

where r = λ/µ is the so-called offered load. The offered load r coincides with the

steady-state mean number of busy servers in an associated M/GI/∞ model, with

the same arrival and service processes as the loss system but with infinitely many

servers. Substituting i = s in (2) results in the well-known Erlang Loss Equation

for computing the steady-state blocking probability:

β ≡ lim
t→∞

Pr{Q(t) = s} =
rs/s!∑s
j=0 r

j/j!
. (3)

It then easily follows that

m ≡ lim
t→∞

E[Q(t)] = r(1− β). (4)

The mean number m of busy servers is referred to as the carried load, which, in

contrast with the offered load, reflects losses in the workload due to lack of enough

servers.

Loss queues and networks of loss queues have been used for modeling a wide

range of systems from computer and telecommunication networks (e.g. Jagerman,

1975; Jennings and Massey, 1997; Abdalla and Boucherie, 2002; Alnowibet and Per-

ros, 2006) to hospital wards (e.g. Bekker and Bruin, 2009; Bruin et al., 2009). The

majority of these systems have significant variations in their arrival rates. This

renders loss systems difficult to analyze. The insensitivity property of the system

performance to the service time distribution beyond its mean, as in (2), is observed

to be lost in this case (Davis et al., 1995). If service time follows a phase-type distri-
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bution, one can always use a numerical ordinary differential equation (ODE) solver,

like a Runge-Kutta (Green et al., 1991) or Euler method (Davis et al., 1995), or a

faster approach like randomization (Ingolfsson et al., 2007) to compute Pr{Q(t) = i}
over time. Since phase-type distributions are dense in the class of all distributions

defined on non-negative real numbers (Asmussen, 2003, Theorem 4.2), one can in

theory match empirical service time data sufficiently closely using a sufficiently large

number of phases .

However, the computational effort associated with these numerical methods

grows exponentially with the number of service time phases. For example, the

size of the state space of a 100−server loss system grows from 101 to 5152 when a

two-phase distribution is considered instead of an Exponential. The curse of dimen-

sionality is more profound when multiple classes of customers and networks of loss

queues are considered. We therefore need to resort to approximate approaches.

Most approximate approaches treat the non-stationary Mt/GI/s/0 model at

time t as if it were a stationary M/GI/s/0 model in steady state with r = r(t), a

properly defined time-dependent offered load. For example, the Pointwise Station-

ary Approximation (PSA) defines r(t) as the instantaneous load λ(t)/µ (Green and

Kolesar, 1991; Whitt, 1991). This approach implies that the system settles down to

steady state at each time t, which does not generally occur unless the arrival rates

change slowly relative to the mean service time. It also does not capture the effect

of service time distribution beyond its mean.

Analogous to what happens in stationary loss systems, the Modified Offered

Load (MOL) approximation defines r(t) as the mean number of busy servers in an

uncapacitated Mt/GI/∞ model, with the same arrival and service processes as the

original loss model, at any time t (Jagerman, 1975). It works well as long as blocking

probabilities are small (Massey and Whitt, 1994).

The Fixed Point Approximation (FPA), proposed by Alnowibet and Perros (2009),

takes a more dynamic approach to defining r(t) and produces remarkable accuracy

for the whole range of blocking probabilities in a short time. However, its application

is limited to Exponential service times. It is based upon the following differential

equation in Mt/M/s/0 loss queues

dE[Q(t)]

dt
= λ(t)(1− β(t))− µE[Q(t)], (5)

where µ is the Exponential service rate. The FPA method uses Equation (5) along

with the Erlang loss equation (3) in an iterative manner to approximate blocking
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probabilities and mean busy servers over time. To make use of the Erlang loss

equation, Alnowibet and Perros (2009) propose the offered load r(t) to be defined

as

r(t) =
E[Q(t)]

1− β(t)
. (6)

In this paper, we extend the FPA method to loss queues with arbitrary service

time distributions. This is achieved by developing an integral equation relating the

time-dependent mean number of busy servers (the carried load) to the blocking

probabilities in Mt/GI/s/0 loss models. This equation is obtained by applying a

decomposition technique to non-stationary infinite-server queues and gives rise to

an exact algorithm for computing blocking probabilities in single-server loss queues.

For multi-server loss queues, it replaces the differential equation (5) in the FPA

iterative scheme.

The carried load to offered load transformation summarized in (6) is motivated

by the similar relation between these two quantities in steady state, as illustrated in

(4). We therefore investigate the accuracy of this transformation in non-stationary

settings. Experiments confirm that the offered load obtained by this transformation

can also be used for characterizing the entire distribution of the number of busy

servers.

