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Supplement to “Conjugate Information Disclosure in an Auction with
Learning”

Arina Nikandrova and Romans Pancs

Birkbeck and ITAM

B Appendix

B.1 A Signal Structure that Rationalizes the Information-Acquisition Technology in
Section 2

The model’s description, in Section 2, could have been specified as follows. The follower exerts ef-
fort a. This effort affects the precision of a signal z. This signal’s realization induces a conditional
probability distribution µz of the underlying valuation v. This conditional probability distribu-
tion implies the expected conditional valuation q2 ⌘ Eµz [v]. Before the realization of z has been
observed, µz and q2 are random variables.

The alternative (but equivalent) approach taken in Section 2 makes direct assumptions on how
a affects the probability distribution of q2. It would have been a mere normalization to identify
the set of signal realizations with the set of conditional (on this signal) probability distributions
by setting z = µz (Kamenica and Gentzkow, 2011). Because each player is an expected-utility
maximizer, however, each cares only about q2, and so it is appropriate to identify the set of signal
realizations with the set of conditional expectations by setting z = q2. The underlying signal
structure that induces the probability distribution of q2 has been left implicit in the paper’s main
body, but can be recovered.

For concreteness, this appendix shows how the dependence of q2 on a assumed in Condition 1
can be (non-uniquely) rationalized with an appropriate joint probability distribution for v and z.
Assume that each c.d.f. Fj in Condition 1 has a p.d.f. f j, j = L, H. Let the follower’s underlying
valuation be v 2 {0, 1} with Pr {v = 1} = p, where p ⌘

R 1
0 sdFH (s) =

R 1
0 sdFL (s). Then, by

construction, Pr {v = 1} = E [q2 | a] for all a 2 A, meaning that the probability that the follower
assigns to v = 1 before observing z equals his expectation of the conditional (on z) probability that
v = 1, which is also his conditional expectation of v, denoted by q2. This Bayesian consistency
condition is necessary and sufficient for q2 to represent the follower’s conditional expectation of
his underlying valuation (Kamenica and Gentzkow, 2011).

Assume that the signal z can be either more precise, with probability a, or less precise, with
probability 1 � a. The realizations of the more and the less precise signals are governed by the
conditional p.d.f.s sH (z | v) and sL (z | v), where

sj (z | v) ⌘ zv (1 � z)1�v

pv (1 � p)1�v fj (z) , j 2 {H, L} , v 2 {0, 1} , z 2 [0, 1] . (B.1)
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The Law of Total Probability applied to (B.1) implies that, conditional on signal technology j, z is
distributed according to the c.d.f. Fj; that is, the probability that the signal realization does not
exceed z is

Z

sz

⇥

psj (s | 1) + (1 � p) sj (s | 0)
⇤

ds = Fj (z) ,

which immediately implies that unconditionally, for some effort a, z is distributed with the c.d.f.
F (· | a).

Bayes’ rule implies that z is also the expectation of v conditional on z and on signal technol-
ogy j:

E [v | z, j] = Pr {v = 1 | z, j} =
sj (z | 1) p

sj (z | 1) p + sj (z | 0) (1 � p)
= z,

which immediately implies the expectation that is conditional only on z:

q2 ⌘ E [v | z] = aE [v | z, j = H] + (1 � a) E [v | z, j = L] = z.

Hence, because z is distributed according to the c.d.f. F (· | a), so is q2, as desired.

B.2 What the Information-Acquisition Technology in Section 2 Rules Out

The linear specification (1) and Condition 1 are restrictive. The linearity in (1) rules out information-
acquisition technologies that let the follower choose among three or more signals, as Example B.1
clarifies.

Example B.1 (Nonexample). The follower chooses a tuple (a1, a2) in a two-dimensional probabil-
ity simplex D2, and then draws q2 from the probability distribution with the c.d.f. F (q2 | a1, a2) =

a2/2 + a1q2 + (1 � a1 � a2) 1{q2�1/2}.

In Example B.1, in addition to allocating probability to a perfectly informative and a somewhat
informative signal about the underlying valuation in {0, 1}, as in Example 1, the follower can
also allocate some probability to a completely uninformative signal (with probability 1 � a1 � a2).
Ruling out Example B.1 is economically restrictive. If the cost of information acquisition were
increasing in a1 and a2, one could imagine the follower preferring to set both a1 and a2 close to
zero if he faced a price close to 0 or 1, and optimally trading off the positive a1 and a2 otherwise.

Condition 1 remains restrictive even conditional on the linear specification (1), as Example B.2
illustrates.

Example B.2 (Another Nonexample). F (q2 | a) = a
� 1

4 1{q2<1/2} + 1
2 1{1/2q2<1} + 1{q2=1}

�

+(1 � a) q2.

