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We develop an asset pricing model with stochastic transaction costs and investors with

heterogeneous horizons. Depending on their horizon, investors hold different sets of assets in

equilibrium. This generates segmentation and spillover effects for expected returns, where the

liquidity (risk) premium of illiquid assets is determined by investor horizons and the correlation

between liquid and illiquid asset returns. We estimate our model for the cross-section of U.S.

stock returns and find that it generates a good fit, mainly due to a combination of a substantial

expected liquidity premium and segmentation effects, while the liquidity risk premium is small.

I. Introduction

The investment horizon, and the associated demand for liquidity, is a key dimension on

which investors differ, with high-frequency traders and pension funds being at opposite ends of

the spectrum. Much of the literature that explores the impact of horizon on portfolio choice and

asset pricing derives from Merton (1971), which focuses on the intertemporal hedging demands

of long-term investors. The interaction of investment horizon and liquidity has received much less

attention. This is surprising given that the impact of transaction costs and other trading frictions

on portfolio performance depends heavily on the level of trading activity, which has a close

relation with the investor’s horizon.

We derive a new liquidity-based asset pricing model featuring risk-averse investors with

heterogeneous investment horizons and stochastic transaction costs. Investors with longer

investment horizons are less concerned about trading costs because they do not necessarily trade
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every period. Our model generates a number of new implications for the pricing of liquidity that

we test empirically on the cross-section of U.S. stock returns.

Previous theories of liquidity and asset pricing have largely ignored heterogeneity in

investor horizons, with the exception of the seminal paper of Amihud and Mendelson (1986), who

study a setting where risk-neutral investors have heterogeneous horizons. Their model generates

clientele effects: short-term investors hold the liquid assets and long-term investors hold the

illiquid assets, which leads to a concave relation between transaction costs and expected returns.1

Besides risk-neutrality, Amihud and Mendelson (1986) assume that transaction costs are constant.

However, there is much empirical evidence that liquidity is time-varying. Assuming stochastic

transaction costs, Acharya and Pedersen (2005) set out one of the most influential asset pricing

models with liquidity risk, where various liquidity risk premiums are generated. The model

includes homogeneous investors with a one-period horizon and thus implies a linear (as opposed

to concave) relation between expected transaction costs and expected returns. Our paper bridges

these two studies. It combines heterogeneous horizons, as in Amihud and Mendelson (1986), with

stochastic illiquidity and risk aversion, as in Acharya and Pedersen (2005). This leads to a

number of novel and important implications for the impact of both expected liquidity and

liquidity risk on asset prices.

Our model setup is easily described. We have multiple assets with i.i.d. dividends and

stochastic transaction costs, and many investor types with mean-variance utility over terminal

1Hopenhayn and Werner (1996) propose a similar set-up featuring risk-neutral investors with heterogeneity in
impatience and endogenously determined liquidity effects.
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wealth but different investment horizons. We obtain a unique stationary equilibrium in an

overlapping generations setting and we solve for expected returns in closed form, where expected

returns reflect a liquidity premium component and a risk premium component.

We show that, depending on the input parameters, investors with different horizons may

choose to invest in different sets of assets in equilibrium (”endogenous segmentation”). For

example, short-term investors may optimally choose not to invest in the most illiquid assets

because their expected returns are not sufficient to cover expected transaction costs. In contrast,

long-term investors trade less frequently and can afford to invest in illiquid assets. This clientele

partition is more general than in Amihud and Mendelson (1986): since our investors are risk

averse, they also consider the risk-return and diversification aspects of an asset when choosing

their investments. We show that, depending on the input parameters, either all investors hold all

assets in equilibrium (”integration”), some investors hold only a subset of assets (”partial

segmentation”), or investors with different horizons hold non-overlapping portfolios (”full

segmentation”).

Using various examples, we show the implications of our equilibrium model for expected

returns. For integrated assets, which are held by all investors, expected returns contain the

familiar compensation for expected transaction costs and a mixture of a liquidity risk premium

and standard-CAPM risk premium. Since long-term investors care less about liquidity risk, the

size of the liquidity risk premium depends on the risk-bearing capacity of long-term versus

short-term investors. Furthermore, the effect of expected liquidity is also smaller, given that

long-horizon investors do not trade every period.
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The expected returns of segmented assets, which are not held by all investors, contain

additional terms. More specifically, there are segmentation and spillover effects. The

segmentation risk premium is positive and is caused by imperfect risk sharing, since not all

investors hold these assets. The spillover risk premium can be positive or negative, depending on

the correlation between segmented and integrated asset returns. For example, if a segmented asset

is highly correlated with integrated assets, the spillover effect is negative and neutralizes the

segmentation risk premium, because in this case the segmented asset can be replicated (almost

exactly) by a portfolio of integrated assets.

The expected liquidity term also contains a segmentation effect, in that the expected

liquidity premium reflects the horizon of the investors that hold these assets. Along the same lines

as the risk premium, it also contains a spillover term, with a sign that is a function of the

correlation between integrated and segmented asset returns.