As shown by Alnowibet and Perros (2009), one can derive differential equations

similar to (5) for multi-class loss queues and for networks of loss queues with Expo-

nential service times. Combining those equations with associated stationary formu-

lae, they extended the FPA method to multi-class loss queues and networks of loss

queues. We do the same by generalizing our integral equation to cover multi-class

loss queues and networks of loss queues with general service time distributions.

We start with single-class loss queues in Section 2. The derivations of an in-

tegral equation relating system characteristics, developing solution algorithms, and

numerical experiments are included in this section. We then extend our method to

multi-class loss queues and networks of loss queues in Sections 3 and 4, respectively.

Conclusions are drawn in Section 5. This paper is accompanied by two online appen-

dices. Appendix A includes all the required algorithms, and Appendix B provides

an accuracy analysis for blocking probabilities computed for single-class loss queues.

2. Single-Class Loss Queues

In this section, we decompose a non-stationary Mt/GI/∞ queue to derive an

equation which expresses mean numbers of busy servers in Mt/GI/s/0 loss queues
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in terms of the arrival rate, service time distribution, and blocking probability

functions. For this purpose, we first need to review some results concerning non-

stationary infinite-server queues.

Consider an Mt/GI/∞ queue with a non-homogeneous Poisson arrival process

with arrival rate function {λ(t), −∞ < t < ∞}. Let S be a generic service time

random variable with cumulative distribution function (cdf) G(t) ≡ Pr(S ≤ t), t ≥
0. Let Q∞(t) be the number of busy servers in the system at time t, and let

m∞(t) ≡ E[Q∞(t)]. We assume the system starts empty in the distant past.

Theorem 1. Q∞(t) has a Poisson distribution for each value of t with the following

time-dependent mean function

m∞(t) =

∫ t

−∞
λ(u)Gc(t− u) du. (7)

The departure process is a Poisson process with the following time-dependent rate

function

δ∞(t) =

∫ ∞
0

λ(t− u)dG(u). (8)

Proof. See Theorem 1 of Eick et al. (1993).

Remark 1. Equation (7) remains valid even with a general arrival process provided

that the time-dependent arrival rate function λ(t) is well defined (Massey and Whitt,

1993, Theroem 2.1 and Remark 2.3). The queue length distribution, however, will

not be Poisson any more.

Now consider an Mt/GI/s/0 loss system with the same arrival process and ser-

vice time distribution as defined above for the infinite-server system. LetQ(t) denote

the number of busy servers at time t, and let m(t) ≡ E[Q(t)]. Let δ(t) denote the

departure rate at time t.

Theorem 2. For Mt/GI/s/0 loss system that starts out empty in the infinite past,

we have

m(t) =

∫ t

−∞
λ(u)(1− β(u))Gc(t− u) du, (9)

and

δ(t) =

∫ ∞
0

λ(t− u)(1− β(t− u))dG(u), (10)

where β(t) = Pr{Q(t) = s}.
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Proof. Suppose we have an infinite-server system whose servers are numbered ar-

bitrarily 1, 2, . . . (see Figure 1). Decompose this system into an s−server pri-

mary group (numbered 1, 2, · · · , s) and an infinite-server overflow group (numbered

s + 1, · · · ). For overflow systems associated with stationary loss systems in steady

state, see, for example, Chapter 7 of Wolff (1988).

1

2

s

s+ 1

∞

λ(t)

λ(t)(1− β(t))

λ(t)β(t)

.
.

.
.

.
.

Figure 1: Primary group and overflow group

Now suppose that arrivals, which follow a non-homogeneous Poisson process with

rate λ(t), first refer to the primary group for service and start their service if an idle

server is available there. Those who find all s servers in the primary group busy

are not turned away, but overflow and are handled by the infinite-server overflow

group. So the arrival stream is split into two substreams, one goes into the primary

group, and the other is served in the overflow group. Note that the service time of

the overflow group is the same as that of the primary group.

Now let Q(t), Qo(t), and Q∞(t) denote the number of busy servers in the primary

s−server group, the infinite-server overflow group, and the entire system, respec-

tively. We have

Q∞(t) = Q(t) +Qo(t), (11)

and by taking expectations

m(t) = m∞(t)−m0(t), (12)

where m(t) = E[Q(t)], mo(t) = E[Qo(t)], and m∞(t) = E[Q∞(t)]. Since the arrival

process to the system is a non-homogeneous Poisson process with rate λ(t), we
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immediately have m∞(t) from (7). On the other hand, the arrival process to the

overflow group is not Poisson. This is because overflows only occur when the primary

group is full, and so the arrivals to the overflow group are Poisson only for the

intervals during which this is true. However, Remark 1 allows us to use Equation (7)

given a well-defined rate function exists for the overflow arrival process. In order to

find this rate, we use a simple partitioning argument: Partition the interval (−∞, t)
into sub-intervals of length δu and let A(t) denote the total number of overflows

in (−∞, t). Since the orderliness property of the Poisson process is preserved, the

expected number of overflows over the sub-interval (u, u+ du) is λ(u)β(u)du and so

