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Abstract

We consider a single-item, independent private value auction environment with two bid-

ders: a leader, who knows his valuation, and a follower, who privately chooses how much to

learn about his valuation. We show that, under some conditions, an ex-post efficient revenue-

maximizing auction—which solicits bids sequentially—partially discloses the leader’s bid to

the follower, to influence his learning. The disclosure rule that emerges is novel; it may reveal

to the follower only a pair of bids to which the leader’s actual bid belongs. The identified

disclosure rule, relative to the first-best, induces the follower to learn less when the leader’s

valuation is low and more when the leader’s valuation is high.

Keywords: Information Disclosure, Conjugate Disclosure, Bayesian Persuasion

JEL codes: D82, D83

1 Introduction

In the U.K., the government franchises rail passenger services to train-operating companies for

a limited time. An auction determines the award of the franchise to run passenger services in a
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certain region. The pool of bidders typically includes an incumbent operator and potential en-

trants. The bidders’ valuations of the franchise vary depending on the bidder’s operating costs.

The incumbent is likely to know its costs from past experience, whereas the entrants are poorly in-

formed and must perform due diligence to evaluate the purchase opportunity. This paper is a step

towards understanding what a profit-maximizing government should reveal to potential entrants

about the well-informed incumbent’s intended bid in order to influence their due diligence.

The paper formulates a model that captures the essential features of the government’s information-

disclosure problem. A seller sells an item by sequentially bargaining with two bidders: the leader,

who knows its valuation, and the follower, who must exert costly effort to better estimate his

valuation. The bidders’ valuations are private and statistically independent.

The seller maximizes his revenue by designing, announcing, and committing to a mechanism.

He is restricted to choosing a mechanism with an ex-post efficient allocation rule, which must

assign the item to the bidder with the higher expected valuation (conditional on the bidders’ in-

formation). The focus on ex-post efficient allocation rules is restrictive and is motivated primarily

by tractability, as well as by the desire to isolate the distortions due to information disclosure from

the distortions due to the allocation rule.1 In addition, in some applications, the violation of ex-

post efficiency is politically costly or outright infeasible.2 We also restrict attention to mechanisms

that rule out the sale of information about already collected bids; only in such mechanisms is there

room for strategic disclosure.

The paper’s main result is the rule according to which the seller partially obfuscates the bid

he receives from the leader before passing this information on to the follower, who then decides

how much to learn.3 In particular, the seller optimally partitions the leader’s possible types (i.e.,

valuations, reported as bids) into singletons and pairs of so-called conjugate types. Thus, the seller

may disclose to the follower just a pair to which the leader’s type belongs, without revealing that

type. Figure 1 illustrates.

The seller’s strategic disclosure distorts the follower’s effort away from the effort in the first-

1In the working-paper version (Nikandrova and Pancs, 2015), we show that our analysis extends to a class of allo-
cation rules that are fixed (as opposed to being optimized over).

2For instance, the government may face disgruntled voters if it allocates a procurement contract or a franchise to a
bidder whom everyone knows not to be the best choice. The working-paper version of Gershkov and Szentes (2009)
motivates ex-post efficiency by appealing to the legal ramifications of ex-post inefficient decisions.

3Due to the option value of influencing the follower’s learning by the information about the leader’s bid, it is optimal
for the seller to approach the leader first.
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disclosed types pairs of pooled types

leader’s type

Figure 1: The seller’s optimal disclosure rule. The seller reveals to the follower the leader’s type
if it is less than ŝ and pools any type that exceeds ŝ with a corresponding conjugate type to form a
pair that straddles s⇤.

leader's type

follower's effort

Figure 2: The optimal effort schedule is the solid hump-shaped curve; the first-best effort schedule
is the dashed hump-shaped curve. The horizontal dashed line highlights the correspondence
between a recommended effort and the equivalent message that pools two leader types together.

best mechanism, which maximizes the ex-ante expected surplus. Figure 2 illustrates both optimal

and first-best effort schedules. The first-best effort is hump-shaped in the leader’s valuation; the

follower learns more when the uncertainty about the identity of the higher-valuation bidder is the

greatest, which is when extra information is needed most. The optimal effort is also hump-shaped

but is “shifted to the right” relative to the first-best, meaning that, when the leader’s valuation

is low, the follower learns inefficiently little, whereas when the leader’s valuation is high, the

follower learns inefficiently much.

This effort distortion arises because the seller seeks to make the follower win as often as pos-

sible. To understand why doing so is profitable, note that ex-post efficiency requires the seller to

charge the follower exactly q1—the leader’s type—and the leader less than q1. Indeed, ex-post

efficiency requires that the follower be charged q1 and, thus, buys if and only if his expected valu-

ation, denoted by q2, satisfies q2 � q1. By contrast, the leader must be charged less than q1. If he
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were charged q1, then he would profitably pretend to be a type that would be charged less than

that. As a result, the seller prefers selling to the follower.

Whether less or more learning increases the probability that the follower is the efficient win-

ner depends on the leader’s type. Learning induces a mean-preserving spread in the probability

distribution of q2.4 Therefore, event {q2 � q1} (ex-post efficient sale to the follower) is more likely

either when q1 is low and the follower learns little, or when q1 is high and the follower learns a lot.

Thus, the seller nudges the follower to learn more than is first-best efficient when q1 is sufficiently

high and less than first-best efficient otherwise. It turns out that this nudge can be accomplished

by pooling the leader’s true type with some other type.

Figure 2 suggests a correspondence between the optimal disclosure rule and the optimal effort

schedule. All that the follower needs to be told about the leader’s type is summarized in the effort

that the seller would like him to exert.5 Thus, an optimal disclosure rule can be read off an optimal

effort schedule by intersecting the latter with the horizontal line corresponding to a recommended

effort. Given its hump shape, the optimal effort schedule in Figure 2 prescribes the same effort for

(at most) two leader types; the seller optimally pools conjugate types. Analytically, however, it is

more convenient to derive an optimal disclosure rule first and then to recover the corresponding

effort schedule; the paper’s analysis proceeds in this order.

The seller’s profit-maximizing outcome can be implemented in a sequential second-price auc-

tion with a tax (or subsidy) for the leader. The tax motivates the leader to bid truthfully. Without

the tax, the leader would be tempted to bias his bid away from q1 and towards some intermediate

value. In response, the follower would learn a lot, thereby introducing greater dispersion into

the probability distribution of his type. The leader likes this dispersion; he wins and pays little

if the follower’s type is low, while loses and pays nothing if the follower’s type is high. The tax

countervails the leader’s incentive to manipulate the follower’s learning.

The rest of the paper is structured as follows. This section concludes with a literature review.

Section 2 describes the environment. Section 3 derives the first-best outcome and an auction that
4The identification of the informativeness of a signal with the induced dispersion of the probability distribution of

q2 is a standard modeling device (Johnson and Myatt, 2006; Ganuza and Penalva, 2010; Shi, 2012; and Roesler, 2014)
and, in the presence of risk neutrality, entails no loss of generality. Indeed, higher information-acquisition effort can
be interpreted as delivering a more informative signal about the underlying valuation and thereby induce a more
dispersed posterior probability distribution of the underlying valuation. When a bidder is risk-neutral, the expected
underlying valuation, denoted by q2, is the only aspect of the posterior probability distribution that he cares about.

5This is the Revelation Principle for games with private actions (Myerson, 1982, 1986).
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implements it. Section 4 establishes the suboptimality of full disclosure and non-disclosure and

then, under additional conditions, partially characterizes optimal disclosure by solving the seller’s

relaxed problem. Section 5 shows that, for sufficiently costly learning, the focus on the relaxed

problem is justified. Section 6 illustrates some of the paper’s results in a numerical example.

Section 7 concludes. The proofs are in Appendix A, with more-technical arguments relegated to

Supplementary Appendix B.

Related Literature

Our paper contributes to the literature on auctions in which a monopolistic seller directly or in-

directly influences bidders’ information structure and, more broadly, to the literature on Bayesian

persuasion.

The existing literature in which a seller, through his choice of a selling mechanism, affects bid-

ders’ information-acquisition effort (e.g., Bergemann and Välimäki, 2002; Persico, 2003; Compte

and Jehiel, 2007; Crémer et al., 2009; and Shi, 2012) focuses primarily on simultaneous auctions,

in which the issue of optimal bid disclosure does not arise. Crémer et al. (2009) examine sequen-

tial auctions and design a revenue-maximizing one. Because Crémer et al. (2009) assume that the

seller can charge bidders for information, optimal information disclosure turns out to be trivial

(full disclosure) and is not their focus. Information disclosure is the focus of Eso and Szentes

(2007). In their model, the seller directly designs the signals observed by the bidders instead of

motivating bidders to choose signals themselves. Just like Crémer et al. (2009), Eso and Szentes

(2007) allow the seller to charge bidders for information and find full disclosure to be optimal. Eso

and Szentes’s (2007) seller reveals maximal information to maximize the total surplus, which he

then taxes away by cleverly charging for the signals he reveals.6 In our paper, the critical assump-

tion that rules out selling information and, with it, the optimality of full disclosure is a particularly

demanding interim participation constraint. Under this constraint, the follower, upon observing

his type, must expect his total payoff to be nonnegative. Without this participation constraint, the

logic of Eso and Szentes (2007) would imply the optimality of full disclosure in our model also.

Such stringent participation constraints are also imposed by Ganuza (2004), in a second-price auc-

6The seller must charge cleverly because the bidders of Eso and Szentes (2007), in contrast to the bidders of Crémer
et al. (2009), already have some private information before accepting the seller’s mechanism. So the charges are not
simple participation fees.

5



tion, and by Bergemann and Pesendorfer (2007), in an optimally designed auction, and rule out

the optimality of full disclosure in their settings.

Another strand of literature to which our paper contributes is on Bayesian persuasion, or

sender-receiver games with commitment. The two main papers in this literature are Rayo and

Segal (2010)—henceforth RS—and Kamenica and Gentzkow (2011). RS assume additional struc-

ture that makes their paper especially pertinent to our problem. We establish the relevance of RS’s

results in a novel environment—an auction with costly learning and, crucially, with a continuum

of types. A limit argument establishes a formal connection between RS’s model and ours, thereby

paving the way for the proof of the optimality of conjugate disclosure. Our sharp characterization

of optimal disclosure has no direct counterpart in RS’s discrete model.

Any auction design or agency design in which information disclosure affects some player’s

unenforceable (by the seller or the principal) action features Bayesian persuasion. Examples of

such a design are a two-player contest of Zhang and Zhou (2015) and auctions with resale. While

early resale models (Bikhchandani and Huang, 1989; Gale et al., 2000; Haile, 2003; Gupta and

Lebrun, 1999) fix an auction format and study the informational linkage between the primary

market and the resale market, later work (Calzolari and Pavan, 2006a; Zheng, 2002) adopts the

mechanism-design approach. The work of Calzolari and Pavan (2006a) is especially related to

ours.

Calzolari and Pavan (2006a) study the mechanism-design problem of a monopolist who sells

to a potential buyer, a leader, in the primary market, and anticipates the possibility that the leader

will resell to another buyer, a follower, in the resale market. The seller’s mechanism comprises a

rule for allocating an item to the leader and a rule for disclosing information to the follower. In

the resale market, either the leader or the follower is randomly chosen to make a take-it-or-leave-it

price offer to the other buyer. When the follower is chosen, he is the counterpart of the follower in

our model, in that his resale offer is a private action informed by the seller’s strategic disclosure

of the leader’s reported type.

In Calzolari and Pavan’s (2006a) model, as in ours, optimality proscribes full disclosure be-

cause they assume, as we do, a participation constraint that precludes the seller from expropri-
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ating the traders’ rents in the resale market.7 Calzolari and Pavan’s (2006a) assumption that the

leader’s type is binary delivers tractability and allows them to characterize both an optimal allo-

cation rule and an optimal disclosure rule. By contrast, our assumption of the continuum of the

leader’s types enables us to study richer disclosure rules, but at the cost of fixing the allocation

rule.

2 Model

Environment

The seller must allocate an item, which he values at zero, to one of two bidders. Bidder 1, the

leader, privately observes his valuation, or type, denoted by q1 and drawn according to a c.d.f.

G with the corresponding p.d.f. g on the support Q1 ⌘ [0, 1]. C.d.f. G is smooth on (0, 1), with

bounded derivatives. Bidder 2, the follower, is unsure of his valuation and privately exerts effort

a 2 A ⌘ [0, 1] to acquire information, or to learn. This effort determines (in a manner explained

shortly) his expected valuation, or type, denoted by q2 2 Q2 ⌘ [0, 1]. The cost of effort a is the

convex function C (a) ⌘ ca2/2, where c > 0.

Let xi 2 [0, 1] be the probability that bidder i gets the item, and let ti 2 R be his payment. The

leader’s payoff is

q1x1 � t1.

The follower’s payoff is

q2x2 � t2 � C (a) .

Both bidders are expected-utility maximizers.

Learning Technology

Interpret q2 as the expectation of the follower’s (unmodeled) underlying valuation, conditional on

the privately observed signal generated by learning. For any a 2 A, q2 is drawn according to a

7In a similar spirit, in a sequential common agency model, Calzolari and Pavan (2006b) identify conditions un-
der which the upstream principal may find it strictly optimal to disclose a noisy signal about the agent’s type to the
downstream principal.
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c.d.f that is linear in a:8

F (q2 | a) ⌘ aFH (q2) + (1 � a) FL (q2) , q2 2 Q2 ⌘ [0, 1] . (1)

Whenever the p.d.f.s corresponding to the c.d.f.s F, FH, and FL exist, they are denoted by f , fH, and

fL. The c.d.f. F may have mass points on {0, 1}, but not on (0, 1), and is smooth, with bounded

derivatives. Conditional on a, q1 and q2 are independent.

For a to be interpreted as an information-acquisition effort, F is assumed to satisfy

Condition 1 (Information Acquisition). (i) (equality of means)
R 1

0 FH (s) ds =
R 1

0 FL (s) ds, and

(ii) (rotation) for some q⇤ 2 (0, 1), for all s 2 (0, q⇤)[ (q⇤, 1), it holds that (q⇤ � s) (FH (s) � FL (s)) >

0.

According to Condition 1, the follower who exerts effort a, with probability a, receives a more

informative signal about his underlying valuation, and, with probability 1 � a, receives a less

informative signal.9 Part (i) requires the follower’s effort not to affect his expected type.10 In

particular, part (i) rules out the situations in which the follower’s effort is a value-enhancing in-

vestment. Parts (i) and (ii) taken together imply that a higher effort induces a mean-preserving

spread of the distribution of the follower’s types.

This mean-preserving spread requirement is implied by Blackwell’s informativeness criterion

(Blackwell, 1951, 1953). According to this criterion, a more informative signal about the follower’s

underlying valuation induces a greater dispersion of the probability distribution over the con-

ditional expectation, which is the interpretation of q2 in our model.11 Condition 1 generalizes

the truth-or-noise information-acquisition technology introduced by Lewis and Sappington (1994)

and used by Bergemann and Valimaki (2006, Section 2.2), Johnson and Myatt (2006, Section III.B),

and Shi (2012, Example 2), among others.

8The linearity condition (1), known as the Linear Distribution Function Condition in the principal-agent literature,
is essential for reducing the seller’s problem to the information-disclosure problem of RS in Section 4. Supplementary
Appendix B.2 discusses what, exactly, linearity rules out.

9A signal structure that delivers the probability distribution of types in Condition 1 is given in Supplementary
Appendix B.1.

10For any c.d.f. H on [0, 1], the expectation is
R

xdH (x) =
R

(1 � H (x)) dx.
11Blackwell’s informativeness criterion implies Lehmann’s accuracy condition (Lehmann, 1988; Persico, 2003), which

implies the mean-preserving-spread order on the conditional expectations (Mizuno, 2006, Proposition 1). Directly
modeling a signal’s informativeness by the induced dispersion of the conditional expectation is standard; see, for
instance, Johnson and Myatt (2006), Ganuza and Penalva (2010), Shi (2012), and Roesler (2014).
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An example of the information-acquisition technology specified in Condition 1 is our leading

example:

Example 1. F (q2 | a) = a
� 1

2 1{q2<1} + 1{q2=1}
�

+ (1 � a) q2, where 1{·} is the indicator function.

Example 1 can be interpreted in this way: with probability a, the follower observes a perfectly

informative signal that reveals his underlying valuation, which is either 0 or 1, equiprobably; and

with probability 1 � a, the follower observes a partially informative signal about the underlying

valuation.

To guarantee interior solutions for a, we henceforth assume a sufficiently large cost of effort:12

c > c⇤ ⌘
Z 1

q⇤
(FL (s) � FH (s)) ds. (2)

The Seller’s Problem

The seller chooses, publicly announces, and commits to a mechanism, which comprises an exten-

sive game-form, a strategy to which the seller commits, and a communication device. The seller

chooses the communication device. The game-form is given. Its timing is such that (i) each bidder

may leave the mechanism without payment; (ii) the follower exerts his effort and observes his re-

alized type; (iii) each bidder may once again leave the mechanism without payment; and (iv) the

seller enforces a trade that is ex-post efficient, meaning that the higher-type bidder wins the item.

The communication device allows for arbitrary communication between the game-form’s stages

as long as the seller collects enough information to compute an ex-post efficient allocation.

The logic of the Revelation Principle in environments with private information and private

actions applies (Myerson, 1982, 1986): the seller can do no better than to minimize the informa-

tion revealed to bidders and to maximize the information collected from them. Consequently, no

generality is lost by restricting attention to a parsimonious class of direct mechanisms:

Lemma 1. Without loss of generality, the seller can restrict attention to direct mechanisms in which

1. having observed q1, the leader confidentially reports q̂1 in Q1 to the seller;
12This condition is derived by requiring that the first-best effort in Theorem 1 be less than 1 for every q1.
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2. the seller confidentially sends a message m from a set M to the follower according to a disclosure

rule µ : Q1 ! D (M), which associates with each report of the leader a probability distribution over

messages;13

3. the follower exerts effort, denoted by a⇤c (m) 2 A, then observes q2, and confidentially reports q̂2 2

Q2; and

4. bidder i with q̂i > q̂�i gets the item; payments (t1, t2) : Q1 ⇥ Q2 ! R2 (the functions of bidders’

reports) are assessed.

Proof. See Appendix A.

Without loss of generality, the seller can focus on the mechanisms whose (perfect Bayes-Nash)

equilibria are truthful, meaning that
�

q̂1, q̂2
�

= (q1, q2). By the Revelation Principle, one can

equivalently identify the seller’s message space M with the set of recommended learning efforts

A, but a different M will sometimes be analytically convenient.

