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Abstract

A simple approach to determining the Gaussian kernel that constitutes the backbone of the multi-factor

Heston model is proposed based on a suitable expansion in powers of volatilities of volatilities. This analysis

provides Black-Scholes-like formulas for pricing European vanilla options, allowing for accurate approxima-

tions of the option prices under the multi-factor Heston model up to volatilities of volatilities on the order

of 50%. The analysis also leads to a simple formula for the implied volatility showing that changes in the

convexity of the volatility smile are due only to price skewness, and an easy formula to reproduce volatility

indices via the realized volatility. Interestingly, the variance of the Gaussian kernel is equal to the variance

of the continuously compounded return in the case of the Heston model. The empirical analyses presented

assess the potential of our approach to capture market distortions while adequately forecasting the dynamics

of the VIX index.

1 Introduction

The well known Heston model (1993) provides a natural generalization to the Black and Scholes (1973)

approach to option pricing by introducing a stochastic dynamics for the volatility of returns. While closed

form analytical solutions for the price of European options under this model are available, they are given
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in terms of integrals in the complex plane that need to be solved computationally. Analytical solutions

have also been derived for various generalization of the original Heston model, such as affine one-factor

and multi-factor stochastic volatility models with and without jumps. Far from being exhaustive, here we

mention Heston-like models such as Duffie et al. (2000), Hagan et al. (2002), Christoffersen et al. (2009),

Fatone et al. (2009, 2013), Fritz et al. (2011), Recchioni and Sun (2016), Cui et al. (2017) and Recchioni

and Tedeschi (2017). Although numerical approximation for solving closed form solutions can be extremely

powerful in terms of accuracy, in the context of Heston like models the integrals are often unstable and can

be very time consuming to compute. Easy-to-implement analytical approximations have been recognized

as valuable alternatives to numerical solutions as they can aid in understanding the analytical features of

option pricing models while speeding up calibration with market-observed quantities. Specifically, analytical

approximation can provide a clear link between the features of the model and the observed characteristics of

the implied volatility surface which is of particular interest for practitioners. Analytical approximations have

thus be developed and continue to be proposed. Lewis (2000) derived an asymptotic expansion of implied

volatility for small values of the volatility of volatility (vol of vol). This was followed by Lee (2001), who

obtained similar results assuming a slow mean reversion of volatility, while Fouque et al. (2000) assumed

fast mean-reverting volatility. Hagan et al. (2002) developed the SABR model using singular perturbations.

Many authors have derived an asymptotic expansion in a jump-diffusion stochastic volatility model (see

Medvedev and Scaillet (2007), Berestycki et al. (2004)) and in multifactor local-stochastic volatility (see

Lorig et al. (2017)), whereas others have suggested perturbation expansions using Malliavin calculus (see

Benhamou et al. (2009) and Larsson (2012)). Kristensen and Mele (2011) and Drimus (2011) also derived

analytical approximations of option prices based on diffusions. Nicolato and Sloth (2012) took a more general

approach, studying similar expansions that allow for jumps and stochastic volatility. Much attention has

also been devoted to approximating the risk-neutral density as proposed by Abadir and Rockinger (2003),

Aı̈t-Sahalia (2002), Egorov et al. (2003), and Yu (2007) and to analyzing the market price of volatility and

volatility-of-volatility risks.

This paper contributes to this strand of the literature, proposing an analytical approximations based on

the extraction of the Gaussian kernel involved in the multi-factor Heston model, via a “suitable” expansion

in powers of vols of vols of the characteristic function. Our method provides an explicit generalization of the

Black and Scholes formula for option prices and an intuitive explanations of the smile asymmetry. While it

is common to justify the smile based on asymmetric and non-lognormal implied volatility distributions our

paper provides an explicit formula linking the curvature of the smile to the skewness of the underline asset

returns distribution. The main results of the paper are: (i) A representation formula for the conditional

marginal density of the multi-factor Heston model that allows us to capture the Gaussian kernel underlying

the multi-factor Heston model (Proposition 2.1). (ii) Explicit formulas to approximate the conditional

marginal density of the multi-factor Heston model in term of a Gaussian kernel plus a suitable correction.

(iii) Explicit formulas in a Black-Scholes style for European vanilla call and put options. These formulas

satisfy the put-call parity equation and show the effect of vols of vols in pricing options (see Propositions

3.1 and 3.2). (iv) An explicit formula for the implied volatility that, in the case of the Heston model, allows

us to clearly identify the effect of price skewness on the asymmetry of the volatility smile. The formula is

consistent with the smile shapes observed in the literature, and can generate a concave smile for sufficiently

large price skewness. (v) An easy to compute formula for the variance of the continuously compounded

return in the case of the Heston model.
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We test, in Section 4, the accuracy of our analytical approximation, via simulations, by comparing our

approximated second order Black and Scholes like approximations to the exact option values derived via

numerical integration of the Recchioni and Sun (2016) formula, using two sets of parameters: First, we select

several thousand values of the model parameters, moneyness, and time to maturity on a ”reasonable” grid.

The results (Subsection 4.1), for the case of the Heston model, show that at worst, four correct significant

digits are always guaranteed by our approximation, for values of the vol of vol up to fifty per cent with

maturity up to two years, while moneyness, E/S0, lies in the range [0.8, 1.2] (see, Table 1). Second, we

use the annual estimates of Heston and double Heston model parameters provided by Christoffersen et

al. (2009). We show (Subsection 4.2) that, on average, the relative errors of the analytical approximation

are few percents in the case of the Heston model and about 10% in the case of the double Heston model.

We test, in Section 5, the performance of our analytical approximation by running two empirical exercises:

first, we compare the analytical approximation of the variance of the Gaussian Kernel, that in the Heston

model coincides with the variance of compounded returns, calibrated to the U.S. S&P 500 index, and using

the model parameters provided by Christoffersen et al. (2009), to the dynamics of the VIX index. We show

in Subsection 5.1 that the Kernel variance is able to closely mimic the VIX behavior, and the fit compares

favourably with the model of Corsi et al. (2013).

Second, we calibrate the Heston model parameters using the implied volatility formula derived via our

analytical approximation and compare the second-order approximations for the Put and Call option prices

to the respective option market prices on the same day and a day ahead. We show in Subsection 5.2 that

the relative errors for the call options compares favourably with the literature (see, for example, Pacati et

al. 2018).

The rest of this paper is organized as follows. In Section 2 we present the multi-factor Heston model

and the main results. In Section 3 we show two applications of the results of Section 2 in computing option

prices, implied volatility and interpreting the asymmetry of the implied volatility. In Section 4 we present

a simulation study and in Section 5 empirical analyses to assess the performance of the approximations of

the option prices. Section 6 concludes. The proofs of the main results are given in the Appendix A while in

Appendix B we report some formulas for option pricing and tables.

2 Multi-factor Heston model treatment

We consider the following stochastic volatility model:

dxt =

r(t)− 1

2

n∑
j=1

vj,t

 dt+

n∑
j=1

√
vj,tdZj,t, t > 0, (1)

dvj,t = χj(v
∗
j − vj,t)dt+ γj

√
vj,tdWj,t, t > 0, (2)

where xt denotes the log-price variable and v1,t, . . . , vn,t the corresponding variances, while r(t) is the in-

stantaneous risk free rate (assumed known in advance) and χj , v
∗
j , γj are positive constants, and Zj,t, Wj,t,

j = 1, 2, . . . , n, are standard Wiener processes such that all correlations among the Wiener processes are

zero except for E(dZj,t, dWj,t) = ρj dt, with constant correlation coefficients ρj ∈ (−1, 1), j = 1, 2, . . . , n.
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Dividends are not included. The system of equations (1)-(2) is equipped with the following initial conditions:

x0 = logS∗0 , (3)

vj,0 = v∗j,0, (4)

where S∗0 and v∗j,0, j = 1, 2, . . . , n are the initial spot price and volatilities respectively, which are assumed

to be random variables concentrated at a point with probability one.

As specified in Heston (1993), the quantity χj is the speed of mean reversion, v∗j is the long-term mean,

and γj is the local variance (volatility of volatility). These parameters are assumed to be positive so the

process will be well defined.

It is worth noting that if the Feller condition is being enforce, i.e. 2χj v
∗
j /γ

2
j > 1, the variance vj,t is positive

for any t > 0 with probability one (stationary volatility) and vj,0 = v∗j,0 > 0, j = 1, 2, . . . , n (see Revuz and

Yor [25, Chapter XI] for the Bessel process).

Furthermore, we use γ, v to denote the vectors containing the vols of vols, γ = (γ1, γ2, . . . , γn), and

the variances, v = (v1, v2, . . . , vn), respectively. The transition probability density function (pdf for short)

associated with the stochastic differential system (1), (2) is denoted by pf (x, v, t, x′, v′, t′), (x, v), (x′, v′) ∈
R × Rn+

, t, t′ ≥ 0, t′ − t > 0, where R denotes the set of real numbers, Rn the n-dimensional Euclidean

vector space, and Rn+
the positive orthant.

The multi-factor Heston model is due to Christoffersen et al. (2009) and the analytical treatment under

the assumptions E(dWi,t, dWj,t) = 0 and E(dZi,t, dWj,t) = 0, i 6= j is due to Fatone et al. (2009, 2013). The

most commonly used model is the double Heston model (i.e., n = 2) in that it has proven to be very efficient

in computing option prices and capturing volatility dynamics (see, for example, Christoffersen et al. 2009;

Fatone et al. 2009, 2013; Recchioni and Sun 2016; Pacati et al. 2018).

In the following we illustrate the main contribution of the paper, which is to provide a representation

formula for the conditional marginal density of the multi-factor Heston model, a key ingredient in the

computation of the value of European call and put options. The representation allows us to extract the

Gaussian kernel underlying the multi-factor Heston model (Proposition 2.1). Specifically, by denoting with

GΓ the Gaussian kernel with variance Γ, that is:

GΓ(y, t, t′) =
1√

2πΓ(t, t′)
e
− 1

2Γ(t,t′)

(
y−
∫ t′
t r(s)ds+ 1

2
Γ(t,t′)

)2

, (5)

Propositions 2.2, 2.3 and 2.4 that follow show three Gaussian kernels associated with the multi-Heston

volatility model: the zero-order kernel GΓ0 , the first-order kernel GΓ1 , and the second-order kernel GΓ2 . The

terms “zero”, “first”, and “second order” refer to the fact that we use the first three terms of a suitable

expansion in powers of vols of vols as they approach zero to determine these kernels. Specifically, Propositions

2.1 and 2.2 provide representation formulas for the marginal probability density of the log-price variable

xt conditioned to vt = v. This representation allows us to provide explicit formulas to approximate the

conditional marginal density of the multi-factor Heston model in term of the Gaussian kernel plus a suitable

correction as proposed in Propositions 2.3 and 3.1. The main advantage of this analysis is that it enables the

derivation of Black-Scholes-like formulas to price European vanilla options under the multi-Heston model,

as shown in the next session.

We start with Proposition 2.1, which provides two representation formulas for the above-mentioned

marginal density. These two formulas highlight the effect of the vols of vols γj , j = 1, 2, . . . , n.
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Proposition 2.1 The marginal probability density of the log-price variable conditioned to vt = v is given

by

M(x, v, t, x′, t′) =

∫
Rn+

pf (x, v, t, x′, v′, t′)dv′ =
1

2π

∫ +∞

−∞
eık(x′−x)−ı k

∫ t′
t r(s)ds+Q(t′,t,v,k;Θv)dk,

x, x′ ∈ R, v ∈ Rn
+
, t, t′ ≥ 0, t′ − t > 0, (6)

where ı is the imaginary unit, Θv is a vector containing the model parameters, and Q is the elementary

function given by

Q(t′, t, v, k; Θv) =
n∑
j=1

∫ t′

t
E(vj,s | Ft)

[
1

4
γ2
jB

2
j (k, s, t′) + ı k ρjγjBj(k, s, t

′) − 1

2
(k2 − ı k)

]
ds . (7)

where the conditional mean of the point-in-time volatility is given by

E(vj,t′ |Ft) = vj,te
−χj(t′−t) + v∗j (1− e−χj(t

′−t)), t < t′,

and Ft is the information set, i.e., the continuous σ-algebra generated by the point-in-time volatility pro-

cesses.

Here, Bj is given by

Bj(k, t, t
′) =

1

2
(k2 − ı k)

1− e−2ζj(t
′−t)

(ζj + νj) + (ζj − νj)e−2ζj(t′−t)
, (8)

where ζj and νj are the following quantities:

ζj(k) =
1

2

(
4ν2
j + γ2

j (k2 − ı k)
)1/2

, (9)

νj(k) =
1

2
(ı kρjγj + χj). (10)

Furthermore, the function M can be expressed as

M(x, v, t, x′, t′) =

1

2π

∫ +∞

−∞
e
ık
[
(x′−x)−

∫ t′
t r(s)ds+ 1

2
Γ0(t,t′)

]
− 1

2
Γ0(t,t′)k2︸ ︷︷ ︸

Gaussian kernel

e

∑n
j=1

∫ t′
t E(vj,s | Ft)

[
γ2
j
2
B2
j (k,s,t′)+ı kρjγjBj(k,s,t′)

]
ds︸ ︷︷ ︸

contribution fromvols of vols

dk,

x, x′ ∈ R, v ∈ Rn
+
, t, t′ ≥ 0, t′ − t > 0, (11)

that is,

M(x, v, t, x′, t′) =

∫ +∞

−∞
GΓ0(x′ − x− y, t, t′)Lγ(y, t, t′)dy, (12)

where Γ0(t, t′) is the integrated conditional variance:

Γ0(t, t′) =

n∑
j=1

∫ t′

t
E(vj,s | Ft)ds, (13)

while GΓ0 is the Gaussian kernel in (5), and Lγ is the function that accounts for the effects of the vols of

vols:

Lγ(y, t, t′) =
1

2π

∫ ∞
−∞

eı k ye

∑n
j=1

∫ t′
t E(vj,s | Ft)

[
γ2
j
2
B2
j (k,s,t′)+ı kρjγjBj(k,s,t′)

]
ds

dk . (14)
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Proof of Proposition 2.1 See Appendix A.