In summary, our model demonstrates that incorporating heterogeneous investment

horizons has a considerable impact on the way liquidity affects asset prices. It changes the relative

size of liquidity and market risk premiums, leads to cross-sectional differences in liquidity effects,

and generates segmentation and spillover effects. While our model is not designed to realistically

match observed moments of the holding periods of investors, it can provide a better intuition

about the effects of heterogeneous investment horizons on expected returns.

Armed with this array of novel theoretical predictions, we take the model to the data to

test its empirical relevance. Specifically, we analyze the cross-section of U.S. stocks over the

period 1964 to 2009 and use the illiquidity measure of Amihud (2002) to proxy for liquidity costs,
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as in Acharya and Pedersen (2005). We estimate our asset pricing model using the Generalized

Method of Moments (GMM) and find that a version with two horizons (one month and ten years)

generates a good cross-sectional fit of expected stock returns. Specifically, for 25 liquidity-sorted

portfolios, the heterogeneous-horizon model generates a cross-sectional R2 of 72.6% compared to

26.6% for the non-nested Acharya-Pedersen model. The improvement in R2 is thus substantial,

and a model comparison test shows that this improvement is marginally statistically significant.

We thus conclude, with moderate confidence, that our structural model generates a fit that is better

than the Acharya-Pedersen model, while imposing more economic structure on the composition

of the risk premium and the expected liquidity premium. As an upshot of our richer model, the

empirical estimates can also be used to make inferences about the risk-bearing capacity of

investors in each horizon class.

This estimated equilibrium exhibits a substantial degree of segmentation. In equilibrium,

short-term investors only hold the more liquid stock portfolios, while long-term investors hold

less liquid stocks. Stocks with intermediate liquidity levels are held by both investors. This leads

to sizable segmentation effects on expected returns. In addition, despite the small overlap

between the portfolios of short-term and long-term investors, there are substantial spillover effects

in the liquidity and risk premiums because the portfolio returns are highly correlated.

A key implication of our estimated model is that expected liquidity is much more

important, and liquidity risk is much less important, than in previous studies. Taking account of

the heterogeneity of investor horizons, we find an expected liquidity premium, averaged across all

25 liquidity sorted portfolios, of 4.58% per year. This compares with a figure of 0.73% in the
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homogeneous horizon model of Acharya and Pedersen (2005). While much of the literature

which assumes investor homogeneity has found substantial liquidity risk premiums (Pástor and

Stambaugh, 2003, Acharya and Pedersen, 2005, Sadka, 2006), our estimates imply a liquidity risk

premium of only 0.02% per annum. We also find that the fit of the model is barely changed if we

ignore liquidity risk altogether. Hence, once we allow for heterogeneous horizons and endogenous

segmentation, a liquidity risk premium is not needed to fit the U.S. cross-section of stock returns.

In the final part of the paper, we develop an extended version of the theoretical model that

generates time variation in the liquidity premium, by allowing for regime switches in transaction

costs. In this extended model the degree of segmentation can also vary across regimes. Using

some approximations, we again obtain analytically tractable asset pricing equations, in this case

for the expected returns in each regime. We first estimate the regime-switching model for

transaction costs and then estimate the regime-dependent model for expected returns. We again

find a large expected liquidity component in this model, which is higher in the illiquid regime. We

also find that short-term investors exhibit a flight-to-liquidity effect, that is, they endogenously

choose to only invest in the most liquid assets in the illiquid regime, while investing in a wider set

of assets in the liquid regime.

The remainder of the paper is organized as follows. Section II reviews the relevant

literature. Section III presents the liquidity asset pricing model. We set out our estimation

methodology and describe the data in Section IV. Section V presents our empirical findings. In

Section VI we extend the model to a setting with persistent transaction costs, and estimate this

extended model. We conclude with a summary of our results in Section VII.
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II. Related Literature

Our paper contributes to the existing literature on liquidity and asset pricing along several

dimensions. First, our model is related to theoretical work on portfolio choice and illiquidity (see

Amihud, Mendelson, and Pedersen, 2006, for an overview). Starting with the work by

Constantinides (1986), several researchers have examined multi-period portfolio choice in the

presence of transaction costs. In contrast to these papers, we focus on a general equilibrium

setting with heterogeneous investment horizons in the presence of liquidity risk. We obtain a

tractable asset pricing model by simplifying the analysis in other dimensions. In particular, we

assume no intermediate rebalancing for long-term investors.

