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 1 
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London, C1V 0HB, U.K. 

 5 

Abstract In this paper, a new Machine Learning framework is developed for fast prediction of the 6 

failure patterns of simple steel framed buildings in fire and subsequent progressive collapse 7 

potential assessment. This pilot study provides a new tool of  fire safety assessment for engineers 8 

in an efficient and effective way in the future. The concept of Critical Temperature Method is used 9 

to define the failure patterns for each structural member which is incorporated into a systematic 10 

methodology employing both Monte Carlo Simulation and Random Sampling to generate a robust 11 

and sufficient large dataset for training and testing, hence guarantees the accurate prediction. A 12 

comparative study for different machine learning classifiers is made. Three classifiers are chosen 13 

for failure patterns prediction of buildings under fire: Decision Tree, KNN and Neural Network 14 

using Google Keras with TensorFlow which is specially used for Google Brain Team. The 15 

Machine Learning framework is implemented using codes programmed by the author in VBA and 16 

Python language. A case study of a 2 story by 2 bay steel framed building was made. Two different 17 

fire scenarios were chosen. The procedure gives satisfactory prediction of the failure pattern and 18 

collapse potential of the building under fire.  19 

                                                             
*Corresponding author: cenffu@yahoo.co.uk 
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 22 

1. Introduction 23 

The recent disaster in Grenfell tower [1] embarked the increasing interests in fire safety design for 24 

multi-story buildings. Across the world, large percentage of the tall buildings or multi-story 25 

buildings are steel structures, so fire safety is one of the key concerns in the design practice. The 26 

traditional design process of building under fire is time consuming and is limited by the ability of 27 

an engineer to fully understand the failure potential of the structure under fire loadings. This is 28 

primarily due to the complexity of this engineering problem. So far, there is no efficient way to 29 

tackle this problem in the construction industry. One of the possible ways to solve this problem is 30 

to use artificial intelligence.  31 

Although construction research has considered machine learning (ML) for more than two decades, 32 

it had rarely been applied to fire safety design of buildings. Some research has been undertaken in 33 

the past by using the machine learning for certain construction problems. Adeli, H. et al. [2] made 34 

a comprehensive review on the neural networks in structural engineering.  Paudel et al. [3] used 35 

Machine learning for the prediction of building energy demand. Zhang et al. [4] developed a 36 

machine learning framework for assessing post-earthquake structural safety. Shi et al. [5] set up 37 

an evaluation model to assess the intelligent development of 151 cities in China. The model is 38 

based on the analytic hierarchy process and back propagation neural network theory. Puri et al [6], 39 

set up the relationships between in-place density of soil using SPT N-value, compression index 40 

(Cc) using liquid limit (LL) and void ratio (e), and cohesion (c) and angle of internal friction (ϕ) 41 
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using machine learning techniques. Tixier et al. [7] use random forest (RF) and stochastic gradient 42 

tree boosting (SGTB) method to predict the injury in the construction sites. The dataset is extracted 43 

from large pool of the construction injury report. It is found that, their models can predict injury 44 

type, energy type, and body part with high accuracy, outperforming the parametric models found 45 

in other literature. Chou [8] proposes a novel classification system integrating swarm and 46 

metaheuristic intelligence, with a least squares support vector machine (LSSVM). The system was 47 

applied to several geotechnical engineering problems that involved measuring the groutability of 48 

sandy silt soil, monitoring seismic hazards in coal mines, predicting post-earthquake soil 49 

liquefaction, and determining the propensity of slope collapse. Ozturan et al. [9] used the artificial 50 

neural network to predict the concrete strength. Lagaros [10] made Fragility assessment of steel 51 

frames using neural networks. De Lautour et al [11] made prediction of seismic-induced structural 52 

damage using artificial neural networks. Mangalathu, S., et al. [12] used artificial neural network 53 

to develop multi-dimensional fragility of skewed concrete bridge classes. Wang, Z. et al. [13] also 54 

made seismic fragility analysis with artificial neural networks for nuclear power plant equipment. 55 

Hozjan et al [14] developed an artificial neural network (ANN) in the material modelling of steel 56 

under fire. 57 

From above literature review, it can be seen that little research has been done on using machine 58 

learning to predict failure mode and consequently the potential of the collapse under fire. Therefore, 59 

it is imperative a study on fire safety assessment using machine learning is timely. Therefore, in 60 

this paper, a new Machine Learning framework is developed which provides a new tool to assist 61 

engineers in fire safety assessment. The concept of Critical Temperature Method is used to define 62 

the failure patterns of each structural member, which is incorporated into a systematic 63 

methodology employing both Monte Carlo Simulation and Random Sampling to generate a robust 64 
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and sufficient large dataset for training and testing, hence guarantees the accurate prediction. The 65 

Machine Learning framework is implemented using a code programmed by the author in VBA 66 

and Python language. Case studies of machine learning prediction were also made, the machine 67 

procedure gives satisfactory prediction of the failure pattern and collapse potential of the building 68 

under fire. 69 

2. Framework of structural fire safety assessment and  classifiers 70 

selections   71 

2.1 Process of Fire Safety Assessment of Buildings through Machine Learning 72 

 73 

The whole process of the fire safety assessment using machine learning can be demonstrated in 74 