To respect each bidder’s right to exit without a payment at stage (i) of the game-form, the

direct mechanism must satisfy the ex-ante participation constraint, meaning that, ex-ante, each

bidder must expect a nonnegative payoff from participation. To respect each bidder’s right to

exit without payment at stage (iii), the direct mechanism must satisfy the interim participation

constraint, meaning that, even having observed his type, each bidder must continue to expect a

nonnegative payoff from participation (for the follower, gross of the cost of learning).

The seller’s problem, thus, consists in choosing a disclosure rule µ and a payment rule (t1, t2)

that induce a mechanism that is ex-post efficient and truthful and satisfies ex-ante and interim

participation constraints to maximize the expected revenue:

Z

Q1

Z

M

Z

Q2

(t1 (q1, q2) + t2 (q1, q2)) dF (q2 | a⇤c (m)) dµ (m | q1) dG (q1) . (3)

13If µ is such that the seller’s message is independent of the leader’s report, the described mechanism is strategically
equivalent to a mechanism in which the seller asks both bidders to submit their reports simultaneously.
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3 The First-Best Benchmark

A first-best outcome obtains when a planner maximizes the expected total surplus while observ-

ing the leader’s type, directly controlling the follower’s effort, and then observing the follower’s

realized type. When the leader’s type is q1, the follower’s first-best effort, denoted by ac (q1),

maximizes the total surplus:

ac (q1) 2 arg max
a2A

⇢

Z

Q2

max {q1, q2}dF (q2 | a) � C (a)
�

. (4)

Theorem 1 calculates the first-best outcome.

Theorem 1. The first-best effort is ac (q1) ⌘ a (q1) /c, where a (q1), the normalized first-best effort,

satisfies

a (q1) =
Z 1

q1

(FL (s) � FH (s)) ds, q1 2 [0, 1] , (5)

and a (0) = a (1) = 0; a is strictly increasing when q1 < q⇤ and strictly decreasing when q1 � q⇤.

Proof. See Appendix A.

Corollary 1 shows that the first-best outcome can be implemented in an incentive-compatible

manner. The mechanism in the corollary uses the (possibly negative) tax

T (q1) ⌘
Z q1

0
(F (s | ac (q1)) � F (s | ac (s))) ds, q1 2 Q1. (6)

Corollary 1. In a mechanism that implements the first-best outcome, the seller

1. asks the leader to submit a bid, denoted by b, and charges him the tax T (b), given by (6);

2. discloses b to the follower and invites him to bid in the second-price auction; and

3. allocates the item and assesses the payments according to the rules of the second-price auction.

In equilibrium, each bidder bids his type and enjoys a nonnegative expected payoff. The follower exerts the

first-best effort.

Proof. See Appendix A.

Except for the leader’s tax, the mechanism in Corollary 1 is the standard second-price auction

but executed sequentially, with the leader’s bid being public. Without the tax, the leader would try
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to manipulate the follower’s learning by bidding untruthfully. Indeed, if the type-q1 leader truth-

fully bids b = q1 in the second-price auction without the tax, his payoff is Eq2 [max {0, q1 � q2}].

Because max {0, q1 � q2} is convex in q2, Jensen’s inequality implies that the leader gains when the

distribution of the follower’s valuation is more dispersed, which occurs when the follower learns

more. The leader can induce greater learning by nudging his bid towards q⇤, thereby making the

follower more uncertain about his payoff from participating in the auction and desirous of more

information. Infinitesimal deviation from truth would have only a second-order (detrimental) ef-

fect on the leader’s payoff, whereas the beneficial effect from influencing the follower’s learning

would be first-order.

Formally, the tax discourages untruthful bidding by altering the leader’s marginal payoff from

raising his bid. The marginal payoff is altered by the amount

T0 (b) = a0
c (b)

Z b

0

∂F (s | ac (b))
∂a

ds,

where the integral is positive for all b 2 (0, 1) by Condition 1. Thus, the sign of T0 (b) is determined

by the sign of a0
c (b); it is positive when b < q⇤ and negative when b > q⇤. As a result, any increase

in the leader’s bid below q⇤ and any decrease in his bid above q⇤ are taxed on the margin.

4 A Seller-Optimal Auction

Without information acquisition, the seller’s problem would have been trivial. By the Revenue

Equivalence theorem, the ex-post efficient allocation rule, participation constraints, and the opti-

mality of truthful reporting would have tied down the seller’s expected payoff to the exogenous

distribution of the bidders’ types. With information acquisition, however, revenue equivalence no

longer applies because the distribution of the follower’s type is no longer exogenous.

Section 4.1 reduces the seller’s (relaxed) revenue-maximization problem to an information-

disclosure problem.14 Section 4.2 shows that this problem is nontrivial and is solved by disclosing

neither everything nor nothing. Section 4.3 connects the seller’s continuum-of-types disclosure

problem to the finite-types disclosure problem of RS. This connection brings out the qualitative

14The validity of the focus on the relaxed problem is discussed in Section 5.

12



features of optimal disclosure and the follower’s induced effort schedule. In particular, we demon-

strate that the optimal disclosure rule is a deterministic function that maps no more than two types

of the leader into the same recommended effort. Section 4.4 formulates the seller’s disclosure

problem as an optimal-control problem.

4.1 Reduction of the Seller’s Auction-Design Problem to an Information-Disclosure

Problem

We begin by formalizing the seller’s constraints, which we then substitute into his objective func-

tion, thereby reducing his problem to an information-disclosure problem. The constraints are

introduced by rolling the game-form backwards.

The Follower’s Truth-Telling, Obedience, and Participation Constraints

Suppose that, after observing the seller’s message m, the follower exerts some effort and observes

his type q2. He chooses his report q̂2 to maximize his interim expected payoff, thereby attaining

the value

U2 (q2 | m) ⌘ max
q̂22Q2

Eq1|m

h

q21{q̂2>q1} � t2
�

q1, q̂2
�

i

, (7)

where the expectation is over the leader’s type q1, conditional on the seller’s message m and, im-

plicitly, on the disclosure rule. By inspection of (7), the follower’s effort does not enter his interim

expected payoff, and so he chooses his report independently of this effort. The follower’s truth-

telling constraint requires the local truth-telling constraint (implied by the Envelope Theorem

applied to (7)),

U0
2 (q2 | m) ⌘ dU2 (q2 | m)

dq2
= Eq1|m

⇥

1{q2>q1}
⇤

, (8)

and requires the monotonicity constraint according to which the follower’s probability of winning,

Eq1|m
⇥

1{q2>q1}
⇤

, is nondecreasing in his type, q2. The satisfaction of the follower’s monotonicity

constraint is immediate, by inspection.

The interim participation constraint holds if, even after observing q2, the follower expects his

payoff from the mechanism (gross of the cost of information acquisition) to remain nonnegative.
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Formally, for all q2 2 Q2 and all m 2 M, it must be that U2 (q2 | m) � 0, or, equivalently, that

U2 (0 | m) +
Z q2

0
Eq1|m

⇥

1{s>q1}
⇤

ds � 0, (9)

where the equivalence holds by Milgrom’s (2004) Constraint Simplification Theorem, which justi-

fies the application of the fundamental theorem of calculus and rewrites U2 in terms of its deriva-

tive from (8). Because the right-hand side of (8) is nonnegative, U2 (q2 | m) is nondecreasing. Thus,

the follower’s interim participation constraint holds if and only if

U2 (0 | m) � 0 for all m 2 M. (10)

Suppose that U2 (0 | m) = 0 for all m 2 M (as will be the case in the optimal mechanism).

Then, the interim participation constraint rules out mechanisms that ask the follower to commit

to a payment in exchange for the right to participate in the mechanism; it also rules out the mech-

anisms that offer to sell information about the leader’s type before the follower decides which

effort to exert.15

One can now take a step back in the game-form and ask which effort is optimal for the follower

who observes message m and knows that he will optimally report truthfully in the future. Imme-

diately after observing message m and deciding to exert effort a, the follower expects his payoff

net of the cost of effort to be

Z

Q2

U2 (q2 | m) dF (q2 | a) = U2 (0 | m) +
Z 1

0
Eq1|m

⇥

1{q2>q1}
⇤

(1 � F (q2 | a)) dq2, (11)

where the equality uses (8) and integration by parts.16 Interchanging the order of integration and

expectation (by Fubini’s theorem) in the right-hand side of the above display yields the expression

for the follower’s normalized optimal effort a⇤c (m) as a function of the observed message m:

a⇤c (m) 2 arg max
a2A

✓

U2 (0 | m) + Eq1|m



Z 1

q1

(1 � F (q2 | a)) dq2

�

� C (a)
◆

. (12)

15In practice, shareholders may forbid managers to commit to any payments until due diligence has been performed.
16Integration by parts is valid even if F is discontinuous (as in Example 1), because U2 (· | m) has a bounded deriva-

tive everywhere and, hence, is continuous.
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Under the maintained Condition 1, the maximization problem in (12) has the unique solution

a⇤c (m) ⌘ a⇤ (m) /c, with a⇤ (m) being the follower’s normalized optimal effort

a⇤ (m) = Eq1|m [a (q1)] , (13)

where a (q1), defined in (5), is the normalized first-best effort level when the leader’s type is q1. We

refer to (13) as the obedience constraint; if the seller’s message space is the set of recommended

efforts, then each recommended effort m satisfies m = a⇤c (m), meaning that the follower must find

it optimal to obey the recommendation.

With the knowledge that the follower will be truthful and obedient, one can take another step

back and impose the ex-ante participation constraint, which requires that the follower expect

a nonnegative payoff from the mechanism right after observing the seller’s message but before

exerting any effort. Formally, for any m 2 M, the maximand in (12), evaluated at the optimal

effort a⇤c (m), must be nonnegative:

U2 (0 | m) + Eq1|m



Z 1

q1

(1 � F (q2 | a⇤c (m))) dq2

�

� C (a⇤c (m)) � 0. (14)

Substituting the functional forms of F and C, and the expressions for a⇤ and a from (13) and (5),

and rearranging gives

U2 (0 | m) + Eq1|m



Z 1

q1

(1 � FL (q2)) dq2

�

+ C (a⇤c (m)) � U2 (0 | m) ,

where the inequality follows by inspection. Moreover, the interim participation constraint (10)

requires U2 (0 | m) � 0, and hence, by the display above, the ex-ante participation constraint in

(14) is implied by (10). Therefore, from now on, we focus on the follower’s interim participation

constraint and refer to it simply as his participation constraint.
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The Leader’s Truth-Telling and Participation Constraints

Having observed his type, the leader chooses a report that maximizes his expected payoff, thereby

attaining the value

U1 (q1) ⌘ max
q̂12Q1

Eq2|q1

h

q11{q̂1>q2} � t1 (q1, q2)
i

. (15)

As in the case of the follower, by Milgrom’s (2004) Constraint Simplification Theorem, the leader’s

truth-telling constraint is equivalent to the integral condition

U1 (q1) = U1 (0) +
Z q1

0
Em|q1 [F (q1 | a⇤c (m))] ds, (16)

and the monotonicity condition on the probability of winning,

Eq2|q1

⇥

1{q1>q2}
⇤

= Em|q1 [F (q1 | a⇤c (m))] , is nondecreasing in q1. (17)

In contrast to the follower’s monotonicity condition, the leader’s monotonicity condition (17) is

not immediately implied at the solution. Instead, we proceed with the analysis assuming that this

condition holds, and we then investigate (in Section 5) the conditions under which it does hold.

The leader’s interim participation constraint or, simply, his participation constraint, ensures

that each type of the leader is at least as well off in the mechanism as he would be if he were to

refrain from participation and enjoy the payoff of zero: U1 (q1) � 0 for all q1. Differentiating (16)

gives U0
1 (q1) = Em|q1 [F (q1 | a⇤c (m))] � 0; that is, U1 is nondecreasing, and so the participation

constraint holds for all q1 as long as it holds for q1 = 0:

U1 (0) � 0. (18)

The Seller’s Virtual Surplus

We can now use (16) combined with (15) and (11), both evaluated at a⇤c (m) and combined with (7),

to substitute out the bidders’ transfers from the seller’s objective function (3). From the seller’s

perspective, it is optimal to set the transfers for the lowest-type leader and the lowest-type fol-

lower so that their expected payoffs are zero. Because U1 (0) = 0 and, for all m, U2 (0 | m) = 0,
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the seller’s virtual surplus is17

Em,q1,q2

✓

q1 �
1 � G (q1)

g (q1)

◆

1{q1>q2} +

✓

q2 �
1 � F (q2 | a⇤c (m))

f (q2 | a⇤c (m))

◆

1{q2�q1}

�

. (19)

The displayed virtual surplus is the expected sum of each bidder’s virtual valuation times the

probability that he wins. The probability of winning is pinned down by the ex-post efficient allo-

cation rule. Except for the dependence of a⇤c on q1 (through m), the virtual surplus is standard.

Integrating q2 out of (19) and simplifying yields a more compact expression for the virtual

surplus:18
Z

Q1

Em|q1



q1 �
1 � G (q1)

g (q1)
F (q1 | a⇤c (m))

�

dG (q1) . (20)

To see why (20) is equivalent to (19), suppose that the leader’s type is q1, and the seller sends a

message m. Ex-post efficiency requires that the leader win with probability F (q1 | a⇤c (m)), which is

the probability of the event {q2 < q1}. In this case, the seller’s gain is the leader’s virtual valuation,

which equals his true valuation q1 less the information rent (1 � G (q1)) /g (q1). Analogously, if

the follower wins, the seller’s gain is the follower’s expected virtual valuation conditional on

winning, which can be verified to be simply q1.19 Hence, the seller prefers selling to the follower

and designs the information disclosure rule so as to maximize the probability of efficient sale to

him.

To maximize the follower’s probability of winning, the seller aims to encourage the follower

to become “stronger,” thereby intensifying the competition that the leader faces. Whether a better

or worse informed follower is stronger depends on the leader’s type. When the leader’s type

is high, a more informed follower, who draws his valuation from a more dispersed probability

distribution, stands a better chance of outbidding the leader. When the leader’s type is low, a

less informed follower, who draws his valuation from a less dispersed probability distribution, is

17If F has no density f , skip to (20), which does not rely on the existence of f .
18The virtual surplus in (20) is nonnegative, for it is bounded below by

R

Q1
[q1 � (1 � G (q1)) /g (q1)] dG (q1) = 0.

That is, the seller’s optimal revenue is nonnegative.
19Formally, the follower’s expected virtual valuation conditional on winning when the leader’s type is q1 is

Z 1

q1

✓

q2 �
1 � F (q2 | a⇤c (m))

f (q2 | a⇤c (m))

◆

f (q2 | a⇤c (m))
1 � F (q1 | a⇤c (m))

dq2 = q1.

Even though the integrand in the above display assumes that F has a positive density, f , the validity of (20) requires no
such assumption.
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more likely to outbid the leader. Thus, the seller will try to disclose information so as to nudge the

follower to learn more when the leader’s type is higher.

4.2 The Suboptimality of Full Disclosure and Non-Disclosure

Theorem 2 shows that the seller’s optimal-disclosure problem is nontrivial; full disclosure and

non-disclosure are both suboptimal. Full disclosure is a rule that assigns a distinct message to

each type of the leader. Non-disclosure is a rule that pools all leader types under the same mes-

sage.

The proof of Theorem 2 and the subsequent arguments use the seller’s objective function (20)

rewritten in a “product form.” To arrive at this form, neglect the additive term in (20) that is

independent of the disclosure rule; neglect the positive multiple 1/c, too, and rewrite (20) as

Z

Q1

Em|q1 [p (q1) a⇤ (m)] dG (q1) , (21)

where

p (q1) ⌘
1 � G (q1)

g (q1)
(FL (q1) � FH (q1)) (22)

is the seller’s marginal benefit from an increase in the follower’s effort. This marginal benefit

equals the leader’s information rent times the marginal increase in the probability that the follower

wins. Equation (21) is further transformed using the Law of Iterated Expectations and a⇤ (m) in

(13) to yield the product form

E
⇥

Eq1|m [p (q1)] Eq1|m [a (q1)]
⇤

. (23)

The transformed objective function has the same form as the sender’s objective function (equa-

tion [2]) in RS’s model.20 The product structure of (23) relies on two assumptions: the ex-post

efficient allocation rule and the linearity of the c.d.f. F (q2 | a) in the follower’s effort a. These two

assumptions are crucial for adapting RS’s techniques to our setting.21

To state our results, we borrow vocabulary from RS. A tuple (p (q1) , a (q1)) is called a prospect.

20Henceforth, bracketed indices refer to equations and lemmas in RS’s paper.
21In particular, if the seller were also to maximize over allocation rules, the product structure would be lost.
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The prospect set is the graph G ⌘ {(p (q1) , a (q1)) : q1 2 Q1}, which differs from an RS prospect

set only in that RS require their prospect sets to be finite.

Theorem 2. Under Condition 1, the policies of full disclosure and non-disclosure are suboptimal. If, in

addition, c.d.f.s G, FL, and FH are analytic functions, it is never optimal to pool an open interval of the

leader’s types under the same message.

Proof. See Appendix A.

4.3 The Optimality of Conjugate Disclosure

Under an additional assumption, Theorem 3 derives the structure of an optimal information-

disclosure rule. Roughly speaking, this rule partitions Q1 into pairs and singletons and reveals

to the follower only the element of the partition to which the leader’s type belongs. The two types

that are pooled in a pair are called “conjugate,” and so the optimal disclosure rule is called the

“conjugate disclosure rule.” Theorem 3 relates the optimal effort schedule to the optimal disclo-

sure rule.

Stating and proving Theorem 3 requires new definitions and intermediate results.

Restriction to Convex Prospect Sets

The analysis relies on the prospect set G being convex in the sense of:

Definition 1. A prospect set G is convex if it is a strictly convex curve (i.e., it intersects any line at

most twice).

Convex prospect sets are illustrated in Figure 3. The subsequent analysis maintains an addi-

tional assumption:

Condition 2. The prospect set G is convex.22

Convexity is satisfied in various “natural” examples (such as those in Figures 3b and 3c), and

it renders the optimal-disclosure problem tractable.

One can verify that Conditions 1 and 2 imply the existence of q 2 [0, q⇤) and q̄ 2 (q⇤, 1)

(illustrated in Figure 3) such that:
22An analytical condition that is essentially equivalent to convexity of the prospect set is spelled out in Lemma B.1 in

Supplementary Appendix B.3.
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"

("(θ*), α(θ*))

("(θ), α(θ))

("(0), α(0))

("(θ), α(θ))

("(1), α(1))
(a) A “typical” convex prospect set that sat-
isfies Condition 1.

!