Second, our empirical results contribute to a rich literature that has empirically studied the

asset pricing implications of liquidity and liquidity risk. Amihud (2002) finds that stock returns

are increasing in illiquidity both in the cross-section and in the time-series. Pástor and Stambaugh

(2003) show that the sensitivity of stock returns to aggregate liquidity is priced. Acharya and

Pedersen (2005) integrate these effects into a liquidity-adjusted CAPM that performs better

empirically than the standard CAPM. In the liquidity-adjusted CAPM the expected return on a

security increases with the level of illiquidity and is influenced by three different liquidity risk

covariances. Several articles build on these seminal papers and document the pricing of liquidity

and liquidity risk in various asset classes.2 However, none of these papers study the liquidity

2For example, Bekaert, Harvey, and Lundblad (2007) focus on emerging markets, Sadka (2010) studies hedge
funds, Franzoni, Nowak, and Phalippou (2012) focus on private equity, Bao, Pan, and Wang (2011) study corporate
bonds, and Bongaerts, De Jong, and Driessen (2011) focus on credit default swaps.
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effects with heterogeneous investment horizons.

Third, our paper is also related to empirical research showing the relation between

liquidity and investors’ holding periods. For example, Chalmers and Kadlec (1998) find evidence

that it is not the spread, but the amortized spread that is more relevant as a measure of transaction

costs, as it takes into account the length of investors’ holding periods. Cremers and Pareek (2009)

study how investment horizons of institutional investors affect market efficiency. Cella, Ellul, and

Giannetti (2013) demonstrate that investors’ short horizons amplify the effects of market-wide

negative shocks. All of these articles use turnover data for stocks and investors to capture

investment horizons. In contrast, we estimate the degree of heterogeneity in investment horizons

by fitting our asset pricing model to the cross-section of U.S. stock returns.

In their study of investors on the Oslo Stock Exchange over the period 1992-2003, Næs

and Ødegaard (2009) show that holding periods do vary widely both by investor type (classified as

financial, corporate, private, state, or foreign) and by stock liquidity (as measured by the bid-ask

spread). Yan and Zhang (2009) compare the investment strategies of institutional investors on the

NYSE, Amex and Nasdaq over the period 1979-2003. They classify institutions into long-term

and short-term by looking at their trading turnover over the past four quarters. They find that,

although both short- and long-term institutions prefer stocks with higher turnover, short-term

institutions have a much stronger preference for high turnover stocks. They interpret this as

evidence that short-term institutions care more about liquidity than do long-term institutions.

A more specific result is obtained by Brogaard, Hendershott, and Riordan (2014), who

show for a sample of NASDAQ and NYSE stocks that some 42% of dollar volume in large stocks
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is due to high-frequency traders (HFTs) and only 11% of dollar volume in small stocks is due to

HFTs. This also indicates a short-term investor preference for large, liquid stocks. Chen, Huang,

Sun, Yao, and Yu (2018) focus on holdings of insurance companies in the corporate bond market

and also provide evidence for segmentation based on horizon and liquidity. They find that insurers

with longer effective horizons tend to hold less liquid bonds. In addition, they find that the

liquidity premium in corporate bonds is higher when bonds are held by investors with a stronger

preference for liquidity (investors with a shorter horizon).

Fourth, our modeling approach is related to recent theories where some investors do not

trade every period, although in these theories there is no explicit role for transaction costs and

illiquidity. For example, Duffie (2010) studies an equilibrium pricing model in a setting where

some “inattentive” investors do not trade every period. He uses this setup to study how supply

shocks affect price dynamics in a single-asset model. In contrast, besides incorporating

transaction costs, our focus is mostly on the cross-section of expected returns. Similarly, Brennan

and Zhang (2018) develop an asset pricing model where a representative agent has a stochastic

horizon.3 However, liquidity effects are not incorporated and investors are homogeneous, in that

they hold the same assets and those assets are liquidated simultaneously. In their model, horizon

is important because it interacts with securities’ risk characteristics. A security’s market beta is

allowed to depend on the horizon over which the returns are measured. The model is fitted to the

distribution of returns over different horizons. The information in the term structure of beta plays

3Using a similar motivation, Kamara, Korajczyk, Lou, and Sadka (2016) study empirically how the horizon that is
used to calculate returns matters for the pricing of various risk factors.
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a vital role in fitting the model. In our model, the horizon of the investor is important only insofar

as it interacts with transaction costs, and there are no horizon effects in betas.

Fifth, our model extension with regime switches for transaction costs is related to work by

Watanabe and Watanabe (2008) and Acharya, Amihud, and Bharath (2013). Watanabe and

Watanabe (2008) find evidence for regime switches in liquidity risk exposure for stocks, with

higher liquidity risk in bad times. They also show that the liquidity risk premium is much higher

in this bad state of the world. Acharya et al. (2013) show, for corporate bonds and stocks, that

exposure to liquidity risk varies across regimes, where in a stress regime junk bonds and high

book-to-market stocks have higher liquidity risk.

Finally, our work relates to the literature on segmentation in international equity markets,

see Karolyi and Stulz (2003) for a survey. For example, Errunza and Losq (1985) derive an asset

pricing model where some investors only have access to a subset of all financial assets, which is

what we refer to as partial segmentation. We extend their model by endogenizing the degree of

segmentation, and, most importantly, by introducing illiquidity into the model.