E[A(t)] =

∫ t

−∞
λ(u)β(u)du, (13)

which implies that λ(t)β(t) is the arrival rate to the overflow group. Now, we have

m(t) =

∫ t

−∞
λ(u)Gc(t− u) du−

∫ t

−∞
λ(u)β(u)Gc(t− u) du

=

∫ t

−∞
λ(u)(1− β(u))Gc(t− u) du,

(14)

which establishes (9).

Now let D(t), Do(t), and D∞(t) denote the total number of departures from the

primary s− server group, the overflow group, and the entire system, respectively,

up to time t. We then have

E[D∞(t)] =

∫ t

−∞
λ(u)du−

∫ t

−∞
λ(u)Gc(t− u) du (15)

E[Do(t)] =

∫ t

−∞
λ(u)β(u)du−

∫ t

−∞
λ(u)β(u)Gc(t− u) du, (16)

where the first terms on the right hand sides are the expected numbers of arrivals

up to time t, and the second terms are the mean numbers of busy servers at time t.

Thus,

E[D(t)] = E[D∞(t)]− E[Do(t)] =

∫ t

−∞
λ(u)(1− β(u))G(t− u)du, (17)

which, by taking derivative with respect to t, yields the departure rate δ(t) given in

(10).

The following corollary states the relation between arrival and departure rates
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in non-stationary loss queues.

Corollary 1.
dm(t)

dt
= λ(t)(1− β(t))− δ(t), (18)

Proof. Proof follows easily by differentiating Equation (9) with respect to t.

For Mt/M/s/0 loss queues with Exponential service times with mean 1/µ, we

have from (9) and (10) that δ(t) = m(t)µ. Replacing this in Corollary 1 yields

the differential equation (5) used in the FPA method for performance evaluation of

Mt/M/s/0 loss queues.

We now develop algorithms for computing blocking probabilities and mean busy

servers by virtue of Equation (9). We assume that the loss system starts empty at

t = 0, which is equivalent to setting λ(t) = 0 for t < 0 in Theorem 2. We have not

been able to analyze other initial settings, but with an appropriate choice of origin

this covers many practical situations.

2.1. Single-server Loss Queues

For the Mt/GI/1/0 loss system, m(t) = β(t). Hence, Equation (9) becomes

β(t) =

∫ t

0

λ(u)(1− β(u))Gc(t− u)du. (19)

Whilst it would be possible to produce a closed form solution for Equation (19)

for some sufficiently simple arrival rate functions and service time distributions, in

general we have to use numerical approaches. To do so, we subdivide the interval

of integration (0, t) into n equal subintervals with length h = t/n, and employ the

trapezoidal rule of integration to obtain

β(t) = h[λ(0)(1− β(0))Gc(t)

+ 2
n−1∑
i=1

λ(ih)(1− β(ih))Gc(t− ih) + λ(t)]/(2 + hλ(t)). (20)

Assuming β(0) = 0, which is an appropriate assumption when the system starts

empty, we will be able to work out blocking probabilities at desired points of time

in a sequential manner. This approach is outlined in Algorithm 1 in Appendix

A of the online supplement. Apart from inevitable numerical error produced by

approximating the integral with an equivalent summation, Algorithm 1 is exact.
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2.2. Multi-server Loss Queues

Since Expression (9) contains two unknown functions, β(t) and m(t), for multi-

server loss queues another equation relating these two functions is needed. The

Erlang loss formula seems an appropriate complementary equation given a sensible

definition of time-dependent offered load r(t). In line with Alnowibet and Perros

(2009), we define

r(t) = m(t)/(1− β(t)), (21)

and use

β(t) =
r(t)s/s!∑s
i=0 r(t)

i/i!
, (22)

as an approximate complementary equation. In fact, Equation (22) is exact for

single-server loss queues, as can bee seen by setting s = 1 and m(t) = β(t). Equa-

tions (9), (21), and (22) can now be solved iteratively as follows:

1. Choose an appropriate tolerance ε, step size h, and final time T .

2. Start with initial value β0(t) = 0.0 for all 0 ≤ t ≤ T .

3. Set the iteration counter k = 0.

4. Calculate m(t) =
∫ t

0
λ(u)(1− βk(u))Gc(t− u)du for all 0 ≤ t ≤ T .