Figure 1. The detailed procedure will be introduced in the following sections. 75 

 76 
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 77 

Figure 1 Fire Safety Assessment of Buildings through Machine Learning  78 

 79 

2.2  Major classifiers in machine learning 80 

2.2.1 Artificial Neural Network (ANN) 81 

Artificial neural network is one of the major tools used in machine learning. It mimics the brain 82 

systems and intend to replicate the way humans learning. The neural network consists several 83 

simple processing units called neurons. Typically, the neurons are organized into layers: the input 84 

layer, hidden layers, and the output layer. There are various types of neural network, such as Singer-85 

Layer Feed-forward Networks, Multilayer Feed-forward Networks, Recurrent Neural Networks. 86 

In deep learning neural networks, a multilayer network extract different features until it can 87 
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recognize what it is looking for. Therefore, it can possess greater learning abilities and are widely 88 

used for complex tasks.  89 

2.2.2 Decision Tree Learning 90 

Decision tree is one of the predictive modelling approaches used in machine learning. It uses the 91 

tree model to make decision. In these tree structures, leaves represent class labels and branches 92 

represent conjunctions of features that lead to those class labels. If the target variable can take 93 

continuous values are called regression trees, where the target variable can take a discrete set of 94 

values are called classification trees.  95 

2.2.3 KNN 96 

KNN is one of the simplest classifiers s. It is a non-parametric method used for both classification 97 

and regression. The data points are separated into several classes to predict the classification of a 98 

new sample point. It is based on feature similarity. How closely out-of-sample features resemble 99 

training set determines how to classify a given data point. 100 

2.3 Selection of suitable classifiers  for fire safety assessment 101 

 102 

Choosing a correct classifiers is essential for accurate machine prediction. Each learning classifiers  103 

has consist advantages and disadvantages due to their different features. Not a single machine 104 

learning classifiers works for every problem. The way to choose the right classifiers is often a 105 

process of trial and error, especially for this particular new problem of fire safety, no previous 106 

study has ever been made. However, the key characteristics of various classifiers s has been studied 107 

by several researchers.  108 
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Table 1 Characteristics of popular classification classifiers s [15] 109 

 110 

Based on Table 1 and aforementioned literature review, it can be seen that, compared to other 111 

classifiers , ANN has been frequently used for solving various construction problems. Therefore, 112 

ANN has been chosen as a learning classifiers for this particular fire safety problem. In addition, 113 

from Table 1, it can be seen that Decision Tree and KNN are easy to use and interpret, therefore, 114 

they are also chosen.  115 

3. Define the failure patterns  116 

The first step in  machine learning is to define the failure patterns. There are several major failure 117 

modes of the structural members in fire, such as Beam Buckling, Column Buckling, Due to the 118 

complexity, they are difficult to be digitalized and quantified to make the machine understand. 119 

However, when assessing the fire induced collapse,  the machine only needs to make judgement 120 

on whether a structural member will fail, regardless the way it fails. Therefore, one of the common 121 

design approaches to determine the failure of structural members under fire,  critical temperature 122 

method, which is stipulated by Eurocode 3 [16], is used here to define the failure patterns of the 123 

structural members. This method has been adopted by several researchers [23] in fire safety 124 

assessment and by many design practioners for fire safety assessment of more complicated 125 

structures, such as tall buildingsThis method is simple and effective. The engineers only need to 126 

know the designed load at ambient temperature, when the temperature increased to the critical 127 

temperature under the design load, the structural member is deemed to fail. Therefore, it avoids 128 

sophisticate FE analysis, which is also proved to be sufficient accurate.. 129 

Algorithm Prediction Speed  Training Speed Memory Usage  General Assessment

Logistic Regression (and Linear SVM) Fast Fast Small Good for small problems with linear decision boundaries

Decision Trees Fast Fast Small Good generalist, but prone to overfitting

(Nonlinear) SVM (and Logistic Regression)Slow Slow Medium Good for many binary problems, and handles high-dimensional data well

Nearest Neighbor Moderate Minimal Medium Lower accuracy, but easy to use and interpret

Naïve Bayes Fast Fast Medium Widely used for text, including spam filtering

Neural Network Moderate Slow Varies High accuracy and good performance for small- to medium-sized datasets

Ensembles Moderate Slow Medium to LargePopular for classification, compression, recognition, and forecasting
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3.1 The Critical temperature method to determine the failure pattern of steel members 130 

The Critical temperature method is to  determine a critical temperature (Eurocode 3[16]) based on  131 

the load utilization of a structural member. This is the simplest method of determining the fire 132 

resistance of a loaded member in fire conditions. The critical temperature is the temperature at 133 

which failure is expected to occur in a structural steel element with a uniform temperature 134 

distribution In Eurocode 3 [16]. Its value is determined from: 135 

 136 

                                                 137 

Where,  138 

           Is the degree of load utilization 139 

According to Eurocode 3[16], this equation can be used only for member types for which 140 

deformation criteria or stability considerations do not have to be taken into account (such as beams). 141 