"

("(#*), !(#*))

("(#), !(#))

("(#), !(#))

("(0), !(0))
(b) G is uniform, and FL and FH are Beta-distribution
c.d.f.s that satisfy Condition 1.

!

"

("(#), !(#))

("(1), !(1))("(0), !(0))

("(#*), !(#*))

(c) G is uniform, and FL and FH are as specified in Ex-
ample 1 (and, hence, satisfy Condition 1).

!

"

("(#), !(#))

("(1), !(1))

("(0), !(0))

(d) A convex prospect set that violates Condition 1.

Figure 3: Convex prospect sets. Certain “critical” points have been marked on each prospect set
and are referenced in the subsequent analysis. An increase in q1 corresponds to the clockwise
movement along the prospect set.
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• On (0, q), G is downward-sloping (a is strictly increasing; p is strictly decreasing).

• On (q, q⇤), G is upward-sloping (both a and p are strictly increasing).

• On
�

q⇤, q̄
�

, G is downward-sloping (a is strictly decreasing; p is strictly increasing).

• On
�

q̄, 1
�

, G is upward-sloping (both a and p are strictly decreasing).

The feasibility of partitioning G into the described segments relies on a being single-peaked (im-

plied by Condition 1; see Theorem 1) and on p being decreasing (possibly on a degenerate in-

terval), then increasing, and then decreasing again. This restriction on p is an additional joint

restriction on G and F, embedded in Condition 2.

A Discretized Prospect Set

The analysis draws on RS’s optimal-disclosure results, which have been developed for discrete

prospect sets and which we extend to the continuous set G by taking an appropriate limit. For

an arbitrary integer n � 1, let Gn denote a discrete prospect set induced by an n-th finite ap-

proximation of the leader’s type space Q1. In particular, let the discretized type space be Qn
1 ⌘

{yi}2n

i=1, where yi = i/2n, i 2 {0, 1, 2, 3, .., 2n}. The probability of any yi 2 Qn
1 is set equal to

G (yi) � G (yi�1), which is the probability of interval (yi�1, yi] ⇢ Q1. The approximation Qn
1 is

finer for larger values of n (i.e., Qn
1 ⇢ Qn+1

1 ) and satisfies [•
n=1Qn

1 = Q1. The induced discrete

prospect set is denoted by Gn ⌘ {(p (y) , a (y)) : y 2 Qn
1}.

Optimal Disclosure with the Discrete Prospect Set

For a discrete prospect set Gn, the seller’s disclosure problem, denoted by Pn, is a special case of

the problem studied by RS, whose results we use to narrow down the search for an optimal dis-

closure rule. The results use the following jargon. A prospect is revealed if it induces a message

that causes the follower to assign probability one to this prospect. Two prospects are pooled if

they sometimes induce the seller to send the same message. Graphically, in the (p, a)-space of

prospects, this shared message is represented by a pooling link, which is a line segment that con-

nects two pooled prospects on the graph Gn. When Gn is derived from G that satisfies Condition 2,
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RS’s results (some of which, for completeness, are reproduced in this paper) imply the following

facts about every Pn-optimal disclosure rule.

Fact 1. By RS’s Lemma [1] (also by this paper’s Lemmas A.1 and A.2), no two prospects are pooled if

both lie on the upward-sloping regions of —that is, (i) both lie in Gn \ {(p (q1) , a (q1)) : q1 2 [q, q⇤]}; or

(ii) both lie in Gn \
�

(p (q1) , a (q1)) : q1 2
⇥

q̄, 1
⇤ 

.

Fact 2. By RS’s Lemma [3] (also by this paper’s Lemma A.2), only the prospects that lie on a nonincreasing

line can be pooled under the same message.

Fact 3. By RS’s Lemma [3] (also by this paper’s Lemma A.2), at most two prospects can be pooled under

the same message because no more than two prospects lie on the same nonincreasing line, by Condition 2.

Fact 4. By RS’s Lemma [4], no two pooling links intersect.

Fact 5. By RS’s Proposition [1], a prospect either is always revealed or is pooled with some other prospects

with probability one.

The partial characterization of a Pn-optimal disclosure rule in Facts 1–5 is refined in Lemma 2,

which exploits the special structure of the seller’s problem.

Lemma 2. Suppose that Condition 2 holds. Then, any discrete disclosure problem Pn has an optimal

disclosure rule that is partially characterized by an s⇤ 2 [0, q] and an s⇤ 2
⇥

q⇤, q̄
⇤

such that

(i) Any type in [s⇤, s⇤]\Qn
1 either is always revealed or is pooled with some types in ([0, s⇤] [ [s⇤, 1])\

Qn
1 . Symmetrically, any type in ([0, s⇤] [ [s⇤, 1])\Qn

1 either is always revealed or is pooled with some types

in [s⇤, s⇤] \ Qn
1 . The types are pooled so that, in the prospect space, the pooling links never intersect.

(ii) The optimal effort is single-peaked and, if s⇤ 2 Qn
1 , is maximal at type s⇤. (If s⇤ /2 Qn

1 , the optimal

effort is maximal “close” to s⇤, either at type max {[0, s⇤] \ Qn
1} or at type min {[s⇤, 1] \ Qn

1}.)

Proof. See Appendix A.

Part (i) of Lemma 2 defines types s⇤ and s⇤, both in Q1 (not necessarily in Qn), such that each

pooling link intersects the line that passes through prospects (p (s⇤) , a (s⇤)) and (p (s⇤) , a (s⇤)),

as shown in Figure 4. Part (ii) of the lemma shows that the optimal effort schedule is single-peaked

in q1, with the peak, at s⇤, to the right of the peak of the first-best effort schedule, at q⇤.
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("(s*), α(s*))

("(s*), α(s*))

Figure 4: A discretized prospect set Gn is the union of solid dots. Without loss of generality, the
seller can restrict attention to disclosure rules such as the one illustrated here. Each dashed link
denotes a message that pools two prospects. These links never intersect and are oriented so that
one can draw an upward-sloping line (passing through points (p (s⇤) , a (s⇤)) and (p (s⇤) , a (s⇤)),
both marked by circles) that intersects each of the pooling links. The isolated prospect is revealed.

Optimal Disclosure with the Continuous Prospect Set: The Main Result

The Pn-optimal disclosure rule of Lemma 2 either reveals a prospect or pools it under the same

message with another prospect. Lemma 2 does not rule out situations in which a prospect prob-

abilistically invokes multiple messages (i.e., several pooling links could emanate from a single

prospect). However, Theorem 3 shows that, in the continuous problem, denoted by P , there is

no loss of generality in focusing on disclosure rules that deterministically associate each prospect

with a unique message.

The formal argument proceeds in two steps. Lemma A.3 in Appendix A shows that, starting

from a Pn-optimal disclosure rule, one can construct a disclosure rule for P that pools prospects

deterministically and delivers a payoff close to the optimal payoff in Pn. Roughly, when opti-

mality in Pn calls for probabilistically pooling a prospect under multiple messages, the disclosure

rule in P splits the corresponding “prospect” into nearby prospects; each such nearby prospect is

then pooled deterministically. This splitting exploits the continuity of the type space. The disclo-

sure rule, constructed in this way, is then verified to be optimal in P by using a limit argument of

Lemma A.4 in Appendix A.23 The results of Lemma A.3 and Lemma A.4 combine in Theorem 3,

23Lemmas A.3 and A.4 do not claim that, with the continuum, splitting prospects must lead to a strict improvement;
they show only that whatever can be achieved by pooling a prospect under multiple messages can also be achieved by
pooling it under a single message.
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which describes P-optimal disclosure and the associated effort schedule.

To state and prove Theorem 3, we need two more definitions. Definition 2 describes a function

that partitions the prospect set into revealed singletons and pooled pairs.

Definition 2. A matching function t takes one of two forms: (i) t : [0, s⇤] ! [s⇤, 1] is weakly

decreasing, with t (0) = 1 and t (s⇤) = s⇤, 0 < s⇤ < 1; or (ii) t : [s⇤, s⇤] ! (0, s⇤] [ [s⇤, 1] is weakly

decreasing on [s⇤, s0) and on [s0, s⇤], with t (s⇤) = s⇤, lims"s0 t (s) = 0, t (s0) = 1, and t (s⇤) = s⇤,

0 < s⇤  s0 < s⇤ < 1.

In Definition 2, case (ii) can be viewed as isomorphic to case (i) if the matching function’s

domain is “offset” by s⇤, so that s⇤ is the “new zero,” and every point in (0, s⇤) is “greater than”

every point in (s⇤, 1). Point s0 is the point of discontinuity at which the matching function jumps

upward from 0 to 1, thereby switching from taking values in one to taking values in the other

interval of its codomain. That is, the matching function takes values in (0, s⇤] when s 2 [s⇤, s0) and

in [s⇤, 1] when s 2 [s0, s⇤]. Case (i) in Definition 2 prevails in Example 1, for which the prospect

set is depicted in Figure 3c. An example of a prospect set corresponding to case (ii) is depicted in

Figure 3b.24

A disclosure rule that reveals an element of the partition described by a matching function is

called conjugate:

Definition 3. Under the conjugate disclosure rule induced by a matching function t, the seller

who receives the leader’s report q1 sends message s to the follower if q1 2 {s, t (s)} for some s;

otherwise, the seller sends message s = q1.

According to Definition 3, a conjugate disclosure rule either fully discloses the leader’s type

or pools it with one other type. When t is differentiable at s, the seller’s announcement {s, t (s)}

induces the follower to assign probability g (s) / (g (s) + |t0 (s)| g (t (s))) to q1 = s and the com-

plementary probability to q1 = t (s), by Bayes’ rule. When t0 (s) = 0, the seller’s announcement

{s, t (s)} induces the follower to assign probability one to q1 = s.25 Finally, when the range of t

omits some type, the seller reveals this type.

24Supplementary Appendix B.4 further contrasts cases (i) and (ii).
25Informally, when t0 (s) = 0, the seller effectively pools a “small positive-measure interval” of types near s with the

infinitesimal-measure type t (s). The infinitesimal measure of t (s) is further spread thinly over the positive measure
of types near s, thereby endowing each message {s, t (s)} with the infinitesimal odds of t (s) relative to s.
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We are now ready to state the main result:

Theorem 3. Under Conditions 1 and 2, the seller’s disclosure problem P has a solution that

(i) is a conjugate disclosure rule; and

(ii) induces the follower’s normalized effort schedule a⇤ that is maximized at an s⇤ with s⇤ � q⇤ and

a⇤ (s⇤)  a (q⇤) (where a is the normalized first-best effort schedule, and q⇤ is its maximizer) and whose

expectation is the same as that of the normalized first-best effort: E [a⇤ (m)] = E [a (q1)].

Proof. See Appendix A.

According to part (i) of Theorem 3, the optimality of the conjugate disclosure rule defies the

pooling pattern common in several models of strategic disclosure, in which all types in a certain

interval are pooled (e.g., Crawford and Sobel, 1982). In their footnote [11], RS conjecture that,

with a continuum of prospects, one would be unable to dismiss interval pooling as nongeneric.

By contrast, our model dismisses interval pooling for a continuous prospect set, which, while

“nongeneric,” emerges in an economically interesting setting.26 Nevertheless, RS’s results apply in

our setting because, under Conditions 1 and 2, RS’s critical feature is preserved: no three prospects

lie on the same line.

According to part (ii) of Theorem 3, the seller’s strategic information disclosure distorts the

follower’s effort schedule by shifting its peak to the right of the peak of the first-best effort sched-

ule. The overall (i.e., expected) effort is the same as in the first-best. The peak shifts rightwards

because the seller strives to intensify the competition that the leader faces by inducing the follower

to learn a lot when the leader’s type is high.

Corollary 2 shows how the optimal outcome can be implemented in an indirect mechanism.

The mechanism uses the (possibly negative) tax

T⇤ (q1) ⌘
Z q1

0
(F (s | a⇤c (m (q1))) � F (s | a⇤c (m (s)))) ds, q1 2 Q1, (24)

where m (q1) is the seller’s message induced by type q1, and a⇤ (m (q1)) is the corresponding action

of the follower.
26Our prospect set is nongeneric if only because it is a one-dimensional curve in a two-dimensional space. On top of

that, this curve is also convex, by Condition 2.
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Corollary 2. In an optimal mechanism, the seller

1. asks the leader to submit a bid, denoted by b, and charges him tax T⇤ (b), defined in (24);

2. discloses to the follower the message prescribed by the optimal conjugate disclosure rule of Theorem 3 and

asks him to submit a bid; and

3. allocates the item and assesses the payments according to the rules of the second-price auction.

In equilibrium, each bidder bids his type; the follower exerts the optimal effort; and the seller collects the

optimal revenue.

Proof. See Appendix A.

In contrast to the first-best auction of Corollary 1, the optimal auction of Corollary 2 does not

fully disclose the leader’s bid and specifies a different tax schedule. As in the first-best case, the

leader’s tax is increasing in his bid if the follower’s induced effort is increasing in the leader’s

bid and is decreasing otherwise. Thus, as in the first-best case, the leader’s tax countervails the

leader’s motive to manipulate his bid so as to induce the follower to learn more.

4.4 The Seller’s Optimal-Control Problem and the Euler Equation

By Theorem 3, the seller’s optimal conjugate disclosure rule is described by a matching function.

We demonstrate shortly that the matching function can be found by solving an optimal-control

problem. The optimal-control representation is useful for both formal and numerical analyses.

The Optimal-Control Formulation

For the sake of parsimony, we illustrate the optimal-control representation when the optimal

matching function takes the form shown in case (i) of Definition 2; the optimal-control repre-

sentation for case (ii) is similar.

In case (i), s⇤ = 0, and the seller’s objective function (21) can be written as

Z s⇤

0
p (s) a⇤ (s) g (s) ds +

Z s⇤

0
p (t (s)) a⇤ (s) g (t (s)) b (s) ds +

Z

[s⇤,1]\range(t)
a (s) p (s) ds, (25)

where b ⌘ �t0 denotes the derivative of a matching function t, and a⇤ (s) denotes the follower’s
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normalized optimal action when the leader’s type is s 2 [0, s⇤].27 The first integral in (25) is the

seller’s payoff from the prospects induced by the leader’s types in [0, s⇤]. The second integral is

the seller’s payoff from those types in [s⇤, 1] that the matching function pools with types in [0, s⇤].

The third integral is the seller’s payoff from those types in [s⇤, 1] that are fully revealed.

The first and last integrals in (25) copy the corresponding terms from the seller’s objective

function (21). The second integral is derived using the change-of-variables formula, according to

which, for any type s 2 (0, s⇤) and a “small” ds > 0, interval (s, s + ds), whose probability is ap-

proximately g (s) ds, is pooled with interval (t (s + ds) , t (s)), whose probability is approximately

g (t (s)) b (s) ds.28 The follower’s normalized effort in (25) is derived from (13) by appealing to

Bayes’ rule and performing the change of variables:

a⇤ (s) =
g (s) a (s) + g (t (s)) b (s) a (t (s))

g (s) + g (t (s)) b (s)
, s 2 [0, s⇤] . (26)

One can now formulate the seller’s optimal-control problem.

Definition 4. When s⇤ = 0, the seller’s optimal-control problem consists in maximizing (25) over

s⇤, a piecewise-continuous function b : [0, s⇤] ! R+, and the implied piecewise-differentiable

function t : [0, s⇤] ! [s⇤, 1] , which, together, induce a⇤ from (26), subject to t (0) = 1, t (s⇤) = s⇤,

and, for almost all s 2 (0, s⇤), t0 (s) = �b (s).

The Euler Equation

A solution to the seller’s optimal-control problem induces an optimal-prospect path

P ⌘ {(p⇤ (s) , a⇤ (s)) : s 2 [0, s⇤]} ,

where p⇤ (s) is the seller’s expected marginal benefit from the follower’s action when message s

is sent:

p⇤ (s) =
g (s) p (s) + g (t (s)) b (s) p (t (s))

g (s) + g (t (s)) b (s)
, s 2 [0, s⇤] . (27)

27Equation (25) implicitly normalizes the set of messages to [0, s⇤] [ ([s⇤, 1] \range (t)). Any type q1 in [0, s⇤] gen-
erates message m (q1) = q1. Any fully revealed type q1 in (s⇤, 1] (i.e., a type in (s⇤, 1] \range (t)) generates message
m (q1) = q1. Any pooled type q1 in (s⇤, 1] generates message m (q1) 2 t�1 (q1) ⇢ [0, s⇤].

28Indeed, the Taylor expansion implies G (t (s + ds)) ⇡ G (t (s)) + G0 (t (s)) t0 (s) ds.
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Figure 5: An optimal-prospect path, P, for a “typical” convex prospect set, G, that satisfies Con-
dition 1. The solid thin arc is G; the solid thick curve is P; each dashed line segment is a pooling
link. Each point on P is a tuple containing the follower’s normalized optimal action, a⇤, and
the seller’s expected marginal benefit from that action, p⇤. Each tuple is induced by pooling the
prospects at the endpoints of the dashed link that passes through that tuple. Here, the leader’s
types in [s0, s00] = G \ P are revealed. As per the Euler equation, where P and the top pooling link
intersect, the absolute values of their slopes are equal.

Figure 5 illustrates P for a “typical” convex prospect set that satisfies Condition 1. In the figure,

each depicted pooling link, for some s < s⇤, connects the prospects induced by s and by t (s),

the optimal matching function evaluated at s. The pooling link induces the follower’s normalized

effort a⇤ (s), which is the ordinate of the intersection point of the optimal-prospect path and the

pooling link. The corresponding abscissa is the seller’s expected marginal benefit, p⇤ (s).

Any P is nondecreasing, which is a necessary condition for optimality. Indeed, if P had a

strictly decreasing segment, then, by Lemma A.2 in Appendix A, it would be optimal to pool

under a single message some of the messages that induced that segment. Any prospect in the

intersection of P and G is fully revealed.

A standard variational argument can be invoked to establish that, almost everywhere in the
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interior of the convex hull of G, P satisfies the Euler equation:29

da⇤

dp⇤ =
a � a (t)
p (t) � p

, (28)

where the argument q1 has been suppressed. In (28), da⇤/dp⇤ is the slope of P, and (a � a (t)) /(p � p (t))

is the slope of the corresponding pooling link. Thus, graphically, (28) requires that, wherever P

and a pooling link intersect, the absolute values of their slopes are equal (Figure 5 illustrates).

5 The Monotonicity Condition

So far, the analysis has been performed under the hypothesis that the identified solution to the

seller’s relaxed problem, which ignores the leader’s monotonicity constraint, also solves the seller’s

full problem. Theorem 4 shows that this is indeed so if c is sufficiently large.