Proposition 2.1 derives a formula (see Eq. (11)) in which the conditional marginal probability density of

the log-price variable under the multi-factor Heston model is written in terms of the Gaussian kernel G−′
and the effect of the vols of vols is highlighted with the function Lγ . It is worth noting that Lγ satisfies the

following equations: ∫ +∞

−∞
dyLγ(y, t, t′) = 1 t, t′ > 0, t < t′, (15)∫ +∞

−∞
dy ey Lγ(y, t, t′) = 1 t, t′ > 0, t < t . (16)

Eq. (15) guarantees that the conditional marginal density sums to one, while Eq. (16) guarantees that the

multi-factor Heston process is a martingale. Eq. (16) holds since Bj(k, t, t
′) = 0 when k = ı, j = 1, 2, . . . , n, as

already stressed by Lewis (2000) Chp. 2, where conditions to avoid norm-defecting and martingale-defecting

pdfs are discussed. Thus, any approximation of Lγ must guarantee the above-mentioned conditions. We

also check for the following condition satisfied by M :∫ +∞

−∞

(
x′ − x−

∫ t′

t
r(s)ds+

1

2
Γ0(t, t′)

)
M(x, v, t, x′, t′)dx′ = 0 . (17)

We refer to Eq. (17) as the “symmetry condition”. Proposition 2.2 investigates the effect of the vols of vols

by looking at Lγ in (14) and Bj in (8) in order to rewrite the marginal density in terms of a Gaussian kernel

involving a first-order contribution in powers of the vols of vols.

Proposition 2.2 The following expansion of the conditional marginal M in (6) in powers of γ as ‖γ‖ → 0

holds:

M(x, v, t, x′, t′)
1

2π

∫ +∞

−∞
e
ık
[
(x′−x)−

∫ t′
t r(s)ds+ 1

2
Γ1(t,t′)

]
− 1

2
Γ1(t,t′)k2︸ ︷︷ ︸

Gaussian kernel

eS1(t,t′)(ık3+ık)︸ ︷︷ ︸
Airy contribution

dk + o
(
‖γ‖
)

=

∫ +∞

−∞
GΓ1(x′ + S1(t, t′)− x− y, t, t′)AS1(y, t, t′)dy + o

(
‖γ‖
)

=

∫ +∞

−∞
GΓ1(x′ − x− y, t, t′)AS1(y + S1(t, t′), t, t′)dy + o

(
‖γ‖
)
, ‖γ‖ → 0, (18)

where S1 and Γ1 are defined as

S1(t, t′) =
1

2

n∑
j=1

ρjγj
χj

∫ t′

t
E(vj,s | Ft)

(
1− e−χj(t′−s)

)
ds, (19)

and

Γ1(t, t′) = Γ0(t, t′)− 2S1(t, t′), (20)

while GΓ1 is the Gaussian kernel in (5) and AS1 is the Airy function (see, Craig and Goodman (1990) and

Vallée and Soares, 2004) with parameter S1 defined as

AS1(y) =
1

2π

∫ +∞

−∞
eı k yeS1(t,t′)ık3

dk. (21)

Proof of Proposition 2.2 See Appendix A.
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Proposition 2.2 proves that the first-order expansion of the conditional marginal density M of the multi-

factor Heston model is given by the convolution of a Gaussian kernel with a translated Airy function that

converges to the Dirac delta function as S1(t, t′) approaches zero. So, roughly speaking, the support of the

Airy function AS1 measures the deviation of the marginal density M from the Gaussian kernel GΓ1 for small

vols of vols. By approximating the Airy contribution in Eq. (21) for small values of S1(t, t′) (that, as we

will show in the next session, in the Heston model is related to the skew asymmetry), we therefore obtain

one of the main formulas of this paper (i.e., Eq. (23)):

Proposition 2.3 The following expansion of the conditional marginal M in (6) in powers of γ as ‖γ‖ → 0

holds:

M(x, v, t, x′, t′) = M1(x, v, t, x′, t′) + o
(
‖γ‖
)
, ‖γ‖ → 0, (22)

where M1 is given by

M1(x, v, t, x′, t′) = GΓ1(x′ − x, t, t′) + S1(t, t′)

[
−d

3GΓ1

dx′3
(x′ − x, t, t′) +

dGΓ1

dx′
(x′ − x, t, t′)

]
. (23)

Here, Γ1 is defined in (20), GΓ1 is the Gaussian kernel defined in (5), and S1 is given in (19). We have∫ +∞

−∞
M1(x, v, t, x′, t′)dx′ = 1, (24)

∫ +∞

−∞
ex
′
M1(x, v, t, x′, t′)dx′ = ex, (25)

and ∫ +∞

−∞

(
x′ − x−

∫ t′

t
r(s) +

1

2
Γ0(t, t′)

)
M1(x, v, t, x′, t′)dx′ = 0. (26)

Proof of Proposition 2.3 See Appendix A.

We now complete the extraction by computing the second-order term of the expansion in powers of vols

of vols of the exponent in formula (11).

Proposition 2.4 The following expansion of the conditional marginal M in (6) in powers of γ as ‖γ‖ → 0

holds:

M(x, v, t, x′, t′) = M2(x, v, t, x′, t′) + o
(
‖γ‖
)
, ‖γ‖ → 0, (27)

M where M2 is given by

M2(x, v, t, x′, t′) = GΓ2(x′ − x, t, t′) + S1(t, t′)

[
−d

3GΓ2

dx′3
(x′ − x, t, t′) +

dGΓ2

dx′
(x′ − x, t, t′)

]
+S2(t, t′)

[
d4GΓ2

dx′4
(x′ − x, t, t′) + 2

d3GΓ2

dx′3
(x′ − x, t, t′)− dGΓ2

dx′
(x′ − x, t, t′)

]
+S2c(t, t

′)

[
d4GΓ2

dx′4
(x′ − x, t, t′) +

d3GΓ2

dx′3
(x′ − x, t, t′)

]
+

1

2
S2

1(t, t′)

[
d6GΓ2

dx′6
(x′ − x, t, t′)− 2

d4GΓ2

dx′4
(x′ − x, t, t′) +

d2GΓ2

dx′2
(x′ − x, t, t′)

]
.

(28)
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Here, S1 is given by (19), GΓ2 is the Gaussian kernel defined in (5), and S2, S2c and Γ2 are defined as:

S2(t, t′) =

n∑
j=1

γ2
j

8χ2
j

∫ t′

t
E(vj,s | Ft)

(
1− e−χj(t′−s)

)2
ds, (29)

S2c(t, t
′) =

n∑
j=1

γ2
j ρ

2
j

2χj

∫ t′

t
E(vj,s | Ft)e−χj(t

′−s)
∫ t′

s

(
eχj(t

′−τ) − 1
)
dτ ds, (30)

and

Γ2(t, t′) = Γ0(t, t′)− 2S1(t, t′) + 2S2(t, t′) = Γ1(t, t′) + 2S2(t, t′), (31)

where Γ1 is given in (20).

Furthermore, we have ∫ +∞

−∞
M2(x, v, t, x′, t′)dx′ = 1, (32)

and ∫ +∞

−∞
ex
′
M2(x, v, t, x′, t′)dx′ = ex. (33)

∫ +∞

−∞

(
x′ − x−

∫ t′

t
r(s)ds+

1

2
Γ0(t, t′)

)
M2(x, v, t, x′, t′)dx′ = 0. (34)

Proof of Proposition 2.4 See Appendix A.

We note that the integrals appearing in Γ1 and Γ2 can be computed explicitely and are elementary

functions of time.

Let us now comment on this result. First, it is worth noting that the Gaussian kernel GΓ2 is the

“backbone” of the multi-factor Heston model in that we cannot extract a Gaussian kernel different from GΓ2

proceeding further in the expansion of the conditional marginal M in powers of vols of vols.

Second, in the Heston framework, the variance Γ2(t, T ) is the variance of of the continuously compounded

return RTt :

RTt = log

(
ST
St

)
, (35)

while the quantities S1 and S2 are related to the processes XT and YT defined by

XT =

∫ T

t

√
vsdZs and YT =

∫ T

t
[vs − Et(vs)]ds . (36)

Here, Et(·) = E(· | F) to keep the notation simple. This finding is based on the following result of Zhang et

al. (2017):

Et([R
T
t − Et(RTt )]2) = Et(X

2
T )− Et(XTYT ) +

1

4
Et(Y

2
T ), (37)

where

Et(X
2
T ) =

∫ T

t
Et(vs)ds, Et(X

3
T ) = 3

ργ

χ

∫ T

t
Et(vs)(1− e−χ(T−s))ds, (38)

Et(XTYT ) =
ργ

χ

∫ T

t
Et(vs)(1− e−χ(T−s))ds and Et(Y

2
T ) =

γ2

χ2

∫ T

t
Et(vs)(1− e−χ(T−s))2ds. (39)
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Bearing in mind that Et(vs) = E(vs | Ft) = v∗ + (vt − v∗)e−χ(s−t) and given the expressions for Γ0, S1, S2

in Eqs. (13), (19), and (29) we have:

Et([R
T
t − Et(RTt )]2) = Et(X

2
T )− Et(XTYT ) +

1

4
Et(Y

2
T ) = Γ0(0, T )− 2S1(0, T ) + 2S2(0, T ), (40)

and

Et(X
2
T ) = Γ0(t, T ), Et(X

3
T ) = 6S1(t, T ), Et(XTYT ) = 2S1(t, T ), Et(Y

2
T ) = 8S2(t, T ). (41)

Third, using the price skewness formula from Das and Sundaram (1999),

SkewnessDS =
Et(X

3
T )[

X2
T

]3/2 = 6
S1(t, T )

Γ0(t, T )3/2
, (42)

we see that this quantity appears in the coefficient of the second-order term of the implied volatility in

Eq. (70).

Propositions 2.3 and 2.4 are the main results of this paper since they may have several applications,

including the calibration of the Heston model and multi-factor Heston model on asset pricing. In the

following, we focus on two main applications. The first is the approximation of the European vanilla option

prices under the multi-factor Heston model. The second is a second-order expansion of the implied volatility

in powers of vols of vols.

3 Applications of the multi-factor Heston kernel approximations

3.1 Option pricing

In this section we derive explicit formulas for European vanilla call and put options by using the first-order,

M1, and second-order, M2, approximations for the multi-factor Heston conditional marginal, M .

In the following, we use CMH(S0, T, E) and PMH(S0, T, E) to denote the price of European vanilla call

and put options, respectively, in the multi-factor Heston model, with spot price S0, maturity T , strike price

E, and discount factor B(T ), which is given by

B(T ) = e−
∫ T
0 r(s)ds. (43)

Specifically, CMH and PMH read as:

CMH(S0, T, E) = B(T )

∫ +∞

logE
(ex
′ − E)M(logS0, v0, 0, x

′, T )dx′ , (44)

and

PMH(S0, T, E) = B(T )

∫ logE

−∞
(E − ex′)M(logS0, v0, 0, x

′, T )dx′ , (45)

where v0 is the vector of the variances at time t = 0.