5. Calculate r(t) = m(t)/(1− βk(t)) for all 0 ≤ t ≤ T .

6. Update the blocking probabilities: βk+1(t) = r(t)s/s!∑s
i=0 r(t)

i/i!
for all 0 ≤ t ≤ T .

7. If max0≤t≤T{|βk+1(t)− βk(t)|} < ε, then return βk+1(t) for all 0 ≤ t ≤ T and

stop; otherwise set k = k + 1, and return to Step 4.

Remark 2. It follows upon setting β0(t) = 0, 0 ≤ t ≤ T , that m(t) obtained in Step

4 above equals m∞(t) defined in (7), and so r(t) = m∞(t). Hence, the first iteration

of the above routine produces the same values for blocking probabilities as the MOL

approach.

The structure of this approach is similar to that of the FPA method; at each

iteration, it computes blocking probabilities at all epochs based on the estimates of

blocking probabilities obtained in the previous iteration. It turns out to be more

efficient, especially with large numbers of servers, to work out the ‘accurate’ estimate

of the blocking probability at each point before proceeding to the next point. This

approach is illustrated in Algorithm 2 in Appendix A of the online supplement. It

uses the trapezoidal integrating method and calculates blocking probabilities by a

recursive formula to make computations numerically stable.
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2.3. Numerical Results

In this section, we investigate the accuracy and speed of Algorithms 1 and 2

across various service time distributions and with different numbers of servers. Like

other papers in this context, we use a sinusoidal arrival rate function λ(t) = λ̄(1 +

α sin(2πt/C)), where λ̄ is the average arrival rate, α is the relative amplitude, and

C is the cycle time. We set α = 0.5 and C = 24 hours in all test cases.

We carried out our experiments with Exponential, Hyper-Exponential, and Erlang-

2 distributions as phase-type service times, and with Log-Normal distribution as a

non-phase type service time. Three parameters, mean, SCV (variance divided by

mean squared), and r (a measure reflecting the third moment) are needed for charac-

terizing the Hyper-Exponential distribution as described in Davis et al. (1995). The

Exponential and Erlang-2 distributions are completely defined by their mean values,

and their SCVs equal 1.0 and 0.5, respectively. For the Log-Normal distribution,

mean and SCV are needed.

Mean service times were assumed to be four hours in all cases. This relatively

long service time was deliberately chosen so as to demonstrate the ability of proposed

algorithms in coping with hard cases; both PSA and MOL tend to work better when

service times are relatively short. Long service times are also common in healthcare

delivery processes. For the Hyper-Exponential distribution, SCV was set to 4.0 and

r to 0.1, 0.5, and 0.9. The SCV of the Log-Normal distribution was chosen to be

2.0.

We implemented our algorithms in MATLAB. For systems with phase-type ser-

vice times, we used the ‘ode45’ function of the MATLAB ODE suit to generate

exact results (Shampine and Reichelt, 1997). It numerically solves the Chapman-

Kolmogorov differential equations describing the system dynamics using a Runge-

Kutta method, and is widely used as a benchmark (Ingolfsson et al., 2007). For the

Log-Normal distribution, simulation is the only available benchmark. We replicate

the simulation model 10000 times to reach a high level of accuracy. We compute

blocking probabilities at five minute intervals over a period of four days (T = 96

hours).

For single-server loss queues, we experimented with λ̄ = 0.01, 0.1, 1.0, and 5.0 to

cover a wide range of blocking probabilities. Results for two extreme cases are plot-

ted in Figure 2. As Equation (19) is exact for single-server systems, the only source

of error is due to the numerical integration in Equation (20). As a consequence,

excellent accuracy is observed in these plots.

For multi-server loss queues, we set λ̄ = 35 and experimented with 200, 150, 100,
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Figure 2: Blocking probability vs. time for single-server loss queues with (a) Hyper-Exponential
service times with r = 0.1 and λ̄ = 0.01, and (b) Erlang-2 service times with λ̄ = 5.0.

and 50 servers to span a wide range of blocking probabilities and to test computation

speed for large numbers of servers. We also implemented the MOL approach for

calculating loss probabilities and have included its results for the sake of comparison.

Tolerance of Algorithm 2 was set to 0.001 as accuracy more than three digits is

unlikely to be required in practical situations. Nevertheless, smaller values can be

chosen if needed.