Eurocode 3 [16] also provides the way to work out the critical temperature for compression 142 

members (such as columns) and unconstrained members, which can be tabulated in Table 2. 143 

Table 2 Critical temperatures of steel compression members (partial adapted from Eurocode 3 144 
[16]) 145 

 

Critical Temperature (Co) for Utilization Factor (load 

Ratio) 

 λ\ Utilization Factor 0.7 0.6 0.5 0.4 0.3 0.2 

0.4 485 526 562 598 646 694 

0.6 470 518 554 590 637 686 

0.8 451 510 546 583 627 678 

1 434 505 541 577 619 672 

1.2 422 502 538 573 614 668 

1.4 415 500 536 572 611 666 

1.6 411 500 535 571 610 665 

𝜃𝑐𝑟 = 39.19𝑙𝑛 [
1

0.9674𝜇0
3.833 − 1] + 482 

𝜇0 
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3.1.1 Load ratio (degree of utilization)  146 

Load Ratio is defined as applied load (primarily due to gravity load, such as dead load and live 147 

load) in fire conditions to resistance capacity of the member at room temperature condition 148 

(Eurocode3 [16]), it is defined using below formula: 149 

                                                                     150 

                                                                            Equation 1 151 

Where:  152 

Efi,d  is the applied load under fire condition  153 

Rfi,d,0 is the design moment of resistance of the member at ambient temperature 154 

 It is also known that in virtually every situation the critical temperature is dependent on the 155 

fraction of the ultimate load capacity that a member withstand in fire. When the load ratio is greater 156 

than 1, this indicates that the load applied on the structural member is greater than the resistance 157 

capacity of the structural member, so it  will fail even at the ambient temperature purely due to 158 

mechanical failure.   159 

3.2 Determine the failure pattern of the structural members in fire 160 

Based on above introduction, it can be seen that, to be able to determine the failure of a structural 161 

member under fire, below factors need to be determined: the maximum atmosphere temperature  162 

the maximum temperature of the steel members under fire, the load ratio, and the critical 163 

temperature of the steel member. Then the failure of a structural member under fire can be 164 

determined as follows: 165 

1. If maximum temperature of the steel member> critical steel temperature, Then 166 

𝜇0 =
𝐸𝑓𝑖,𝑑
𝑅𝑓𝑖,𝑑,0
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 this member fails, (the failure is due to fire)  167 

2. If (maximum temperature of the steel member< critical steel temperature) and load 168 

ratio >1 Then this member fails (the failure is due to overloading) 169 

3. Else  170 

the member is safe 171 

Therefore, one response pattern and two failure patterns can be identified. They are: 172 

• safe 173 

• failure due to fire  174 

• failure due to mechanical  rather than fire.  175 

Based on above discussions, the structural fire analysis based on the Critical temperature method 176 

from the Eurocode is implemented in an Excel VBA software program. 177 

3.3 Heat transferring and Thermal Response of Structural Members  178 
 179 

The heat from fire transferred to the structural members are worked out using the formulae based 180 

on the Eurocode. The atmosphere fire temperature is first determined using Equation 2 181 

   )472.0201.0324.01(132520
*** 197.12.0 ttt

g eee −−− −−−+=           EQUATION 2  182 

Where: 183 

       g    Is the gas temperature in the fire compartment 184 

        And  tt =*
 185 

with 186 

       t   time  187 

        = [O / b ]2 / [0.04 / 1160]2 188 

       O = opening factor, O = Av·Hw
^0.5 / At 189 

       At = Total internal surface area of compartment [m2] 190 
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       Av = Area of ventilation [m2] 191 

       Hw = Height of openings [m] 192 

       b = Thermal diffusivity, 100  b  2000 (J/m2 s1/2 K) 193 

The maximum temperature Θ max in the heating phase happens for t* = t*
max 194 

            t*max = tmax • Γ  195 

              with tmax = (0.2ּ 10-3 •  qt,d / O) or  tlim.  196 

qt,d is the design value of the fire load density related to the total surface area At of the enclosure, whereby qt,d = 197 

qf,d *Af / At [MJ/m2]. The following limits should be observed: 50 <qt,d <1 000 [MJ/m2]. 198 

qf,d is the design value of the fire load density related to the surface area Af of the floor [MJ/m2] taken from 199 

EN1991-1-2: Eurocode 1; Part 1.2 annex E.[18] 200 

The Parametric temperature-time curves in the cooling phase given by EN1991-1-2: Eurocode 1; Part 1.2 [18] 201 

is 202 

Θg= Θmax−625 (t∗− t∗max∗x) for tmax ≤ 0,5  203 

Θg= Θmax−250(3∗ t∗max) (t∗− t∗max∗x) for 0,5 < tmax ≤ 2   204 

Θg= Θmax−250 (t∗− t∗max∗x) for tmax ≥ 2  205 

After the atmosphere temperature is determined, the thermal response of each structural member can be worked 206 

out. For Unprotected steel Section, the increase of temperature in small time intervals is given by BS EN 1993-207 