III. The Model

A. Model Setup and Assumptions

Our liquidity asset pricing model features both stochastic liquidity and heterogeneous

investment horizons in a multiple asset setting. We develop a theoretical framework that is also
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suitable for empirical estimation. Our model is built on the following assumptions that we

partially relax later in an extension.

• Assumption 1: There are K assets, with asset i paying a dividend Di,t each period which is

added to the risk-free deposit. Selling the asset costs Ci,t . Transaction costs and dividends

are i.i.d. to obtain a stationary equilibrium, and are allowed to be correlated. There is a

fixed supply of each asset, equal to Si shares, and a risk-free asset with exogenous and

constant return R f . Short selling of assets is not allowed.

• Assumption 2: We have N classes of investors with horizon h j, where j = 1, ..,N. To

simplify expressions we focus on two classes of investors in the main text, short-term and

long-term investors with horizons h1 and h2, respectively. Internet Appendix I.A solves the

model for any N.

• Assumption 3: Investors have mean-variance utility over terminal wealth with risk aversion

A j for investor type j.

• Assumption 4: We have an overlapping generations (OLG) setup. Each period, a fixed

quantity Q j > 0 of type j investors enters the market and invests in some or all of the K

assets.

• Assumption 5: Investors with horizon h j only trade when they enter the market and at their

terminal date, hence they do not rebalance their portfolio at intermediate dates.

Most assumptions follow from Acharya and Pedersen (2005).4 In particular, the means,

4Acharya and Pedersen (2005) start with investors with exponential utility and normally distributed dividends and
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variances and covariances of dividends and transaction costs are assumed to be exogenously

given. The key extension is that we allow for heterogeneous horizons, while Acharya and

Pedersen (2005) only feature one-period investors. We make two simplifying assumptions to

obtain tractable solutions. First, we assume i.i.d. dividends and transaction costs to obtain a

stationary equilibrium. In Section VI, we relax this assumption and derive an equilibrium with

persistent transaction costs. The second simplifying assumption is that investors do not rebalance

at intermediate dates. This assumption is important mainly for long-term investors. Note that the

incentive on long-term investors to rebalance their portfolios frequently is limited by the presence

of transaction costs. This is especially the case when, as in our benchmark model, returns are i.i.d.

(see, for example, Constantinides, 1986). Time-varying expected returns and volatility would

probably generate a stronger preference for intermediate trading.

With i.i.d. dividends and costs, given a fixed asset supply, a wealth-independent optimal

mean-variance demand, and with the same type of investors entering the market each period, we

obtain a unique stationary equilibrium where the price of each asset Pi,t is constant over time. We

now discuss this equilibrium in more detail.

B. Equilibrium Expected Returns

At time t, Q j investors with horizon h j enter the market and solve a maximization problem

where they choose the quantity of stocks purchased y j,t (a vector with one element for each asset)

costs, which corresponds to our assumption of mean-variance preferences.

12



to maximize utility over their holding period return, taking into account the incurred transaction

costs and short-sale constraints:

max
y j,t

Et
[
Wj,t+h j

]
− 1

2
A jVart

(
Wj,t+h j

)
, s.t. y j,t ≥ 0(1)

Wj,t+h j =

(
Pt+h j +

h j

∑
k=1

Rh j−k
f Dt+k−Ct+h j

)′
y j,t +Rh j

f

(
e j−P′t y j,t

)
,

where R f is the gross risk-free rate, Wj,t+h j is wealth of the h j investors at time t +h j, Pt is the

K×1 vector of prices, and e j is the endowment of the h j investors. Due to the presence of

transaction costs, the optimal portfolio choice of some investors may reflect what we call

endogenous segmentation. This is the possibility that some classes of investors choose not to hold

some assets in equilibrium, for example because the associated trading costs are too high relative

to the equilibrium expected return over the investment horizon.5

In the remainder of the text of the paper, we set R f = 1 to simplify the exposition. Internet

Appendix I.A derives the model for any value of R f , which leads to very similar expressions. In

the empirical analysis, we set R f equal to the historical average of the risk-free rate.

Given the demands in equation (1), at any point in time the market clears with new

investors buying the supply of stocks minus the amount still held by the investors that entered the

5In some cases, it could happen that some investors would want to short sell liquid assets if the costs of short selling
are not too high. For simplicity we assume short selling is not possible. Bongaerts et al. (2011) derive a liquidity asset
pricing model which incorporates short selling. In Internet Appendix I.B we discuss in more detail how to arrive at an
extension that does allow for short selling.
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market at an earlier point in time,

(2) Q1y1,t +Q2y2,t = S−
h1−1

∑
k=1

Q1y1,t−k−
h2−1

∑
k=1

Q2y2,t−k,

where S is the vector with supply of assets (in number of shares of each of the assets).