The probability that a type-q1 leader wins is the probability that q2  q1 and equals

F (q1 | a⇤c (q1)) = a⇤c (q1) FH (q1) + (1 � a⇤c (q1)) FL (q1) . (29)

This probability depends on q1 both directly and indirectly, through a⇤c (q1). The leader’s mono-

tonicity condition requires F (q1 | a⇤c (q1)) to be weakly increasing in q1. If a⇤c were fixed, the

leader’s monotonicity condition would be satisfied automatically, because FH and FL are c.d.f.s

and, hence, weakly increasing. However, the dependence of a⇤c on q1 may threaten monotonic-

ity on (q⇤, s⇤), where FH (q1) < FL (q1), and a⇤c is increasing in q1. In this case, a small increase

in q1, while (weakly) increasing the values of both FH and FL, shifts the weight in F towards FH,

the smaller of the two constituent c.d.f.s., making the overall direction of change in F (q1 | a⇤c (q1))

ambiguous.

Intuitively, on (q⇤, s⇤), the fact that the leader becomes stronger as q1 increases is at least par-

tially offset by the fact that the follower also becomes stronger as the seller instructs him to learn

more. Even though a more informed follower is not a stronger bidder in the first-order stochastic-

dominance sense, he has a higher chance of an extremely high type realization, which he needs to

29The argument leading up to Lemma B.4 in Supplementary Appendix B.6 illustrates the derivation.
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outbid a high-type leader.30

To show that monotonicity is guaranteed to hold for a sufficiently large c, differentiate (29):

dF (q1 | a⇤c (q1))
dq1

= fL (q1) +
a⇤0 (q1) (FH (q1) � FL (q1)) + a⇤ (q1) ( fH (q1) � fL (q1))

c
. (30)

By inspection, for a sufficiently large c, (30) is nonnegative if fL is bounded away from zero and

from above, and if a⇤0 is bounded from above on (q⇤, s⇤).31 Ascertaining the requisite boundedness

of a⇤0 is a delicate procedure because a⇤ depends on optimal disclosure, which is not an explicit

function of the primitives. Condition 3 helps.

Condition 3. The functions g and fL are bounded below away from zero; the functions g0, fL, and

fH are bounded above; and

lim
q1!1

a0 (q1)
p0 (q1)

> 0.

Condition 3 is satisfied in the paper’s leading example: Example 1 with the uniform G.

Theorem 4. Under Condition 3, the leader’s monotonicity condition holds if c is sufficiently large. More-

over, the leader’s monotonicity condition satisfies a cut-off property: if monotonicity holds for some c, then

it holds for any larger c.

Proof. See Appendix A.

Intuitively, in Theorem 4, a larger c attenuates the follower’s effort, thereby making it less

sensitive to q1. As a result, when c is large, the effect of a higher q1 on the leader’s probability of

winning is dominated by the direct effect of his becoming a stronger bidder; the indirect effect, due

to the change in the distribution of the follower’s types associated with learning, is insignificant

by comparison.

30The seller escalates bidder competition so much because he is motivated by profit; first-best efficiency rules out
such an escalation and guarantees monotonicity.

31There are no other boundedness conditions to attend to. Function a⇤0 is guaranteed to be bounded from be-
low by zero because a⇤ is guaranteed to be nondecreasing on (0, s⇤). Function a⇤ is bounded because a⇤ (m) ⌘
Eq1|m

h

R 1
q1

(FL (s) � FH (s)) ds
i

has values in the bounded interval [0, 1 � q⇤].
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(a) The solid convex arc is G, the prospect set, with se-
lected prospects labeled by the leader’s types that in-
duce them (ŝ = 0.054 and s⇤ = 0.61). The solid increas-
ing curve is P, the optimal-prospect path. The leader’s
types in [0, ŝ] are revealed; the rest are pooled into pairs.

q* s* q1

Pr8q1>q2<

(b) F (q1 | a⇤c (q1)), the probability that the leader wins as
a function of his type, is weakly increasing in q1 when
c = c⇤.

Figure 6: Optimal disclosure in Example 1 with the uniform c.d.f. G.

6 A Numerical Example

In this section, to recover the exact optimal disclosure rule, we solve the seller’s optimal-control

problem from Section 4.4 for Example 1 with the uniform c.d.f. G. To do so, we apply Hamiltonian

techniques.32 The identified solution also solves the full problem, as we shall show.

Figures 2 and 6 report a numerical solution. The first-best and optimal effort schedules are

in Figure 2. Consistent with Theorem 3, the areas below the two effort schedules coincide (i.e.,

E [a⇤ (m)] = E [a (q1)]), and the optimal effort schedule is shifted rightwards relative to the first-

best schedule.

Figure 6a plots selected pooling links for the optimal disclosure policy. The solid increasing

curve is P. When P is in the interior of the convex hull of G, the Euler equation (28) holds; thus,

wherever P and a pooling link intersect, the absolute values of their slopes are equal.33

Finally, at the solution to the optimal-control problem, the leader’s monotonicity condition

holds for any c. Indeed, Figure 6b confirms that, when c = c⇤, the leader’s probability of winning

is nondecreasing in his type. By Theorem 4, because the leader’s monotonicity condition holds for

c = c⇤, it also holds for any larger c—that is, for any c admissible according to (2).

32Because the Hamiltonian analysis imposes the additional assumption of piecewise continuous differentiability of the
matching function, and because we have been unable to show that the problem in Definition 4 is convex, the numerical
“solution” we report is an informed guess, which has been verified to improve upon full disclosure and non-disclosure.

33Consistent with Lemma B.6 in Supplementary Appendix B.6, s⇤ < q̄, and, on (s⇤, 1], P has no points in common
with G.
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7 Concluding Remarks

This paper reinterprets and extends the techniques of the Bayesian persuasion model of RS to

study the distortions that the seller’s strategic bid-disclosure introduces into an otherwise effi-

cient sequential auction. The mapping of the seller’s optimal-auction problem into the optimal-

disclosure problem of RS relies on three assumptions: (i) the seller chooses the ex-post efficient

allocation rule; (ii) the follower’s learning effort is the probability with which he gains access to a

more precise signal; and (iii) in the seller’s relaxed problem, the leader’s monotonicity constraint

holds. Relaxing any of these assumptions would call for techniques that differ substantially from

those that we use in our analysis.

A Appendix: Omitted Proofs

Proof of Lemma 1

The leader takes no private action, and so, without loss of generality, the seller contacts him only
once, to elicit his type. The follower exerts effort just once, and so the seller contacts him first,
to inform the effort choice, and then contacts him again, to elicit his type. Because of the option
value of influencing the follower’s effort by disclosing something to him about the leader’s type,
without loss of generality, the seller contacts the follower after receiving the leader’s report.

Proof of Theorem 1

Integrating (4) by parts gives:

ac (q1) 2 arg max
a2A

⇢

1 �
Z 1

q1

F (q2 | a) dq2 � C (a)
�

.

For a given q1, the planner’s marginal net benefit from an increase in the follower’s effort is the
derivative of the maximand in the display above and equals

B (q1, a) ⌘ R (q1) � C0 (a) , (A.1)

where
R (q1) ⌘ �

Z 1

q1

∂F (q2 | a)
∂a

dq2 (A.2)

is the return to information acquisition (independent of a because F is linear in a), and C0 (a) is the
marginal cost of the follower’s information-acquisition effort. For any a 2 A, B (1, a) = �C0 (a) <
0, and, by part (i) of Condition 1, B (0, a) = �C0 (a) < 0. Hence, when q1 = 1 or q1 = 0, the
follower exerts zero effort at the first-best.
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Part (ii) of Condition 1 implies that, for any a 2 A, B (q1, a) is strictly increasing in q1 for q1 < q⇤

and is strictly decreasing in q1 for q1 � q⇤. Hence, by the Monotone Selection Theorem (Milgrom
and Shannon, 1994), the first-best effort, ac (q1), is weakly increasing in q1 for q1 < q⇤ and is
weakly decreasing in q1 for q1 � q⇤, independently of the exact functional form of C. Moreover,
the dependence is strict when ac (q1) 2 (0, 1) (Edlin and Shannon, 1998), which can be shown to
be the case for q1 2 (0, 1) as long as the convex C has C0 (0) = 0 and C0 (1) sufficiently large, as the
quadratic C and condition (2) indeed imply. From the first-order condition R (q1) = C0 (ac (q1)),
the quadratic C delivers an expression for the first-best effort in (5).

Proof of Corollary 1

For the follower, it is a weakly dominant strategy to bid his type in the second-price auction.
If he bids his type, he also finds it optimal to exert the first-best effort; his expected payoff in
the mechanism described in the corollary has been constructed to coincide with the planner’s
maximand in the surplus-maximization problem (4). The follower’s payoff is nonnegative because
he can obtain a nonnegative payoff by bidding in the second-price auction without having exerted
any effort.

The leader chooses his bid, b, to maximize
Z

Q2

1{b>q2} (q1 � q2) dF (q2 | ac (b)) � T (b) .

Integration by parts and the substitution of T from (6) transforms the display above into

Z q1

0
F (s | ac (s)) ds +

Z b

q1

(F (s | ac (s)) � F (b | ac (b))) ds,

which is maximized at b = q1 because F (s | ac (s)) is increasing in s, as we now show.
That F (s | ac (s)) is increasing in s can be seen by letting s0 > s and writing

F
�

s0 | ac
�

s0
��

� F (s | ac (s)) =
⇥

F
�

s0 | ac
�

s0
��

� F
�

s | ac
�

s0
��⇤

+
Z ac(s0)

ac(s)

∂F (s | a)
∂a

da.

In the display above, the bracketed term is nonnegative because F is a c.d.f. and s0 > s. To see
that the integral in the display above is positive, we consider three cases: (i) if s < s0  q⇤, then
a (s) < a (s0) (Theorem 1) and ∂F (s | a) /∂a > 0 (Condition 1), and so the integral is positive;
(ii) if q⇤  s < s0, then a (s) > a (s0) (Theorem 1) and ∂F (s | a) /∂a < 0 (Condition 1), and so the
integral is positive; and (iii) if s < q⇤ < s0, then considering the change in the leader’s type from s
to q⇤ and applying case (i) and then considering the change in the leader’s type from q⇤ to s0 and
applying case (ii) delivers the positivity of the integral.

When b = q1, the leader’s expected payoff is
R q1

0 F (s | ac (s)) ds and, hence, nonnegative.
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Proof of Theorem 2

Showing that neither full disclosure, nor non-disclosure is optimal requires two lemmas: Lemma A.1
and Lemma A.2.

For Lemma A.1, call functions a and p ordered on a subset S of the prospect set G if

�

a
�

s0
�

� a (s)
� �

p
�

s0
�

� p (s)
�

� 0

for almost all (p (s) , a (s)) , (p (s0) , a (s0)) 2 S.

Lemma A.1. Full disclosure on S ✓ G is optimal if and only if a and p are ordered on S.

Proof. Necessity: Suppose that a and p are not ordered on S. Then, an interval I ⇢ Q1 exists on
which a is strictly increasing and p is strictly decreasing, or vice versa. In this case,

Z

I

Z

I

�

a
�

s0
�

� a (s)
� �

p
�

s0
�

� p (s)
�

dsds0 < 0.

In the display above, multiplying the parentheses, defining |I| ⌘
R

I ds, and rearranging yields34

Z

I
a (s) p (s) ds <

1
|I|

Z

I
a (s) ds

Z

I
p (s) ds,

where the left-hand side is the seller’s expected payoff from fully disclosing the types in I, and the
right-hand side is the seller’s expected payoff from pooling all types in I under the same message.
Thus, full disclosure on S is suboptimal.

Sufficiency:35 Suppose that a and p are ordered on S. By contradiction, suppose that, with
probability-density p, prospect (p (s) , a (s)) occurs and induces a message m. Suppose, also, that,
with probability-density p0, prospect (p (s0) , a (s0)) with s0 6= s occurs and induces the same mes-
sage m.36 The seller’s gain from pooling the two prospects under message m relative to revealing
each of them is

pa (s) + p0a (s0)
p + p0

pp (s) + p0p (s0)
p + p0

�

p + p0
�

� pa (s) p (s) � p0a
�

s0
�

p
�

s0
�

= � pp0 (a (s0) � a (s)) (p (s0) � p (s))
p + p0

 0,

where the inequality follows because a and p are ordered. Thus, a weak improvement can be
attained by revealing any two prospects that are sometimes pooled under the same message; full
disclosure is optimal on S.

Taking S = G in Lemma A.1 immediately yields

34The obtained inequality is a continuous version of Chebyshev’s sum inequality.
35The sufficiency argument is Lemma [1] of RS and is included for completeness.
36The message m may also be induced by some other prospect. Either prospect may also induce some other message.
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Corollary 3. Full disclosure is optimal if and only if a and p are ordered on G.

For Lemma A.2, define a nonincreasing line as a straight line that is either vertical or has a
nonpositive slope.

Lemma A.2. It is optimal to pool a subset S of the prospect set G under the same message if and only if S
lies on a nonincreasing line.

Proof. For sufficiency, suppose, first, that S lies on a vertical line. Then, the seller’s payoff from S,
E
⇥

E|m [a] E|m [p]
⇤

= pE [a], is independent of the disclosure rule. Any disclosure of the elements
of S is optimal, including pooling them under the same message.

If G is a nonincreasing line that is not vertical, then for some k0 2 R and k1 2 R+, every
prospect (a (q1) , p (q1)) in S can be written as a (q1) = k0 � k1p (q1). The seller’s payoff from S,

E
⇥

E|m [a] E|m [p]
⇤

= k0E [p] � k1E
h

�

E|m [p]
�2
i

,

is maximized when E
h

�

E|m [p]
�2
i

is minimized, which, by Jensen’s inequality, occurs when the
signal structure is least informative in Blackwell’s sense, when the random variable E|m [p] is least
dispersed. The least dispersion is achieved by pooling all prospects in S under the same message.

To summarize, pooling all prospects on a line segment is optimal, and strictly so when k1 > 0.
Necessity follows from RS’s Lemma [3].

Taking S = G in Lemma A.2 immediately yields

Corollary 4. Non-disclosure is optimal if and only if the prospect set G lies on a nonincreasing line.

One can now prove Theorem 2.
Recall that

p (q1) =
1 � G (q1)

g (q1)
(FL (q1) � FH (q1))

a (q1) =
Z 1

q1

(FL (s) � FH (s)) ds.

By Theorem 1, a is uniquely maximized at q1 = q⇤ 2 (0, 1). By part (ii) of Condition 1 and by
the above display, q1 < q⇤ =) p (q1) < 0 and q1 > q⇤ =) p (q1) > 0. Thus, a and p are not
ordered, and Corollary 3 implies that full disclosure is suboptimal.

The prospect set G does not lie on a nonincreasing line. Indeed, G is not on a vertical line
because the sign of p (q1) depends on q1, as argued above. Nor is G on a decreasing line; the
reason is that, for each q1 < q⇤, there exists an e > 0 such that a (q1) < a (q⇤ + e) and p (q1) < 0 <

p (q⇤ + e) . Hence, Corollary 4 implies that non-disclosure is suboptimal.
The remainder of the proof establishes the suboptimality of pooling an open interval of types

and relies on two standard observations about analytic functions and analytic curves.
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Figure A.1: Contradiction hypotheses for Step 1 in the proof of Lemma 2. Each dashed link denotes
a pair of prospects that are pooled under the same message. In neither panel can the two links be
crossed by an upward-sloping line.

Observation 1. Sums, products, reciprocals (if well-defined), derivatives, and integrals of ana-
lytic functions are analytic.

Observation 2. If two analytic curves coincide on any open interval, these curves are identical
everywhere.

By Observation 1, p and a are analytic. Hence, the prospect set G is analytic.
By Lemma A.2, all types in an open interval in Q1 can be optimally pooled under the same

message only if a nonincreasing line coincides with the prospect set G on that interval. If so,
Observation 2 implies that G must be a nonincreasing line, which has been shown to be false.
Hence, no interval of types is optimally pooled.

Proof of Lemma 2

The proof is constructive and proceeds in three steps. Step 1 rules out the pooling patterns de-
picted in both panels of Figure A.1. Step 2 combines Facts 1–5 with Step 1 to construct an s⇤ 2 [0, q]

and an s⇤ 2
⇥

q⇤, q̄
⇤

satisfying part (i) of the lemma. Step 3 establishes part (ii).
Step 1: Take any pooling link that has a northwest prospect, denoted by (p3, a3).37 Then, optimality

rules out the existence of a link that pools two prospects, say (p1, a1) and (p2, a2), such that each of these
prospects lies to the northwest of (p3, a3). (See both panels of Figure A.1.)

Prospects are optimally pooled so that the pooling links are nonincreasing (Fact 2) and never
intersect (Fact 4). Hence, to prove the claim in Step 1, it suffices to show that the pooling patterns
depicted in Figure A.1 are never optimal. A single argument rules out both patterns.

37We define the cardinal directions in the (p, a)-space in the obvious manner. For instance, a point (p3, a3) is north-
west of point (p4, a4) if p3 < p4 and a3 > a4.
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By contradiction, suppose that one can pick four prospects {(pi, ai)}i=1,2,3,4 such that prospects
(p1, a1) and (p2, a2) are optimally pooled under some message—say, m; prospects (p3, a3) and
(p4, a4) are optimally pooled under another message—say m0; and either (a) p4 � p3 � p2 > p1

and a1 � a2 � a3 > a4 or (b) p4 > p3 � p2 � p1 and a1 > a2 � a3 � a4 holds.38 For each
i = 1, 2, 3, 4, let pi denote the joint probability that (i) type xi—which is assumed to invoke prospect
(pi, ai)—is realized; and (ii) type xi induces either message m or m0 (whichever is appropriate).

The seller’s expected gain from using the distinct messages m and m0 (as in Figure A.1) relative
to pooling all four prospects under a single message is

D ⌘ (p1p1 + p2p2) (p1a1 + p2a2)
p1 + p2

+
(p3p3 + p4p4) (p3a3 + p4a4)

p3 + p4

� (p1p1 + p2p2 + p3p3 + p4p4) (p1a1 + p2a2 + p3a3 + p4a4)
p1 + p2 + p3 + p4

,

which can be rearranged to give

D =
(p1 + p2) (p3 + p4)
p1 + p2 + p3 + p4

✓

p3p3 + p4p4

p3 + p4
� p1p1 + p2p2

p1 + p2

◆✓

p3a3 + p4a4

p3 + p4
� p1a1 + p2a2

p1 + p2

◆

< 0,

(A.3)
where the inequality follows either from p4 � p3 � p2 > p1 and a1 � a2 � a3 > a4 or from
p4 > p3 � p2 � p1 and a1 > a2 � a3 � a4. Because D < 0, the pooling patterns in the both
panels of Figure A.1 are suboptimal, and the claim in Step 1 follows.