Example B.2 can be interpreted to say that, with probability a, the follower observes a signal
that, with probability 1/2, reveals his underlying valuation, which is distributed uniformly on
{0, 1}, and, with probability 1/2, reveals “nothing”; with probability 1 � a, the follower observes
the partially informative signal of Example 1. Even though F (· | 1) is a mean-preserving spread
of F (· | 0) and, hence, is more informative in some sense (viz. Blackwell’s order on the underlying
signals), F (· | 1) and F (· | 0) are not rotation-ordered.
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B.3 An Analytical Equivalent of Condition 2

In applications, Condition 2 can be checked analytically. To do so, let

r (q1) ⌘
1 � G (q1)

g (q1)
, q1 2 Q1,

denote the inverse hazard rate of the leader’s c.d.f. As is standard, r (q1) is interpreted as the
profit that the seller forgoes—equivalently, the information rent that the leader reaps—when the
seller commits to sell to a type-q1 leader.1 In addition, recall that R (q1), defined in (A.2), denotes
the planner’s return to the follower’s information acquisition in the first-best benchmark when
the leader’s type is q1. This return is closely related to the follower’s information-acquisition
technology (in particular, R0 (q1) = FH (q1) � FL (q1) and R00 (q1) = fH (q1) � fL (q1)) and so can
be treated as a primitive.

Lemma B.1. Suppose that Condition 1 holds and fL (q⇤) 6= fH (q⇤).2 Then, a prospect set is convex if and
only if

r00 (q1) +

✓

r (q1)
R00 (q1)
R0 (q1)

◆0
< 0 for all q1 2 (0, q⇤) [ (q⇤, 1) . (B.2)

Proof. A prospect set, G ⌘ {(p (q1) , a (q1)) | q1 2 Q1}, is a parametrically given plane curve. Its
signed curvature at q1 is given by3

k (q1) ⌘
a00 (q1) p0 (q1) � a0 (q1) p00 (q1)
⇣

(p0 (q1))
2 + (a0 (q1))

2
⌘3/2 , (B.3)

where primes refer to derivatives with respect to q1. Because G is simple4 and regular,5 it is strictly
convex if and only if k is either always positive or always negative. Because the denominator in
(B.3) is always positive, requiring that k does not change the sign is equivalent to requiring that
the numerator in (B.3) not change the sign.

When q1 = q⇤, the numerator in (B.3) is negative, or �r (q⇤) ( fH (q⇤) � fL (q⇤))2 /c < 0, be-
cause fH (q⇤) 6= fL (q⇤) by the lemma’s hypothesis and FL (q⇤) = FH (q⇤) by part (ii) of Condi-
tion 1. Thus, the strict convexity of G is equivalent to the numerator in (B.3) being always nega-
tive:6

a00 (q1) p0 (q1) � a0 (q1) p00 (q1) < 0.
1When the seller commits to sell to type q1 at some price, all types higher than q1 may be tempted to imitate type q1

and buy at the same price, thereby constraining the seller in how much he can charge these higher types.
2Condition fL (q⇤) 6= fH (q⇤), which can be interpreted to hold “generically,” simplifies the analytical characteriza-

tion in the lemma but is not required for the convexity of the prospect set.
3The curvature of G at a point is the reciprocal of the radius of the circle osculating G at that point; see the Wikipedia

entry on curvature: https://en.wikipedia.org/wiki/Curvature.
4A curve is simple if it does not intersect itself.
5A curve G is regular if its derivative (a0, p0) 6= (0, 0) for all q1 2 Q1, which holds in our model.
6In general, the sign of the curvature k indicates the direction in which the unit tangent vector rotates as a function

of the parameter along the curve. If the unit tangent rotates counterclockwise, then k > 0. If it rotates clockwise, then
k < 0. In our model, as q1 increases, the unit tangent vector of G rotates clockwise, and, thus, k must be negative
everywhere.
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Substituting the definitions of a and p into the above display, dividing by (R0 (q1))
2, which is

positive when q1 6= q⇤, and rearranging gives the sought inequality (B.2) of Lemma B.1.
This curvature condition captured by (B.2) is local and, alone, does not suffice to conclude that

the prospect set is convex (in the sense of Definition 1); a spiral is a counterexample. Condition 1,
however, which ensures that a (0) = a (1) = 0, thereby ruling out a spiral and ensuring that the
curvature condition in (B.2) is equivalent to the convexity of G.

B.4 Examples that Illustrate Cases in Definition 2

Case (i) in Definition 2 prevails in examples in which the distribution of the follower’s underlying
valuations is binary, and the information-acquisition technology grants probabilistic access to a
perfectly informative signal, as in Example 1. In this case, the follower’s c.d.f. F has mass points
at 0 and 1. Example 1, coupled with the assumption of the monotone increasing hazard rate for
the leader’s c.d.f. G, yields the prospect set in Figure 3c. This prospect set’s critical feature is that
it slopes upwards near q1 = 0 (that is, both a and p are increasing in q1 near 0), and so q = 0. That
a is increasing near 0 follows from Theorem 1. That p is increasing near 0 follows by taking an
arbitrarily small # > 0 and evaluating

p0 (#) = �r0 (#) (FH (#) � FL (#)) + r (#) ( fL (#) � fH (#)) > 0,

where the inequality follows because r0 (#) < 0 (the hazard-rate condition on G), r (#) > 0, FH (#) =

1/2 > FL (#) = # (the mass point that corresponds to probabilistically learning that the underlying
valuation is 0), and fL (#) = 1 > fH (#) = 0 (made possible by FH’s mass point at 0).