Given the i.i.d. setting, mean-variance preferences and constant supply, we look for a

stationary equilibrium in which prices and demands are constant over time and returns are i.i.d.

We can thus rewrite equation (2) as h1Q1y1 +h2Q2y2 = S, where h jQ j is the total number of

type- j investors present at any point in time. An equilibrium is given by a set of prices (or,

equivalently, expected returns) such that the optimal demand of all investors given these prices

(equation (1)) satisfies the market clearing condition in equation (2). In Internet Appendix I.A we

provide the proof for the following proposition:

PROPOSITION 1: Given Assumptions 1-5, a unique stationary equilibrium exists. The optimal

demands y1 and y2 can be obtained by solving the following quadratic programming problem:

max
y1,y2

Q1y′1

(
E
[
Z1,t+h1

]
− 1

2
A1Var(Z1,t+h1)y1

)
+Q2y′2

(
E
[
Z2,t+h2

]
− 1

2
A2Var(Z2,t+h2)y2

)
(3)

s.t. h1Q1y1 +h2Q2y2 = S, y1 ≥ 0, y2 ≥ 0,

with

(4) Z j,t+h j =
h j

∑
k=1

Dt+k−Ct+h j .
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Proposition 1 shows how the demand equations of both investors and market clearing can

be rewritten into a single quadratic programming problem, which is easily solved using standard

optimization procedures. In Internet Appendix Section I.A we also show how to rewrite

Proposition 1 into asset returns and percentage transaction costs, which is useful for the empirical

implementation in Section IV and Section V.

Even though, in general, the quadratic program has to be solved numerically, we are able

to characterize the equilibrium expected returns analytically. We first define Rt+1 as the K×1

vector of gross asset returns, with Ri,t+1 = (Di,t+1 +Pi,t+1)/Pi,t , and ct+1 the K×1 vector of

percentage costs, with ci,t =Ci,t/Pi,t . We then use a result of De Roon, Nijman, and Werker

(2001), who show that the solution to a utility maximization problem with short-sales constraints

can be rewritten as the usual mean-variance solution for the subset of assets for which the

short-sales constraint turns out not to be binding. This implies that, given equilibrium prices and

expected returns, the optimal demand derived in Proposition 1 can be written as follows (see

Internet Appendix I.A):

(5) y j =
1
A j

diag(P)−1 Var

(
h j

∑
k=1

Rt+k− ct+h j

)−1

y j>0,p

(
h jE [Rt+1−1]−E [ct+1]

)
,

where, for a generic K×K matrix M, we introduce the notation My j>0 to indicate the matrix

containing only the rows and columns of M corresponding to the strictly positive elements of y j.

We write M−1
y j>0,p for the inverse of My j>0 with zeros inserted at the locations where rows and

columns of M were removed. With this convention, Var
(

∑
h j
k=1 Rt+k− ct+h j

)−1

y j>0,p
corresponds to

the K×K matrix containing the inverse of the covariance matrix of the set of assets that type- j

15



investors hold in equilibrium, with zeros inserted for the rows and columns that were not included

(the assets that investors j does not hold in equilibrium). The optimal demand vector y j thus

contains zeros for those assets in which investor j does not invest, as it should.6

We can then fill in the demand in equation (5) in the market clearing equation and solve

for the equilibrium expected returns. We define Rm
t = S̃′Rt/S̃′ι and cm

t = S̃′ct/S̃′ι, where

S̃ = diag(P)S denotes the dollar supply of assets. Internet Appendix I.A then shows that under the

stated assumptions we obtain the following result:

PROPOSITION 2: For the unique stationary equilibrium described in Proposition 1, the

equilibrium expected returns equal

E [Rt+1−1] = (γ1h1V1 + γ2h2V2)
−1 (γ1V1 + γ2V2)E [ct+1](6)

+(γ1h1V1 + γ2h2V2)
−1 Cov

(
Rt+1− ct+1,Rm

t+1− cm
t+1
)
,

where γ j = Q j/(A jS̃′ι), and

(7) Vj = h jVar(Rt+1− ct+1)Var

(
h j

∑
k=1

Rt+k− ct+h j

)−1

y j>0,p

.

Proposition 2 shows that the equilibrium expected returns contain two components. The

first component is a compensation for expected transaction costs. The second component is a

compensation for market risk and liquidity risk. Note that the loadings on expected costs and

6Given that returns and percentage costs are i.i.d. in equilibrium, there is no need to condition the expectations and
variances on the information set at time t.
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return covariances are matrices. This is in contrast to standard linear asset pricing models, where

these loadings are scalars which results in all assets having the same exposure to expected costs

and the return covariance.