Furthermore, we use CBS

(
S0, T, E,

√
Γ
T

)
and PBS

(
S0, T, E,

√
Γ
T

)
to denote the classical Black-Scholes

formulas for call and put vanilla options, where Γ = Γ(0, T ) > 0 is the integrated variance over the time

interval [0, T ], that is,

CBS

(
S0, T, E,

√
Γ

T

)
= S0N(d1(Γ))− Ee−

∫ T
0 r(s)dsN(d2(Γ)), (46)
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and

PBS

(
S0, T, E,

√
Γ

T

)
= −S0N(−d1(Γ)) + Ee−

∫ T
0 r(s)dsN(−d2(Γ)), (47)

where N(x) ia given by

N(x) =
1√
2π

∫ x

−∞
e−y

2/2dy, (48)

and d1(Γ) and d2(Γ) are given by

d1(Γ) =
log
(
S0
E

)
+
∫ T

0 r(s)ds+ 1
2Γ

√
Γ

, (49)

d2(Γ) = d1(Γ)−
√

Γ =
log
(
S0
E

)
+
∫ T

0 r(s)ds− 1
2Γ

√
Γ

. (50)

Proposition 3.1 Let CMH , PMH be the prices of European call and put options with spot price S0, maturity

T , strike price E, and discount factor B(T ) as given in Eqs. (44)–(45). Assuming Γ1(0, T ) > 0 in Eq. (20),

we have

CMH(S0, T, E) = CBS

(
S0, T, E,

√
Γ1

T

)
+R1,MH(S0, T, E) + o

(
‖γ‖
)
, ‖γ‖ → 0,

S0 > 0, T > 0, E > 0 , (51)

and

PMH(S0, T, E) = PBS

(
S0, T, E,

√
Γ1

T

)
+R1,MH(S0, T, E) + o

(
‖γ‖
)
, ‖γ‖ → 0,

S0 > 0, T > 0, E > 0 . (52)

Here, CBS and PBS denote the classical Black-Scholes formulas given in (46) and (47). In turn, R1,MH

is the correction to the standard Black-Scholes formula due to the contribution of the zero and first-order

terms of the kernel expansion in powers of vols of vols:

R1,MH(S0, T, E) = B(T )E
S1(0, T )

Γ1(0, T )

(
mE +

3

2
Γ1(0, T )

)
GΓ1(ln(E/S0), 0, T ) , (53)

where mE is the log-moneyness associated with the forward price defined as

mE = log

(
E

S0e
∫ T
0 r(s)ds

)
. (54)

Proof of Proposition 3.1 See Appendix A.

The correction term R1,MH can be rewritten in a more standard form

R1,MH(S0, T, E) = Ee−
∫ T
0 r(s)dsN ′(d2(Γ1))

S1(0, T )

Γ1(0, T )

(
−d2(Γ1) +

√
Γ1(0, T )

)
, (55)
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where N ′(·) represents the derivatives of N(·) defined in (48) and d2 is given in (50). Bearing in mind

that S0N
′(d1(Γ)) = Ee−

∫ T
0 r(s)dsN ′(d2(Γ)) for any positive Γ, and that the Black-Scholes Vega is V ega =

V ega(Γ) =
√
TS0N

′(d1(Γ)), Eq. (55) can also be written as

R1,MH(S0, T, E) = S0N
′(d1(Γ1))

S1(0, T )

Γ1(0, T )

(
−d2(Γ1) +

√
Γ1(0, T )

)
= V ega(Γ1)

S1(0, T )√
T Γ1(0, T )3/2

(
mE +

3

2
Γ1(0, T )

)
. (56)

We now show the approximation of the European call and put options when the kernel approximation

M2 of the conditional marginal M associated with the multi-factor Heston model is used.

Proposition 3.2 Let CMH , PMH be the prices of European call and put options with spot price S0, maturity

T , strike price E and discount factor B(T ) as given in Eqs. (44)–(45). Assuming Γ2(0, T ) > 0 in Eq. (31),

we have

CMH(S0, T, E) = CBS

(
S0, T, E,

√
Γ2√
T

)
+R2,MH(S0, T, E) + o

(
‖γ‖
)
, ‖γ‖ → 0,

S0 > 0, T > 0, E > 0 (57)

and

PMH(S0, T, E) = PBS

(
S0, T, E,

√
Γ2√
T

)
+R2,MH(S0, T, E) + o

(
‖γ‖
)
, ‖γ‖ → 0,

S0 > 0, T > 0, E > 0 . (58)

Here, CBS and PBS denote the classical Black-Scholes formulas as in (46) and (47), while R2,MH is the

correction to the standard Black-Scholes formula due to the contribution of the zero, first- and second-order

terms of the kernel expansion in powers of vols of vols:

R2,MH(S0, T, E) = B(T )E
S1(0, T )

Γ2(0, T )

(
+ log

(
E

S0e
∫ T
0 r(s)ds

)
+

3

2
Γ2(0, T )

)
GΓ2(log(E/S0), 0, T )

+S2(0, T )B(T )E

[
d2GΓ2

dx′2
+
dGΓ2

dx′
− GΓ2

]
(log(E/S0), 0, T ) + S2c(0, T )B(T )E

d2GΓ2

dx′2
(log(E/S0), 0, T )

+
1

2
S2

1(0, T )B(T )E

[
d4GΓ2

dx′4
− d3GΓ2

dx′3
− d2GΓ2

dx′2
+
dGΓ2

dx′

]
(log(E/S0), 0, T ).

(59)

The notation [·] (·, ·, ·) in Eq. (59) means that the function in the square brackets is evaluated at the argument

(·, ·, ·). Dropping the arguments of Γ2, S1, S2 and S2c, Eq. (59) also reads:

R2,MH(S0, T, E) =
V ega(Γ2)
√
TΓ

3/2
2

S1

(
mE +

3

2
Γ2

)
+ S2c

V ega(Γ2)
√
T Γ

3/2
2

[
(mE + 1

2Γ2)2

Γ2
− 1

]

+S2
V ega(Γ2)
√
T Γ

3/2
2

[
(mE + 1

2Γ2)2

Γ2
− (mE +

1

2
Γ2)− 1− Γ2

]

+
1

2
S2

1

V ega(Γ2)
√
T Γ

3/2
2

[
(mE + 1

2Γ2)4

Γ3
2

+
(mE + 1

2Γ2)3

Γ2
2

−
(mE + 1

2Γ2)2

Γ2

(
1 +

6

Γ2

)]

+
1

2
S2

1

V ega(Γ2)
√
T Γ

3/2
2

[
−(mE +

1

2
Γ2)

(
1 +

3

Γ2

)
+

(
1 +

3

Γ2

)]
, (60)
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where mE is the log-moneyness associated with the forward price (see Eq. (54)).

Proof of Proposition 3.2 See Appendix A.

In the following, we approximate the European vanilla option prices using the first-order approximations:

C1,MH(S0, T, E) = CBS

(
S0, T, E,

√
Γ1√
T

)
+R1,MH(S0, T, E), (61)

P1,MH(S0, T, E) = PBS

(
S0, T, E,

√
Γ1√
T

)
+R1,MH(S0, T, E), (62)

and the second-order approximations:

C2,MH(S0, T, E) = CBS

(
S0, T, E,

√
Γ2√
T

)
+R2,MH(S0, T, E), (63)

P2,MH(S0, T, E) = PBS

(
S0, T, E,

√
Γ2√
T

)
+R2,MH(S0, T, E). (64)

In the following we refer to formulas C1,MH and P1,MH as the first-order Black-Scholes formulas for call and

put options and C2,MH and P2,MH as the second-order Black-Scholes formulas. In the following we use the

subscript “H” to denote the option prices and their approximation in the Heston framework and “DH” for

the double Heston.

It is worth noting that:

(i) The Black-Scholes formulas for the European vanilla options overprice the at-the-money options. The

first-order correction term R1,MH , which affects the call and put options in the same way, is able

to correct for this overpricing. In fact, R1,MH is negative when the options are at-the money (i.e.,

E/(S0e
∫ T
0 r(s)ds) ≈ 1) and the correlations are negative. This finding tells us that in the case of

the Heston model where negative correlation values are usually observed, the prices of call and put

options are smaller than those calculated using the standard Black-Scholes formulas for the at-the-

money options, thereby reducing the overpricing of the Black-Scholes formulas.

(ii) The correction term, R1,MH , shows why S1 may be considered to be responsible for smile asymmetry.

In fact, when ρj = 0 to first order in γj , j = 1, 2, . . . , n, we observe a volatility independent of

moneyness defined with respect to the forward price (i.e., E/(S0e
∫ T
0 r(s)ds)), in contrast to the case ρj 6=

0, where we observe a dependence of the volatility on moneyness. Specifically, negative correlations

imply negative corrections for moneyness larger than or equal to one, while the sign of the correction

depends on the variance Γ1 for moneyness smaller than one.

(iii) The correction terms R1,MH and R2,MH are the same for the call and put options. As a consequence,

the pairs C1,MH , P1,MH and C2,MH , P2,MH satisfy the put-call parity. In fact Cj,MH − Pj,MH =

CBS

(
S0, T, E,

√
Γj√
T

)
− PBS

(
S0, T, E,

√
Γj√
T

)
= S0 − Ee

∫ t
0 r(s)ds, j = 1, 2.

(iv) The correction term R1,MH is linear in the Vega of the Black-Scholes formulas (61) and (62) (see Eq.

(56). Specifically, the ratio correction term for Vega depends linearly on S1 and the log-moneyness,

log

(
E

S0e
∫T
0 r(s)ds

)
.
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(v) The Gaussian kernel GΓ2 is the backbone of the multi-factor Heston model in that we cannot extract

a Gaussian kernel different from GΓ2 proceeding further in the expansion of the conditional marginal

M in powers of vols of vols. Thus, by continuing the expansion of M , we affect only the correction

term of formulas C2,a and P2,a.

3.2 Implied volatility

The implied volatility Σ in the multi-factor Heston model is defined as the quantity such that the following

equality holds:

CBS

(
S0, T, E,

√
Σ2

T

)
= CMH(S0, T, E), (65)

where CBS and CMH are the prices at time t = 0 of a European call option with strike price E > 0, and

maturity time T > 0 in the Black-Scholes and multi-factor Heston models, respectively.

We derive the first and second-order approximations of Σ as a function of the vols of vols (i.e., Σ = Σ(γ))

by using the expansion in powers of vols of vols as the vols of vols go to zero. Specifically, we look for the

first-order approximation Σ1,MH by solving the equation

CBS

S0, T, E,

√
Σ2

1,MH(γ)

T

 = CBS

(
S0, T, E,

√
Γ1

T

)
+R1,MH(S0, T, E), (66)

while we obtain the second-order approximation Σ2,MH by solving

CBS

S0, T, E,

√
Σ2

2,MH(γ)

T

 = CBS

(
S0, T, E,

√
Γ1

T

)
+R2,MH(S0, T, E). (67)

It is easy to see that by solving Eq. (67) we also determine the first-order approximation Σ1,MH .

Proposition 3.3 The following expansion of implied volatility defined in Eq. (66) in powers of γj, j =

1, 2, . . . , n, holds as γj → 0 for the multi-factor Heston model:

Σ(γ) = Σ1,MH(γ) + o
(
‖γ‖
)
, ‖γ‖ → 0 , (68)

where Σ1,MH is given by:

Σ1,MH(γ) =
√

Γ0 +
S1

Γ0

√
Γ0

(
mE +

1

2
Γ0

)
+ o

(
‖γ‖
)
, ‖γ‖ → 0 , (69)

where mE is the log-moneyness associated with the forward price (see Eq. (54)). Here, we have dropped the

arguments of the function Γ0 and S1 defined in (13) and (19).

The second-order approximation, Σ2,MH , of Σ is given by

Σ2,MH(γ) =
√

Γ0 +
1

Γ0

√
Γ0

[
a2(T, γ)

(
mE +

1

2
Γ0

)2

+ a1(T, γ)

(
mE +

1

2
Γ0

)
+ a0(T, γ)

]
, (70)

where a0(T, γ), a1(T, γ) and a2(T, γ) are given by

a0(T, γ) = (1 +
3

2

1

Γ0
)S2

1 − S2 − S2c , (71)
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a1(T, γ) = S1 − S2 +
3

2

1

Γ0
S2

1 , (72)

and

a2(T, γ) =
1

Γ0

(
S2 + S2c −

3

Γ0
S2

1

)
. (73)

Here, we have dropped the arguments (0, T ) of the functions Γ0, S1, S2 and S2c given in (13), (19), (29),

(30), respectively.

Proof of Proposition 3.3 See Appendix A.

It is worth noting that, while the correction C2,MH is a fourth-degree polynomial in moneyness, the

implied volatility resulting from the second-order approximation to the option prices is a quadratic function

of moneyness since suitable cancellations occur when computing the expansion of the implied volatility as

the vols of vols go to zero. As a result, the coefficients a0(T, γ) and a2(T, γ) are second-degree homogeneous

functions of γ, while a1(T, γ) is a homogeneous function of degree one.

For null correlation coefficients, the second-order approximation, Σ2,MH , of the volatility surface is a

strictly convex function with vertex at mE = 0 (i.e., when the option is at the money):

Σ2,MH(γ) =
√

Γ0 +
S2

Γ0

√
Γ0

[
1

Γ0

(
mE +

1

2
Γ0

)2

−
(
mE +

1

2
Γ0

)
− 1

]
. (74)

The expression of a2 reveals that the convexity of the volatility smile depends on the function S2
1 . This

finding confirms the fact that the quantity S1 is responsible for asymmetry in the smile since it allows

for concavity. Concave volatility smiles are allowed in mean-reverting underlying assets where the option

tenor is comparable to the characteristic reversion time of the asset∗. Furthermore, bearing in mind the

price skewness by Das and Sundaram (1999) given in Eq. (42), the coefficient of the highest order term in

Eq. (70) also reads:
1

Γ
3/2
0

a2(T, γ) =
1

Γ
1/2
0

[
1

Γ2
0

(S2 + S2c)−
1

12
Skewness2

DS

]
. (75)

Eq. (75) clearly shows the effect of the price skewness on the volatility smile.