Figure B.1 illustrates how a downward-sloping segment for G near q1 = 0 is necessary for
case (ii) in Definition 2 not to collapse into case (i). The figure also illustrates the role played by s0.

Figure 3b illustrates an example of case (ii); c.d.f.s FH and FL are Beta distributions chosen to
satisfy Condition 1. Then, FH (0) = FL (0) = 0. Furthermore, one can (merely to simplify the
argument) choose FH and FL so that fH (0) > fL (0). As a result, p0 (0) = r (0) ( fL (0) � fH (0)) <

0; p is decreasing near 0. Because a is increasing near 0, the prospect set is downward-sloping
near 0.

B.5 Justifying Equation (A.16) in the Proof of Lemma A.4

To justify (A.16), Lemma B.2 demonstrates that one can approximate any n 2 D (DQ1) by a prob-
ability measure that puts some mass only on discrete measures in a countable set. The proof
proceeds in two steps. First, it shows that by choosing n sufficiently large, any probability mea-
sure in DQ1 can be approximated by a probability measure that puts some mass on a countable set
� 1

2n , 2
2n , ..., 1

 

in Q1. Then, a similar argument is repeated to show that if one chooses n sufficiently
large, any measure in D (DQ1) can be approximated by a measure that puts positive mass only
on discrete measures with support

� 1
2n , 2

2n , ..., 1
 

. This second half is slightly trickier because it re-
quires finding a countable set of non-overlapping neighborhoods in DQ1 that almost cover space
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Figure B.1: The convex curve is the prospect set G. The circles mark the prospects induced by the
leader’s types in 0, s⇤, s0 , q, q⇤, s⇤, q̄, and 1. The dashed links comprise a subset of the links that pool
prospects into messages. Type s0 demarcates the leader’s types that are pooled with types in [0, s⇤)
and those that are pooled with types in (s⇤, 1].

DQ1.

Lemma B.2. Fix an arbitrary measure n 2 D (DQ1). For every e > 0, there exists N such that for n � N,
�

�

�

�

Z

DQ1

f (P) dn �
Z

DQ1

f (P) dnn

�

�

�

�

< e,

where f (P) is an arbitrary real-valued uniformly continuous, bounded function, and nn is a probability
measure that puts some mass only on discrete measures in the countable set

Dn ⌘
(

a1d1/2n + a2d2/2n + ... + a2n d1 : a1, ..., a2n 2 Q \ [0, 1] ,
2n

Â
j=1

aj = 1

)

⇢ DQ1,

where Q denotes the set of rational numbers, and dk/2n denotes the Dirac measure at k/2n 2 [0, 1] (i.e.,
dk/2n (B) = 1{k/2n2B}, B ⇢ Q1). Set Dn contains probability measures that put some (rational) mass on a
countable set

� 1
2n , 2

2n , ..., 1
 

in Q1.

Proof. The proof proceeds in two steps.
Step 1: It is possible to approximate any measure µ in DQ1 with a measure in Dn by choosing

n sufficiently high.
Let Bn

j ⌘
h

j�1
2n , j

2n

⌘

for j = 1, 2, ..., 2n, so that the family of disjoint sets {Bn
1 , ..., Bn

2n} completely
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covers Q1. Note that it is possible to approximate a discrete measure

µ (Bn
1 ) d1/2n + ... + µ (Bn

2n) d1

by
µn ⌘ an

1 d1/2n + ... + an
2n d1,

where an
j 2 [0, 1] \ Q such that Â2n

j=1 an
j = 1 and

2n

Â
j=1

�

�

�

µ
⇣

Bn
j

⌘

� an
j

�

�

�

<
1
2n .

Such a choice of
n

an
j

o

is possible because rationals are dense in reals. Then, for each n, µn 2 Dn.
Moreover, as n ! •, µn ) µ, where “)” denotes weak convergence and µ 2 DQ1.

To show that µn ) µ, take a uniformly continuous bounded function g on Q1 = [0, 1] .7 Let
kgk• ⌘ supx2Q1

g (x) denote the supremum norm. Then,

�

�

�

�

Z

gdµn �
Z

gdµ

�

�

�

�

=
�

�

�Â2n

j=1 an
j g
⇣

j
2n

⌘

�
R

gdµ
�

�

�

<
�

�

�Â2n

j=1 µ
⇣

Bn
j

⌘

g
⇣

j
2n

⌘

�
R

gdµ
�

�

�

+
1
2n sup

j

�

�

�

�

g
✓

j
2n

◆

�

�

�

�


�

�

�

�

R

Â2n

j=1 g
⇣

j
2n

⌘

1n
Bn

j

odµ �
R

gdµ

�

�

�

�

+
1
2n kgk•


�

�

�

�

Â2n

j=1
R

⇣

g
⇣

j
2n

⌘

� g
⌘

1n
Bn

j

odµ

�

�

�

�

+
1
2n kgk•


�

�

�Â2n

j=1 supx2Bn
j

�

�

�

g
⇣

j
2n

⌘

� g (x)
�

�

�

µ
⇣

Bn
j

⌘

�

�

�

+
1
2n kgk• .