Step 2: There exist an s⇤ 2 [0, q] and an s⇤ 2
⇥

q⇤, q̄
⇤

that satisfy part (i) of the lemma.
Here, we describe a procedure for constructing the sought s⇤ and s⇤. This procedure uses a

strict, complete, and transitive “smaller-than” order on optimal pooling links. We denote this
order by �. To define �, take an arbitrary pooling link and call it X. The unique line passing
through X is X’s hyperplane that splits the (p, a)-space into two half-spaces. The upper half-
space of X is the closed half-space comprising the points, each of which is weakly greater in the
(Cartesian) product order than some point on the X’s hyperplane. X is said to be smaller than some
other pooling link Y (and Y is greater than X)—denoted by X�Y—if Y lies in the upper half-space
of X. Thus defined, � is complete because, by Facts 1–5, optimal pooling links never intersect. The
order is strict because two distinct links cannot share a hyperplane. Finally, it is immediate that
the order is transitive.

Because Gn is finite, the number of pooling links is finite, and so there exists the unique �-
maximal pooling link, which we denote by Y⇤. Because the pooling links are nonincreasing, the
arc of G that lies in the upper half-space of Y⇤ contains at least one prospect induced by a type in
⇥

q⇤, q̄
⇤

. Define s⇤ to be an arbitrary such type.
We now turn to the construction of s⇤. Draw a sequence of pairs of secants of G. Each secant

in the pair passes through the prospect (p (s⇤) , a (s⇤)) and either endpoint of a pooling link. Each
38Cases (a) and (b) differ in the placement of the strict and weak inequalities. Case (a) prevails if the leader’s types

x1, x2, x3, and x4 in Qn
1 satisfy 0 < x1 < x2  x3 < x4 < 1, x2 > q⇤, and x3 < q̄. Case (b) prevails if the leader’s types

satisfy either q⇤ > x1 > x2 � x3 > x4 > 0 or x4 > q⇤ > x1 > x2 � x3 > 0 and x2 < q.

37



α
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("(s*), α(s*))

("(θ*), α(θ*))

("(θ), α(θ))

Y*

Y*

X

(a) Type s⇤ 2
⇥

q⇤, q̄
⇤

is chosen to induce a prospect,
(p (s⇤) , a (s⇤)) 2 G, in the upper half-space of the �-
maximal pooling link, Y⇤. The outer shaded cone orig-
inates at prospect (p (s⇤) , a (s⇤)) and straddles some
pooling link X. The inner shaded cone originates at
prospect (p (s⇤) , a (s⇤)) and straddles the �-minimal
pooling link, Y⇤.

α

"

("(s*), α(s*))

("(0), α(0))

("(θ), α(θ))

("(s*), α(s*))

(b) Type s⇤ 2 [0, q] is chosen to induce a prospect,
(p (s⇤) , a (s⇤)), in the lower half-space of the �-
minimal pooling link (not shown). The shaded cone
straddles the �-minimal pooling link and is also the
(nonempty) intersection of all cones that straddle pool-
ing links. This intersection property ensures that the
secant that passes through prospects (p (s⇤) , p (s⇤))
and (p (s⇤) , p (s⇤)) traverses every pooling link (not
shown).

Figure A.2: The construction of s⇤ and s⇤ in Step 2 of the proof of Lemma 2. The solid dots mark
prospects in the discretized prospect set Gn; the circles mark “critical” prospects in the continuous
prospect set G.

secant pair delimits a cone in the (p, a)-space, as depicted in Figure A.2a. By Step 1, and because
G is a convex curve, � induces an inclusion order on the cones generated by the pooling links.
In particular, the cones associated with �-smaller pooling links are smaller in the inclusion sense.
As a result, the intersection of all the cones (depicted in Figure A.2b) is nonempty and is the cone
induced by the �-minimal pooling link, denoted by Y⇤.39 Consequently, the intersection of all
cones contains the arc of G that lies in the lower half-space of Y⇤. Because Y⇤ is nonincreasing, this
arc contains at least one prospect induced by some type in [0, q]. Define s⇤ to be an arbitrary such
type.

The line that passes through the prospects induced by s⇤ and s⇤ constructed above (Figure A.2b)
is nondecreasing and traverses all pooling links. This line partitions the prospects in those induced
by types in [s⇤, s⇤] \ Qn

1 and those induced by types in ([0, s⇤] [ [s⇤, 1]) \ Qn
1 . By construction of s⇤

and s⇤, every prospect in Gn is either pooled with a prospect in the other element of this partition
or is fully revealed. Hence, part (i) of the lemma follows.

Step 3: The optimal effort is single-peaked and, if s⇤ 2 Qn
1 , is maximal at type s⇤. (If s⇤ /2 Qn

1 , the
optimal effort is maximal “close” to s⇤, either at type max {[0, s⇤] \ Qn

1} or at type min {[s⇤, 1] \ Qn
1}).

Take any four leader’s types x1, x2, x3, and x4 in Qn
1 such that {x1, x2} are pooled under some

message; {x3, x4} are pooled under some other message; and either x1 6= x2 or x3 6= x4, or both.
Relabel the pairs of types so that the link connecting the prospects induced by points {x1, x2} is

39Just as Y⇤, Y⇤ exists because Gn, and, thus, the number of pooling links, is finite.
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�-smaller than the link connecting the prospects induced by {x3, x4}.40 For the described pooling
to be optimal, it must be, in particular, that the seller does not gain from pooling {x1, x2, x3, x4} all
under the same message. That is, the inequality in (A.3) must be reversed to yield D � 0. The only
way to satisfy D � 0 is to have41

p3a3 + p4a4

p3 + p4
� p1a1 + p2a2

p1 + p2
and

p3p3 + p4p4

p3 + p4
� p1p1 + p2p2

p1 + p2
.

The first inequality in the above display implies, in particular, that the message corresponding to
a �-larger pooling link (or a fully revealed prospect) induces a weakly larger equilibrium effort.
Equivalently, because of the orientation of pooling links relative to s⇤ and s⇤ reported in part (i),
the induced effort increases as the leader’s type increases away from s⇤ and towards s⇤—as long
as either x1 6= x2 or x3 6= x4—corroborating part (ii) of the lemma.

It also remains to show that, when two fully revealed prospects are compared (instead of two
links or a link and a fully revealed prospect), the larger of the two leader’s types in [s⇤, s⇤] induces
the higher effort. Once again appealing to D � 0, now with x1 = x2 and x3 = x4, conclude that,
for any two arbitrary fully revealed prospects (p1, a1) and (p3, a3),

(p3 � p1) (a3 � a1) � 0.

That is, because fully revealed, the two prospects lie on the upward-sloping segments of the arc
{(p (s) , a (s)) 2 G | s 2 [s⇤, s⇤]}. On this segment, it is indeed the case that a higher type of the
leader induces a higher effort of the follower. The proof of part (ii) of the lemma is, thus, complete.

Proof of Theorem 3

The proof of Theorem 3 relies on two preliminary results: Lemma A.3 and Lemma A.4.
Lemma A.3 shows that, for P , one can construct a conjugate disclosure rule that delivers

to the seller a payoff approximately equal to the seller’s optimal payoff in Pn when n is large.
The lemma’s statement uses the big-O notation, in which O stands for a function that satisfies
lim supn!• |O (2�n) /2�n| < •.

Lemma A.3. Suppose that Vn is the seller’s optimal payoff in the discrete disclosure problem Pn. Then,
there exists a conjugate disclosure rule that delivers to the seller payoff Vn + O (2�n) in the continuous
disclosure problem P .

40If x3 = x4, extend � (to compare a link and a fully revealed prospect) so that the {x1, x2}-pooling link is �-smaller
than the {x3, x4}-prospect if x3 is in the upper half-space of the {x1, x2}-pooling link. Similarly, if x1 = x2, extend �
so that the {x1, x2}-prospect is �-smaller than the {x3, x4}-pooling link if x1 is in the lower half-space of the {x3, x4}-
pooling link.

41Indeed,
⇣

pipi+pi+1pi+1
pi+pi+1

, piai+pi+1ai+1
pi+pi+1

⌘

is an average point on the link connecting prospects (pi, ai) and (pi+1, ai+1),
i = 1, 3. By D � 0, the two averages must be product-ordered. Because, by normalization, the link connecting (p1, a1)
and (p2, a2) is �-smaller than the link connecting (p3, a3) and (p4, a4), the only way the averages can be ordered (and
a picture makes this clear) is if the average for i = 1 is weakly smaller than the average for i = 3, which is what the
displayed pair of inequalities advocates.
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Proof. Let prospect (p (yi) , a (yi)) be referred to as prospect i and denote it by (pi, ai) . By Lemma 2
and Facts 1–5, a Pn-optimal disclosure rule can be represented by a matrix pn ⌘

⇥

pij
⇤

i,j2{1,..,2n},
whose typical element pij is the joint probability that prospect i arises and that it induces the mes-
sage that pools prospects i and j. The probability that prospect i arises and is fully revealed is
denoted by pii. The probability that prospect i arises is denoted by pi and equals Âj2{1,..,2n} pij,
which is the joint probability that prospect i arises and either is pooled with any other prospect or
is fully revealed. Because, by Fact 5, a prospect cannot be fully revealed sometimes and pooled at
other times, pii > 0 implies that pii = pi (i.e., pij = 0 for every j 6= i). A prospect can be pooled
with more than one other prospect (depending on the realized message); that is, pij > 0 does not
imply that pij = pi.

The value of problem Pn is denoted by Vn. To define this value, first define n⇤ and n⇤, the
prospect indices that correspond to the threshold types s⇤ and s⇤ defined in Lemma 2:

n⇤ ⌘ min {i : yi � s⇤} (A.4)

and
n⇤ ⌘ max {i : yi  s⇤} . (A.5)

With this notation,

Vn ⌘ max
pn

(

2n

Â
i=1

piip (yi) a (yi) +
n⇤

Â
i=n⇤

Â
j2{1,..,n⇤�1}[{n⇤+1,..,2n}

�

pij + pji
� pijp (yi) + pjip

�

yj
�

pij + pji

pija (yi) + pjia
�

yj
�

pij + pji

)

,

(A.6)
where the first term is the payoff from revealed prospects, and the second term is the payoff from
pooled prospects. The maximization is over disclosure rules.

Henceforth, let pn be the Pn-optimal disclosure rule, which attains the maximum in (A.6). This
rule will be used to construct an approximately P-optimal disclosure rule. Roughly, if in Pn, pn

pools prospects i and j only with each other (i.e., Sk pik = pij and Sk pjk = pji), then in P , the
intervals (yi�1, yi] and

�

yj�1, yj
⇤

will be “linked” pointwise, by pooling every element in (yi�1, yi]

with a corresponding element in
�

yj�1, yj
⇤

according to some matching function.42 If in Pn, pn

only sometimes pools prospects i and j with each other (i.e., Sk
�

pik + pjk
�

> pij + pji), then in
P , the intervals (yi�1, yi] and

�

yj�1, yj
⇤

are divided into subintervals, and only one subinterval in
(yi�1, yi] is linked pointwise with a subinterval in

�

yj�1, yj
⇤

.
To make the linking procedure precise, define Pi ⌘

�

j : pij > 0
 

to be the set of prospects that
pn pools with prospect i, i 2 {1, .., 2n}. If Pi = {i}, prospect i is revealed in Pn. Partition interval
(yi�1, yi] into a collection of |Pi| subintervals43

Ci ⌘
n⇣

bij, b̄ij

i

: j 2 Pi

o

(A.7)

42Recall that type space Qn
1 that induces disclosure problem Pn partitions Q1 into 2n subintervals {(yi�1, yi]}2n

i=1 so
that prospect i in Pn “corresponds” to the interval of types (yi�1, yi] in Q1.

43Here, |Pi| denotes the number of elements in the set Pi.
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α

"
(a) A Pn-optimal disclosure rule pn. The solid dots are
prospects. The dashed links pool these prospects. The
prospect that is not pooled is revealed.

α

"
(b) Disclosure in P derived from disclosure in Pn.
Arrow-headed dashed segments indicate subintervals
whose prospects are pooled pointwise. Each prospect
in the interval that is not linked with any other interval
is revealed.

Figure A.3: An optimal disclosure rule in the discrete problem Pn is used to construct a disclosure
rule in the continuous problem P .

so that G
�

b̄ij
�

� G
⇣

bij

⌘

= pij, and so that whenever pn pools prospects i and j, one can draw a

link between element
⇣

bij, b̄ij

i

in Ci and element
⇣

bji, b̄ji

i

in Cj in such a manner that no two links
intersect. If |Pi| = 1, the only subinterval is the interval (yi�1, yi] itself, which either is linked to
some (sub)interval or remains unlinked. The construction of the links between (sub)intervals is
illustrated in Figure A.3.

The rule that pools prospects in P is described by a matching function t. This matching func-
tion is constructed according to the following algorithm, which is initialized by setting i = n⇤

(where n⇤ is defined in (A.4)):
1. If no subinterval in Ci is linked to any other subinterval, set t (q1) = t (yi�1) for all q1 2

(yi�1, yi], with the convention that t (yn⇤�1) = 1 if s⇤ = 0 and t (yn⇤�1) = yn⇤�1 if s⇤ > 0.
2. If a subinterval

⇣

bij, b̄ij

i

in Ci is linked to some subinterval
⇣

bji, b̄ji

i

in Cj, define a strictly de-

creasing t and the corresponding derivative b ⌘ �t0 so that for all s 2
h

bij, b̄ij

i

, g (s) / (b (s) g (t (s))) =
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pij/pji, and t
⇣

bij

⌘

= b̄ji and t
�

b̄ij
�

= bji.44 Otherwise, go to Step 3.
3. If i < n⇤ (where n⇤ is defined in (A.5)), increment i by 1 and go to Step 1; otherwise, termi-

nate.45

Any interval (yi�1, yi] whose elements are revealed contributes to the seller’s payoff (23) amount

Z yi

yi�1

p (s) a (s) g (s) ds ⌘ piip (zi) a (zi) , (A.8)

where the identity uses pii = G (yi) � G (yi�1) and implicitly (and not necessarily uniquely) de-
fines zi 2 (yi�1, yi) by appealing to the First Mean Value Theorem for Integration.46

Any pair of linked intervals
⇣

bij, b̄ij

i

and
⇣

bji, b̄ji

i

contributes to the seller’s payoff amount

Z b̄ij

bij

g (s) p (s) + b (s) g (t (s)) p (t (s))
g (s) + b (s) g (t (s))

g (s) a (s) + b (s) a (t (s))
g (s) + b (s) g (t (s))

(g (s) + b (s) g (t (s))) ds

⌘
�

pij + pji
� g

�

zij
�

p
�

zij
�

+ b
�

zij
�

g
�

zji
�

p
�

zji
�

g
�

zij
�

+ b
�

zij
�

g
�

zji
�

g
�

zij
�

a
�

zij
�

+ b
�

zij
�

a
�

zji
�

g
�

zij
�

+ b
�

zij
�

g
�

zji
�

=
�

pij + pji
� pijp

�

zij
�

+ pjip
�

zji
�

pij + pji

pija
�

zij
�

+ pjia
�

zji
�

pij + pji
, (A.9)

where the identity uses pij = G
�

b̄ij
�

� G
⇣

bij

⌘

and pji = G
�

b̄ji
�

� G
⇣

bji

⌘

, and implicitly (and

not necessarily uniquely) defines zij 2
⇣

bij, b̄ij

⌘

by appealing to the First Mean Value Theorem for
Integration; furthermore, zji ⌘ t

�

zij
�

. The equality in the last line of the above display follows by

construction of t. Because t is strictly decreasing, zji 2
⇣

bji, b̄ji

⌘

.
Assembling the contributions (A.8) and (A.9) gives the value of the seller’s objective function

44When the c.d.f. G is uniform, the sought t is linear: t (s) = b̄ji �
⇣

s � bij

⌘

pji/pij, where pij = b̄ij � bij and pji =

b̄ji � bji. For a general G, set up the initial-value problem t0 = �pjig (s) /
⇣

pijg (t)
⌘

on
h

bij, b̄ij

i

subject to t
⇣

bij

⌘

= b̄ji.
Because the right-hand side of the problem’s ordinary differential equation (ODE) is continuous in (s, t), the Peano
existence theorem implies the existence of a solution. The solution is strictly decreasing because the right-hand side of
the ODE is negative. To see that the solution satisfies t

⇣

b̄ij

⌘

= bji, rewrite the ODE as �g (t (s)) t0 (s) = g (s) pji/pij

and integrate to obtain

�
Z b̄ij

bij

g (t (s)) t0 (s) ds = pji.

The displayed integral can be rewritten equivalently by changing the variable of integration from s to z ⌘ t (s):

Z b̄ji

t(b̄ij)
g (z) dz = pji.

Integrating gives G
⇣

b̄ji

⌘

� G
⇣

t
⇣

b̄ij

⌘⌘

= pji, which implies that t
⇣

b̄ij

⌘

= bji, as desired.
45The non-linked intervals indexed by i > n⇤ or i < n⇤ do not affect the matching function; they automatically

translate into discontinuities. The linked intervals indexed by i > n⇤ or i < n⇤ are accounted for when the intervals
indexed by i 2 {n⇤, n⇤ + 1, .., n⇤} are considered.

46See http://en.wikipedia.org/wiki/Mean_value_theorem#First_mean_value_theorem_for_integration
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(23), for problem P , under the disclosure rule induced by t, constructed form pn:

V̂n ⌘
2n

Â
i=1

piip (zi) a (zi)+
n⇤

Â
i=n⇤

Â
j2{1,..,n⇤�1}[{n⇤+1,..,2n}

�

pij + pji
� pijp

�

zij
�

+ pjip
�

zji
�

pij + pji

pija
�

zij
�

+ pjia
�

zji
�

pij + pji
.

(A.10)
By construction of {zi} and

�

zij
 

, |zi � yi|  yi � yi�1 and
�

�zij � yi
�

�  yi � yi�1. Because a and
p are twice continuously differentiable on (0, 1) with bounded derivatives (which occurs because
g, FL, and FH are twice continuously differentiable with bounded derivatives), the Taylor theorem
implies the following for z 2 (0, 1):

p (z) = p (y) + p0 (y) (z � y) + O
⇣

(z � y)2
⌘

a (z) = a (y) + a0 (y) (z � y) + O
⇣

(z � y)2
⌘

.