1-2: Eurocode 3 [16] and BS EN 1994-1-2: Eurocode 4 [17] 208 

 as follows: 209 

∆𝜣𝒂,𝒕 = 𝒌𝒔𝒉

𝑨𝒎
𝑽⁄

𝒄𝒂𝝆𝒂
𝒉𝒏𝒆𝒕∆𝒕      EQUATION 3 210 

Where,  211 

∆𝛩𝑎,𝑡    is the increase of temperature   212 
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𝐴𝑚/𝑉    is the section factor for unprotected steel member 213 

𝑐𝑎    is the specific heat of steel    214 

𝜌𝑎    is the density of the steel    215 

ℎ𝑛𝑒𝑡    is the designed value of the net heat flux per unit area   216 

∆𝑡     is the time interval   217 

𝑘𝑠ℎ    is the correction factor for shadow effect   218 

Using this formula, the maximum temperature for the steel member under certain fire scenario can be worked 219 

out. Among these parameters, the section factor  𝐴𝑚/𝑉  is one of the dominant factors, which correlated to 220 

different member sizes. It can be checked in the steel design tables  221 

Above formula were implemented in the Excel VBA code, therefore the fire temperature and the maximum fire 222 

temperature can be calculated.  223 

4. Learning Dataset generation using Monte Carlo simulation and Random sampling  224 

To accurate predict the failure pattern, sufficiently large amount of training cases is important for 225 

the machine. However, it is hard to find the enough training cases in the construction industry due 226 

to lack of fire incidents database.  To tackle this problem, a method based on Monte Carlo 227 

simulation and Random Sampling is developed to generate sufficient large dataset in this project. 228 

The key parameters which affects the failure patterns of a structural member under fire is generated 229 

using the Monte Carlo simulation, such as opening factors and fire load density (to determine 230 

atmosphere fire temperature), imposed load (to determine  gravity load) and steel grades ( to 231 

determine material properties) etc. After Monte Carlo simulation, these parameters are selected 232 

using Random Sampling techniques with equal opportunities for structural fire analysis based on 233 
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the Eurocode and failure judgement by the machine. The whole process is also programed into the 234 

software program in the paper. 235 

4.1 Monte Carlo simulation for different design parameters   236 

Monte-Carlo simulation is to simulate a probability distribution for different variable. It is used 237 

here to generate leaning cases for the machine. Firstly,  a probability distribution for each 238 

individual variable will be determined. It is also essential to determine the dependencies between 239 

simulation inputs based on   their real quantities being modelled. In fire safety design, there are 240 

some key parameters which will affect the design values. For  example, when determining 241 

atmosphere temperature, opening factor and fire load density are the two key parameters to affect 242 

its value, they are mutually independent. The probability distribution or the range of these 243 

parameters are readily known from design guidelines such as Eurocode [16,17,18] and research 244 

[19]. Therefore, using the available distributions and key statistic index obtained from Eurocodes 245 

(see table 3), the random value of opening factor and fire load density can be generated. 246 

Subsequently, the correspondent atmosphere temperature can be calculated based on design 247 

formula. As these values follow the specific distribution discovered in the design practice, which  248 

are determined from large-scale data analysis and tests. they are not arbitrary values. Therefore, it 249 

can represent the real quantities in the design practice.   250 

When using Monte Carlo simulation to generate the learning data, a probability model with 251 

correspondent random variables or the range of the parameters should be used. They are listed in 252 

Table 3. These statistical parameters are selected based on the Eurocodes [16,17]. using these 253 

statistic variables and the range of the design parameters, the values of the parameters are generated 254 

using the Monte Carlo simulation implemented using Visual Basic code. 255 
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Table 3 Probabilistic variables and range of design parameters in Monte Carlo simulation 256 

Variable Distribution Units mean 
Standard 

Deviation  
Range  Source 

opening factor  Normal  N/A N/A N/A 0.02-0.2 

Eurocode 1; 

Part 1.2 

[18] 

fire load density  Gumbel MJ/m2 420 126  
Eurocode 3 

[16] 

Imposed load Extreme type I KN/m2   1-5 

Eurocode 1; 

Part 1.2 

[18] 

       

Yield strength of 

steel  
Log-normal MPa 280 28 275-355 

Eurocode 1; 

Part 1.2 

[18] 

Partial safety 

factors 

Normal 

 
- - - 1.5-2 

Eurocode 1; 

Part 1.2 

[18] 