A sample of results are illustrated in Figures 3, 4, and 5 for Hyper-Exponential

with r = 0.5, Erlang-2, and Log-Normal distributions, respectively. It is observed

in these plots that blocking probabilities obtained by Algorithm 2 (red lines) are

always pretty close to the exact results (blue lines). It is also clear that the algo-

rithm always performs more accurately than the MOL (green line). For 200 servers

(part (a) of figures), the blocking probabilities are very small and the difference

between MOL and the algorithm is not significant with both very close to exact

results. However, as number of servers decreases to 150 (part (b) of figures) and

blocking rises up to a peak around 20 percent, MOL deteriorates, underestimating

the peaks, overestimating the troughs, and lagging behind the exact results. These

problems of MOL become more serious for 100 (part (c) of figures) and 50 (part (d)

of figures) servers while the proposed algorithm is working consistently well. The

mean numbers of busy servers (not plotted) were also remarkably close to exact re-

sults for the proposed algorithm. Whilst not included here, results for 5-20 servers

showed that the proposed algorithm also maintains its high accuracy levels for much

smaller numbers of servers.

Relative and absolute accuracy of Algorithm 2 and MOL are reported in Ap-

pendix B of the online supplement for all the test cases used in this section. Results
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Figure 3: Blocking probability vs. time for loss queues with Hyper-Exponential service times with
r= 0.5 and: (a) 200 servers, (b) 150 servers, (c)100 servers, and (d) 50 servers.

for the PSA (not included) also reveal significant errors. In particular, as it does not

distinguish between service times beyond their means, the PSA produces identical

results for Figures 3, 4, and 5, and also fails to show the transient behavior present

in those figures.

The computation time of Algorithm 2 was less than 2 seconds in all test cases.

The exact algorithm took over 3 minutes to produce results with 50 servers and

more than 5 hours with 200 servers.

2.4. Non-stationary Erlang Loss Equation

As noted by Alnowibet and Perros (2009) for the special case of Exponential

service times, the high degree of accuracy in the approximate results produced from

equations (9), (21), and (22) suggests that Equation (22) with offered load defined in

(21) might in fact be true for multi-server systems as it is for single-server systems.

We therefore investigate this conjecture by comparing the values obtained from the
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Figure 4: Blocking probability vs. time for loss queues with Erlang-2 service times and: (a) 200
servers, (b) 150 servers, (c) 100 servers, and (d) 50 servers.

right hand side and left hand side of the following equation

β(t) '

(
m(t)

1−β(t)

)s
/s!∑s

i=0

(
m(t)

1−β(t)

)i
/i!
, (23)

where both β(t) and m(t) are to be exact values computed by the Runge-Kutta

method. If the values obtained from the two sides were equal, it would mean that

the above equation is exact. Otherwise, it would be an approximate relation between

β(t) and m(t).

We calculated the absolute difference between the right hand side and left hand

side of Equation (23) at five minute intervals for all the test cases used in Section 2.3.

A sample of results are plotted alongside associated absolute errors of Algorithm

2 in Figure 6. According to these plots, the absolute difference between the right

hand side and left hand side of the above equation (labeled as Erlang) becomes as

large as 0.01. Since we set a high level of accuracy for the Runge-Kutta method (six

digits accuracy), these differences are not purely numerical errors. Notice also that
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Figure 5: Blocking probability vs. time for loss queues with Log-Normal service times and: (a)
200 servers, (b) 150 servers, (c) 100 servers, and (d) 50 servers.

the absolute error of Algorithm 2 (labeled as Algorithm) follows the absolute error

of the above equation pretty closely. These two observations support our conjecture

that errors of Algorithm 2 stem from the approximate nature of the Erlang loss

equation with r(t) = m(t)/(1− β(t)) in non-stationary settings.

2.5. Queue Length Distribution

Theorem 2 tells nothing about the distribution of numbers of busy servers except

for the easy case of s = 1. But, surprisingly, the corresponding stationary formula

works well in time dependent cases with r(t) defined in (21). Specifically,

Pr{Q(t) = i} ≈

(
m(t)

1−β(t)

)i
/i!∑s

j=0

(
m(t)

1−β(t)

)j
/j!

, i = 0, 1, · · · , s. (24)

We computed the queue length probability mass functions by substituting values of

m(t) and β(t), obtained by Algorithm 2, into the above formula for all test cases of

Section 2.3. This enabled us to estimate queue length distribution functions for all
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Figure 6: Absolute error vs. time for : (a) Hyper-Exponential with r = 0.9 and 200 servers,
(b) Hyper-Exponential with r = 0.5 and 150 servers, (c) Exponential with 100 servers, and (d)
Erlang-2 with 50 servers.

the test cases. To measure the accuracy of the estimated distribution functions, we

used the Kolmogrov-Smirnov statistic defined as

KS(t) = max
0≤i≤s

|F̃t(i)− Ft(i)|, 0 ≤ t ≤ T, (25)

where F̃t(i) and Ft(i) are approximate and exact queue length distribution functions

at time t obtained by Expression (24) and the Runge-Kutta method, respectively.