In the equilibrium equation (6) the parameter γ j is related to the risk-bearing capacity of

the h j−investors. As mentioned above, in every period the total number of h j-investors in the

market is equal to h jQ j, which determines among how many h j-investors the risky assets can be

shared. Their risk aversion A j is also important, because it determines the size of the position

these investors are willing to take in the risky assets. Therefore, we can indeed interpret the

quantity

(8) h jγ j =
h jQ j

A j

1

S̃′ι

as the risk-bearing capacity of the h j-investors scaled by the total market capitalization. Finally,

we note that Var
(

∑
h j
k=1 Rt+k− ct+h j

)−1

y j>0,p
depends on the optimal demands derived in

Proposition 1, in particular on which assets the investor chooses to hold in equilibrium. In

practice, we thus first solve the quadratic program in Proposition 1 and then calculate equilibrium

expected returns using Proposition 2.

C. Segmentation versus Integration

In this section we expand and draw out the implications of our results, notably

Proposition 2, by looking at some simplified versions of the model. In particular, we contrast
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integrated assets, which are held by both investors, with segmented assets, which are held by only

one investor type. In Section V, where we take the model to the data, we do of course use the

fully general model.

We focus on the case where transaction costs are fixed. In the empirical section we show

that liquidity risk does not play an important role in our sample. We also assume two classes of

investors, with h1 < h2, and we set the risk free rate R f −1 to zero in these examples.

Proposition 2 simplifies considerably in the case of complete segmentation – the case

where every asset k is held in its entirety by either investor 1 or investor 2, but not by both. Using

equation (5) and constant transaction costs, it directly follows that

(9) yk, j > 0⇒ E
[
Rk,t+1−1

]
=

1
h j

ck +
1

γ jh j
Cov

(
Rk,t+1,R

j
t+1

)

where R j is the return on investor j’s portfolio.7 This has a simple interpretation: to be held by

investor j, the expected return on the asset must be sufficient to compensate both for its amortized

transaction cost and its marginal contribution to the risk of the investor’s portfolio. For any asset

not held by investor j the equality becomes an inequality

(10) yk, j = 0⇒ E
[
Rk,t+1−1

]
≤ 1

h j
ck +

1
γ jh j

Cov
(

Rk,t+1,R
j
t+1

)

The expected return on the asset is too low to merit inclusion in investor j’s portfolio.

7More formally, let Ỹj be the dollar position in assets held by investor j in equilibrium (so Ỹj = diag(Pt)h jQ jy j)
then R j

t = 1+ Ỹ ′j (Rt −1)/S̃′ι is the component of the market return attributable to investor j.
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Note that equations (9) and (10) only implicitly define the expected returns in equilibrium,

because investor j’s portfolio return R j
t+1 depends on the optimal holdings of this investor in

equilibrium. In the next subsection we work out a full example of expected returns on segmented

assets.

Now equations (9) and (10) must hold for any equilibrium, and not just for a segmented

equilibrium – they are simply the first order conditions for the individual investor’s optimization

problem. That means that for any asset k held by both long and short horizon investors, we can

take a weighted average of equation (9) for j = 1 and 2. Investors collectively hold the market, so

γ1h1
(
R1

t+1−1
)
+ γ2h2

(
R2

t+1−1
)
= (γ1h1 + γ2h2)

(
Rm

t+1−1
)
, and we get

(11) yk,1,yk,2 > 0⇒ E
[
Rk,t+1−1

]
=

γ1 + γ2

γ1h1 + γ2h2
ck +

1
γ1h1 + γ2h2

Cov
(
Rk,t+1,Rm

t+1
)
.

For assets held by both classes of investor, the expected return is the sum of amortized transaction

costs and compensation for market risk. The amortization rate is a weighted average of that of the

two classes of investor.

In sum, we see that, for segmented assets, prices are based on the preferences and horizon

of the investor holding these assets (equation (9)), under the condition that indeed the other

investor is not interested in holding these assets (equation (10)). For integrated assets, the

preferences and horizons of both investors directly influence the pricing (equation (11)).

To illustrate further when we obtain segmentation or integration, we simplify the setting

even more. In the empirical section, our assets are liquidity-sorted portfolios of stocks; we find
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that they are highly correlated with each other. So consider the case where all assets are perfectly

correlated with the same return variance, and differ only in the level of transaction costs. It

directly follows then that the more liquid securities (ck < some critical level c∗) are held by

short-term investors, while the less liquid (ck > c∗) are held by long-term investors; there is

complete segmentation (except possibly the asset with c = c∗ which may be held by both types of

investor). Expected returns are concave in transaction costs

(12) E
[
Rk,t+1−1

]
=


δ− (c∗− ck)/h1 if ck ≤ c∗;

δ+(ck− c∗)/h2 if ck > c∗.

where δ and c∗ depend on the variance of returns, the supply of assets, transaction cost levels, and

the risk bearing capacity of investors. This complete segmentation is similar to what is obtained

in the Amihud and Mendelson (1986) model.