4.2   Random sampling  257 

Random sampling is a simple way of collecting data from a total population, in which each sample 258 

has an equal probability of being chosen. It guarantees an unbiased representation of the total 259 

population. An unbiased random sample is important for fire safety design. For an example, when 260 

we took out the sample of 10 opening factors from a total population of 100 parameters generated 261 

through Monte Carlo simulation, there is always a possibility that 8 opening factors which is 262 

smaller than 0.1, even if the population consists of 50 opening factors which are greater than 0.1 263 

and the other 50 which are smaller than 0.1. Hence, some variations when drawing results can 264 

come up, which is known as a sampling error. To minimize the sampling error, random sampling 265 

is a best tool.  In this proposed machine learning framework, it can avoid the bias in the parameter 266 

selections when performing the structural fire analysis and failure judgement. Therefore, to enable 267 

accurate machine learning result, Random sampling is performed after Monte Carlo simulation.  268 

http://www.so.com/link?m=aEGyjHfC2VumXL6CjCu4UgDk0M29LCXZgwoKJc8DcwbLQAs7z1nG34SzjgvJkbdxX+v1BxSJdO6qFEdJcKyp0xLhrdLtTf8T+fpJLi8PPyfZ2bH7R9m/AwcGhdr8OZeZ3Dcnz5M/Z8bs7YbJvLVuh4gCq4EBgfORhuUyI99qWmD/QZwRxmUXQJJfE/xEW7SKM
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4.3 Response and failure judgment of structural members 269 

When all the design parameters for structural fire analysis are generated using Monte Carlo 270 

simulation method, Random Sampling technique is used to select parameters without bias. , 271 

Subsequently, the parameters such as load ratio can be determined and temperature of the structural 272 

member can be calculated  based on the Eurocode [16.17] Finally, the failure pattern of the 273 

structural members under fire can be determined using the Critical Fire Temperature method.  274 

4.4 Leaning dataset generation  275 

The process of Monte Carlo simulation, Random sampling and response calculation are 276 

implemented using VBA code designed by the author and the training data is correspondently 277 

generated, as it shown in Table 3. It can be seen from Table 3 that , it  primarily includes following 278 

key variable which is necessary for machine learning: Maximum fire temperature (column 1), 279 

Maximum steel member temperature (column 2), load ratios (column3), critical temperature 280 

(column 4), member size index (column 5,representing different member section sizes) and failure 281 

judgment(column 6). When judging the failure of the structural members, 1 means safe, 2 means 282 

failure due to over loading, 0 means failure due to fire.  283 
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Table 4 Training dataset generated using the Monte Carlo Simulation and Random sampling 284 
technique  285 

 286 

5. Collapse potential check a building under fire using machine learning  287 

In structural fire analysis, one of the key tasks is to check the collapse potential of the overall 288 

buildings under fire. This becomes possible using machine learning. When the prediction of failure 289 

mode or response of each individual structural member is successful, the prediction of the collapse 290 

of a building can be based on the procedure stipulated by U.S. design code GSA [20] and DOD 291 

[21]. These two are the most recognized codes for progressive collapse design.  The collapse 292 

potential check can be summarized into the framework flowchart as it shown in Note: DCR is 293 

Demand capacity ratio  294 

Figure 2. This procedure is based on the response of each individual structural member.  For these 295 

failed members, they will be removed from the structure, then a static progressive collapse check 296 

will be performed through static analysis following [20,21], which is to check the Demand capacity 297 

Fire Temp °C Max St,Temp °C Load Ratio Critical Steel Temp °C Member Index Failure Judgement

1078.777112 1072.972258 1.906004337 0 1016305393 2

1044.847302 1035.86298 0.019668301 1073.456629 1528916 1

859.3743067 825.3909286 3.910972054 0 25410225 2

894.3031378 822.9862876 1.571725344 0 686254170 2

723.2403915 645.7673271 0.092510361 840.872358 457191106 1

1087.993266 1083.770738 0.262457208 684.0113434 20320352 0

1149.164052 1142.13558 0.878904533 467.7620262 53316575 0

1002.466858 998.6432318 0.264232525 682.9927543 1016305222 0

977.5063653 960.1034175 0.038337423 973.2000918 305305158 1

1067.616506 1055.234069 0.214171489 714.6740143 356368129 0

962.4113027 905.0539032 0.134932148 784.1599671 40614039 0

793.2113903 716.3826089 0.673155554 533.4029976 30516554 0

806.3825375 729.7198245 0.61671292 549.4579589 20320386 0

1016.843216 994.1335539 0.520444807 578.1684951 305305158 0

977.9954012 958.8996631 0.168472021 750.7889545 25410222 0

730.4020384 627.4183099 1.756390206 0 53316566 2

983.5084047 980.3737012 0.270432692 679.4871069 15215237 0

999.8262873 983.5010033 1.693384511 0 356406509 2

992.2768322 984.0502959 0.034727581 988.0552671 305305137 1

882.5428465 878.9754656 0.258628121 686.2314234 356368202 0

1017.646293 1006.125124 0.134142161 785.0424082 610229125 0
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ratio (DCR) value of the remaining structural members, if the DCR value for all the remaining 298 

members are satisfactory, the building will not collapse. If the DCR value of any member is not 299 

satisfactory, this member will also be removed, and re-run the static analysis.  If most members 300 

fail, say 40% of the members fail, this indicate that structure is deemed to collapse, therefore, the 301 