4 Accuracy of the Black-Scholes approximations: simulation study

In this section, we study the accuracy of the formulas derived in Sections 2 and 3 in reproducing the European

option price and implied volatility in the Heston and multi-factor Heston models and their performance in

terms of computational time. We compute the exact European option prices in the Heston/multi-Heston

models by using the option price formulas proposed by Recchioni and Sun (2016) and reported in Appendix

B. These formulas are integral representation formulas that differ only in the choice of a real parameter q,

which should be larger than one to compute a call option and smaller than 0 to compute a put option. These

formulas are in line with the Lewis regularization technique (i.e., Lewis 2000, Chap 2), whose integrand

functions are smooth functions. In the following, we denote with CMH(S0, T, E) and PMH(S0, T, E) the

prices of the European vanilla call and put options obtained by using formulas (147) and (148) in Appendix

B.

∗Some empirical evidence can be found at http://faculty.baruch.cuny.edu/jgatheral/Bachelier2008.pdf (see pages 53–56)
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4.1 Simulation study 1: Heston on “reasonable” grid of parameters

This section is devoted to assessing the performance of the first- and second-order approximations C1,MH ,

P1,MH (see Eqs. (61)–(62)) and C2,MH , P2,MH (see Eqs. (63)–(64)) of the call and put option prices in

the Heston framework (i.e., n = 1 in Eqs. (61)–(64)). This analysis is done to show that these first- and

second-order Black-Scholes (BS for short in the following) approximations to option European vanilla option

prices are of sufficient quality to be used for estimating the multi-factor Heston model parameters.

The Heston exact formula is obtained by imposing n = 1 in Eqs. (149) in Appendix B. As previously

mentioned, Eqs. (147), (148) in Appendix B are equal except for the values of q, which are valid over different

intervals. In the following, we choose q = 3 for a call option and q = −2 for a put option. Equations (147)

and (148) are defined via convergent integrals that can be computed accurately using a simple composite

rectangular rule with 216 quadrature nodes. Obviously, depending on the choice of the model parameters

and the time to maturity, the number of quadrature points could be reduced.

We evaluate the exact formulas CH , PH and the second-order Black-Scholes formulas Cj,H , Pj,H , for

j = 1, 2 at the points in the following set:

M = { (S0, E, T, γ, v0, χ, v
∗, ρ, r) |S0 = 100, E = 80 + 10(j − 1), T = 2 j/5, j = 1, 2, . . . , 5,

γ = 0.01, 0.05, 0.15, 0.25, 0.5, v0 = 2 + j/5, j = 1, 2, . . . , 5, χ = 1.5 + 1.5(j − 1), j = 1, 2, . . . , 5,

v∗ = j γ2/(2χ), ρ = −j/6, j = 1, 2, . . . , 5, r = 0.01
}
. (76)

These values of model parameters in the grid M include those estimated by Christoffersen et al. (2009) in

Section 4.2 Table 3 (see Appendix B).

Figures 1 and 2 show the empirical distributions of the relative errors in call and put prices, eC,j =

|CH − Cjj,H |/|CH |, j = 1, 2 (upper panels) and eP,j = |PH − Pj,H |/|PH |, j = 1, 2 (lower panel), when

γ = 0.15 (left panel), γ = 0.25 (middle panel), and γ = 0.5 (right panel) based on grid M. We observe

that the second-order approximations C2,H and P2,H of the call and put option prices, respectively, strongly

outperform the first-order approximations C1,H and P1,H in terms of accuracy for vols-of-vols larger than

10%.

To further investigate the quality of the option approximations shown in Table 1, the mean, median,

and standard deviation of their relative errors for the same values of γ as mentioned above, as well as two

additional values (γ = 0.01 and γ = 0.05) are shown in Table 1. From left to right, the Table shows the

value of the vol of vol (γ), the mean (meanC), median (medianC), and standard deviation (stdC) of the

relative call option errors eC,j and the mean (meanP ), median (medianP ), and standard deviation (stdP )

of the relative put option errors eP,j associated with the first-order (j = 1, upper panel of Table 1) and

second-order Black-Scholes formulas (j = 2, lower panel of Table 1). As well, some descriptive statistics for

the call and put option prices are shown in Table 2. We conclude this section by showing the great savings

in computing time resulting from the use of the second-order Black-Scholes formulas (63) and (64) with

n = 1 derived here to approximate the option prices. To this end, the execution time (seconds) required

to compute 40,000 European call and put options using Eqs. (147), (148) in the Heston model with the

rectangular quadrature rule with Np nodes, referred to as Timetrue, is compared to the time Timeapprox

required using Eqs.} (63) and (64) with n = 1. Table 3 also shows great savings in computer time when

small Np values are involved. That is, these second-order Black-Scholes formulas could be used to estimate

parameters in the multi-factor Heston model to determine starting points for the optimization algorithm
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Table 1: Descriptive statistics for the relative errors of Black-Scholes option price approximations evaluated on gridM in the

case of the Heston model.
First-order Black-Scholes approximations in vol of vol (C1,H , P1,H)

γ meanC medianC stdC meanP medianP stdP

0.01 1.8131e-6 0.000 2.1868e-6 1.8058e-6 0.000 2.2218e-6

0.05 4.2591e-5 3.1181e-5 3.7372e-5 4.2808e-5 3.1898e-5 3.3398e-5

0.15 3.7607e-4 2.7484e-4 3.2672e-4 3.7819e-4 2.8112e-4 2.9203e-4

0.25 1.0137e-3 7.4174e-4 8.7296e-4 1.0196e-3 7.5723e-4 7.8197e-4

0.5 3.6279e-3 2.6769e-3 3.0715e-3 3.6515e-3 2.6801e-3 2.7806e-3

Second-order Black-Scholes approximations in vol of vol (C2,MH , P2,MH)

γ meanC medianC stdC meanP medianP stdP

0.01 2.7090e-9 0.000 8.7598e-8 2.3767e-9 0.000 7.1053e-8

0.05 3.3058e-7 0.000 9.9919e-7 2.9665e-7 0.000 9.1210e-7

0.15 8.6177e-6 2.9231e-6 1.9097e-5 8.0870e-6 2.8545e-6 1.6523e-5

0.25 3.9080e-5 8.7593e-6 8.5551e-5 3.6756e-6 9.2254e-6 7.4764e-5

0.5 2.8757e-4 6.0871e-5 6.1026e-4 2.7410e-4 6.5693e-5 5.5215e-4

Table 2: Some descriptive statistics for the call and put option prices evaluated on grid M in the case of Heston model.

γ average call price min call max call average put price min put max put

0.01 32.292 14.337 56.822 31.101 10.081 64.549

0.05 31.846 14.294 56.847 30.655 10.091 64.567

0.1 31.908 14.193 57.206 30.717 10.166 64.997

0.25 32.116 14.102 57.970 30.925 10.242 65.958

0.5 33.211 13.925 61.368 32.020 10.338 70.310

Table 3: Comparison of the time (seconds) required to compute 40,000 European call and put options using formulas (147)

and (148) with the rectangular quadrature rule with Np nodess (T imetrue) and formulas C2,H (63) and P2,H (64) with n = 1

(T imeapprox). The computation was made on an Intel CORE i7 (8th generation) processor.

Np 22 24 27 210 214 216

Timetrue(secs) 0.21 0.76 6.40 49.84 802.45 3210.95

Timeapprox(secs) 0.0234
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Figure 1: Relative error distributions eC,1 = |CH − C1,H |/|CH | (upper panels) and eP,1 = |PH − P1,H |/|PH | (lower panels)

when γ = 0.15 (left panels), γ = 0.25 (middle panels), and γ = 0.5 (right panels) obtained with first-order approximations

(C1,H , P1,H).

0 0.005 0.01 0.015
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

pd
f

Relative Error Distributon - Call Options  = 0.15

0 0.005 0.01 0.015
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

pd
f

Relative Error distributon - Call Options  = 0.25

0 0.005 0.01 0.015
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

pd
f

Relative Error Distributon - Call Options  = 0.5

0 0.005 0.01 0.015
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

pd
f

Relative Error Distributon - Put Options  = 0.15

0 0.005 0.01 0.015
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

pd
f

Relative Error distributon - Put Options  = 0.25

0 0.005 0.01 0.015
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

pd
f

Relative Error Distributon - Put Options  = 0.5

Figure 2: Relative error distributions eC,2 = |CH − C2,H |/|CH | (upper panels) and eP,2 = |PH − P2,H |/|PH | (lower panels)

when γ = 0.15 (left panels), γ = 0.25 (middle panels), and γ = 0.5 (right panels) obtained with second-order approximations

C2,H , P2,H .

used to solve the estimation problem.
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4.2 Simulation study 2: Heston and double Heston with empirical parameters

In this subsection we investigate the quality of the approximations to the Heston and double Heston call and

put option prices by comparing the second-order Black-Scholes formulas (63)–(64)) to Eqs. (147) and (148),

when n = 1, 2 and model parameters calibrated to real data are used. Specifically we use the parameters

estimated by Christoffersen et al. (2009). We report the values of these parameters in Tables 8 (Heston

model) and 9 (double Heston model) in Appendix B. The last column of Tables 8 and the last two columns

of 9 show that the Feller condition is violated in several cases. This means that the square root process

can access zero with positive probability unless, as remarked in Christoffersen et al. (2009), the process

satisfies a standard reflecting barrier at the origin. Interestingly, the Feller condition never holds in the case

of process v1,t. The violation of the Feller condition has also been noted in Pacati et al. (2018).

Table 4: Relative errors of European call and put options obtained by approximating the Heston/double Heston option prices

with the second-order approximations (see formulas (63)–(64)), with model parameters from Table 8 for the Heston model and

Table 9 for the double Heston model. Panel A shows the relative errors corresponding to the Heston model (H model), while

Panel B shows those for the double Heston model (DH model). Risk free interest rate r = 0.15.

T = 3 months

Panel A Panel B

Year

Call

relative

errors

(H model)

Put

relative

errors

(H model)

Call

relative

errors

(DH model)

Put

relative

errors

(DH model)

1990 0.00053 0.00048 0.00047 0.00066

1991 0.00016 0.00015 0.00709 0.00601

1992 0.00013 0.00013 0.11481 0.12308

1993 0.00010 0.00010 0.07643 0.07883

1994 0.00009 0.00010 0.24806 0.28858

1995 0.00011 0.00010 0.15384 0.16652

1996 0.00013 0.00011 0.00570 0.00468

1997 0.00016 0.00014 0.00249 0.00212

1998 0.00047 0.00046 0.00533 0.00426

1999 0.00037 0.00035 0.00447 0.00361

2000 0.00023 0.00021 0.00465 0.00380

2001 0.00022 0.00020 0.00448 0.00368

2002 0.00018 0.00018 0.00511 0.00419

2003 0.00025 0.00023 0.22127 0.25334

2004 0.00005 0.00005 0.00507 0.00414

Avg. 0.02% 0.02% 5.7% 6.7%

T = 6 months

Panel A Panel B
Call

relative

errors

(H model)

Put

relative

errors

(H model)

Call

relative

errors

(DH model)

Put

relative

errors

(DH model)

0.00130 0.00141 0.00439 0.00502

0.00037 0.00339 0.02427 0.02373

0.00031 0.00037 0.19148 0.26218

0.00023 0.00028 0.13649 0.18301

0.00016 0.00024 0.31348 0.43928

0.00027 0.00028 0.26902 0.37789

0.00027 0.00029 0.01360 0.01571

0.00038 0.00041 0.00577 0.00631

0.00114 0.00134 0.01268 0.01525

0.00085 0.00100 0.01090 0.01293

0.00050 0.00059 0.01077 0.01247

0.00038 0.00046 0.01022 0.01180

0.00036 0.00047 0.01158 0.01343

0.00064 0.00068 0.29631 0.41585

0.00013 0.00018 0.01152 0.01339

0.05% 0.05% 8.8% 12%

We compute the relative errors of the second-order approximations C2,H , P2,H and C2,DH and P2,DH

of the Heston/double Heston option prices for the value of the risk-free interest rate equal to 0.15 and for

two time maturities: T = 3 months and T = 6 months. The spot variance of the Heston model is chosen

to be 0.9, while the spot variances of the double Heston model are v1 = 0.13 and v2 = 0.75. This choice is

supported by the results of the empirical analysis discussed in Christoffersen et al. (2009) p. 1926. In fact,

in Christoffersen et al. (2009), the sum of the factor estimates v1,0 and v2,0 is 88% in the two-factor model

and the difference is around 62% while it is 90% in the one-factor model.

Table 4 shows the results of this experiment for the Heston (Panel A) and double Heston (Panel B)

models. We observe that, on average, for the shortest maturity T = 3 months, the relative errors are 0.02%
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for both call and put options in the Heston framework and 5.7% and 6.7%, respectively, in the double

Heston model. When the maturity is six months, the mean of the relative errors is 0.05% for both call

and put options in the Heston model, while they are 8.8% and 12%, respectively, for the double Heston

model. These relative errors guarantee four correct significant digits for the Heston model and two correct

significant digits for the double Heston model.

It is worth noting that the largest relative errors for the double Heston model are obtained in the years

1992–1995 and 2003 when the vol of vol γ1 is larger than 520%, with peaks of 943% in 1994 and 880% in

2003. In contrast to the double Heston model, the estimated vol of vol of the Heston model is always less

than 80% and larger than 37% (see Tables 8 and 9). Bearing in mind these estimated values of vols of vols

and noting that the correlation coefficients are less than -0.5, the relative errors shown in Table 4 could be

considered satisfactory.