Now consider the introduction into this market of an asset that has a beta of 1 against the

other assets but also has some idiosyncratic risk. Suppose it has c > c∗; if it is in infinitely small

supply, it will be held by the long-term investor alone and have an expected return of

(c− c∗)/h2 +δ. The short-term investor will not want to hold it. They require a higher rate of

return of (c− c∗)/h1 +δ. As the supply of the asset increases (with a corresponding decline in

the supply of other illiquid securities) the amount of the asset’s idiosyncratic risk borne by the

long-term investor rises. The long term investor’s required rate of return rises. The short-term

investor’s required rate of return does not change since they are not bearing any of the

idiosyncratic risk. If the supply of the asset is large enough, the rate of return will rise to a level
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such that the short-term investor wants to hold it as well. The market for the asset is then

integrated. Similarly, if the supply of a liquid asset with idiosyncratic risk is high enough, the

premium required by the short term investor for bearing the risk will be sufficiently high that the

long term investor will also want to hold the asset. Hence, in this case we end up with an

equilibrium where some assets are integrated while others are segmented. This is what we find

when we take the model to the data.

D. A Full Example of Partial Segmentation

In the previous section we argued that, depending on the parameters, a mix of segmented

and integrated assets can arise in equilibrium. We now provide a full example of such an

equilibrium with both integrated and segmented assets. To obtain tractable expressions, we

continue to take constant transaction costs (Var(ct+1) = 0), but do not restrict asset returns to be

perfectly correlated. Of course, our benchmark empirical estimation focuses on the unrestricted

equilibrium in equation (6).

We then focus on the case where the input parameters in Proposition 1 are such that

short-term investors choose to invest in a subset of assets only in equilibrium, while the long-term

investors optimally hold all assets. Given the constant transaction costs, this implies that V2 = I.

Without loss of generality, we also set h1 = 1 to simplify notation. This specific case is similar to

Errunza and Losq (1985), and the asset pricing expressions below thus extend Errunza and Losq

(1985) to a setting with transaction costs.
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The returns on the assets that are held by short-term investors are denoted Rliq
t , and the

returns on the assets that are not held by short-term investors by Rilliq
t . We also use this notation

for the costs. Internet Appendix I.C proves the following proposition.

PROPOSITION 3: If N = 2, h1 = 1, Var(ct+1) = 0, R f = 1, long-term investors optimally hold all

assets and short-term investors optimally hold only a subset of ”liquid” assets, then for these

“liquid” assets the expected returns are

(13) E
[
Rliq

t+1−1
]
=

γ1 + γ2

γ1h1 + γ2h2
E
[
cliq

t+1

]
+

1
γ1h1 + γ2h2

Cov
(

Rliq
t+1,R

m
t+1

)
.

The expected returns on “illiquid” assets only held by long-term investors are

E
[
Rilliq

t+1−1
]
=

1
h2

E
[
cilliq

t+1

]
+

h2−h1

h2

γ1

γ1h1 + γ2h2
βE
[
cliq

t+1

]
(14)

+
1

γ1h1 + γ2h2
Cov

(
Rilliq

t+1,R
m
t+1

)
+

(
1

γ2h2
− 1

γ1h1 + γ2h2

)
Cov

(
Rilliq

t+1,R
m
t+1

)
−
(

1
γ2h2
− 1

γ1h1 + γ2h2

)
βCov

(
Rliq

t+1,R
m
t+1

)
,

where the matrix β denotes the liquidity spillover beta, defined as

(15) β = Cov
(

Rilliq
t+1,R

liq
t+1

)
Var
(

Rliq
t+1

)−1
.

First, we note that the equilibrium expected returns for liquid assets are identical to the
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expression given in (11), where assets are held by both short-term and long-term investors. For

the “illiquid” assets, the pricing is more complex. In what follows, we discuss separately the

different components that make up expected excess returns for illiquid assets.

We start by analyzing the expected liquidity effect that we can decompose into three parts:

(16)
γ1 + γ2

γ1h1 + γ2h2
E
[
cilliq

t+1

]
+

(
1
h2
− γ1 + γ2

γ1h1 + γ2h2

)
E
[
cilliq

t+1

]
+

h2−h1

h2

γ1

γ1h1 + γ2h2
βE
[
cliq

t+1

]
.

The first component, which we denote full risk-sharing expected liquidity premium, is the

expected liquidity effect that one would obtain if these assets were held by both short-term and

long-term investors. The second term (segmentation expected liquidity premium) reflects the fact

that only long-term investors hold the illiquid assets; this term dampens the effect of expected

liquidity since 1
h2
− γ1+γ2

γ1h1+γ2h2
< 0. The third component (spillover expected liquidity premium)

arises from the exposure (as given by β) of the illiquid assets to the liquid assets. If this exposure

is positive, this increases the expected liquidity effect for the illiquid assets since

h2−h1
h2

γ1
γ1h1+γ2h2

> 0. In other words, if liquid and illiquid assets are positively correlated, the

expected liquidity effect on illiquid assets cannot be much lower than the effect for liquid assets,

because long-term investors would take advantage by buying the liquid assets in preference to the

illiquid assets.