who procedure can be stopped.  302 

 303 

 304 

Note: DCR is Demand capacity ratio  305 

Figure 2 The flow chart of collapse potential check ([20],[21][22]) 306 

One of the difficulties for building progressive collapse check under fire load using machine 307 

learning is how to correctly represent the building information, such as the location of the structural 308 

members, type of the structural member (column or beam), member sizes, design load and other 309 
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design parameters. To tackle this problem, as it is shown in Table 5, an Excel worksheet is designed 310 

for building information capture. a special naming system is invented here for denotating the 311 

structural members. The beams and columns are denoted as follows:  312 

for an example,  313 

• B-A-12-2 represents beam at grid A in between grid 1and 2, at level2.  314 

• C-1-A-1 represents Column at the joints of grid 1 and A at level 1.  315 

The spreadsheet can automatically make the judgment of whether it is a beam or column according 316 

to the name of the structural members. It can also check the properties such as the section factors 317 

and plastic modulus using the section tables included in the Excel file. It also allows the user to 318 

input the gravity load such as dead load and live load, the parameters for the calculation of the fire 319 

temperature such as opening factor, fire load density and other required parameters. 320 

Based on the building information captured in this sheet, a VBA code is designed, which can read 321 

this information and work out the values for key input variables for each structural member, such 322 

as Fire Temperature, Maximum Steel Temperature, Load Ratio, Critical Temperature based on the 323 

Eurocode. It can also make a failure judgement of each individual member for the validation of 324 

the machine learning outcome.  325 

Based on Figure 2, after the failure mode and response of each individual structural member are 326 

determined by the machine, a progressive collapse potential check will also be performed by the 327 

program. 328 

6. Machine Learning (Training and Testing) 329 

Before the machine can make an accurate prediction of the failure mode for each individual 330 

structural member, training and testing is essential. The training and testing are performed based 331 
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on Python code developed by the author in Anaconda. In convention, 80% of the data is used for 332 

training, 20% of the date is used for testing for most data scientist and computer scientist . 333 

Therefore, it is also used here. Three classifiers  Decision Tree, KNN and Neural Network are 334 

chosen for the machine learning. When sufficient accurate prediction is achieved, the machine can 335 

start to predict the failure patterns of the structural members for real projects.  336 

6.1 Neural Network-TensorFlow 337 

Python provides two numerical platforms for Deep Learning research and development. They are: 338 

Keras and TensorFlow. TensorFlow is developed by Google Brain team. It is an open-source 339 

software library for dataflow programming. It is a symbolic math library used for machine learning 340 

applications such as Neural Networks. Keras is an open source neural network library written in 341 

Python. It is capable of running on top of TensorFlow. It enables fast experimentation with deep 342 

neural networks.  343 

In this study, Keras with TensorFlow are used for training and testing. As it shown in Figure 3, 344 

one input layer which includes variables shown in Table 3, two hidden layers and one output layer 345 

(indicating failure judgement,1,2,0) were used for the prediction. Different activation functions 346 

were choosing for the testing, it is found that “sigmoid” gives the most satisfactory results, 347 

therefore, “sigmoid” was chosen as it shown in equation 4.  348 

          EQUATION 4 349 

The data is also normalized before the training and testing. This is because the Activation function 350 

sigmoid is used, so the prediction values are between 0-1. After data processing (shown in the 351 

code), they are converted back to [1] or [0] or [2], which representing the failure patterns of the 352 

structural members 353 
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 354 

Figure 3 Hidden layer network with input and output layers 355 

6.2 Prediction using Decision Tree Learning 356 

Python provides Decision tree leaning classifiers. The representation of the tree model is a binary 357 

tree. A node represents a single input variable and a split point on that variable, assuming the 358 

variable is numeric. The leaf nodes of the tree contain an output variable used to make a prediction. 359 

Once created, a tree can be navigated with a new row of data following each branch with the splits 360 

until a final prediction is made.  361 

Creating a binary decision tree is actually a process of dividing the input space. Different approach 362 

can be used. Splitting continues until nodes contain a minimum number of training examples or a 363 

maximum tree depth is reached. 364 

6.3 KNN 365 

Python provides KNN classifiers . The data points are separated into several classes to predict the 366 

classification of a new sample point.  367 
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For classification:  the output is a class membership (predicts a class — a discrete value). An object 368 

is classified by a majority vote of its neighbours, with the object being assigned to the class most 369 

common among its k nearest neighbours.  370 

For regression: the output is the value for the object (predicts continuous values). This value is the 371 

average (or median) of the values of its k nearest neighbours. 372 

 373 

7. Case study progressive collapse potential check using machine learning   374 

7.1 The prototype building  375 

After training and testing, as it shown in Figure 3, a two-story moment resisting steel frame 376 

building is used for progressive potential check using machine learning. . The normal design loads, 377 

dead load and live load, are chosen according to the Eurocode, so the load ratio of each member 378 

can be worked out. Design values of opening factor and fire density are 0.02 and 487 J/m2 379 

respectively. Two scenarios have been chosen: 380 

• A fire was set at the ground level,  381 

• A fire was set at the level 2 382 
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 383 