Note that
�

�

�

j
2n � x

�

�

�

< 1
2n for each x 2 Bn

j . Because g is uniformly continuous, for every e > 0, there
exists a d > 0 such that whenever |x � y| < d, |g (x) � g (y)| < e. Take some e > 0; then, for n
such that 1

2n  d,
�

�

�

g
⇣

j
2n

⌘

� g (x)
�

�

�

< e for all x 2 Bn
j and all j. Then, from previous calculations, it

follows that
�

�

�

�

Z

gdµn �
Z

gdµ

�

�

�

�

 e +
1
2n kgk• .

Because g is bounded, the second term on the right-hand side can be made arbitrarily small by
choosing n sufficiently large, whereas e is arbitrary. Hence,

R

gdµn !
R

gdµ as n ! •, which
implies that µn ) µ.

7Statements that µn ) µ and that lim
R

gdµm =
R

gdµ for all uniformly continuous, bounded functions are equiva-
lent because (i) every Lipschitz function between two metric spaces is uniformly continuous; and (ii) the set of bounded
Lipschitz functions on a metric space is dense in the set of continuous bounded functions on that space (Dudley, R. M.,
Real Analysis and Probability 2002, Theorem 11.2.4), which implies that, instead of a wider class of bounded continuous
function in the definition of the weak convergence, one may actually consider a smaller class of bounded Lipschitz
functions (this fact is sometimes stated as a part of Portmanteau theorem).
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Step 2: It is possible to approximate any measure n in D (DQ1) with a measure that puts some
mass only on measures in Dn.

Let

V ⌘
(

k

Â
n=0

•

Â
j=1

bnjµ
j
n : µ

j
n 2 Dn, b0j, ..., bkj 2 Q \ [0, 1] ,

k

Â
n=0

•

Â
j=1

bnj = 1, k = 0, 1, 2, ...

)

be a countable subset of probability measures in D (DQ1) . It contains measures that put positive
mass only on measures in a countable set D ⌘ [•

n=0Dn. It will be demonstrated that V is dense in
D (DQ1), and, thus, an arbitrary measure in D (DQ1) can be approximated by some measure in V .

Let n 2 D (DQ1) and

B
⇣

µ
j
n, 1/m

⌘

⌘
n

µ 2 DQ1 : dp

⇣

µ
j
n, µ

⌘

< 1/m
o

be an open ball in D (DQ1) with radius 1/m centered around measure µ
j
n 2 Dn, where dp

⇣

µ
j
n, µ

⌘

denotes Prohorov distance between measures µ
j
n and µ. For each m � 1,

[•
j=1B

✓

µ
j
0,

1
m

◆

⇢ [•
j=1B

✓

µ
j
1,

1
m

◆

⇢ ... and lim
n!•

[•
j=1B

✓

µ
j
n,

1
m

◆

= D (DQ1) .

Take N and J such that

n

✓

[J
j=1B

✓

µ
j
N ,

1
m

◆◆

� 1 � 1/m.

Modify the balls B
⇣

µ
j
N , 1

m

⌘

into disjoint sets by taking

Bm
1 ⌘ B

✓

µ1
N ,

1
m

◆

, Bm
k ⌘ B

✓

µk
N ,

1
m

◆

�


[k�1
j=1 B

✓

µ
j
N ,

1
m

◆�

, k = 2, ..., J.

Then, Bm
1 , ..., Bm

J are disjoint and [j
k=1Bm

k = [j
k=1B

�

µk
N , 1

m
�

for all j. Consequently,

n
⇣

[J
k=1Bm

k

⌘

= n

✓

[J
k=1B

✓

µk
N ,

1
m

◆◆

� 1 � 1/m. (B.4)

It is possible to approximate
n (Bm

1 ) dµ1
N

+ ... + n
�

Bm
J
�

d
µJ

N

by
nm ⌘ bm

1 dµ1
N

+ ... + bm
J d

µJ
N

,

where bm
j 2 [0, 1] \ Q is such that ÂJ

j=1 bm
j = 1 and

J

Â
j=1

�

�

�

n
⇣

Bm
j

⌘

� bm
j

�

�

�

<
2
m

.
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Since rationals are dense in reals, such a choice of
n

bm
j

o

is always possible through an appropriate
rescaling. Then, for each m, nm 2 D.