5 Performance of the Black-Scholes approximations: empirical analyses

This section presents two empirical exercises to assess the performance of our analytical approximation to

reproduce the dynamics of the VIX index and to estimate Put and Call option prices one day ahead.

5.1 Variance of the Gaussian Kernel and the VIX index

In this subsection we asses the performance of the second-order variance Γ2 in Eq. (31), of the Gaussian

kernel behind the Heston and double Heston models, in reproducing the VIX dynamics when using data

from S&P 500 index options.

To this end, we use the model parameters in Tables 8 and 9 corresponding to the years 2000, 2001, 2002,

2003 and the daily VIX data, along with realized variance time series of the S&P 500 in the same years†.

For each fixed year, we use the model parameters in Tables 8 and 9 to compute the Kernel variance Γ2

appearing in the Black-Scholes second order approximations Eqs. (63) and (64) and we use Σ̃2,model(t) to

denote the quantity

Σ̃2,model(t) =

√
Γ2(t, t+ T )

T
, model = H,DH, (77)

where Γ2 is given in (31) and T is chosen to be a calendar year (see Christoffersen et al. (2009) p. 1925).

Thus, we denote this volatility by Σ̃2,H(t) or Σ̃2,DH(t) depending on whether we consider the Heston or

double Heston model.

Specifically, for the Heston model, the realized variance from Oxford-Man Institute database plays the

role of the spot variance, while in the double Heston model the realized variance is the sum of the two model

variances (i.e., the variance of price log-return), while each variance is evaluated as a fraction, α, of this

sum. The optimal value of α is computed by matching the first four sampled moments. In this specific

experiment, let RVt be the observed realized variance at time t. We choose vt = RVt for the Heston model,

while v1,t = αRVt and v2,t = (1 − α)RVt for the double Heston model. The optimal value of α is α = 0.06

when we use the median truncated realized variance and α = 0.15 in the case of 5-minute realized variance.

†The VIX level was downloaded from http://www.cboe.com/products/vix-index-volatility/vix-options-and-futures/vix-

index/vix-historical-data, while the realized variance (median truncated realized variance and 5-minute realized variance) data

are available from the Oxford-Man Institute website https://realized.oxford-man.ox.ac.uk/data .
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The use of the realized variance as a short-term volatility factor is supported by the results illustrated in

Corsi et al. (2013), which focused on realized volatility option pricing models.

Figures 3 and 4 show the VIX time series (solid line) and Σ̃2,model (dotted line) in the Heston (Fig. 3)

and double Heston (Fig. 4) models as a function of the day index for each year considered.

Figures 3, and 4 shows that Σ̃2,model(t) (see Eq. (77)) is able to mimic closely the VIX behavior and

that the double Heston model outperforms the Heston model in terms of the sup-norm as shown in Table 5.

Bearing in mind that what follows is a rough comparison, the RMSE shown in Table 5 compares favorably

with what is obtained by Corsi et al. (2013) (see Section 4.3, Table 4). This analysis provides further

empirical evidence to support two already known findings: the ability of the double Heston model to

capture the main features of market volatility — and the effect of the skewness in particular — and the use

of RV as a proxy for unobservable volatility factors (see, for example, Corsi et al. (2013), Christoffersen et

al. (2009), (2014)).
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Figure 3: Each panel contains the VIX time series and the model implied volatility Σ̃2,H (i.e., Eq. (77) - Heston model) as a

function of day. The model parameters in Table 8 were used with a spot variance of the price log-return corresponding to the

daily time series of the median truncated realized variance (left panels) and the 5-minute realized variance (right panels) from

the Oxford-Man Institute.

Table 5: Root Mean Square Error (RMSE) obtained using Σ̃2,model to approximate the VIX index.

Model median truncated RV 5-minute RV

RMSE min err max err RMSE min err max err

Heston 0.0276 0.0131 0.0453 0.0253 0.0168 0.0380

Double Heston 0.0239 0.0152 0.0341 0.0301 0.0233 0.0347

We then test for linear dependence between the VIX index and Σ̃2,model in Eq. (77) with model = DH

(i.e., n = 2) computed with the approach mentioned above. This is done by regressing the daily VIX

observations only on the daily estimates of Σ̃2,DH(t). We use both the median truncated realized variance

(see Table 6, left panel) and the 5-minute realized variance (see Table 6, right panel) as proxies of the

stochastic variance processes as illustrated above.

The results of these zero-intercept regressions confirm our hypothesis that the second-order BS implied

volatility in the Heston and multi-factor Heston models is able to capture VIX dynamics better than the

naive linear model VIX t = β1RVt + noise. In fact, in the Heston and double Heston model, the coefficient
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Figure 4: Each panel contains the VIX time series and the model implied volatility Σ̃2,DH (i.e., Eq (77) - Double Heston model)

as a function of day. The model parameters in Table 9 were used with a spot variance of the price log-return corresponding to

the daily time series of the median truncated realized variance (left panels, α = 0.15) and the 5-minute realized variance (right

panels, α = 0.06) from the Oxford-Man Institute.

Table 6: Zero-intercept regression models with two proxies of stochastic variances. The model parameters are from Tables 3

in Christoffersen et al. 2009.

Proxy median truncated realized variance

V IXt = β1RVt + noise

year β1 S.E. t-stat R2

2000 0.589 0.0089 65.94 0.271

2001 0.490 0.0075 64.54 0.352

2002 0.574 0.0081 68.20 0.532

2003 0.524 0.0063 82.66 0.597

V IXt = β1Σ̃2,H(t) + noise

year β1 S.E. t-stat R2

2000 1.002 0.0075 132.2 0.600

2001 0.860 0.0092 92.67 0.553

2002 0.786 0.0102 76.65 0.599

2003 0.962 0.0120 80.17 0.591

V IXt = β1Σ̃2,DH(t) + noise

year β1 S.E. t-stat R2

2000 0.9641 0.0072 132.6 0.599

2001 0.879 0.0079 110.74 0.635

2002 0.846 0.0080 105.18 0.732

2003 1.1092 0.0092 119.4 0.754

Proxy 5-minute realized variance

V IXt = β1RVt + noise

Σ̃2,DH year β1 S.E. t-stat R2

2000 0.807 0.0156 51.68 0.186

2001 0.706 0.0138 50.86 0.253

2002 0.784 0.0140 55.73 0.431

2003 0.671 0.0101 66.40 0.489

V IXt = β1Σ̃2,H(t) + noise

year β1 S.E. t-stat R2

2000 1.068 0.0080 132.2 0.602

2001 0.904 0.0088 102.3 0.599

2002 0.843 0.0098 85.254 0.646

2003 1.013 0.0121 83.488 0.609

V IXt = β1Σ̃2,DH(t) + noise

year β1 S.E. t-stat R2

2000 1.087 0.0120 90.56 0.410

2001 1.008 0.0106 94.51 0.557

2002 0.992 0.0112 88.14 0.655

2003 1.107 0.0114 94.23 0.660
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β1 is, on average, equal to 0.90 and 0.94, respectively, in the left panel of Table 6, while it is, on average,

0.957 and 1.048, respectively, in the right panel. These coefficients are statistically significant at 5% levels.

Furthermore, the coefficient of determination R2 indicates that the second-order BS implied volatility model

performs better than the naive models which use only RVt as explanatory variable. These results are inline

with findings in Huang et al. 2018.

5.2 Option price calibration

In this subsection we assess the performance of our Black & Scholes type formulas to reproduce the European

call and put option prices on the US S&P 500 index. The U.S. three-month government bond index was used

as a proxy for the interest rate r appearing in the Heston model. Figure 5 shows traded call (left panel) and

put option (right panel) prices on the US S&P 500 index for various strike prices and expiry on December

19, 2015. We also provide empirical evidence that the Black-Scholes second-order approximations C2,H and

Figure 5: Prices of the call (left panel) and put (right) options on the U.S. S&P 500 index with strike prices E1 = 1900,

E2 = 1975, E3 = 2000, and E4 = 2025 and with expiry date T = December 19, 2015, versus time (September 1, 2014 – March

30, 2015).

P2,H (see Eqs. (63)–(64)) and the implied volatility approximation Σ2,H in Eq. (70) are an efficient tool to ob-

tain “consistent” estimates of the Heston model parameters. To this end, we propose a three-step procedure:

i) starting from the traded call option prices Co(Si, Ti, Ej) with spot price Si, time to maturity Ti and

strike price Ej , and using the U.S. three-month government bond yield as risk-free interest rate, r,

compute the observed implied volatility, σo(Si, Ti, Ej), i = 1, 2, . . . , nT , j = 1, 2, . . . , NE . This compu-

tation is done using the Matlab function calcBSImpVol , which uses Li’s rational function approximator

for the initial estimate (see, Li 2006; 2008), followed by Householder’s root finder of the third order to

improve the convergence rate of the Newton-Raphson method;

ii) for any time i = 1, 2, . . . , nT , estimate the Heston model parameters Θi = (γi, v
∗
i , χi, ρi, v

i
0) ∈ R5,

i = 1, 2, . . . , nT , solving the following optimization problem:

min
Θ∈V

nE∑
j=1

[
σo(Si, Ti, Ej)−

Σ2,H(Si, Ti, Ej)√
Ti

]
, (78)

where Σ2,MH is given in formula (70) and V is the following set of constraints:

V =
{

Θ= (γ, v∗, χ, ρ, v0) ∈ R5 | γ, v∗, χ, v0 > 0, −1 < ρ < 1
}

; (79)
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iii) compute the European call and put option prices using formulas C2,H , P2,H in Eqs. (63)–(64) with

the estimated parameters;

iv) evaluate the model consistency by computing the mean and standard deviation of the relative errors

ECi,j = |Co(Si, Ti, Ej)− C2,H(Si, Ti, Ej)|/Co(Si, Ti, Ej) and

EPi,j = |P o(Si, Ti, Ej) − P2,H(Si, Ti, Ej)|/P o(Si, Ti, Ej), where P o is the observed value of the put

option, i = 1, 2, . . . , nT , and j = 1, 2, . . . , nE .

v) repeat steps (i)–(iv) starting from the observed put prices Co(Si, Ti, Ej), i = 1, 2, . . . , nE .

Table 7: Descriptive statistics for estimated values of the model parameters and observed implied volatility σo.

Call Set

χ v∗ γ ρ v0
2χv∗

γ2
obj. func. σo

mean 5.7999 0.014663 0.50098 -0.8502 0.08060 0.677512 8.35e-5 0.1581

median 5.7999 0.012726 0.50100 -0.8502 0.08200 0.588756 2.28e-5 0.1546

std 0.00057 0.007032 0.000303 0.000220 0.004912 0.324606 1.46e-4 0.020

Put Set

χ v∗ γ ρ v0
2χv∗

γ2
obj. func. σo

mean 5.7999 0.029102 0.5009 -0.8502 0.08384 1.34530 7.84e-5 0.1931

median 5.7999 0.029114 0.5009 -0.8502 0.08489 1.29907 2.02e-5 0.1923

std 0.000020 0.006205 0.00026 0.00018 0.004243 0.28708 2.87e-4 0.0168
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Figure 6: Left Panel: Observed call option prices (solid line) and the Black-Scholes second-order approximations C2,H (dotted

line) for four different strike prices E1 = 1900, E2 = 1975, E3 = 2000, and E4 = 2025 and expiry date T = December 19, 2015,

versus time (September 1, 2014 – March 30, 2015) obtained with the optimal parameters from the observed implied volatility of

call options (i.e. Call Set). Right Panel: Observed put option prices (solid line) and Black-Scholes second-order approximations

P2,H (dotted line) for four different strike prices E1 = 1900, E2 = 1975, E3 = 2000, and E4 = 2025 and expiry date T =

December 19, 2015, versus time (September 1, 2014 – March 30, 2015) obtained with the optimal parameters from the observed

implied volatility of call options (i.e. Call Set).

The use of the implied volatilities in the objective function (Eq. (78)) has two main advantages. First,

satisfactory out-of-sample approximations of the implied volatilities may be useful to improve hedging strate-
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Figure 7: Left Panel: Observed put option prices (solid line), Black-Scholes second-order approximations P2,H (dotted line)

for four different strike prices E1 = 1900, E2 = 1975, E3 = 2000, and E4 = 2025 and expiry date T = December 19, 2015, versus

time (September 1, 2014 – March 30, 2015) obtained with the optimal parameters from the observed implied volatility of put

options (i.e. Put Set). Right Panel: Observed call option prices (solid line), Black-Scholes second-order approximations C2,H

(dotted line) for four different strike prices E1 = 1900, E2 = 1975, E3 = 2000, and E4 = 2025 and expiry date T = December

19, 2015, versus time (September 1, 2014 – March 30, 2015) obtained with the optimal parameters from the observed implied

volatility of put options (i.e. Put Set).
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Figure 8: Implied volatility approximation Σ2,H as a function of the forward log-moneyness for all times to maturity obtained

by using the optimal parameters Call Set (left) and Put Set (right). Period: September 1, 2014 – March 30, 2015.
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gies. Second, estimating the model parameters by minimizing the implied volatilities avoids biased approx-

imations caused by very different magnitudes of prices. In the empirical analysis we have four strike prices

for call and put options (i.e., nE = 4) and nT = 150.