Figure 3 Schematic arrangement of the prototype building  384 

The section sizes, section properties the spacing of the structural members, loadings of the building 385 

is shown in table 5 386 

 387 

Level 1

Element 

Code Section Spacing Span Grade

Dead 

Load

Live 

Load Type Grid 1 Grid 2 Level Profile Selection

Profile 

Column

Section 

Factor

Plastic 

Modulous 

Load 

Applied

Beam B-1-AB-1 762 x 267 x 197 5 4 275 10 5 Beam 1 AB 1 Profile 4 sides 8 102 7170 150

B-2-AB-1 762 x 267 x 197 5 4 275 10 5 Beam 2 AB 1 Profile 4 sides 8 102 7170 150

B-2-BC-1 762 x 267 x 197 5 4 275 10 5 Beam 2 BC 1 Profile 4 sides 8 102 7170 150

B-1-BC-1 762 x 267 x 197 5 4 275 10 5 Beam 1 BC 1 Profile 4 sides 8 102 7170 150

B-A-12-1 457 x 152 x 67 5 4 275 10 5 Beam A 12 1 Profile 3 sides 7 157 1450 150

B-B-12-1 457 x 152 x 67 5 4 275 10 5 Beam B 12 1 Profile 4 sides 8 175 1450 150

B-C-12-1 457 x 152 x 67 5 4 275 10 5 Beam C 12 1 Profile 4 sides 8 175 1450 150

Column C-1-A-1 356 x 406 x 235 5 4 275 10 5 Column 1 A 1 Profile 4 sides 8 76 4690 150

C-2-A-1 203 x 203 x 86 5 4 275 10 5 Column 2 A 1 Profile 4 sides 8 113 977 150

C-1-B-1 203 x 203 x 86 5 4 275 10 5 Column 1 B 1 Profile 4 sides 8 113 977 150

C-2-B-2 152 x 152 x 44 5 4 275 10 5 Column 2 B 2 Profile 4 sides 8 165 372 150

C-1-C-1 152 x 152 x 44 5 4 275 10 5 Column 1 C 1 Profile 4 sides 8 165 372 150

C-2-C-1 152 x 152 x 30 15 4 275 10 5 Column 2 C 1 Profile 4 sides 8 235 248 450

Level 2

Beam B-1-AB-2 762 x 267 x 197 5 4 275 7.5 5 Beam 1 AB 2 Profile 4 sides 8 102 7170 125

B-2-AB-2 762 x 267 x 197 5 4 275 7.5 5 Beam 2 AB 2 Profile 4 sides 8 102 7170 125

B-2-BC-2 762 x 267 x 197 5 4 275 7.5 5 Beam 2 BC 2 Profile 4 sides 8 102 7170 125

B-1-BC-2 762 x 267 x 197 5 4 275 7.5 5 Beam 1 BC 2 Profile 4 sides 8 102 7170 125

B-A-12-2 457 x 152 x 67 5 4 275 7.5 5 Beam A 12 2 Profile 4 sides 8 175 1450 125

B-B-12-2 457 x 152 x 67 5 4 275 7.5 5 Beam B 12 2 Profile 4 sides 8 175 1450 125

B-C-12-2 457 x 152 x 67 5 4 275 7.5 5 Beam C 12 2 Profile 4 sides 8 175 1450 125

Column C-1-A-2 356 x 406 x 990 5 4 275 7.5 5 Column 1 A 2 Profile 4 sides 8 22 24300 125

C-2-A-1 356 x 406 x 990 5 4 275 7.5 5 Column 2 A 1 Profile 4 sides 8 22 24300 125

C-1-B-1 356 x 406 x 990 5 4 275 7.5 5 Column 1 B 1 Profile 4 sides 8 22 24300 125

C-2-B-2 356 x 406 x 990 5 4 275 7.5 5 Column 2 B 2 Profile 4 sides 8 22 24300 125

C-1-C-1 356 x 406 x 744 5 4 275 7.5 5 Column 1 C 1 Profile 4 sides 8 27 17200 125

C-2-C-1 152 x 152 x 30 5 4 275 7.5 5 Column 2 C 1 Profile 4 sides 8 235 248 125
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TABLE 5 EXCEL TABLE FOR BUILDING DESIGN INFORMATION INPUT 388 

 389 

7.2 The process of progressive collapse potential check using Machine learning  390 

The machine learning for progressive collapse potential check of a building check is divided into 391 

below stages: 392 

a. The Maximum fire temperature, Maximum steel temperature, load ratios, critical steel 393 

temperature, member size index are input into the machine  394 

b. failure and response predictions for each structural member.  395 

c. based on the response of each individual members, using the design procedure from  DOD 396 

(2009) and GSA (2003), the collapse potential of the whole building can be assessed.  397 
 398 

7.3   Machine prediction and Performance evaluation of different classifiers  399 

Table 6 shows the prediction results of each individual members using different classifiers  . It can 400 

be seen that, sufficient large database is needed for accurate machine learning. When using 3000 401 

entries training data, both KNN and decision tree give less accurate predictions.  402 