By construction, yi � yi�1 = 1/2n. Hence, yi � yi�1 = O (2�n), and so zi � yi = O (2�n) and
zij � yi = O (2�n). Using the standard properties of O, one can write:

p (zi) a (zi) = p (yi) a (yi) + O
�

2�n�

pijp
�

zij
�

+ pjip
�

zji
�

pij + pji

pija
�

zij
�

+ pjia
�

zji
�

pij + pji
=

pijp (yi) + pjip
�

yj
�

pij + pji

pija (yi) + pjia
�

yj
�

pij + pji
+ O

�

2�n� ,

which are substituted into (A.10) to obtain

V̂n = Vn + O
�

2�n�

as desired.

Lemma A.3 does not rule out a discontinuity: the possibility that, in P , the seller can improve
upon the conjugate disclosure rule that is the limit of Pn-optimal disclosure rules as n goes to
infinity. Lemma A.4 rules out this discontinuity by showing that the value in P is no greater than
the limit of the values in Pn as n increases.

Lemma A.4. The continuous disclosure problem P has a solution, which induces the value denoted by
V⇤. The discrete disclosure problems in the sequence {Pn : n � 1} have solutions, which induce the corre-
sponding sequence of values denoted by {Vn}. Furthermore, V⇤  lim infn!• Vn.

Proof. Preliminary Definitions
Normalize the set of the seller’s messages by setting it equal to the set of the follower’s poste-

rior probability distributions: M ⌘ DQ1, where DQ1 denotes the set of Borel probabilities on the
space of leader’s types Q1 = [0, 1]. The space DQ1 is a compact metric space when endowed with
the topology of weak convergence.47 Let D (DQ1) denote the space of probability measures on the

47The topology of weak convergence is metrizable under the Prohorov metric.
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subsets of DQ1. Like DQ1, the space D (DQ1) is also a compact metric space when endowed with
the topology of weak convergence.

In the disclosure problem with a continuum of prospects, the seller can induce any probability
distribution n̂ 2 D (DQ1) over posterior probability distributions as long as n̂ is Bayes plausi-
ble—that is, as long as the expected posterior probability distribution equals the prior probability
distribution:

Z

DQ1

Pdn̂ = P0,

where P0 is the prior probability measure over the leader’s types. The prior P0 is derived from the
c.d.f. G: P0 {q1 : q1  s} = G (s), s 2 Q1. The necessity of Bayes plausibility follows from Bayes’
rule, and the sufficiency has been shown by Kamenica and Gentzkow (2011).

Formally, when the prospect set is G, the seller’s disclosure problem is:

V⇤ ⌘ max
n̂2D(DQ1)

Z

DQ1

p̄ (P) a⇤ (P) dn̂ s.t.
Z

DQ1

Pdn̂ = P0, (A.11)

where
p̄ (P) =

Z

Q1

p (q1) dP and a⇤ (P) =
Z

Q1

a (q1) dP.

Note that both p̄ (P) and a⇤ (P) are continuous in P. To see this, take an arbitrary sequence {Pk}
of probability measures on Q1 that converge weakly to P. Because Lebesgue measurable func-
tions p and a can have at most a countable number of discontinuity points, the set of disconti-
nuities is of measure zero, and thus by the Mapping Theorem (Billingsley, 1968, Theorem 5.1, p.
30), limk p̄ (Pk) = p̄ (P) and limk a⇤ (Pk) = a⇤ (P) . The continuity of the integrand together with
Proposition 3 on p. 10 of the Online Appendix to Kamenica and Gentzkow (2011) imply that the
solution to problem (A.11) exists. Let n⇤ denote this solution.

Similarly, when the prospect set is Gn, the seller solves

Vn ⌘ max
n̂n2D(DQn

1)

Z

DQn
1

p̄ (Pn) a⇤ (Pn) dn̂n s.t.
Z

DQn
1

Pndn̂n = P0
n , (A.12)

where Pn is a probability measure on Qn
1 ; n̂n is a probability measure on DQn

1 ; and P0
n is the prior

probability measure over the leader’s types given the discretization Qn
1 :

P0
n ⌘ P (Bn

1 ) dy1 + P (Bn
2 ) dy2 + ... + P (Bn

2n) d1,

where Bn
i ⌘ (yi�1, yi] and dyi denotes the Dirac measure at yi 2 [0, 1] (i.e., dyi (B) = 1{yi2B}, B ⇢

Q1). Let nn denote a solution to the discrete problem (A.12). The solution exists by Proposition 1
and Corollary 1 of Kamenica and Gentzkow (2011).

Consider a sequence of solutions {nn} and note that {nn} is a sequence of measures over
D (DQ1) because, for each n, Pn 2 DQn

1 ✓ DQ1 and thus nn 2 D (DQn
1) ✓ D (DQ1) .

The Proof of the Lemma
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Because the space of D (DQ1) is a compact metric space, it is sequentially compact under the
topology of weak convergence, and, thus, the sequence of {nn} has a subsequence {nn0} such
that as n0 ! •, nn0 converges weakly to some limit n. Because p̄ (P) and a⇤ (P) are continuous,
bounded, and real-valued functions defined on DQ1, by definition of weak convergence,

Z

DQ1

p̄ (P) a⇤ (P) dnn0 !
Z

DQ1

p̄ (P) a⇤ (P) dn. (A.13)

By contradiction, suppose that n, the limit of {nn0} , does not solve the continuous problem
(A.11) and that:

e ⌘
Z

DQ1

p̄ (P) a⇤ (P) dn⇤ �
Z

DQ1

p̄ (P) a⇤ (P) dn > 0. (A.14)

Let N ⌘ {n0
1, n0

2, ...} be the set indexing the convergent sequence {nn0} . Because of convergence
(A.13), one can choose an N 2 N such that for all n0 � N, n0 2 N :

�

�

�

�

Z

DQ1

p̄ (P) a⇤ (P) dnn0 �
Z

DQ1

p̄ (P) a⇤ (P) dn

�

�

�

�

<
e

2
. (A.15)

Because space D (DQ1) is separable and because n⇤ solves the seller’s maximization problem
(A.11) with the leader’s type space Q1, one can choose an N̂ 2 N such that for any n0 � N̂, n0 2 N ,
there exists an approximation n⇤n0 to n⇤ with a support on Qn0

1 :

0 
Z

DQ1

p̄ (P) a⇤ (P) dn⇤ �
Z

DQ1

p̄ (P) a⇤ (P) dn⇤n0 <
e

2
. (A.16)

Proof that such an approximation exists is in Supplementary Appendix B.5.
Take N̄ = max

�

N, N̂
 

. Then,

Z

DQ1

p̄ (P) a⇤ (P) dnN̄ �
Z

DQ1

p̄ (P) a⇤ (P) dn⇤N̄

=

✓

Z

DQ1

p̄ (P) a⇤ (P) dnN̄ �
Z

DQ1

p̄ (P) a⇤ (P) dn

◆

�
✓

Z

DQ1

p̄ (P) a⇤ (P) dn⇤ �
Z

DQ1

p̄ (P) a⇤ (P) dn

◆

+

✓

Z

DQ1

p̄ (P) a⇤ (P) dn⇤ �
Z

DQ1

p̄ (P) a⇤ (P) dn⇤N̄

◆

<
e

2
� e +

e

2
= 0,

where the term in the first parenthesis is less than e/2 by (A.15); the term in the second parenthesis
equals e by the contradiction hypothesis (A.14); and the term in the third parenthesis is less than
e/2 by (A.16). The inequality is a contradiction, however, because nN̄ solves the seller’s discrete
maximization problem with the leader’s type space QN̄

1 . Hence,

Z

DQ1

p̄ (P) a⇤ (P) dn �
Z

DQ1

p̄ (P) a⇤ (P) dn⇤ ⌘ V⇤.

The argument above shows that every convergent subsequence {nn0} converges weakly to a
limit that delivers a payoff at least as high as V⇤. Consequently, it must be the case that lim infn!• Vn �
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V⇤. If not, there exists an e > 0 such that infinitely many nn deliver payoff Vn < V⇤ � e. Then, it is
possible to pick a subsequence {nnk} for which no term delivers payoff Vnk � V⇤ � e. By sequential
compactness, {nnk} has a convergent subsequence, which is a subsequence of the original {nn} ,
and, by construction, the limit of this subsequence delivers a payoff strictly below V⇤. This payoff
contradicts the earlier established fact that every convergent subsequence of {nn} must converge
weakly to a limit that delivers at least V⇤.

We are now ready to prove Theorem 3. Lemmas A.3 and A.4 imply the optimality of the
conjugate disclosure rule and, with it, part (i) of the theorem.

For part (ii) of the theorem, note that Lemma 2’s part (ii) and Lemma A.4 imply that the in-
duced normalized effort schedule a⇤ is maximized at s⇤, which satisfies s⇤ � q⇤.

Because a⇤ (m) = Eq1|m [a (q1)] for any message m (by (13)), a⇤ (s⇤)  maxq1 a (q1) = a (q⇤),
where the equality is by Theorem 1. Hence, a⇤ (s⇤)  a (q⇤).

Furthermore, a⇤ (m) = Eq1|m [a (q1)] implies that E [a⇤ (m)] = E
⇥

Eq1|m [a (q1)]
⇤

= E [a (q1)],
where the last equality is by the Law of Iterated Expectations.

Proof of Corollary 2

For the follower, it is a weakly dominant strategy to bid his valuation in the second-price auction.
The follower participates because he can obtain a nonnegative payoff by exerting no effort and
then bidding in the second-price auction.

The leader chooses his bid by solving

max
b



Z

Q2

1{b>q2} (q1 � q2) dF (q2 | a⇤c (m (b))) � T⇤ (b)
�

,

where a⇤c (m (b)) is the follower’s optimal action conditional on the message m (b), which the seller
sends when the leader bids b. Integration by parts and the substitution of T⇤ from (24) transforms
the maximand above into

Z q1

0
F (s | a⇤c (m (s))) ds +

Z b

q1

(F (s | a⇤c (m (s))) � F (b | a⇤c (m (b)))) ds,

which is maximized at b = q1 because F (s | a⇤c (m (s))) is weakly increasing in s, which is the
monotonicity condition required by the incentive compatibility of truthful reporting and implied
by the hypothesis that the mechanism is optimal.

Proof of Theorem 4

As the discussion that precedes the statement of Theorem 4 establishes, to show that monotonicity
holds for a sufficiently large c, it suffices to show that a⇤0 is bounded above on (q⇤, s⇤). We will
show that a⇤0 is indeed bounded because (i) P is connected, by Lemma B.3 in Supplementary Ap-
pendix B.6; and (ii) P and G are disjoint on (s⇤, 1], by Lemma B.6 in Supplementary Appendix B.6.
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θ̄

θ⇤ s⇤

s⇤

0 1

α

θ1

Figure A.4: When P (the solid thick curve) and G (the convex curve) are disjoint, as q1 increases
on (0, s⇤) at a bounded rate, the corresponding pooling segment’s endpoints move at a bounded
rate, and, hence, so does a⇤, the ordinate of the segment’s intersection with P.

To establish the sufficiency of (i) and (ii) for the boundedness, consider Figure A.4, which
depicts a connected P that is disjoint from G on (s⇤, 1]. As q1 increases on (s⇤, s⇤) at a bounded
rate, the northwestern end of the corresponding pooling link moves at a bounded rate (because a

and p have bounded derivatives, guaranteed by Condition 3). This movement must translate into
a bounded-rate movement on (s⇤, 1] of the southeastern end of the pooling link. Indeed, if it did
not, the southeastern end would have to trace out P that would have to lie on G—the configuration
that is ruled out by the hypothesis that P is disjoint from G on (s⇤, 1]. Because both ends of the
pooling segment move at a finite rate, so must the pooling segment’s intersection point with P.
In particular, this intersection’s ordinate, a⇤ on (q⇤, s⇤), moves at a finite rate. In other words, a⇤0

is bounded on (q⇤, s⇤).

References

Bergemann, Dirk and Juuso Välimäki, “Information Acquisition and Efficient Mechanism De-
sign,” Econometrica, 2002, 70 (3), 1007–1033.

and Juuso Valimaki, “Information in Mechanism Design,” in Richard Blundell, Whitney K.
Newey, and Torsten Persson, eds., Advances in Economics and Econometrics: Theory and Applica-
tions, Ninth World Congress, Vol. I, Cambridge University Press, 2006, chapter 5, pp. 186–221.

47



and Martin Pesendorfer, “Information Structures in Optimal Auctions,” Journal of Economic
Theory, 2007, 137 (1), 580–609.

Bikhchandani, Sushil and Chi-Fu Huang, “Auctions with Resale Markets: An Exploratory Model
of Treasury Bill Markets,” The Review of Financial Studies, 1989, 2 (3), 311–339.

Billingsley, Patrick, Convergence of probability measures, Wiley, 1968.

Blackwell, David, “Comparisons of Experiments,” Proceedings of the Second Berkeley Symposium in
Mathematical Statistics, 1951, pp. 93–102.

, “Equivalent Comparisons of Experiments,” Annals of Mathematical Statistics, 1953, 24 (2), 265–
272.

Calzolari, Giacomo and Alessandro Pavan, “Monopoly with Resale,” RAND Journal of Economics,
2006, 32 (2), 362–375.

and , “On the Optimality of Privacy in Sequential Contracting,” Journal of Economic Theory,
2006, 130 (1), 168–204.

Compte, Olivier and Philippe Jehiel, “Auctions and information acquisition: sealed bid or dy-
namic formats?,” The RAND Journal of Economics, 2007, 38 (2), 355–372.

Crawford, Vincent P. and Joel Sobel, “Strategic Information Transmission,” Econometrica, 1982,
50 (6), 1431–1451.

Crémer, Jacques, Yossi Spiegel, and Charles Z. Zheng, “Auctions with Costly Information Ac-
quisition,” Economic Theory, 2009, 38 (1), 41–72.

Edlin, Aaron S. and Chris Shannon, “Strict Monotonicity in Comparative Statics,” Journal of Eco-
nomic Theory, 1998, 81 (1), 201–219.

Eso, Peter and Balazs Szentes, “Optimal Information Disclosure in Auctions and the Handicap
Auction,” Review of Economic Studies, 2007, 74 (3), 705–31.

Gale, Ian L., Donald B. Hausch, and Mark Stegeman, “Sequential Procurement with Subcon-
tracting,” International Economic Review, 2000, 41 (4), 989–1020.

Ganuza, Juan-José, “Ignorance Promotes Competition: An Auction Model with Endogenous Pri-
vate Valuations,” RAND Journal of Economics, 2004, 35 (3), 583–598.

and José S. Penalva, “Signal Orderings Based on Dispersion and the Supply of Private Infor-
mation in Auctions,” Econometrica, 2010, 78 (3), 1007–1030.

Gershkov, Alex and Balázs Szentes, “Optimal Voting Scheme with Costly Information Acquisi-
tion,” Journal of Economic Theory, 2009, 144 (1), 36–68.

48



Gupta, Madhurima and Bernard Lebrun, “First Price Auctions with Resale,” Economics Letters,
1999, 64 (2), 181–185.

Haile, Philip A., “Auctions with Private Uncertainty and Resale Opportunities,” Journal of Eco-
nomic Theory, 2003, 108 (1), 72–110.

Johnson, Justin P. and David P. Myatt, “On the Simple Economics of Advertising, Marketing, and
Product Design,” American Economic Review, 2006, 96 (3), 756–784.

Kamenica, Emir and Matthew Gentzkow, “Bayesian Persuasion,” American Economic Review,
2011, 101 (6), 2590–2615.

Lehmann, E. L., “Comparing Location Experiments,” The Annals of Statistics, 1988, 16 (2), 521–533.

Lewis, Tracy R. and David E. M. Sappington, “Supplying information to facilitate price discrim-
ination,” International Economic Review, 1994, 35 (2), 309–327.

Milgrom, Paul, Putting Auction Theory to Work, Cambridge University Press, 2004.

and Chris Shannon, “Monotone Comparative Statics,” Econometrica, 1994, 62 (1), 157–180.

Mizuno, Toshihide, “A relation between positive dependence of signal and the variability of con-
ditional expectation given signal,” Journal of applied probability, 2006, 43 (4), 1181–1185.

Myerson, Roger B, “Optimal Coordination Mechanisms in Generalized Principal-Agent Prob-
lems,” Journal of Mathematical Economics, 1982, 10 (1), 67–81.

Myerson, Roger B., “Multistage Games with Communication,” Econometrica, 1986, 54 (2), 323–358.

Nikandrova, Arina and Romans Pancs, “An Optimal Auction with Moral Hazard,” Birkbeck Work-
ing Papers in Economics and Finance, 2015, (1504).

Persico, Nicola, “Information Acquisition in Auctions,” Econometrica, 2003, 68 (1), 135–148.

Rayo, Luis and Ilya Segal, “Optimal Information Disclosure,” Journal of Political Economy, 2010,
118 (5), 949–987.

Roesler, Anne-Katrin, “Information Disclosure in Market Design: Auctions, Contests and Match-
ing Markets,” 2014.

Shi, Xianwen, “Optimal Auctions with Information Acquisition,” Games and Economic Behavior,
2012, 74 (2), 666–686.

Zhang, Jun and Junjie Zhou, “Information Disclosure in Contests: A Bayesian Persuasion Ap-
proach,” The Economic Journal, 2015, (forthcoming).

Zheng, Charles Zhoucheng, “Optimal Auctions with Resale,” Econometrica, 2002, 70 (6), 2197–
2224.

49



Supplement to “Conjugate Information Disclosure in an Auction with
Learning”

Arina Nikandrova and Romans Pancs

Birkbeck and ITAM

B Appendix

B.1 A Signal Structure that Rationalizes the Information-Acquisition Technology in
Section 2

The model’s description, in Section 2, could have been specified as follows. The follower exerts ef-
fort a. This effort affects the precision of a signal z. This signal’s realization induces a conditional
probability distribution µz of the underlying valuation v. This conditional probability distribu-
tion implies the expected conditional valuation q2 ⌘ Eµz [v]. Before the realization of z has been
observed, µz and q2 are random variables.

The alternative (but equivalent) approach taken in Section 2 makes direct assumptions on how
a affects the probability distribution of q2. It would have been a mere normalization to identify
the set of signal realizations with the set of conditional (on this signal) probability distributions
by setting z = µz (Kamenica and Gentzkow, 2011). Because each player is an expected-utility
maximizer, however, each cares only about q2, and so it is appropriate to identify the set of signal
realizations with the set of conditional expectations by setting z = q2. The underlying signal
structure that induces the probability distribution of q2 has been left implicit in the paper’s main
body, but can be recovered.