In most of our test cases, the time average of KS(t) was less than 2 percent, and in

all cases it was less than 4 percent. Figure 7 shows the mean, 10th percentile, and

90th percentile for the worst case (the 150-server example with Hyper-Exponential

service times with r = 0.1), and nevertheless still shows a good match between

approximate and exact results.
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Figure 7: The mean, 10th percentile, and 90th percentile for the number of busy servers distribu-
tion.

3. Multi-Class Loss Queues

Consider an s−server loss system serving K independent classes of customers.

A class k customer arrives to the system according to a non-homogeneous Poisson

process with arrival rate function {λk(t), −∞ < t <∞} and requests for bk servers

for k = 1, . . . , K. Given bk servers are available, the arrival occupies them for a

random amount of time distributed with the cdf function Gk(t), t ≥ 0. When the

service is finished, all bk servers are released simultaneously. An arriving customer

is lost if the required servers are not all available. All servers are able to handle

all customer classes. The arrivals and service times of each class of customers are

assumed to be independent of each other and of other classes.

Let Qk(t) be the number of servers occupied by class k customers at time t, and

let mk(t) ≡ E[Qk(t)] for k = 1, . . . , K. The blocking probability function for class

k customers is defined as

βk(t) ≡Pr{Qk(t) > s− bk}

= Pr{Qk(t) > s− bk | a class k arrival occurs in (t, t+ dt)},
(26)

for k = 1, . . . , K. The following corollary extends Theorem 2 to multi-class loss

systems.

16



Corollary 2.

mk(t) = bk

∫ t

−∞
λk(u)(1− βk(u))Gc

k(t− u)du, k = 1, . . . , K, (27)

δk(t) =

∫ ∞
0

λk(t− u)(1− βk(t− u))dGk(u), k = 1, . . . , K. (28)

Proof. Proof easily follows using the same decomposition method applied for The-

orem 2. Since customers do not interact with each other in infinite-server systems,

we can use Equation (7) to find mean busy servers in the entire system and in the

overflow group for each class of customers independently of other classes.

In order to approximate βk(t) and mk(t) for all customer classes, we combine

Equation (27) with corresponding stationary formulae. Kaufman (1981) proposed

an efficient method for evaluating the steady-state blocking probability βk in a

multi-class loss system where class k customers have constant arrival rate λk(t) =

λk, t ≥ 0, and arbitrary service time distributions with mean 1/µk for k = 1, . . . , K.

Starting with w0 = 1, this method computes wj values recursively as follows:

wj =
K∑
k=1

rkwj−bk , j = 1, . . . , s, (29)

where rk is the workload brought to the system by class k customers and equals

bkλk/µk. The blocking probability of class k customers is then evaluated as follows

βk =

∑s
j=s−bk wj∑s
j=0wj

, k = 1, . . . , K. (30)

For the non-stationary case, we replace rk in Equation (29) with

rk(t) = mk(t)/(1− βk(t)), (31)

to obtain

wj(t) =
K∑
k=1

rk(t)wj−bk(t), j = 1, . . . , s, (32)

and

βk(t) =

∑s
j=s−bk wj(t)∑s
j=0wj(t)

, k = 1, . . . , K. (33)

Solving Equations (27), (31), (32), and (33), iteratively, produces estimates of
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blocking probabilities βk(t) and mean numbers mk(t) of busy servers occupied by

class k customers for all k. The total number of busy servers would therefore be

m(t) =
∑K

k=1mk(t). The iterative process is outlined in Algorithm 3 in Appendix

A of the Online Supplement.

As a numerical example, we considered a two-class loss system with λ1(t) =

35(1 + 0.5 sin(2πt/24)) and λ2(t) = 20(1 + 0.5 sin(2πt/12)). The first class cus-

tomers require one server and their service time is assumed to follow a Log-Normal

distribution with mean value of 4 hours and SCV of 2. The second class customers

require 2 servers and their service time is a Log-Normal distribution with mean

value of 2 hours and SCV of 4.0.

The blocking probability values for both classes of customers are plotted in

Figure 8 alongside the corresponding values obtained by simulation experiments.

The results show a high level of accuracy. The computation time was around 30

seconds with Algorithm 3, while the simulation model took more than 120 minutes

to do 10000 replications.

0 24 48 72 96
0

0.1

0.2

0.3

0.4

0.5

time

β
1
(t

)

Algorithm
Simulation

0 24 48 72 96
0

0.1

0.2

0.3

0.4

0.5

time

β
2
(t

)

Algorithm
Simulation

Figure 8: Blocking probability vs. time for the non-stationary multi-class example.