When the data entries increase to 10000, both KNN and Neural network gives 100% accurate 403 

prediction for the dataset from real design calculation with 26 entries. However, decision tree only 404 

yields 80% accuracy.  405 

It can be seen that, among the three classifiers , Neural Network yield accurate results, this may 406 

because, , Neural Network is a more advanced learning  process, therefore, it yields accurate 407 

prediction results. KNN also yields accurate prediction. This may because it is based on the feature 408 

similarity, for this particular problem the feature similarity is evident. Therefore, they are two 409 

promising classifiers s for this particular engineering problem. 410 
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 411 

Table 6 The prediction results for different classifiers  412 

7.4 Progressive collapse potential check 413 

Base on the prediction of each single members, the collapse potential of the building can be further 414 

checked by the machine.  It can be seen that, for the first scenario, where fire was set at level 1, all 415 

columns in level 1 fail. According GSA [20] and DOD [22], the collapse is not avoidable. For the 416 

second scenario, failure also happen to all the columns, though they are located in level 2, and 417 

level 1 is intact (no fire), from the design codes it can also make a judgement that collapse will be 418 

triggered.  419 

8. Conclusion  420 

In this paper, a machine learning framework for fire safety assessment of multi-story buildings 421 

was developed, the following conclusions can be made:  422 

Level 1

Element 

Code

Fire 

Temp °C

Max 

SteelTem

p 

Load 

Ratio

Critical 

Steel 

Temp °C

Failure 

Judgement

KNN prediction 

(3200 data 

entries)

decision tree  

prediction (3000 

data entries)

KNN prediction 

(10000 data 

entries)

decision tree 

prediction 

(10000 data 

entries)

Tensorflow 

(10000 data 

entries)

Beam B-1-AB-1 852.9173 848.8358 0.050716 931.1663 1 0 0 1 1 1

B-2-AB-1 852.9173 848.8358 0.050716 931.1663 1 0 0 1 1 1

B-2-BC-1 852.9173 848.8358 0.050716 931.1663 1 0 0 1 1 1

B-1-BC-1 852.9173 848.8358 0.050716 931.1663 1 0 0 1 1 1

B-A-12-1 852.9173 850.3203 0.250784 690.8819 0 0 0 0 0 0

B-B-12-1 852.9173 850.5966 0.250784 690.8819 0 0 0 0 0 0

B-C-12-1 852.9173 850.5966 0.250784 690.8819 0 0 0 0 0 0

Column C-1-A-1 852.9173 847.3149 0.077534 434 0 0 0 0 0 0

C-2-A-1 852.9173 849.2547 0.372197 434 0 0 0 0 0 0

C-1-B-1 852.9173 849.2547 0.372197 434 0 0 0 0 0 0

C-2-B-2 852.9173 850.4508 0.977517 422 0 0 0 0 0 0

C-1-C-1 852.9173 850.4508 0.977517 422 0 0 0 0 0 0

C-2-C-1 852.9173 851.205 4.398827 0 2 2 2 2 2 2

Level 2

Beam B-1-AB-2 852.9173 848.8358 0.050716 931.1663 1 0 0 1 1 1

B-2-AB-2 852.9173 848.8358 0.050716 931.1663 1 0 0 1 1 1

B-2-BC-2 852.9173 848.8358 0.050716 931.1663 1 0 0 1 1 1

B-1-BC-2 852.9173 848.8358 0.050716 931.1663 1 0 0 1 1 1

B-A-12-2 852.9173 850.5966 0.250784 690.8819 0 0 0 0 0 0

B-B-12-2 852.9173 850.5966 0.250784 690.8819 0 0 0 0 0 0

B-C-12-2 852.9173 850.5966 0.250784 690.8819 0 0 0 0 0 0

Column C-1-A-2 852.9173 784.2671 0.014964 422 0 0 0 0 1 0

C-2-A-1 852.9173 784.2671 0.014964 422 0 0 0 0 1 0

C-1-B-1 852.9173 784.2671 0.014964 422 0 0 0 0 1 0

C-2-B-2 852.9173 784.2671 0.014964 422 0 0 0 0 1 0

C-1-C-1 852.9173 813.2911 0.021142 434 0 0 0 0 1 0

C-2-C-1 852.9173 851.205 1.466276 0 2 2 2 2 2 2

0.69230769 0.69230769 1 0.807 1

1 1 0.994 0.991 0.986 Accuracy of test data 

Accuracy of building data 
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1. Different classifiers were assessed in this study, KNN and Neural Network are two 423 

promising classifiers for this particular engineering problem. Decision Tree yield less 424 

promising result. 425 

2. Accurate prediction requires large training dataset for this particular problem, therefore if 426 

computational power allows, more training data should be used..  427 

3. The dataset generated using Monte Carlo Simulation can be effectively used for 428 

producing sufficient large dataset for machine learning. 429 

4. The framework developed in this project provided a new tool for design engineers in 430 

structural fire design in the future. 431 

 432 

 433 
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