For concreteness, this appendix shows how the dependence of q2 on a assumed in Condition 1
can be (non-uniquely) rationalized with an appropriate joint probability distribution for v and z.
Assume that each c.d.f. Fj in Condition 1 has a p.d.f. f j, j = L, H. Let the follower’s underlying
valuation be v 2 {0, 1} with Pr {v = 1} = p, where p ⌘

R 1
0 sdFH (s) =

R 1
0 sdFL (s). Then, by

construction, Pr {v = 1} = E [q2 | a] for all a 2 A, meaning that the probability that the follower
assigns to v = 1 before observing z equals his expectation of the conditional (on z) probability that
v = 1, which is also his conditional expectation of v, denoted by q2. This Bayesian consistency
condition is necessary and sufficient for q2 to represent the follower’s conditional expectation of
his underlying valuation (Kamenica and Gentzkow, 2011).

Assume that the signal z can be either more precise, with probability a, or less precise, with
probability 1 � a. The realizations of the more and the less precise signals are governed by the
conditional p.d.f.s sH (z | v) and sL (z | v), where

sj (z | v) ⌘ zv (1 � z)1�v

pv (1 � p)1�v fj (z) , j 2 {H, L} , v 2 {0, 1} , z 2 [0, 1] . (B.1)
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The Law of Total Probability applied to (B.1) implies that, conditional on signal technology j, z is
distributed according to the c.d.f. Fj; that is, the probability that the signal realization does not
exceed z is

Z

sz

⇥

psj (s | 1) + (1 � p) sj (s | 0)
⇤

ds = Fj (z) ,

which immediately implies that unconditionally, for some effort a, z is distributed with the c.d.f.
F (· | a).

Bayes’ rule implies that z is also the expectation of v conditional on z and on signal technol-
ogy j:

E [v | z, j] = Pr {v = 1 | z, j} =
sj (z | 1) p

sj (z | 1) p + sj (z | 0) (1 � p)
= z,

which immediately implies the expectation that is conditional only on z:

q2 ⌘ E [v | z] = aE [v | z, j = H] + (1 � a) E [v | z, j = L] = z.

Hence, because z is distributed according to the c.d.f. F (· | a), so is q2, as desired.

B.2 What the Information-Acquisition Technology in Section 2 Rules Out

The linear specification (1) and Condition 1 are restrictive. The linearity in (1) rules out information-
acquisition technologies that let the follower choose among three or more signals, as Example B.1
clarifies.

Example B.1 (Nonexample). The follower chooses a tuple (a1, a2) in a two-dimensional probabil-
ity simplex D2, and then draws q2 from the probability distribution with the c.d.f. F (q2 | a1, a2) =

a2/2 + a1q2 + (1 � a1 � a2) 1{q2�1/2}.

In Example B.1, in addition to allocating probability to a perfectly informative and a somewhat
informative signal about the underlying valuation in {0, 1}, as in Example 1, the follower can
also allocate some probability to a completely uninformative signal (with probability 1 � a1 � a2).
Ruling out Example B.1 is economically restrictive. If the cost of information acquisition were
increasing in a1 and a2, one could imagine the follower preferring to set both a1 and a2 close to
zero if he faced a price close to 0 or 1, and optimally trading off the positive a1 and a2 otherwise.

Condition 1 remains restrictive even conditional on the linear specification (1), as Example B.2
illustrates.

Example B.2 (Another Nonexample). F (q2 | a) = a
� 1

4 1{q2<1/2} + 1
2 1{1/2q2<1} + 1{q2=1}

�

+(1 � a) q2.

Example B.2 can be interpreted to say that, with probability a, the follower observes a signal
that, with probability 1/2, reveals his underlying valuation, which is distributed uniformly on
{0, 1}, and, with probability 1/2, reveals “nothing”; with probability 1 � a, the follower observes
the partially informative signal of Example 1. Even though F (· | 1) is a mean-preserving spread
of F (· | 0) and, hence, is more informative in some sense (viz. Blackwell’s order on the underlying
signals), F (· | 1) and F (· | 0) are not rotation-ordered.
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B.3 An Analytical Equivalent of Condition 2

In applications, Condition 2 can be checked analytically. To do so, let

r (q1) ⌘
1 � G (q1)

g (q1)
, q1 2 Q1,

denote the inverse hazard rate of the leader’s c.d.f. As is standard, r (q1) is interpreted as the
profit that the seller forgoes—equivalently, the information rent that the leader reaps—when the
seller commits to sell to a type-q1 leader.1 In addition, recall that R (q1), defined in (A.2), denotes
the planner’s return to the follower’s information acquisition in the first-best benchmark when
the leader’s type is q1. This return is closely related to the follower’s information-acquisition
technology (in particular, R0 (q1) = FH (q1) � FL (q1) and R00 (q1) = fH (q1) � fL (q1)) and so can
be treated as a primitive.

Lemma B.1. Suppose that Condition 1 holds and fL (q⇤) 6= fH (q⇤).2 Then, a prospect set is convex if and
only if

r00 (q1) +

✓

r (q1)
R00 (q1)
R0 (q1)

◆0
< 0 for all q1 2 (0, q⇤) [ (q⇤, 1) . (B.2)

Proof. A prospect set, G ⌘ {(p (q1) , a (q1)) | q1 2 Q1}, is a parametrically given plane curve. Its
signed curvature at q1 is given by3

k (q1) ⌘
a00 (q1) p0 (q1) � a0 (q1) p00 (q1)
⇣

(p0 (q1))
2 + (a0 (q1))

2
⌘3/2 , (B.3)

where primes refer to derivatives with respect to q1. Because G is simple4 and regular,5 it is strictly
convex if and only if k is either always positive or always negative. Because the denominator in
(B.3) is always positive, requiring that k does not change the sign is equivalent to requiring that
the numerator in (B.3) not change the sign.

When q1 = q⇤, the numerator in (B.3) is negative, or �r (q⇤) ( fH (q⇤) � fL (q⇤))2 /c < 0, be-
cause fH (q⇤) 6= fL (q⇤) by the lemma’s hypothesis and FL (q⇤) = FH (q⇤) by part (ii) of Condi-
tion 1. Thus, the strict convexity of G is equivalent to the numerator in (B.3) being always nega-
tive:6

a00 (q1) p0 (q1) � a0 (q1) p00 (q1) < 0.
1When the seller commits to sell to type q1 at some price, all types higher than q1 may be tempted to imitate type q1

and buy at the same price, thereby constraining the seller in how much he can charge these higher types.
2Condition fL (q⇤) 6= fH (q⇤), which can be interpreted to hold “generically,” simplifies the analytical characteriza-

tion in the lemma but is not required for the convexity of the prospect set.
3The curvature of G at a point is the reciprocal of the radius of the circle osculating G at that point; see the Wikipedia

entry on curvature: https://en.wikipedia.org/wiki/Curvature.
4A curve is simple if it does not intersect itself.
5A curve G is regular if its derivative (a0, p0) 6= (0, 0) for all q1 2 Q1, which holds in our model.
6In general, the sign of the curvature k indicates the direction in which the unit tangent vector rotates as a function

of the parameter along the curve. If the unit tangent rotates counterclockwise, then k > 0. If it rotates clockwise, then
k < 0. In our model, as q1 increases, the unit tangent vector of G rotates clockwise, and, thus, k must be negative
everywhere.
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Substituting the definitions of a and p into the above display, dividing by (R0 (q1))
2, which is

positive when q1 6= q⇤, and rearranging gives the sought inequality (B.2) of Lemma B.1.
This curvature condition captured by (B.2) is local and, alone, does not suffice to conclude that

the prospect set is convex (in the sense of Definition 1); a spiral is a counterexample. Condition 1,
however, which ensures that a (0) = a (1) = 0, thereby ruling out a spiral and ensuring that the
curvature condition in (B.2) is equivalent to the convexity of G.

B.4 Examples that Illustrate Cases in Definition 2

Case (i) in Definition 2 prevails in examples in which the distribution of the follower’s underlying
valuations is binary, and the information-acquisition technology grants probabilistic access to a
perfectly informative signal, as in Example 1. In this case, the follower’s c.d.f. F has mass points
at 0 and 1. Example 1, coupled with the assumption of the monotone increasing hazard rate for
the leader’s c.d.f. G, yields the prospect set in Figure 3c. This prospect set’s critical feature is that
it slopes upwards near q1 = 0 (that is, both a and p are increasing in q1 near 0), and so q = 0. That
a is increasing near 0 follows from Theorem 1. That p is increasing near 0 follows by taking an
arbitrarily small # > 0 and evaluating

p0 (#) = �r0 (#) (FH (#) � FL (#)) + r (#) ( fL (#) � fH (#)) > 0,

where the inequality follows because r0 (#) < 0 (the hazard-rate condition on G), r (#) > 0, FH (#) =

1/2 > FL (#) = # (the mass point that corresponds to probabilistically learning that the underlying
valuation is 0), and fL (#) = 1 > fH (#) = 0 (made possible by FH’s mass point at 0).

Figure B.1 illustrates how a downward-sloping segment for G near q1 = 0 is necessary for
case (ii) in Definition 2 not to collapse into case (i). The figure also illustrates the role played by s0.

Figure 3b illustrates an example of case (ii); c.d.f.s FH and FL are Beta distributions chosen to
satisfy Condition 1. Then, FH (0) = FL (0) = 0. Furthermore, one can (merely to simplify the
argument) choose FH and FL so that fH (0) > fL (0). As a result, p0 (0) = r (0) ( fL (0) � fH (0)) <

0; p is decreasing near 0. Because a is increasing near 0, the prospect set is downward-sloping
near 0.

B.5 Justifying Equation (A.16) in the Proof of Lemma A.4

To justify (A.16), Lemma B.2 demonstrates that one can approximate any n 2 D (DQ1) by a prob-
ability measure that puts some mass only on discrete measures in a countable set. The proof
proceeds in two steps. First, it shows that by choosing n sufficiently large, any probability mea-
sure in DQ1 can be approximated by a probability measure that puts some mass on a countable set
� 1

2n , 2
2n , ..., 1

 

in Q1. Then, a similar argument is repeated to show that if one chooses n sufficiently
large, any measure in D (DQ1) can be approximated by a measure that puts positive mass only
on discrete measures with support

� 1
2n , 2

2n , ..., 1
 

. This second half is slightly trickier because it re-
quires finding a countable set of non-overlapping neighborhoods in DQ1 that almost cover space
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Figure B.1: The convex curve is the prospect set G. The circles mark the prospects induced by the
leader’s types in 0, s⇤, s0 , q, q⇤, s⇤, q̄, and 1. The dashed links comprise a subset of the links that pool
prospects into messages. Type s0 demarcates the leader’s types that are pooled with types in [0, s⇤)
and those that are pooled with types in (s⇤, 1].

DQ1.

Lemma B.2. Fix an arbitrary measure n 2 D (DQ1). For every e > 0, there exists N such that for n � N,
�

�

�

�

Z

DQ1

f (P) dn �
Z

DQ1

f (P) dnn

�

�

�

�

< e,

where f (P) is an arbitrary real-valued uniformly continuous, bounded function, and nn is a probability
measure that puts some mass only on discrete measures in the countable set

Dn ⌘
(

a1d1/2n + a2d2/2n + ... + a2n d1 : a1, ..., a2n 2 Q \ [0, 1] ,
2n

Â
j=1

aj = 1

)

⇢ DQ1,

where Q denotes the set of rational numbers, and dk/2n denotes the Dirac measure at k/2n 2 [0, 1] (i.e.,
dk/2n (B) = 1{k/2n2B}, B ⇢ Q1). Set Dn contains probability measures that put some (rational) mass on a
countable set

� 1
2n , 2

2n , ..., 1
 

in Q1.

Proof. The proof proceeds in two steps.
Step 1: It is possible to approximate any measure µ in DQ1 with a measure in Dn by choosing

n sufficiently high.
Let Bn

j ⌘
h

j�1
2n , j

2n

⌘

for j = 1, 2, ..., 2n, so that the family of disjoint sets {Bn
1 , ..., Bn

2n} completely
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covers Q1. Note that it is possible to approximate a discrete measure

µ (Bn
1 ) d1/2n + ... + µ (Bn

2n) d1

by
µn ⌘ an

1 d1/2n + ... + an
2n d1,

where an
j 2 [0, 1] \ Q such that Â2n

j=1 an
j = 1 and

2n

Â
j=1

�

�

�

µ
⇣

Bn
j

⌘

� an
j

�

�

�

<
1
2n .

Such a choice of
n

an
j

o

is possible because rationals are dense in reals. Then, for each n, µn 2 Dn.
Moreover, as n ! •, µn ) µ, where “)” denotes weak convergence and µ 2 DQ1.

To show that µn ) µ, take a uniformly continuous bounded function g on Q1 = [0, 1] .7 Let
kgk• ⌘ supx2Q1

g (x) denote the supremum norm. Then,

�

�

�

�

Z

gdµn �
Z

gdµ

�

�

�

�

=
�

�

�Â2n

j=1 an
j g
⇣

j
2n

⌘

�
R

gdµ
�

�

�

<
�

�

�Â2n

j=1 µ
⇣

Bn
j

⌘

g
⇣

j
2n

⌘

�
R

gdµ
�

�

�

+
1
2n sup

j

�

�

�

�

g
✓

j
2n

◆

�

�

�

�


�

�

�

�

R

Â2n

j=1 g
⇣

j
2n

⌘

1n
Bn

j

odµ �
R

gdµ

�

�

�

�

+
1
2n kgk•


�

�

�

�

Â2n

j=1
R

⇣

g
⇣

j
2n

⌘

� g
⌘

1n
Bn

j

odµ

�

�

�

�

+
1
2n kgk•


�

�

�Â2n

j=1 supx2Bn
j

�

�

�

g
⇣

j
2n

⌘

� g (x)
�

�

�

µ
⇣

Bn
j

⌘

�

�

�

+
1
2n kgk• .

Note that
�

�

�

j
2n � x

�

�

�

< 1
2n for each x 2 Bn

j . Because g is uniformly continuous, for every e > 0, there
exists a d > 0 such that whenever |x � y| < d, |g (x) � g (y)| < e. Take some e > 0; then, for n
such that 1

2n  d,
�

�

�

g
⇣

j
2n

⌘

� g (x)
�

�

�

< e for all x 2 Bn
j and all j. Then, from previous calculations, it

follows that
�

�

�

�

Z

gdµn �
Z

gdµ

�

�

�

�

 e +
1
2n kgk• .

Because g is bounded, the second term on the right-hand side can be made arbitrarily small by
choosing n sufficiently large, whereas e is arbitrary. Hence,

R

gdµn !
R

gdµ as n ! •, which
implies that µn ) µ.

7Statements that µn ) µ and that lim
R

gdµm =
R

gdµ for all uniformly continuous, bounded functions are equiva-
lent because (i) every Lipschitz function between two metric spaces is uniformly continuous; and (ii) the set of bounded
Lipschitz functions on a metric space is dense in the set of continuous bounded functions on that space (Dudley, R. M.,
Real Analysis and Probability 2002, Theorem 11.2.4), which implies that, instead of a wider class of bounded continuous
function in the definition of the weak convergence, one may actually consider a smaller class of bounded Lipschitz
functions (this fact is sometimes stated as a part of Portmanteau theorem).
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Step 2: It is possible to approximate any measure n in D (DQ1) with a measure that puts some
mass only on measures in Dn.

Let

V ⌘
(

k

Â
n=0

•

Â
j=1

bnjµ
j
n : µ

j
n 2 Dn, b0j, ..., bkj 2 Q \ [0, 1] ,

k

Â
n=0

•

Â
j=1

bnj = 1, k = 0, 1, 2, ...

)

be a countable subset of probability measures in D (DQ1) . It contains measures that put positive
mass only on measures in a countable set D ⌘ [•

n=0Dn. It will be demonstrated that V is dense in
D (DQ1), and, thus, an arbitrary measure in D (DQ1) can be approximated by some measure in V .

Let n 2 D (DQ1) and

B
⇣

µ
j
n, 1/m

⌘

⌘
n

µ 2 DQ1 : dp

⇣

µ
j
n, µ

⌘

< 1/m
o

be an open ball in D (DQ1) with radius 1/m centered around measure µ
j
n 2 Dn, where dp

⇣

µ
j
n, µ

⌘

denotes Prohorov distance between measures µ
j
n and µ. For each m � 1,

[•
j=1B

✓

µ
j
0,

1
m

◆

⇢ [•
j=1B

✓

µ
j
1,

1
m

◆

⇢ ... and lim
n!•

[•
j=1B

✓

µ
j
n,

1
m

◆

= D (DQ1) .

Take N and J such that

n

✓

[J
j=1B

✓

µ
j
N ,

1
m

◆◆

� 1 � 1/m.

Modify the balls B
⇣

µ
j
N , 1

m

⌘

into disjoint sets by taking

Bm
1 ⌘ B

✓

µ1
N ,

1
m

◆

, Bm
k ⌘ B

✓

µk
N ,

1
m

◆

�


[k�1
j=1 B

✓

µ
j
N ,

1
m

◆�

, k = 2, ..., J.

Then, Bm
1 , ..., Bm

J are disjoint and [j
k=1Bm

k = [j
k=1B

�

µk
N , 1

m
�

for all j. Consequently,

n
⇣

[J
k=1Bm

k

⌘

= n

✓

[J
k=1B

✓

µk
N ,

1
m

◆◆

� 1 � 1/m. (B.4)

It is possible to approximate
n (Bm

1 ) dµ1
N

+ ... + n
�

Bm
J
�

d
µJ

N

by
nm ⌘ bm

1 dµ1
N

+ ... + bm
J d

µJ
N

,

where bm
j 2 [0, 1] \ Q is such that ÂJ

j=1 bm
j = 1 and

J

Â
j=1

�

�

�

n
⇣

Bm
j

⌘

� bm
j

�

�

�

<
2
m

.
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Since rationals are dense in reals, such a choice of
n

bm
j

o

is always possible through an appropriate
rescaling. Then, for each m, nm 2 D.

To show that nm ) n, take a uniformly continuous bounded function f on DQ1. Then,
�

�

�

�

Z

f dnm �
Z

f dn

�

�

�

�

=
�

�

�ÂJ
j=1 bm

j f
⇣

µ
j
N

⌘

�
R

f dn
�

�

�


�

�

�ÂJ
j=1 n

⇣

Bm
j

⌘

f
⇣

µ
j
N

⌘

�
R

f dn
�

�

�

+
2
m

sup
j

�

�

�

f
⇣

µ
j
N

⌘

�

�

�


�

�

�

�

R

ÂJ
j=1 f

⇣

µ
j
N

⌘

1n
Bm

j

odn �
R

f dn

�

�

�

�

+
2
m

k f k•


�

�

�

�

ÂJ
j=1

R

⇣

f
⇣

µ
j
N

⌘

� f
⌘

1n
Bm

j

odn +
Z

f 1n⇣
[J

j=1Bm
j

⌘codn

�

�

�

�

+
2
m

k f k•


�

�

�ÂJ
j=1 supµ2Bm

j

�

�

�

f
⇣

µ
j
N

⌘

� f (µ)
�

�

�

n
⇣

Bm
j

⌘

+ k f k• n
⇣⇣

[J
j=1Bm

j

⌘c⌘�
�

�

+
2
m

k f k• .