4. Networks of Loss Queues

Consider an (Mt/GI/si/0)I/M loss network with I service facilities, indexed by

i = 1, . . . , I, where facility i comprises si identical servers. The external arrival

process to facility i, independent of other facilities, is a non-homogeneous Poisson

process (the Mt) with deterministic arrival rate function {λi(t),−∞ < t < ∞}.
Service times at facility i are assumed to be i.i.d random variables with an arbitrary

cdf function Gi(t) (the GI). The routing process is stationary Markovian (the M)

with matrix P = [pij], where pij is the probability of a customer moving to facility

j upon service completion in facility i; qi = 1−
∑I

j=1 pij is therefore the probability
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of a customer leaving the system after visiting facility i. The arrival, service, and

routing processes are assumed to be mutually independent. An arriving customer

(internal or external) to facility i finding all servers busy will be lost from the system.

Let Qi(t) be the number of busy servers in facility i, and let mi(t) ≡ E[Qi(t)].

The blocking probability function at facility i is defined as

βi(t) = Pr{Qi(t) = si|an arrival (internal or external) occurs in (t, t+ dt)}. (34)

Notice that the blocking probability is no longer the same as the (unconditional)

probability of all servers being busy. This is because the aggregate arrival process

to each facility is not generally Poisson. We have the following theorem.

Theorem 3. For the (Mt/GI/si/0)I/M loss system that starts out empty in the

infinite past, we have

mi(t) =

∫ t

−∞
γi(u)Gc

i(t− u) du, (35)

where γi(t) is the aggregate arrival rate function to facility i, defined as the minimal

non-negative solution to the following system of input equations

γi(t) =

[
λi(t) +

I∑
j=1

pji

∫ ∞
0

γj(u)dGj(t− u)du

]
(1− βi(t)), i = 1, . . . , I. (36)

Proof. We prove the results by showing that mean busy servers in each facility

of the (Mt/GI/si/0)I/M loss network is the same as mean busy servers in the

corresponding facility of an associated infinite-server (Gt/GI/∞)I+1/Gt network.

Since expressions for mean busy servers of (Gt/GI/∞)I+1/Gt systems are given

in Massey and Whitt (1993), we can readily use them once the desired network

characteristics are well defined.

We define an (Gt/GI/∞)I+1/Gt network as follows. Suppose there are I + 1

infinite-server facilities in the system, where the first I facilities have the same service

processes as the corresponding facilities in the loss network, and the (I+1)th facility

has an arbitrary service time distribution. The external arrival process to facility i

is assumed to be a general arrival process with rate function

λ∞i (t) =

λi(t)(1− βi(t)), i = 1, . . . , I,∑I
i=1 λi(t)βi(t), i = I,

(37)
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with βi(t) defined in (34). The routing process is assumed to be a general process

with time-dependent transition matrix P∞(t) = [p∞ij (t)], where

p∞ij (t) =


pij(1− βj(t)), i, j = 1, . . . , I,∑I

k=1 pikβk(t), i = 1, . . . , I, j = I + 1,

0, i = I + 1.

(38)

With the above settings, the aggregate arrival process to facility i of the infinite-

server network is the aggregate arrival process of customers admitted to facility i

of the loss network for i = 1, . . . , I. All the blocked customers, either internal or

external, are placed in the (I + 1)th facility, from which they leave the system after

an arbitrary amount of time. The mean number of busy servers in the ith facility

of the loss network is therefore the same as the mean number of busy servers in

the ith facility of the constructed infinite-server network for i = 1, . . . , I. Now,

Equations (35) and (36) are readily obtained from (Gt/GI/∞)I+1/Gt equations

given in Theorem 1.2 of Massey and Whitt (1993) with the system parameters

defined in (37) and (38).

To develop a solution algorithm, suppose that the loss network starts empty at

t = 0. To compute mi(t) and βi(t), in line with Alnowibet and Perros (2009), we

define time dependent offered load at facility i as

ri(t) = mi(t)/(1− βi(t)) (39)

and use

βi(t) =
ri(t)

si/si!∑si

j=0 ri(t)
j/j!

, (40)

as the complementary equation for i = 1, . . . , I. Equations (35), (36), (39), and (40)

can now be solved iteratively, starting with initial values for blocking probabilities.