We use a metric variable steepest descent algorithm to solve problem (78) (see, for example, Recchioni

and Scoccia (2000), Fatone et al. (2013)). This is an iterative algorithm which generates a sequence of

points, Θk, k = 0, 1, . . ., belonging to the interior of the feasible region and moving opposite to the gradient

vectors of the objective function computed in a suitable metric.

Running this procedure, we obtain two optimal sets of model parameters, one obtained using the call

options (Call Set) and the other using the put options (Put Set).

Some descriptive statistics for the estimated model parameters, initial variance, Feller ratio, and observed

implied volatility are given for the two sets in Table 7. We observe that the main difference between the

two sets is the estimates of the long-term mean. The difference in this parameter estimates is due to market

imperfections that lead to a spread between the implied volatility σo of call and put options. In fact, the

absolute value of the implied volatility spread is 0.04 on average while the relative absolute spread (i.e. the

ratio of the spread to implied volatility from the call) is 0.24. Interestingly, the absolute difference between

the square root of the two long term variances is 0.05 and the ratio of this difference to square root of the

call variances is 0.29, thus mirroring the implied volatilty spread.
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Figure 9: Observed option prices (solid line) and one-day ahead estimates computed using Black-Scholes second-order ap-

proximation (dotted line) for four different strike prices E1 = 1900, E2 = 1975, E3 = 2000, and E4 = 2025 and with expiry

date T = December 19, 2015, versus time (September 1, 2014 – March 30, 2015). Call price one-day ahead estimates using the

Call Set (left panel); Put price one-day ahead using the Put Set (on the right). Average relative errors of call and put options:

7.9% and 6.2% respectively.

Figures 6 and 7 show the observed and Black-Scholes second-order (solid line and dotted line, respec-

tively) call and put option prices. The approximations in Figure 6 are obtained using the model parameters

estimated by the observed implied volatility from call options (i.e. Call Set) while those in Figure 7 are

obtained using the model parameters estimated by the observed implied volatility from put options (i.e.,

Put set).

In Figure 6 the relative errors EC are, on average, 0.027 (i.e., 2.7%) since we are using the Call Set. These
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errors are inline with those in Pacati et al. 2018 where a double Heston with jump is used. By contrast,

using the model parameters of the Call Set, the relative errors of the put options, EP are, on average, 0.22

(i.e., 22%) which is compatible with the observed relative volatility spread of 0.24 (i.e., 24%).

When we use the Put Set to approximate the call and put option prices, we observe that the relative

errors for the put options, EP are, on average, 0.031 (i.e., 3.1%) while the relative errors for the call options

EC are, on average, 0.21 (i.e., 21%) inline with the observed relative volatility spread.

The volatility spread can be observed in Figure 8 which show the implied volatility approximations Σ2,H as

a function of forward log-moneyness mE (see Eq. (54)) for all times to maturity corresponding to the Call

Set (left panel) and Put Set (right panel).

We conclude this section testing the potential of the calibrated parameters in estimating option prices

one-day ahead. Figure 9 shows the one-day ahead estimates for call (left panel) and put (right panel) option

prices. Specifically, the option estimates at time t+1 is carried out using the value of the optimal parameters

at time t. The call one-day ahead estimated prices are obtained using the model parameters from the Call

Set while the put one-day ahead estimated price from the Put Set. The relative errors of the one-day ahead

estimates are, on average, 7.9% for the call option and 6.2% for the put options.

6 Conclusions

Although numerical methods for option pricing are extremely powerful in terms of accuracy, analytical

approximations continue to be proposed for ease of use and to clearly connect the features of the model

to the observed characteristics of the implied volatility surface. Along these lines, this paper presented an

approach to extract the Gaussian behind the multi-factor Heston model that clearly connects the Black-

Scholes framework to the multi-factor Heston framework. In detail, the Gaussian kernel which constitutes

the “backbone” of the multi-factor Heston model allows for simple Black-Scholes-like option formulas and a

simple expression for the implied volatility. The latter is able to explain well-known findings in the volatility

smile. The main quantity responsible for the deviation from the Black-Scholes world is the price skewness;

that is, S1 is responsible for the smile asymmetry. For sufficiently large values of S1, a non-convex volatility

smile may be observed.

The simulation study and empirical analysis show that the second-order approximations for call and put

options and the implied volatility approximation provide consistent results and a good approximation for

the Heston option price formulas up to volatilities of volatilities on the order of 50%.

The results of this work suggest further investigations into the potential of the approximation for the

Heston Greeks in several applications, such as portfolio management. As well, while the Black-Scholes

formulas developed here could extend to the affine class of models without jumps, future work will entail

developing a similar formula for affine models with jumps.

Appendix A: Proofs

Proof of Proposition 2.1

We recall the backward Kolmogorov equation satisfied by the function M given in (6) as a function of the
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past log-price x and time t:

−∂M
∂t

=
1

2

n∑
j=1

vj
∂2M

∂x2
+

1

2

n∑
j=1

γ2
j vj

∂2M

∂v2
j

+
n∑
j=1

γjρjvj
∂2M

∂ x∂vj

+
n∑
j=1

χj(v
∗
j − vj)

∂M

∂vj
+

r(t)− 1

2

n∑
j=1

vj

 ∂M

∂x
(80)

with final condition

M(x, v, t′, x′, t′) = δ(x− x′), (81)

where δ(·) is the Dirac delta function. We look for M in the form

M(x, v, t, x′, t′) =
1

2π

∫ +∞

−∞
eık(x′−x)−ı k

∫ t′
t r(s)ds+A(k,t,t′)−

∑n
j=1 vjBj(k,t,t

′)dk,

M(x, v, t, x′, t′) =
1

2π

∫ +∞

−∞
eık(x′−x))−ı k

∫ t′
t r(s)ds+Q(k,t,t′,v;Θv)dk,

x, x′ ∈ R, v ∈ Rn
+
, t, t′ ≥ 0, t′ − t > 0, (82)

where Q is defined as

Q(t′ − t, v, k; Θv) = A(k, t, t′)−
n∑
j=1

vjBj(k, t, t
′). (83)

Substituting Eq. (83) into Eq. (80), we obtain the Riccati equation satisfied by A and Bj (see Duffie et al.

2000; Fatone et al. 2009):

d

dt
A =

n∑
j=1

χjv
∗
jBj , (84)

and for j = 1, 2, . . . , n,

d

dt
Bj = χjBj +

1

2
γ2
jB

2
j + ı k ρjγjBj −

k2

2
+
ı k

2
,

(85)

with final conditions

A(k, t′, t′) = 0, Bj(k, t
′, t′) = 0, j = 1, 2, . . . , n. (86)

We now rewrite Q (Eq. (83)). Eqs. (84) and (86) give

A(k, t, t′) =

n∑
j=1

Aj(k, t, t
′) = −

n∑
j=1

χjv
∗
j

∫ t′

t
Bj(k, τ, t

′)dτ , (87)

where

Aj(k, t, t
′) = −χjv∗j

∫ t′

t
Bj(k, τ, t

′)dτ , (88)
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while Eqs. (85) and (86) give

d

dt

(
e−χjtBj(k, t, t

′)
)

= e−χjt
(
ı kρjγjBj(k, t, t

′) +
1

2
B2
j (k, t, t′)

)
+ e−χjt

(
k2

2
− ık

2

)
. (89)

Integrating, we obtain

Bj(k, t, t
′) = −

∫ t′

t
e−χj(s−t)

[
ı kρjγjBj(k, s, t

′) +
1

2
γ2
jB

2
j (k, s, t′)

]
−
(
−k

2

2
+ ı

k

2

)∫ t′

t
e−χj(s−t)ds.

(90)

Using Eqs. (87) and (90), we obtain

Aj(k, t, t
′)− vjBj(k, t, t′) =

v∗jχj

∫ t′

t

∫ t′

τ
e−χj(s−t)

[
ı kρjγjBj(k, s, t

′) +
1

2
γ2
jB

2
j (k, s, t′)

]
dsdτ +

(
k2

2
− ık

2

)
v∗jχj

∫ t′

t

∫ t′

τ
e−χj(s−t)dsdτ

+vj

∫ t′

t
e−χj(s−t)

[
ı kρjγjBj(k, s, t

′) +
1

2
γ2
jB

2
j (k, s, t′)

]
ds+ vj

(
−k

2

2
+ ı

k

2

)∫ t′

t
e−χj(s−t)ds. (91)

Inverting the integration order, we obtain

Aj(k, t, t
′)− vjBj(k, t, t′) = +

(
k2

2
− ık

2

)∫ t′

t

[
v∗jχj

∫ τ

t
e−χj(s−t)dτ

]
ds

+

∫ t′

t

[
ı kρjγjBj(k, s, t

′) +
1

2
γ2
jB

2
j (k, s, t′)

] [
v∗jχj

∫ τ

t
e−χj(s−t)dτ

]
ds

+

(
−k

2

2
+ ı

k

2

)∫ t′

t
vje
−χj(s−t)ds+

∫ t′

t

[
ı kρjγjBj(k, s, t

′) +
1

2
γ2
jB

2
j (k, s, t′)

] [
vje
−χj(s−t)

]
ds. (92)

Bearing in mind that vj is the variance at time t and that the conditional mean of the point-in-time volatility

is

E(vj,s | Ft) = vj,te
−χj(s−t) + v∗j (1− e−χj(s−t)), s ≥ t, (93)

Eq. (92) becomes

Aj(k, t, t
′)− vjBj(k, t, t′) =

∫ t′

t

[
ı kρjγjBj(k, s, t

′) +
1

2
γ2
jB

2
j (k, s, t′) +

(
−k

2

2
+ ı

k

2

)]
E(vj,s | Ft)ds.

(94)

Eq. (94) implies

n∑
j=1

(
Aj(k, t, t

′)− vjBj(k, t, t′)
)

= −k
2

2
Γ(t, t′) +

ı k

2
Γ(t, t′) +

n∑
j=1

∫ t′

t
E(vj,s | Ft)

[
1

2
γ2
jB

2
j (k, s, t′) + ı kρjγjBj(k, s, t

′)

]
ds, (95)

where Γ is given in formula (13). This proves formulas (7) and (11). Formula (12) follows if we apply the

convolution theorem for the inverse Fourier transform.

We now prove Eq. (8). First, we observe that Bj can be computed explicitly using a standard approach

for the Riccati equations:

Bj = − 2

γ2
j

d
dtCj

Cj
. (96)
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Substituting Bj into (85), we obtain

− 2

γj

d2

dt2
Cj

Cj
+

2

γ2
j

(
d
dtCj

Cj

)2

= − 2

γ2
j

(χj + ı kρjγj)
d
dtCj

Cj
+

2

γ2
j

(
d
dtCj

Cj

)2

+
1

2
(−k2 + ı k), (97)

that is, Cj is the solution to the following initial value problem:

d2

dt2
Cj − (χj + ı kρjγj)

d

dt
Cj +

γ2
j

4
(−k2 + ı k)Cj = 0, (98)

with initial conditions

Cj(k, t
′, t′) = 1,

d

dt
Cj(k, t

′, t′) = 0. (99)

Solving problem (98), (99) we obtain

Bj(k, t, t
′) =

1

2
(k2 − ı k)B̃j(k, t, t

′), (100)

where

B̃j(k, t, t
′) =

1− e−2ζj(t
′−t)

(ζj + νj) + (ζj − νj)e−2ζj(t′−t)
, (101)

in which ζj and νj are the quantities in Eqs. (9) and (10). Note that λ1 = νj − ζj and λ2 = νj + ζj are the

complex roots of the characteristic equation associated with differential equation (98).

This concludes the proof. �

Proof of Proposition 2.2

It is easy to see that the conditional marginal M in (6) can be rewritten as

M(x, v, t, x′, t′) =
1

2π

∫ +∞

−∞
e
ık
[
(x′−x)−

∫ t′
t r(s)ds+ 1

2
Γ1(t,t′)

]
− 1

2
Γ1(t,t′)k2︸ ︷︷ ︸

Gaussian kernel

e
∑n
j=1

∫ t′
t E(vj,s | Ft)Lj(k,s,t′)ds︸ ︷︷ ︸

contribution fromvols of vols

dk,

(102)

where Lj is given by

Lj(k, s, t
′) =

γ2
j

2
B2
j (k, s, t′) + ı kρjγj

(
Bj(k, s, t

′) +
(ık + 1)

2

(1− e−χj(t′−s))
χj

)
. (103)

Here, Bj , S1, and Γ1 are given in Eqs. (8), (19), and (20), respectively. Formula (102) follows by summing

and subtracting the term S1(−k2 + ı k) in the exponent of the integrand in Eq. (11), where S1 is given in

Eq. (19).