To show that nm ) n, take a uniformly continuous bounded function f on DQ1. Then,
�

�

�

�

Z

f dnm �
Z

f dn

�

�

�

�

=
�

�

�ÂJ
j=1 bm

j f
⇣

µ
j
N

⌘

�
R

f dn
�

�

�


�

�

�ÂJ
j=1 n

⇣

Bm
j

⌘

f
⇣

µ
j
N

⌘

�
R

f dn
�

�

�

+
2
m

sup
j

�

�

�

f
⇣

µ
j
N

⌘

�

�

�


�

�

�

�

R

ÂJ
j=1 f

⇣

µ
j
N

⌘

1n
Bm

j

odn �
R

f dn

�

�

�

�

+
2
m

k f k•


�

�

�

�

ÂJ
j=1

R

⇣

f
⇣

µ
j
N

⌘

� f
⌘

1n
Bm

j

odn +
Z

f 1n⇣
[J

j=1Bm
j

⌘codn

�

�

�

�

+
2
m

k f k•


�

�

�ÂJ
j=1 supµ2Bm

j

�

�

�

f
⇣

µ
j
N

⌘

� f (µ)
�

�

�

n
⇣

Bm
j

⌘

+ k f k• n
⇣⇣

[J
j=1Bm

j

⌘c⌘�
�

�

+
2
m

k f k• .

Each Bm
j is contained in a ball with radius 1/m around µ

j
N , and, thus, dp

⇣

µ
j
N , µ

⌘

< 1
m for each

µ 2 Bm
j . Because f is uniformly continuous, for every e > 0, there is a d > 0 such that whenever

dp (µ, u) < d, | f (µ) � f (u)| < e. Take some e > 0; then, for m � 1/d,
�

�

�

f
⇣

µ
j
N

⌘

� f (µ)
�

�

�

< e for all
µ 2 Bm

j and all j. Then, from previous calculations

�

�

�

�

Z

f dnm �
Z

f dn

�

�

�

�

 e +
1
m

k f k• +
2
m

k f k• .

Because f is bounded, the last two terms on the right-hand side can be made arbitrarily small by
choosing m sufficiently large, whereas e is arbitrary. Hence,

R

f dnm !
R

f dn as m ! •, which
implies that nm ) n.

B.6 Preliminary Results for the Proof of Theorem 4

The proof of Theorem 4 demonstrates that the boundedness of a⇤0 on (q⇤, s⇤) follows from P
being connected and from P and G being disjoint on (s⇤, 1] . This section proves the two required
intermediate results in Lemma B.3 and Lemma B.6, respectively.

Lemma B.3. P is connected.

Proof. By contradiction, suppose that P is not connected. Any non-connectedness in P must be
caused by some prospects being revealed, as in Figure B.2 . The revealed prospects, which lie in
G, belong to P. As a result, P fails to be nondecreasing, thereby contradicting optimality.

It remains to show that the optimal-prospect path P is disjoint from the prospect set G on
(s⇤, 1]. Lemma B.6 accomplishes this task. The lemma’s proof relies on a number of preliminary
results.

It is convenient to cast the analysis in terms of a decreasing function l ⌘ t�1, the inverse
of the matching function t, whenever this inverse exists. Function l is defined on the interval

8



!

θ̄

θ⇤ s⇤

0 1

α

s⇤

Figure B.2: The broken solid thick curve is a counterfactually non-connected P. Prospects that lie
on G’s chords that are demarcated by the two pooling segments are revealed and belong to P; P
fails to be nondecreasing, thereby contradicting optimality.

[s⇤, 1]. Operating under the assumption that l exists is justified because the goal is to rule out the
situation in which l is flat (and so, by implication, exists). Define g ⌘ �l0.

For expositional purposes only, assume that the leader’s type is distributed uniformly: G (q1) =

q1.8 After a change of variables, the seller’s objective function (21) restricted to [s⇤, 1] (which is the
interval of particular interest in our analysis) can be written in terms of g and l as

Z 1

s⇤
L (s, l, g) ds, (B.5)

where
L (s, l, g) ⌘ (p (s) + g (s) p (l (s))) (a (s) + g (s) a (l (s)))

1 + g (s)
.

Towards optimality, take some l and perturb it towards l + eh for some e 2 R and for some
h : [s⇤, 1] ! R with h (s⇤) = h (1) = 0. The value of the perturbed objective function is denoted
by

F ⌘
Z 1

s⇤
L
�

s, l + eh, g � eh0�ds,

where the dependence of l, g, and h on s is implicit and will remain so as long as no ambiguity

8The Euler equation, in (B.7), and the subsequent arguments all hold for a general G. The unwieldy derivation for
this general case is available upon request.
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arises. The marginal benefit from perturbing l in the direction of h is denoted by

J ⌘ dF
de

|e=0=
Z 1

s⇤
h

✓

∂L
∂l

� d
ds

∂L
∂g

◆

ds.

If l is optimal, any (feasible) perturbation h requires J  0. If, in addition, an optimal l is
interior, the parenthetical term in the display above must be identically zero. The parenthetical
term equated to zero becomes the Euler equation.