In order to obtain mi(t) from (35), one needs to solve the system of input equations

stated in (36) for γi(t), i = 1, . . . , I, numerically at each time t. To do so, we

divide the interval (0, t) into n equal sub-intervals of length h = t/n and apply the
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trapezoidal rule of integration to obtain

(
2

1− βi(t)
− hpiigi(0)

)
γi(t)−

I∑
j 6=i

hpjigj(0)γj(t) = 2λi(t)+

h

I∑
j=1

pjiγj(0)gj(t) + 2h
I∑
j=1

n−1∑
k=1

pjiγj(t− kh)gj(kh), i = 1, . . . , I, (41)

where gi(t) is the probability density function (pdf) associated with cdf Gi(t). Writ-

ing the above in matrix form, we have

A(t)γ(t) = C(t) + hP T

n−1∑
k=1

B(kh)γ(t− kh), (42)

where γ(t) ≡ (γ1(t), . . . , γI(t))
T , A(t) ≡ [aij(t)] is an I × I matrix with

aij(t) =

 2
1−βi(t)

− hpiigi(0), if i = j,

hpjigj(0), if i 6= j,
(43)

C(t) ≡ (c1(t), . . . , cI(t))
T with

ci(t) = 2λi(t) + h
I∑
j=1

pjiγj(0)gj(t), i = 1, . . . , I, (44)

and finally B(t) ≡ [bij(t)] is an I × I diagonal matrix with bii(t) = gi(t). Now,

starting with γi(0) = λi(0), i = 1, . . . , I, and having estimates of βi(t), one can find

γ(t) at desired points of time recursively as follows

γ(t) = A−1

(
C(t) + hP T

n−1∑
k=1

B(kh)γ(t− kh)

)
(45)

The required steps of the iterative routine are outlined in Algorithm 4 in Appendix

A of the online supplement.

As a numerical example, we consider a six-facility (I = 6) loss network with

21



following specifications:

λ1(t) = 8 + 6 sin(2πt/24), S1 ∼ Log-Normal(2.0, 2), s1 = 20,

λ2(t) = 10 + 5 sin(2πt/12), S2 ∼ Log-Normal(1.0, 2), s2 = 15,

λ3(t) = 25 + 20 sin(2πt/24), S3 ∼ Log-Normal(0.75, 2), s3 = 20,

λ4(t) = 15 + 15 sin(2πt/48), S4 ∼ Log-Normal(1.0, 2), s4 = 15,

λ5(t) = 20 + 10 sin(2πt/24), S5 ∼ Log-Normal(0.5, 2), s5 = 10,

λ6(t) = 0, S6 ∼ Log-Normal(1.5, 2), s6 = 20,

where Si ∼ Log-Normal(1/µi, σ
2
i ) denotes a Log-Normal service time in facility i

with mean and variance of 1/µi and σ2
i , respectively. The routing matrix is as

follows

P =



0 0.4 0.4 0 0 0

0 0 0 0.5 0.4 0

0.3 0 0 0.3 0.3 0

0 0 0.7 0 0 0.3

0 0.6 0 0 0 0.3

0.5 0 0 0 0.3 0


(46)

The results of running Algorithm 4 for the above example for 96 hours have been

plotted in Figure 9. Compared to simulation results, obtained by 20000 replications,

a high level of accuracy is observed. The lowest relative accuracy seem to be for

the sixth facility in which blocking probabilities are small. The computation time

with the simulation model was more than 10 hours, whereas it was thirty seconds

for Algorithm 4.

5. Conclusion

By establishing integral equations relating time-dependent mean busy servers

and blocking probabilities for non-stationary single-class, multi-class, and networks

of loss queues with arbitrary service time distributions, we have extended the FPA

method of Alnowibet and Perros (2009) substantially beyond the Exponential service

time assumption. This generalized FPA method is shown to provide highly accurate

results for a wide range of cases, including important cases where previous well-

established methods such as PSA and MOL are known to perform poorly.

In comparison to exact methods such as the Runge-Kutta ODE solver, the gen-

eralized FPA method applies to all service time distributions, performs much faster,
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Figure 9: Blocking probabilities vs. time for the loss network example.

and its speed is almost independent of the system size.

Finally we note that throughout the paper we have used infinite-server results

to derive exact equations for the time-dependent carried load in the loss systems

of interest. These have then been combined with known results for stationary loss

systems to give high quality approximate results for time-dependent loss systems. In

the case of multi-server loss queues with a single class of customers, the stationary

equation is the Erlang loss formula. In Section 2.4, we showed that this was not ex-

act, but nevertheless seemed to encapsulate the essence of the problem. It therefore

seems likely that the same approach of using time-dependent carried load derived

from infinite-server systems in combination with known stationary results may also
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offer an analytical way forwards in the analysis of other types of time-dependent

loss systems.

Appendix A. Supplementary Material

See the online supplement to this article.
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