Let us prove that the following expansion in powers of γj as γj → 0, j = 1, 2, . . . , n, holds:

Lj(k, s, t
′) = ı k ρj γj

(
1

2
(k2 + 1)

(1− e−χj(t′−s))
χj

)
+O(γ2

j ), γj → 0. (104)

Using formulas (8) and (103), we have

Bj(k, s, t
′) =

1

2
(k2 − ık)

(1− e−χj(t′−s))
χj

+O(γj), γj → 0 s < t′. (105)

29



Eq. (105) follows from Eq. (85) if we neglect the terms that multiply powers of γj larger than zero, that is,

by solving the problem

dBj,0
dt

(k, t, t′)− χj Bj,0(k, t, t′) = −k
2

2
+
ı k

2
(106)

with final condition

Bj,0(k, t′, t′) = 0. (107)

The solution Bj,0 is the zero-order term of the expansion in powers of γj as γj approaches zero. It reads

Bj,0(k, t, t′) =
1

2

(
k2 − ı k

) (1− e−χj(t′−t))
χj

. (108)

Substituting Eq. (105) into Eq. (103) and bearing in mind that we are interested only in the first two terms

(zero and first order) in the expansion of Lj as γj approaches zero, we obtain

Lj(k, s, t
′) =

γ2
j

2
B2
j (k, s, t′) + ı kρjγj

(
1

2
(k2 − ık)

(1− e−χj(t′−s))
χj

+O(γj) +
(ık + 1)

2

(1− e−χj(t′−s))
χj

)

=
γ2
j

2
B2
j (k, s, t′) + ı kρjγj

(
k2

2

(1− e−χj(t′−s))
χj

+O(γj) +
1

2

(1− e−χj(t′−s))
χj

)
=

1

2

ρjγj
χj

(1− e−χj(t′−s))
(
ık3 + ık

)
+O(γ2

j ), γj → 0+. (109)

This proves formula (104).

Substituting Lj with 1
2
ρjγj
χj

(1− e−χj(t′−s))
(
ık3 + ık

)
in formula (102) and using the convolution theorem

for the inverse Fourier transform, we obtain formula (18).

This concludes the proof. �

Proof of Proposition 2.3

We start by proving Eqs. (24) and (25). To this end, we rewrite M1 in (23) as follows:

M1(x, v, t, x′, t′) = GMH(x′ − x, t, t′) +

∫ +∞

−∞
GMH(x′ − x− y, t, t′)

[
S1(t, t′)

2π

∫ +∞

−∞
eı k y

(
ı k + ı k3

)]
dk dy .

(110)

Integrating Eq. (110), we have:∫ +∞

−∞
M1(x, v, t, x′, t′)dx′ = 1 +

∫ +∞

−∞

[
S1(t, t′)

2π

∫ +∞

−∞
eı k y

(
ı k + ı k3

)]
dk dy

= 1 + S1(t, t′)

∫ +∞

−∞
δ(k)

(
ı k + ı k3

)
dk = 1 . (111)

Likewise, ∫ +∞

−∞
ex
′
M1(x, v, t, x′, t′)dx′ = ex + ex

∫ +∞

−∞

[
S1(t, t′)

2π

∫ +∞

−∞
eı y (k−ı) (ı k + ı k3

)]
dk dy

= ex + S1(t, t′)ex
∫ +∞

−∞
δ(k − ı)

(
ı k + ı k3

)
dk = ex . (112)
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We now prove formula (110), that is, formula (23). The latter is obtained from Eq. (18) using a suitable

expansion of the Airy function as the vol of vol goes to zero. In fact, when γj → 0, j = 1, 2, . . . , n we have

S1 → 0. We use the following expansion of AS1 as a function of S1 when S1 approaches zero:

AS1(y) =
1

2π

∫ +∞

−∞
eı k y eS1(t,t′)(ık3+ık)dk

=
1

2π

∫ +∞

−∞
eı k y

(
1 + S1(t, t′)(ık3 + ık) +O(S2

1(t, t′)
)
dk, S1 → 0. (113)

Thus, Eq. (113) gives

AS1(y) = δ(y) + S1(t, t′)
(
δ′(y)− δ′′′(y)

)
+ o

(
‖γ‖
)
, ‖γ‖ → 0, (114)

where δ(·) is the Dirac delta function and δ′(·) and δ′′′(·) are its first- and third-order derivatives. Substituting

Eq. (114) into Eq. (18) and using the definition of the derivatives of the Dirac delta function, we have

M(x, v, t, x′, t′) = GMH(x′ − x, t, t′) + S1(t, t′)

[
− d

dy
+

d3

dy3

]
GMH(x′ − x− y, t, t′)

∣∣∣∣
y=0

+ o
(
‖γ‖
)
,

‖γ‖ → 0. (115)

Eq. (115) and the fact that dj

dyj
GΓ = (−1)j dj

dx′j
GΓ implies (23).

We conclude by proving Eq. (26). We compute∫ +∞

−∞

(
x′ − x−

∫ t′

t
r(s) +

1

2
Γ0(t, t′)

)
M1(x, v, t, x′, t′)dx′

∫ +∞

−∞

(
x′ − x−

∫ t′

t
r(s) +

1

2
Γ0(t, t′)− S1(t, t′)

)
GΓ1(x′ − x, t, t′)dx′ + S1(t, t′)

+S1(t, t′)

∫ +∞

−∞

(
x′ − x−

∫ t′

t
r(s) +

1

2
Γ0(t, t′)

)[
−d

3GΓ1

dx′3
(x′ − x, t, t′) +

dGΓ1

dx′
(x′ − x, t, t′)

]
dx′.

(116)

The thesis follows by integrating by parts and bearing in mind that Γ1 = Γ0 − 2S1 and∫ +∞

−∞

(
x′ − x−

∫ t′

t
r(s) +

1

2
Γ1(t, t′)

)
GΓ1(x′ − x, t, t′)dx′ = 0.

This concludes the proof. �

Proof of Proposition 2.4

It is easy to see that the conditional marginal M in (6) can be rewritten as

M(x, v, t, x′, t′) =
1

2π

∫ +∞

−∞
e
ık
[
(x′−x)−

∫ t′
t r(s)ds+ 1

2
Γ2(t,t′)

]
− 1

2
Γ2(t,t′)k2︸ ︷︷ ︸

Gaussian kernel

e
∑n
j=1

∫ t′
t E(vj,s | Ft)Rj(k,s,t′)ds︸ ︷︷ ︸

contribution fromvols of vols

dk,

(117)
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where Rj is given by

Rj(k, s, t
′) =

γ2
j

2

B2
j (k, s, t′) +

(k2 − ı k)

4

(
1− e−χj(t′−s)

χj

)2
+ ı kρjγj

(
Bj(k, s, t

′) +
(ık + 1)

2

(
1− e−χj(t′−s)

χj

))
.

(118)

Here, Bj is given in Eq. (8), and Γ2 is defined in Eq. (31). Formula (117) follows by summing and subtracting

the term (−S1(t, t′) + S2(t, t′))(−k2 + ı k) in the exponent of the integrand in Eq. (11), where S1 is given in

Eq. (19).

We prove that the following expansion in powers of γj as γj → 0, j = 1, 2, . . . , n, holds:

Rj(k, s, t
′) =

γ2
j

2
(k4 − 2ık3 − ık)

ψ2
j (s, t

′)

4
+
γ2
j ρ

2
j

2χj
(k4 − ı k3)ψj(s, t

′)fj(s, t
′)

+
ρj γj

2
(ı k3 + ı k)ψj(s, t

′) + o(γ2
j ), γj → 0, (119)

where ψj and fj are given by:

ψj(t, t
′) =

(1− e−χj(t′−t))
χj

, t < t′, (120)

and

fj(t, t
′) =

(
ψj(t

′ − t)− (t′ − t)e−χj(t′−t)
)

= e−χj(t
′−t)

∫ t′

t
(eχj(t

′−s) − 1)ds t < t′. (121)

To this end, we prove the following expansion for Bj (8):

Bj(k, t, t
′) = Bj,0(k, t, t′) + γjBj,1(k, t, t′) +O(γ2

j ), γj → 0+, t < t′. (122)

The zero-order term of the expansion, Bj,0 is given in Eq. (107) while the first-order term is the solution of

the following problem:

dBj,1
dt

(k, t, t′)− χj Bj,1(k, t, t′) = ı k ρj Bj,0(k, t, t′), (123)

with final condition Bj,1(k, t′, t′) = 0. Thus, Bj,1 is

Bj,1(k, t, t′) = − ı k ρj
2χj

(
k2 − ı k

)
fj(t, t

′) . (124)

Using Eq. (122) in Eq. (118), we have

Rj(k, s, t
′) =

γ2
j

2

(
B2

0(k, s, t′) +
(k2 − ı k)

4
ψ2
j (s, t

′)

)
+ı kρjγj

(
Bj,0(k, s, t′) + γjBj,1(k, s, t′) +

(ık + 1)

2
ψj(s, t

′)

)
+ o(γ2

j ) , γj → 0+, (125)

which also reads as

Rj(k, s, t
′) =

γ2
j

2

(
ψ2
j (s, t

′)

4
(k2 − ık)2 +

(k2 − ı k)

4
ψ2
j (s, t

′)

)

+ı kρjγj

(
ψj(s, t

′)

2
(k2 − ı k) +

γjρj
2χj

fj(s, t
′)(−ık3 − k2) +

(ık + 1)

2
ψj(s, t

′)

)
+ o(γ2

j ) , γj → 0+.

(126)
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The expansion (119) follows from (126) with a simple computation.

Using expansion (119) in (117) we obtain

M(x, v, t, x′, t′) =
1

2π

∫ +∞

−∞
e
ık
[
(x′−x)−

∫ t′
t r(s)ds+ 1

2
Γ2(t,t′)

]
− 1

2
Γ2(t,t′)k2︸ ︷︷ ︸

Gaussian kernel

×

e

∑n
j=1

∫ t′
t E(vj,s | Ft)

[
γ2
j
2

(k4−2ık3−ık)
ψ2
j (s,t′)

4
+
γ2
j ρ

2
j

2χj
(k4−ı k3)ψj(s,t

′)fj(s,t′)+
ρj γj

2
(ı k3+ı k)ψj(s,t

′)+o(γ2
j )

]
ds︸ ︷︷ ︸

contribution fromvols of vols

dk,

(127)

that is,

M(x, v, t, x′, t′) =
1

2π

∫ +∞

−∞
e
ık
[
(x′−x)−

∫ t′
t r(s)ds+ 1

2
Γ2(t,t′)

]
− 1

2
Γ2(t,t′)k2︸ ︷︷ ︸

Gaussian kernel

×

eS1(0,T )(ı k3+ı k)+S2(0,T )(k4−2ık3−ık)+S2c(0,T )(k4−ı k3)+o(‖γ‖2)︸ ︷︷ ︸
contribution fromvols of vols

dk, (128)

where S1 is a linearly homogeneous function of the vols of vols while S2 and S2c are homogeneous function

of degree two.

We compute the first three terms of the expansion in powers of the vols of vols of the function

E(γ) = eS1(0,T )(ı k3+ı k)+S2(0,T )(k4−2ık3−ık)+S2c(0,T )(k4−ı k3). (129)

Formula (28) follows bearing in mind that we have:

∂E
∂γj

∣∣∣∣
γ=0

= (ı k3 + ı k)
∂S1

∂γj
, (130)

∂2E
∂γjγi

∣∣∣∣
γ=0

= (ı k3 + ı k)2∂S1

∂γi

∂S1

∂γj
, i 6= j, (131)

and

∂2E
∂γ2

j

∣∣∣∣∣
γ=0

= (ı k3 + ı k)2

(
∂S1

∂γj

)2

+
∂2S2

∂γ2
j

(k4 − 2ık3 − ık) +
∂2S2c

∂γ2
j

(k4 − ı k3). (132)

This concludes the proof since Eqs. (32)–(34) can be proven as in Proposition 2.2. �

Proof of Proposition 3.1

The price of a European vanilla call option with maturity T , spot price S0, and strike price E discounted

by a deterministic factor B(T ) is given in Eq. (44). Thus, using formula (22) for M in (44), we have

C(S0, T, E) = B(T )

∫ +∞

logE
(ex
′ − E)GΓ1(x′ − logS0, 0, T )dx′

+B(T )S1(0, T )

∫ +∞

logE
(ex
′ − E)

[
−d

3GΓ1

dx′3
(x′ − logS0, t, t

′) +
dGΓ1

dx′
(x′ − logS0, t, t

′)

]
dx′ + o

(
‖γ‖
)
,

‖γ‖ → 0. (133)
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Formula (51) follows by integrating by parts. Formula (52) is obtained in a similar way. That is, we have

P (S0, T, E) = B(T )

∫ logE

−∞
(E − ex′)GΓ1(x′ − logS0, 0, T )dx′

+B(T )S1(0, T )

∫ logE

−∞
(E − ex′)

[
−d

3GΓ1

dx′3
(x′ − logS0, t, t

′) +
dGΓ1

dx′
(x′ − logS0, t, t

′)dx′
]

+ o
(
‖γ‖
)
,

‖γ‖ → 0. (134)

The correction R1,MH for the call option is the same as the put correction since there are two changes of

sign: one due to the payoff function and the other due to integration by parts over the interval (−∞, logE)

rather than (logE, +∞). This concludes the proof. �

Proof of Proposition 3.2

The price of a European vanilla call option with maturity T , spot price S0, and strike price E discounted

by a deterministic factor B(T ) is given in Eq. (44). Thus, using formula (27) for M in (44), we have

C(S0, T, E) = B(T )

∫ +∞

logE
(ex
′ − E)GΓ2(x′ − logS0, 0, T )dx′

+B(T )S1(0, T )

∫ +∞

logE
(ex
′ − E)

[
−d

3GΓ2

dx′3
+
dGΓ2

dx′

]
(x′ − logS0, 0, T )dx′

+S2(0, T )

∫ +∞

logE
(ex
′ − E)

[
d4GΓ2

dx′4
+ 2

d3GΓ2

dx′3
− dGΓ2

dx′

]
(x′ − logS0, 0, T )dx′

+S2c(0, T )

∫ +∞

logE
(ex
′ − E)

[
d4GΓ2

dx′4
+
d3GΓ2

dx′3

]
(x′ − logS0, 0, T )dx′

+
1

2
S2

1(0, T )

∫ +∞

logE
(ex
′ − E)

[
d6GΓ2

dx′6
− 2

d4GΓ2

dx′4
+
d2GΓ2

dx′2

]
(x′ − logS0, 0, T )dx+ o

(
‖γ‖
)
, ‖γ‖ → 0. (135)

As mentioned above, the notation [ · ] (· , ·, · ) means that the function in the square parentheses is evaluated

at (· , ·, · ). Formula (57) follows by integrating by parts.