Each Bm
j is contained in a ball with radius 1/m around µ

j
N , and, thus, dp

⇣

µ
j
N , µ

⌘

< 1
m for each

µ 2 Bm
j . Because f is uniformly continuous, for every e > 0, there is a d > 0 such that whenever

dp (µ, u) < d, | f (µ) � f (u)| < e. Take some e > 0; then, for m � 1/d,
�

�

�

f
⇣

µ
j
N

⌘

� f (µ)
�

�

�

< e for all
µ 2 Bm

j and all j. Then, from previous calculations

�

�

�

�

Z

f dnm �
Z

f dn

�

�

�

�

 e +
1
m

k f k• +
2
m

k f k• .

Because f is bounded, the last two terms on the right-hand side can be made arbitrarily small by
choosing m sufficiently large, whereas e is arbitrary. Hence,

R

f dnm !
R

f dn as m ! •, which
implies that nm ) n.

B.6 Preliminary Results for the Proof of Theorem 4

The proof of Theorem 4 demonstrates that the boundedness of a⇤0 on (q⇤, s⇤) follows from P
being connected and from P and G being disjoint on (s⇤, 1] . This section proves the two required
intermediate results in Lemma B.3 and Lemma B.6, respectively.

Lemma B.3. P is connected.

Proof. By contradiction, suppose that P is not connected. Any non-connectedness in P must be
caused by some prospects being revealed, as in Figure B.2 . The revealed prospects, which lie in
G, belong to P. As a result, P fails to be nondecreasing, thereby contradicting optimality.

It remains to show that the optimal-prospect path P is disjoint from the prospect set G on
(s⇤, 1]. Lemma B.6 accomplishes this task. The lemma’s proof relies on a number of preliminary
results.

It is convenient to cast the analysis in terms of a decreasing function l ⌘ t�1, the inverse
of the matching function t, whenever this inverse exists. Function l is defined on the interval

8



!

θ̄

θ⇤ s⇤

0 1

α

s⇤

Figure B.2: The broken solid thick curve is a counterfactually non-connected P. Prospects that lie
on G’s chords that are demarcated by the two pooling segments are revealed and belong to P; P
fails to be nondecreasing, thereby contradicting optimality.

[s⇤, 1]. Operating under the assumption that l exists is justified because the goal is to rule out the
situation in which l is flat (and so, by implication, exists). Define g ⌘ �l0.

For expositional purposes only, assume that the leader’s type is distributed uniformly: G (q1) =

q1.8 After a change of variables, the seller’s objective function (21) restricted to [s⇤, 1] (which is the
interval of particular interest in our analysis) can be written in terms of g and l as

Z 1

s⇤
L (s, l, g) ds, (B.5)

where
L (s, l, g) ⌘ (p (s) + g (s) p (l (s))) (a (s) + g (s) a (l (s)))

1 + g (s)
.

Towards optimality, take some l and perturb it towards l + eh for some e 2 R and for some
h : [s⇤, 1] ! R with h (s⇤) = h (1) = 0. The value of the perturbed objective function is denoted
by

F ⌘
Z 1

s⇤
L
�

s, l + eh, g � eh0�ds,

where the dependence of l, g, and h on s is implicit and will remain so as long as no ambiguity

8The Euler equation, in (B.7), and the subsequent arguments all hold for a general G. The unwieldy derivation for
this general case is available upon request.
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arises. The marginal benefit from perturbing l in the direction of h is denoted by

J ⌘ dF
de

|e=0=
Z 1

s⇤
h

✓

∂L
∂l

� d
ds

∂L
∂g

◆

ds.

If l is optimal, any (feasible) perturbation h requires J  0. If, in addition, an optimal l is
interior, the parenthetical term in the display above must be identically zero. The parenthetical
term equated to zero becomes the Euler equation.

Computing ∂L/∂l, ∂L/∂g, and (d/ds) (∂L/∂g) and substituting the results into J in the
display above gives

J =
Z 1

s⇤
h

"

(p (l) � p)
�

a0 � g2a0 (l)
�

�
�

p0 � g2p0 (l)
�

(a � a (l))

(1 + g)2 � 2g0 (p (l) � p) (a � a (l))

(1 + g)3

#

ds.

To interpret the expression for J graphically, in terms of the slope of P, with some abuse of nota-
tion, write P ⌘ {(p⇤ (s) , a⇤ (s)) | s 2 [s⇤, 1]}, where9

p⇤ =
p + gp (l)

1 + g
and a⇤ =

a + ga (l)
1 + g

.

Combining
dp⇤

ds
=

�

p0 � g2p0 (l)
�

(1 + g) � g0 (p � p (l))

(1 + g)2

and
da⇤

ds
=

�

a0 � g2a0 (l)
�

(1 + g) � g0 (a � a (l))

(1 + g)2 ,

one obtains the slope of P:

da⇤

dp⇤ =
da⇤/ds
dp⇤/ds

=

�

a0 � g2a0 (l)
�

(1 + g) � g0 (a � a (l))

(p0 � g2p0 (l)) (1 + g) � g0 (p � p (l))
.

Rearranging the expression for J and substituting dp⇤/ds and da⇤/dp⇤ gives

J =
Z 1

s⇤
hs

✓

da⇤

dp⇤ � a (l) � a

p � p (l)

◆

ds, where s ⌘ p � p (l)
1 + g

✓

�dp⇤

ds

◆

. (B.6)

Now, from (B.6), we can extract the Euler equation. On (s⇤, 1), p � p (l) > 0 and g � 0 (and
so 1 + g > 0). Because P cannot be vertical, dp⇤/ds < 0. As a result, s > 0. Therefore, whenever
P is interior, it must satisfy the Euler equation:

da⇤

dp⇤ =
a (l) � a

p � p (l)
. (B.7)

9The abuse of notation here consists in reinterpreting p⇤ (s) and a⇤ (s) to be indexed by s in [s⇤, 1] (not [s⇤, s⇤]), which
is consistent with the dummy variable in the integrand of the rewritten objective function (B.5) being defined on [s⇤, 1]
(not [s⇤, s⇤]).
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To summarize,

Lemma B.4. When P is interior, its slope, da⇤/dp⇤, obeys the Euler equation (B.7).

Proof. The argument for the uniform G precedes the lemma’s statement. The argument for a gen-
eral, non-uniform, G is available upon request.

Lemma B.5 is an auxiliary result that roughly says that, if P were to touch G at a point in
⇥

q̄, 1
⇤

,
it would do so at an angle, instead of pasting smoothly at that point.

Lemma B.5. Suppose that P coincides with G at a single point s0 2
⇥

q̄, 1
⇤

and is disjoint from G on some
subset S ⇢

⇥

q̄, 1
⇤

adjacent to s0 (i.e., s0 2 cl (S)). Then, P cannot be tangent to G at s0.

Proof. By contradiction, suppose that P coincides with, and is tangent to, G at a point s0 2
⇥

q̄, 1
⇤

.
Define a subset S ⇢

�

q̄, 1
�

so that (i) for some # > 0, S is either (s0, s0 + #) or (s0 � #, s0); (ii) on S,
P and G are disjoint; and (iii) # is “sufficiently small” in the sense that will be made precise. That
is, S is chosen so that, on S, P is close to, but disjoint from, G. The disjointness of P and G implies
that, on S, P satisfies the Euler equation (B.7). Differentiating the Euler equation on S gives

d
ds

✓

da⇤

dp⇤

◆

=
d
ds

a (l) � a

p � p (l)
= �a0 + ga0 (l) + (da⇤/dp⇤) (p0 + gp0 (l))

p � p (l)
.

By requirement (iii) in the construction of S, P is “close” to G on S, and so a⇤ ⇡ a, which re-
quires g ⇡ 0 (by Bayes’ rule, a⇤ = (a + ga (l)) / (1 + g)).10 With this justification, we neglect the
terms multiplied by g. Then, p � p (l) > 0 combined with da⇤/dp⇤ > 0 (P is increasing, by
optimality), a0 < 0, and p0 < 0 (by s 2

�

q̄, 1
�

), imply

d
ds

✓

da⇤

dp⇤

◆

> 0,

which, in turn, implies that P is concave.11

Thus, we have reached a contradiction because, at s0, P and G coincide and are tangent to
each other, and yet, on S, P is concave, whereas G is convex (by Condition 2). This situation is
a geometric impossibility; it requires P to exit the convex hull of G. Hence, P and G cannot be
tangent at s0.

We are now ready to formulate and prove

Lemma B.6. Suppose that Condition 3 holds. Then, the intersection of P and G on (s⇤, 1] is empty.
10The role of tangency in the contradiction hypothesis is to ensure that P is “close” to G on S, and so g ⇡ 0 indeed

holds.
11As s rises, the induced prospect is moving southwest along G—or from right to left if one projects this movement

on the horizontal axis. Hence, the sign in the criterion for concavity is positive, flipped from the customary. Formally,
P, a parametric curve, is concave if its second derivative is negative; that is, if d2a⇤/ (dp⇤)2 = d (da⇤/dp⇤) /dp⇤ =
(d (da⇤/dp⇤) /ds) / (dp⇤/ds) < 0. Because, on

⇥

q̄, 1
⇤

✓ [s⇤, 1], dp⇤/ds < 0, P is concave if d (da⇤/dp⇤) /ds > 0.
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0 1s⇤ s� s��

s⇤

δ� δ��

s

s

Figure B.3: The thick solid curve is an inverse matching function l with a (counterfactually) flat
segment on [s0, s00]. The dashed segment is the perturbed (by h) inverse matching function l̂ ⌘
l + h.

Proof. By contradiction, first suppose that P and G have a nonempty intersection on
�

s⇤, q̄
�

. Then,
because P and G coincide at s⇤, and because G is decreasing on

�

s⇤, q̄
�

, P must have a decreasing
segment, thereby contradicting optimality, which requires that P be nondecreasing.

The remainder of the proof is concerned with showing that P cannot intersect G on
⇥

q̄, 1
⇤

. By
way of contradiction, let [s0, s00] with s00 � s0 be the largest (lengthwise, s00 � s0) interval on which
P and G coincide in

⇥

q̄, 1
⇤

. The argument goes through a list of cases with all the possible values
for s0 and s00 relative to q̄ and 1.

Case 1: q̄ < s0 < s00 < 1.
Given l, define an additive perturbation h parametrized by positive scalars d0 and d00. This

perturbation is illustrated in Figure B.3 . The scalars d0 and d00, and the perturbation h are chosen
so that (i) on [s⇤, s0 � d0] [ [s00 + d00, 1], h = 0; (ii) on s 2 (s0 � d0, s00 + d00) ⇢ (s⇤, 1), h induces a l̂

that linearly interpolates between l (s0 � d0) and l (s00 + d00):

l̂ (s) ⌘ h (s) + l (s) = l
�

s00 + d00
�

+
s00 + d00 � s

s00 + d00 � (s0 � d0)

�

l
�

s0 � d0
�

� l
�

s00 + d00
��

; (B.8)

and (iii) d0 and d00 are such that s⇤ < s0 � d0, s00 + d00 < 1, P and G are disjoint on (s⇤, s0 � d0) [
(s00 + d00, 1),

Z s00+d00

s0�d0
hsds = 0, (B.9)
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and h crosses zero only once (at a single point), from above.12 Because s, defined in (B.6), is
positive, the single-crossing property of h implies that hs, too, crosses zero only once (at a single
point), from above.

The construction of h implies the inequality

J =
Z 1

s⇤
hs

✓

da⇤

dp⇤ � a (l) � a

p � p (l)

◆

ds

=
Z s00

s0
hs

✓

da⇤

dp⇤ � a (l) � a

p � p (l)

◆

ds > 0. (B.10)

Indeed, in the display above, the equality in the second line follows because, by construction,
h ⌘ 0 outside the interval (s0 � d0, s00 + d00), and because the Euler equation holds on the set
(s0 � d0, s0) [ (s00, s00 + d00), so that the parenthetical term is zero on this set. To conclude the in-
equality in (B.10), note that, on (s0, s00), the parenthetical term is decreasing in s because da⇤/dp⇤

is decreasing in s (because, by hypothesis, P coincides with G on [s0, s00] and, by Condition 2, G is
convex), and because the term (a (l) � a) / (p � p (l)) is increasing in s (because, by hypothesis,
l does not vary with s; a and p both decrease in s; and, since pooling links are non-increasing,
p � p (l) and a (l) � a are both positive). Then, because, by construction of h, hs crosses zero
once and from above, (B.9) implies the positive sign in (B.10); indeed, the left-hand side of (B.10)
puts larger weights on positive hs’s, and smaller weights on negative hs’s, than (B.9) does. Thus,
when s00 > s0, the constructed h induces a profitable perturbation away from l, and so the coinci-
dence of P and G on [s0, s00] is suboptimal.

Case 2: q̄ < s0 = s00 < 1.
The Euler equation (B.7) describes the slope of P arbitrarily close to s0. This slope is the same

from whichever direction s0 is approached. Thus, P must be tangent to G at s0. Lemma B.5,
however, rules out such a tangency; a contradiction is reached. Thus, the coincidence of P and G
at a single point s0 is suboptimal.

Case 3: q̄  s0 < s00 = 1.
Figure B.4 illustrates that if P coincides with G on [s0, 1], then P coincides with G also on a

nonempty interval [0, q1], for some q1 > 0. Such a P fails to be nondecreasing at q1, thereby
contradicting optimality. Therefore, the coincidence of P and G on [s0, 1] is suboptimal.

Case 4: q̄ < s0 = s00 = 1.
The Euler equation applies in a sufficiently small neighborhood of s0. Because P lies in the

convex hull of G, near s0, P must be at least as steep as G; that is, the slope of P must be at least
lims!1 a0 (s) /p0 (s). If this slope is nonzero, the pooling pattern implied by the Euler equation
requires P to coincide with G on [0, q1] for some q1 > 0, thereby leading to a P that fails to be
nondecreasing and, thus, contradicting optimality. Figure B.5 illustrates the contradiction.

12Because s > 0, by the Second Mean Value Theorem for Integrals,
R s00+d00

s0�d0 hsds = h (x)
R s00+d00

s0�d0 sds for some x 2
(s0 � d0, s00 + d00). Because h is positive at first and then negative, it must cross zero at some point. Consequently, it is
possible to find d0 and d00 to satisfy h (x) = 0 and, hence, also (B.9).
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θ̄

θ⇤
s⇤

0

θ1

π
s�� = 1

s�

α

Figure B.4: If P lies on G for s 2 [s0, 1], then the pooling links must be nonincreasing as indicated,
thereby implying that P lies on G for s 2 [0, q1], for some q1 > 0. As a result, the implied P fails to
be nondecreasing, which contradicts optimality.

θ⇤

0

θ1

πs⇤

α

s� = s�� = 1

s⇤

Figure B.5: The thick curves constitute P. The two angles emanating from s0 and marked by arcs
are equal by the Euler equation. The dashed pooling link that connects q1 and s0 suggests two
possibilities: (i) s⇤ = 0 and P coinciding with G on [0, q1] (shown); and (ii) s⇤ > 0 (not shown). In
either case, P fails to be nondecreasing, thereby contradicting optimality.
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α

s� = θ̄

Figure B.6: The thick curve denotes the segment of P invoked in the argument. If s⇤ < s0 = q̄,
then P must bend backwards to reach s⇤.

The slope is nonzero if

lim
s!1

a0 (s)
p0 (s)

> 0,

which holds by Condition 3, in the lemma’s hypothesis. Thus, the coincidence of P and G at 1 is
suboptimal.

Case 5: q̄ = s0 < s00  1.
Note that s0 = q̄ implies that s⇤ = q̄. Indeed, if s0 = q̄ and, by contradiction, s⇤ < q̄, then

P must necessarily be decreasing somewhere on
⇥

s⇤, q̄
⇤

(see Figure B.6 ), thereby contradicting
optimality.

However, it will be shown that s⇤ = q̄ is not possible either. By contradiction, suppose that
s⇤ = q̄, as in Figure B.7 . If s⇤ = q̄ = s0 and P coincides with G on [s0, s00], then P must also coincide
with G on an interval [q1, s⇤] for some q1 < s⇤. This geometric arrangement contradicts P being
nondecreasing because G is decreasing on

⇥

q⇤, q̄
⇤

. Thus, the coincidence of P and G on [s0, s00] is
suboptimal.

Case 6: q̄ = s0 = s00 < 1.
As in the preceding case, s0 = q̄ requires s⇤ = q̄.
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π
s⇤

α

s��

s⇤ = θ̄

1
Figure B.7: The thick curve denotes the segment of P invoked in the argument. If s0 = s⇤ = q̄ < s00,
then all prospects in [s⇤, s00] must be connected to the same prospect q1 by nonincreasing pooling
segments. Then, by s⇤ = q̄, P must coincide with G on

�

q1, q̄
�

. In particular, a segment of P, on
�

q⇤, q̄
�

, must be downward-sloping, which contradicts optimality.

By the Euler equation, (B.7),

lim
s#s⇤

da⇤

dp⇤ = lim
s#s⇤

a (l (s)) � a (s)
p (s) � p (l (s))

= � lim
s#s⇤

g (s) a0 (l (s)) + a0 (s)
p0 (s) + g (s) p0 (l (s))

= � lim
s#s⇤

a0 (s) (1 + g (s))
p0 (s) (1 + g (s))

= � lim
s#s⇤

a0 (s)
p0 (s)

, (B.11)

where the second equality is by L’Hôpital’s rule, the third one uses the smoothness of the prospect
set (i.e., lims#s⇤ (a0 (s) � a0 (l (s))) = 0) and the continuity of l, and the fourth one uses 1 +

g (s⇤) > 0. When s⇤ = q̄, equation (B.11) implies that

lim
s#s⇤=q̄

da⇤

dp⇤ = � lim
s#s⇤=q̄

a0

p0 = •;

that is, at s⇤ = q̄, P is tangent to G. Lemma B.5 rules out such a tangency; a contradiction is
reached. Figure B.8 illustrates the contradiction. Thus, the coincidence of P and G at q̄ is subopti-
mal.
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0
π

s⇤

α

1

s� = s�� = θ̄ = s⇤

Figure B.8: The thick curve is P. If s0 = s00 = q̄, it must be that s⇤ = q̄, and that P has an infinite
slope at s⇤, which contradicts optimality.
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