Computing ∂L/∂l, ∂L/∂g, and (d/ds) (∂L/∂g) and substituting the results into J in the
display above gives

J =
Z 1

s⇤
h

"

(p (l) � p)
�

a0 � g2a0 (l)
�

�
�

p0 � g2p0 (l)
�

(a � a (l))

(1 + g)2 � 2g0 (p (l) � p) (a � a (l))

(1 + g)3

#

ds.

To interpret the expression for J graphically, in terms of the slope of P, with some abuse of nota-
tion, write P ⌘ {(p⇤ (s) , a⇤ (s)) | s 2 [s⇤, 1]}, where9

p⇤ =
p + gp (l)

1 + g
and a⇤ =

a + ga (l)
1 + g

.

Combining
dp⇤

ds
=

�

p0 � g2p0 (l)
�

(1 + g) � g0 (p � p (l))

(1 + g)2

and
da⇤

ds
=

�

a0 � g2a0 (l)
�

(1 + g) � g0 (a � a (l))

(1 + g)2 ,

one obtains the slope of P:

da⇤

dp⇤ =
da⇤/ds
dp⇤/ds

=

�

a0 � g2a0 (l)
�

(1 + g) � g0 (a � a (l))

(p0 � g2p0 (l)) (1 + g) � g0 (p � p (l))
.

Rearranging the expression for J and substituting dp⇤/ds and da⇤/dp⇤ gives

J =
Z 1

s⇤
hs

✓

da⇤

dp⇤ � a (l) � a

p � p (l)

◆

ds, where s ⌘ p � p (l)
1 + g

✓

�dp⇤

ds

◆

. (B.6)

Now, from (B.6), we can extract the Euler equation. On (s⇤, 1), p � p (l) > 0 and g � 0 (and
so 1 + g > 0). Because P cannot be vertical, dp⇤/ds < 0. As a result, s > 0. Therefore, whenever
P is interior, it must satisfy the Euler equation:

da⇤

dp⇤ =
a (l) � a

p � p (l)
. (B.7)

9The abuse of notation here consists in reinterpreting p⇤ (s) and a⇤ (s) to be indexed by s in [s⇤, 1] (not [s⇤, s⇤]), which
is consistent with the dummy variable in the integrand of the rewritten objective function (B.5) being defined on [s⇤, 1]
(not [s⇤, s⇤]).
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To summarize,

Lemma B.4. When P is interior, its slope, da⇤/dp⇤, obeys the Euler equation (B.7).

Proof. The argument for the uniform G precedes the lemma’s statement. The argument for a gen-
eral, non-uniform, G is available upon request.

Lemma B.5 is an auxiliary result that roughly says that, if P were to touch G at a point in
⇥

q̄, 1
⇤

,
it would do so at an angle, instead of pasting smoothly at that point.

Lemma B.5. Suppose that P coincides with G at a single point s0 2
⇥

q̄, 1
⇤

and is disjoint from G on some
subset S ⇢

⇥

q̄, 1
⇤

adjacent to s0 (i.e., s0 2 cl (S)). Then, P cannot be tangent to G at s0.

Proof. By contradiction, suppose that P coincides with, and is tangent to, G at a point s0 2
⇥

q̄, 1
⇤

.
Define a subset S ⇢

�

q̄, 1
�

so that (i) for some # > 0, S is either (s0, s0 + #) or (s0 � #, s0); (ii) on S,
P and G are disjoint; and (iii) # is “sufficiently small” in the sense that will be made precise. That
is, S is chosen so that, on S, P is close to, but disjoint from, G. The disjointness of P and G implies
that, on S, P satisfies the Euler equation (B.7). Differentiating the Euler equation on S gives

d
ds

✓

da⇤

dp⇤

◆

=
d
ds

a (l) � a

p � p (l)
= �a0 + ga0 (l) + (da⇤/dp⇤) (p0 + gp0 (l))

p � p (l)
.

By requirement (iii) in the construction of S, P is “close” to G on S, and so a⇤ ⇡ a, which re-
quires g ⇡ 0 (by Bayes’ rule, a⇤ = (a + ga (l)) / (1 + g)).10 With this justification, we neglect the
terms multiplied by g. Then, p � p (l) > 0 combined with da⇤/dp⇤ > 0 (P is increasing, by
optimality), a0 < 0, and p0 < 0 (by s 2

�

q̄, 1
�

), imply

d
ds

✓

da⇤

dp⇤

◆

> 0,

which, in turn, implies that P is concave.11

Thus, we have reached a contradiction because, at s0, P and G coincide and are tangent to
each other, and yet, on S, P is concave, whereas G is convex (by Condition 2). This situation is
a geometric impossibility; it requires P to exit the convex hull of G. Hence, P and G cannot be
tangent at s0.