Proceeding in a similar manner, we obtain the approximation for the put option in Eq. (58). As mentioned

above, the correction R2,MH for the call option is the same as the put correction since there are two changes

of sign: one due to the payoff function and the other due to integration by parts over the interval (−∞,

logE) rather than (logE, +∞).

This concludes the proof. �

Proof of Proposition 3.3

Let us prove formula (68).

When γ = 0 (i.e., all vols of vols equal zero), we have Γ1(0, T ) equal to Γ0(0, T ) and the correction term

R1,MH equal to zero, which implies

Σ1,MH(0) =
√

Γ0(0, T ). (136)

We compute the partial derivative of both sides of equation (66) with respect to γj , j = 1, 2, . . . , n and we

evaluate the derivatives at γ = 0. Using the Black-Scholes Vega (i.e., ∂CBS
∂σ |γ=0 = S0N

′(d1(Γ0))
√
T , Eq.
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(56)), and the derivatives of Γ1 and S1 with respect to γj , we have

∂CBS
∂σ

∣∣∣∣
γ=0

∂

∂γj
Σ1,MH(0) =

ρj Tj(0, T )

2χj
S0N

′(d1(Γ0))

[
− 1√

Γ0(0, T )
− d2(Γ0) +

1√
Γ0(0, T )

]
,

(137)

where

Tj(t, t′) =

∫ t′

t

(
1− e−χj(t′−s)

)
E(vj,s | Ft)ds, (138)

while d1 and d2 are given in Eqs. (49) and (50).

Eq. (137) and the expression for the Black-Scholes Vega, ∂CBS∂σ |γ=0 = S0N
′(d1(Γ0))

√
T , yield the deriva-

tive ∂
∂γj

Σ1,MH at γ = 0:

∂

∂γj
Σ1,MH

∣∣∣∣
γ=0

=
ρj Tj(0, T )

2χj

1√
Γ0(0, T )

(
+

1

2
−

(ln(S0/E) +
∫ T

0 r(s)ds)

Γ0(0, T )

)
, (139)

thus implying

Σ1,MH(γ) =
√

Γ0(0, T )− 1√
Γ0(0, T )

(
(ln(S0/E) +

∫ T
0 r(s)ds)

Γ0(0, T )
− 1

2

)
n∑
j=1

γjρj
2χj
Tj(0, T ) + o

(
‖γ‖
)
, ‖γ‖ → 0 .

(140)

We now prove Eq. (70).

We observe that Eq. (70) can be rewritten as

Σ2,MH(γ) = Σ1,MH(γ) + Σ2,c(γ), (141)

where Σ2,c(γ) is the contribution to the second-order approximation due to the second-degree powers of vols

of vols:

Σ2,c(γ) =
1

2

S2
1

Γ0

√
Γ0

[
(1− 6

Γ0
)(mE +

1

2
Γ0)2 + (

3

Γ0
− 1)(mE +

1

2
Γ0) +

2

Γ0

)
S2

Γ0

√
Γ0

[
(mE + 1

2Γ0)2

Γ0
− (mE +

1

2
Γ0)− 1

]
+

S2c

Γ0

√
Γ0

[
(mE + 1

2Γ0)2

Γ0
− 1

]
. (142)

The derivation of the linear approximation Σ1,MH is the same as above. In order to derive the second-

order term of the expansion of Σ in powers of vols of vols (i.e., Σ2c), we need to compute the second-order

derivatives of Σ with respect the vols of vols. We have

1

T

∂2CBS
∂σ2

∣∣∣∣
γ=0

(
∂Σ

∂γj

)2
∣∣∣∣∣
γ=0

+
1√
T

∂CBS
∂σ

∣∣∣∣
γ=0

∂2

∂γ2
j

Σ2,MH(0) =

=
1

T

∂2CBS
∂σ2

∣∣∣∣
γ=0

(
∂S1

∂γj

)2 1

Γ0

[
− 2

Γ0
(mE +

1

2
Γ0)− 1

]
+

1√
T

∂CBS
∂σ

∣∣∣∣
γ=0

1

Γ
3/2
0

(
∂S1

∂γj

)2

×[
−1 +

6

Γ0
(mE +

1

2
Γ0) +

(mE + 1
2Γ0)4

Γ3
0

+
(mE + 1

2Γ0)3

Γ2
0

− (
6

Γ0
+ 1)

(mE + 1
2Γ0)

Γ0
+ (

3

Γ0
+ 1)[1− (mE +

1

2
Γ0)]

]

+
∂2S2

∂γ2
j

V ega(Γ0)
√
T Γ

3/2
0

[
(mE + 1

2Γ0)2

Γ0
− (mE +

1

2
Γ0)− 1

]
+
∂2S2c

∂γ2
j

V ega(Γ0)
√
T Γ

3/2
0

[
(mE + 1

2Γ0)2

Γ0
− 1

]
(143)
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and

1

T

∂2CBS
∂σ2

∣∣∣∣
γ=0

(
∂Σ

∂γj

)(
∂Σ

∂γi

)∣∣∣∣
γ=0

+
1√
T

∂CBS
∂σ

∣∣∣∣
γ=0

∂2

∂γj∂γi
Σ2,MH(0) =

=
1

T

∂2CBS
∂σ2

∣∣∣∣
γ=0

(
∂S1

∂γj

)(
∂S1

∂γi

)
1

Γ0

[
− 2

Γ0
(mE +

1

2
Γ0)− 1

]
+

1√
T

∂CBS
∂σ

∣∣∣∣
γ=0

1

Γ
3/2
0

(
∂S1

∂γj

)(
∂S1

∂γi

)
×[

−1 +
6

Γ0
(mE +

1

2
Γ0) +

(mE + 1
2Γ0)4

Γ3
0

+
(mE + 1

2Γ0)3

Γ2
0

− (
6

Γ0
+ 1)

(mE + 1
2Γ0)

Γ0
+ (

3

Γ0
+ 1)[1− (mE +

1

2
Γ0)]

]
.

(144)

Bearing in mind that we have

∂CBS
∂σ

∣∣∣∣
γ=0

= V ega(Γ0) (145)

and

∂2CBS
∂σ2

∣∣∣∣
γ=0

= V omma(Γ0) = V ega(Γ0)

√
T

Γ
3/2
0

(mE +
1

2
Γ0)(mE −

1

2
Γ0), (146)

an easy but involved computation show that the addenda containing powers of (mE + 1
2Γ0) higher than two

are canceled by the addenda involving the Black-Scholes Vomma.

This concludes the proof. �

Appendix B: Formulas from Recchioni and Sun (2016) and Tables from

Christoffersen et al. (2009)

The Recchioni and Sun (2016) formulas read as

CMH(S0, T, E) =e(q−1)
∫ T
0 r(s)ds S0

2π

∫ +∞

−∞

(
S0

E

)(q−1−ık)

e−ı k
∫ T
0 r(s)dseQv,q(T,v0,k;Θv)

−k2 − (2q − 1)ık + q(q − 1)
dk,

T > 0, S0, v0 > 0, q > 1 , (147)

and

PMH(S0, T, E) =e(q−1)
∫ T
0 r(s)ds S0

2π

∫ +∞

−∞

(
S0

E

)(q−1−ık)

e−ı k
∫ T
0 r(s)dseQv,q(T,v0,k;Θv)

−k2 − (2q − 1)ık + q(q − 1)
dk,

T > 0, S0, v0 > 0, q < 0 , (148)

where, in the case of the Heston/double Heston model, Qv,q is the elementary function given by

Qv,q(t
′ − t, v, k; Θv) =

n∑
j=1

−(2χjv
∗
j /γ

2
j ) ln(sq,vj ,b,/(2ζq,vj ))

−(2χv∗j /γ
2
j )(ζq,vj + µq,vj )(t

′ − t)−(2vj/γ
2
j )(ζ2

q,vj − µ
2
q,vj )sq,vj ,g/sq,vj ,b , (149)
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with µq,vj , ζq,vj , sq,vj ,g, and sq,vj ,b defined as follows:

µq,vj = −1

2
(χj + (ı k − q) γj ρj), (150)

ζq,vj =
1

2

[
4µ2

q,vj + 2γ2
jϕq(k)

]1/2
, (151)

sq,vj ,g = 1− e−2ζq,vj (t′−t), (152)

sq,vj ,b = (ζq,vj + µq,vj )e
−2ζq,vj (t′−t) + (ζq,vj − µq,vj ). (153)

The quantity ϕq in Eq. (150) is given by

ϕq(k) =
k2

2
+ ı

k

2
(2q − 1)− 1

2
(q2 − q), k ∈ R. (154)

Table 8: Estimated parameters, one-factor stochastic volatility model (see Panel A, Table 3 in Christoffersen et al. (2009)).

year χ v∗ γ ρ 2χ v∗

γ2

1990 1.9561 0.0593 0.8516 -0.6717 0.3198

1991 2.4240 0.0442 0.5834 -0.6957 0.6295

1992 2.5476 0.0375 0.5519 -0.6865 0.6272

1993 2.6846 0.0254 0.5105 -0.6703 0.5233

1994 4.4324 0.0233 0.4560 -0.8519 0.9933

1995 2.5070 0.0190 0.5597 -0.5061 0.3041

1996 3.1798 0.0298 0.5823 -0.5619 0.5589

1997 2.1672 0.0528 0.6018 -0.5666 0.6319

1998 1.8315 0.1029 0.8079 -0.7521 0.5774

1999 2.1310 0.1091 0.7552 -0.7404 0.8152

2000 2.5751 0.0678 0.6561 -0.6975 0.8111

2001 3.8191 0.0564 0.6489 -0.7410 1.0231

2002 3.3760 0.0532 0.5973 -0.7725 1.0068

2003 1.7201 0.0691 0.6837 -0.5939 0.5085

2004 1.6048 0.0464 0.3796 -0.7670 1.0335
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Table 9: Estimated parameters, two-factor stochastic volatility model (see Panel B, Table 3 in Christoffersen et al. (2009)).

year χ1 v∗1 γ1 ρ1 χ2 v∗2 γ2 ρ2
2χ1v

∗
1

γ21

2χ2v
∗
2

γ22

1990 0.2370 0.0227 1.0531 -0.7695 8.4983 0.0273 0.6827 -0.8417 0.0097 0.9955

1991 0.2966 0.0197 1.8157 -0.8575 4.4513 0.0319 0.3360 -0.6057 0.0035 2.5.155

1992 0.2022 0.0051 6.2755 -0.9670 0.7424 0.0684 0.2740 -0.8040 0.0001 1.3527

1993 0.2000 0.0052 5.2500 -0.9666 0.6131 0.0569 0.2123 -0.8216 0.0001 1.5480

1994 0.1668 0.0050 9.4346 -0.9877 0.2098 0.1633 0.1706 -0.9364 0.0000 2.3543

1995 0.2061 0.0050 6.8941 -0.9206 1.4677 0.0242 0.2413 -0.7512 0.0000 1.2200

1996 0.2101 0.0052 2.0149 -0.9684 0.5561 0.0575 0.1868 -0.7978 0.0005 1.8327

1997 0.1397 0.0053 1.5423 -0.9914 0.1878 0.1648 0.1239 -0.8928 0.0006 4.0321

1998 0.1374 0.0051 2.1196 -0.9917 0.6247 0.1733 0.3965 -0.9117 0.0003 1.3772

1999 0.1388 0.0051 1.9895 -0.9917 0.7322 0.1736 0.3828 -0.9108 0.0003 1.7372

2000 0.1404 0.0052 1.9382 -0.9915 0.3542 0.1690 0.2292 -0.9024 0.0004 2.2789

2001 0.1433 0.0054 1.9115 -0.9911 0.2347 0.1655 0.2047 -0.8983 0.0004 1.8539

2002 0.1491 0.0058 1.9754 -0.9902 0.1855 0.1607 0.1715 -0.8896 0.0004 2.0270

2003 0.1638 0.0032 8.8078 -0.9838 0.4625 0.1198 0.3976 -0.6569 0.0000 0.7009

2004 0.1500 0.0059 1.9829 -0.9902 0.2335 0.1621 0.1971 -0.8918 0.0005 1.9486
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