We are now ready to formulate and prove

Lemma B.6. Suppose that Condition 3 holds. Then, the intersection of P and G on (s⇤, 1] is empty.
10The role of tangency in the contradiction hypothesis is to ensure that P is “close” to G on S, and so g ⇡ 0 indeed

holds.
11As s rises, the induced prospect is moving southwest along G—or from right to left if one projects this movement

on the horizontal axis. Hence, the sign in the criterion for concavity is positive, flipped from the customary. Formally,
P, a parametric curve, is concave if its second derivative is negative; that is, if d2a⇤/ (dp⇤)2 = d (da⇤/dp⇤) /dp⇤ =
(d (da⇤/dp⇤) /ds) / (dp⇤/ds) < 0. Because, on

⇥

q̄, 1
⇤

✓ [s⇤, 1], dp⇤/ds < 0, P is concave if d (da⇤/dp⇤) /ds > 0.

11
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Figure B.3: The thick solid curve is an inverse matching function l with a (counterfactually) flat
segment on [s0, s00]. The dashed segment is the perturbed (by h) inverse matching function l̂ ⌘
l + h.

Proof. By contradiction, first suppose that P and G have a nonempty intersection on
�

s⇤, q̄
�

. Then,
because P and G coincide at s⇤, and because G is decreasing on

�

s⇤, q̄
�

, P must have a decreasing
segment, thereby contradicting optimality, which requires that P be nondecreasing.

The remainder of the proof is concerned with showing that P cannot intersect G on
⇥

q̄, 1
⇤

. By
way of contradiction, let [s0, s00] with s00 � s0 be the largest (lengthwise, s00 � s0) interval on which
P and G coincide in

⇥

q̄, 1
⇤

. The argument goes through a list of cases with all the possible values
for s0 and s00 relative to q̄ and 1.

Case 1: q̄ < s0 < s00 < 1.
Given l, define an additive perturbation h parametrized by positive scalars d0 and d00. This

perturbation is illustrated in Figure B.3 . The scalars d0 and d00, and the perturbation h are chosen
so that (i) on [s⇤, s0 � d0] [ [s00 + d00, 1], h = 0; (ii) on s 2 (s0 � d0, s00 + d00) ⇢ (s⇤, 1), h induces a l̂

that linearly interpolates between l (s0 � d0) and l (s00 + d00):

l̂ (s) ⌘ h (s) + l (s) = l
�

s00 + d00
�

+
s00 + d00 � s

s00 + d00 � (s0 � d0)

�

l
�

s0 � d0
�

� l
�

s00 + d00
��

; (B.8)

and (iii) d0 and d00 are such that s⇤ < s0 � d0, s00 + d00 < 1, P and G are disjoint on (s⇤, s0 � d0) [
(s00 + d00, 1),

Z s00+d00

s0�d0
hsds = 0, (B.9)
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and h crosses zero only once (at a single point), from above.12 Because s, defined in (B.6), is
positive, the single-crossing property of h implies that hs, too, crosses zero only once (at a single
point), from above.

The construction of h implies the inequality

J =
Z 1

s⇤
hs

✓

da⇤

dp⇤ � a (l) � a

p � p (l)

◆

ds

=
Z s00

s0
hs

✓

da⇤

dp⇤ � a (l) � a

p � p (l)

◆

ds > 0. (B.10)

Indeed, in the display above, the equality in the second line follows because, by construction,
h ⌘ 0 outside the interval (s0 � d0, s00 + d00), and because the Euler equation holds on the set
(s0 � d0, s0) [ (s00, s00 + d00), so that the parenthetical term is zero on this set. To conclude the in-
equality in (B.10), note that, on (s0, s00), the parenthetical term is decreasing in s because da⇤/dp⇤

is decreasing in s (because, by hypothesis, P coincides with G on [s0, s00] and, by Condition 2, G is
convex), and because the term (a (l) � a) / (p � p (l)) is increasing in s (because, by hypothesis,
l does not vary with s; a and p both decrease in s; and, since pooling links are non-increasing,
p � p (l) and a (l) � a are both positive). Then, because, by construction of h, hs crosses zero
once and from above, (B.9) implies the positive sign in (B.10); indeed, the left-hand side of (B.10)
puts larger weights on positive hs’s, and smaller weights on negative hs’s, than (B.9) does. Thus,
when s00 > s0, the constructed h induces a profitable perturbation away from l, and so the coinci-
dence of P and G on [s0, s00] is suboptimal.

Case 2: q̄ < s0 = s00 < 1.
The Euler equation (B.7) describes the slope of P arbitrarily close to s0. This slope is the same

from whichever direction s0 is approached. Thus, P must be tangent to G at s0. Lemma B.5,
however, rules out such a tangency; a contradiction is reached. Thus, the coincidence of P and G
at a single point s0 is suboptimal.

Case 3: q̄  s0 < s00 = 1.
Figure B.4 illustrates that if P coincides with G on [s0, 1], then P coincides with G also on a

nonempty interval [0, q1], for some q1 > 0. Such a P fails to be nondecreasing at q1, thereby
contradicting optimality. Therefore, the coincidence of P and G on [s0, 1] is suboptimal.

Case 4: q̄ < s0 = s00 = 1.
The Euler equation applies in a sufficiently small neighborhood of s0. Because P lies in the

convex hull of G, near s0, P must be at least as steep as G; that is, the slope of P must be at least
lims!1 a0 (s) /p0 (s). If this slope is nonzero, the pooling pattern implied by the Euler equation
requires P to coincide with G on [0, q1] for some q1 > 0, thereby leading to a P that fails to be
nondecreasing and, thus, contradicting optimality. Figure B.5 illustrates the contradiction.

12Because s > 0, by the Second Mean Value Theorem for Integrals,
R s00+d00

s0�d0 hsds = h (x)
R s00+d00

s0�d0 sds for some x 2
(s0 � d0, s00 + d00). Because h is positive at first and then negative, it must cross zero at some point. Consequently, it is
possible to find d0 and d00 to satisfy h (x) = 0 and, hence, also (B.9).
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θ̄

θ⇤
s⇤

0

θ1

π
s�� = 1

s�

α

Figure B.4: If P lies on G for s 2 [s0, 1], then the pooling links must be nonincreasing as indicated,
thereby implying that P lies on G for s 2 [0, q1], for some q1 > 0. As a result, the implied P fails to
be nondecreasing, which contradicts optimality.

θ⇤

0

θ1

πs⇤

α

s� = s�� = 1

s⇤

Figure B.5: The thick curves constitute P. The two angles emanating from s0 and marked by arcs
are equal by the Euler equation. The dashed pooling link that connects q1 and s0 suggests two
possibilities: (i) s⇤ = 0 and P coinciding with G on [0, q1] (shown); and (ii) s⇤ > 0 (not shown). In
either case, P fails to be nondecreasing, thereby contradicting optimality.
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θ⇤

0
π

s��

1
s⇤

s⇤

α

s� = θ̄

Figure B.6: The thick curve denotes the segment of P invoked in the argument. If s⇤ < s0 = q̄,
then P must bend backwards to reach s⇤.

The slope is nonzero if

lim
s!1

a0 (s)
p0 (s)

> 0,

which holds by Condition 3, in the lemma’s hypothesis. Thus, the coincidence of P and G at 1 is
suboptimal.

Case 5: q̄ = s0 < s00  1.
Note that s0 = q̄ implies that s⇤ = q̄. Indeed, if s0 = q̄ and, by contradiction, s⇤ < q̄, then

P must necessarily be decreasing somewhere on
⇥

s⇤, q̄
⇤

(see Figure B.6 ), thereby contradicting
optimality.

However, it will be shown that s⇤ = q̄ is not possible either. By contradiction, suppose that
s⇤ = q̄, as in Figure B.7 . If s⇤ = q̄ = s0 and P coincides with G on [s0, s00], then P must also coincide
with G on an interval [q1, s⇤] for some q1 < s⇤. This geometric arrangement contradicts P being
nondecreasing because G is decreasing on

⇥

q⇤, q̄
⇤

. Thus, the coincidence of P and G on [s0, s00] is
suboptimal.

Case 6: q̄ = s0 = s00 < 1.
As in the preceding case, s0 = q̄ requires s⇤ = q̄.
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π
s⇤
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s��

s⇤ = θ̄

1
Figure B.7: The thick curve denotes the segment of P invoked in the argument. If s0 = s⇤ = q̄ < s00,
then all prospects in [s⇤, s00] must be connected to the same prospect q1 by nonincreasing pooling
segments. Then, by s⇤ = q̄, P must coincide with G on

�

q1, q̄
�

. In particular, a segment of P, on
�

q⇤, q̄
�

, must be downward-sloping, which contradicts optimality.

By the Euler equation, (B.7),

lim
s#s⇤

da⇤

dp⇤ = lim
s#s⇤

a (l (s)) � a (s)
p (s) � p (l (s))

= � lim
s#s⇤

g (s) a0 (l (s)) + a0 (s)
p0 (s) + g (s) p0 (l (s))

= � lim
s#s⇤

a0 (s) (1 + g (s))
p0 (s) (1 + g (s))

= � lim
s#s⇤

a0 (s)
p0 (s)

, (B.11)

where the second equality is by L’Hôpital’s rule, the third one uses the smoothness of the prospect
set (i.e., lims#s⇤ (a0 (s) � a0 (l (s))) = 0) and the continuity of l, and the fourth one uses 1 +

g (s⇤) > 0. When s⇤ = q̄, equation (B.11) implies that

lim
s#s⇤=q̄

da⇤

dp⇤ = � lim
s#s⇤=q̄

a0

p0 = •;

that is, at s⇤ = q̄, P is tangent to G. Lemma B.5 rules out such a tangency; a contradiction is
reached. Figure B.8 illustrates the contradiction. Thus, the coincidence of P and G at q̄ is subopti-
mal.
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s� = s�� = θ̄ = s⇤

Figure B.8: The thick curve is P. If s0 = s00 = q̄, it must be that s⇤ = q̄, and that P has an infinite
slope at s⇤, which contradicts optimality.
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