We now turn to the risk premiums, where we also have a natural interpretation for each of
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the various covariance terms in the equilibrium relation for the illiquid assets. The term

(17)
1

γ1h1 + γ2h2
Cov

(
Rilliq

t+1,R
m
t+1

)

gives the full risk-sharing risk premium that would arise if both types of investors would hold the

asset. The second term,

(18)
(

1
γ2h2
− 1

γ1h1 + γ2h2

)
Cov

(
Rilliq

t+1,R
m
t+1

)
,

gives the segmentation risk premium, which shows the impact of the lower risk sharing due to

long-term investors only holding the illiquid assets. Since 1
γ2h2
− 1

γ1h1+γ2h2
> 0, this segmentation

premium increases expected returns in case of positive return covariance. The third term,

(19) −
(

1
γ2h2
− 1

γ1h1 + γ2h2

)
βCov

(
Rliq

t+1,R
m
t+1

)
,

defines a spillover risk premium. Along the lines of the discussion above for the expected liquidity

effect, this term concerns the relative pricing of the illiquid versus liquid assets. If the returns on

liquid and illiquid assets are positively correlated, this effect reduces the segmentation effect.8

8The presence of a segmentation risk premium is in the spirit of the international asset pricing literature (e.g., De
Jong and De Roon (2005)), where segmentation also leads to additional effects on expected returns.
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IV. Empirical Methodology and Data

A. GMM Estimation

We use a Generalized Method of Moments (GMM) methodology to estimate the

equilibrium conditions given by Proposition 1 and Proposition 2, but without imposing R f = 1.

Empirically, we focus on a model with two horizons and we fix these horizons h1 and h2 in the

empirical analysis. Then, the parameters that remain to be estimated are γ j = Q j/(A jS̃′ι).

As discussed below, we use a cross-section of equity portfolio returns to estimate the

model. We define the vector of pricing errors of all portfolios, denoted by g(ψ,γ), as

g(ψ,γ) = E [Rt+1−1]− (γ1h1V1 + γ2h2V2)
−1 (γ1V1 + γ2V2)E [ct+1](20)

− (γ1h1V1 + γ2h2V2)
−1 Cov

(
Rt+1− ct+1,Rm

t+1− cm
t+1
)
,

where γ = (γ1,γ2)
′ is the vector of parameters, and ψ is a vector containing all expected returns,

expected costs, covariances entering the Vj matrices, and the covariances with the market return.9

Concretely, in a first step, we estimate all elements of ψ by their sample moments. In a second

step, we perform a GMM estimation of γ, using an identity weighting matrix across all portfolios.

Note that the matrices V1 and V2 depend on the optimal demands y1 and y2, which in turn depend

on γ. Hence, for a given value of γ we first determine optimal demands using Proposition 1. In

9We compute the long-term covariance matrices using the i.i.d. assumption. Internet Appendix II.A provides
further details.
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Internet Appendix Section I.A we discuss in detail how we implement Proposition 1 empirically.

We then calculate equilibrium expected returns, and compare these with observed average returns.

We thus minimize the GMM goal function J, equal to the sum of squared pricing errors, over γ,

(21) min
γ

J = g(ψ̂,γ)′g(ψ̂,γ).

In Internet Appendix II.B we derive the asymptotic covariance matrix of this GMM

estimator, taking into account the estimation error in all sample moments in ψ, in line with the

approach of Shanken (1992). In this Appendix we also describe how we use a standard bootstrap

method to calculate this asymptotic covariance matrix and obtain standard errors for the relevant

parameters.

B. Data

We follow Acharya and Pedersen (2005) in our data selection and construction. We use

daily stock return and volume data from CRSP from 1964 until 2009 for all common shares listed

on NYSE and AMEX. As our empirical measures of liquidity rely on volume, we do not include

Nasdaq since the volume data includes interdealer trades (and only starts in 1982). Overall, we

consider a number of stocks ranging from 1056 to 3358, depending on the month. To correct for

survivorship bias, we adjust the returns for stock delisting (see Shumway (1997) and Acharya and

Pedersen (2005)).

There is a debate regarding which illiquidity measure is most appropriate. Hasbrouck
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(2009) shows that the Amihud (2002) measure has substantial cross-sectional correlation with

intraday price impact measures. Lou and Shu (2017) show that the cross-sectional relation

between equity returns and the Amihud measure is mainly due the volume component in the

Amihud measure. They question whether this volume premium is a liquidity premium. At the

same time, it is nontrivial to disentangle liquidity premiums from other potential effects of

volume. As standard models of trading and transaction costs predict, volume and more advanced

liquidity measures are empirically strongly correlated in the cross-section. Because of this, and to

make the comparison with Acharya and Pedersen (2005) as clean as possible, we follow their

approach when measuring liquidity and use the Amihud (2002) measure.

The relative illiquidity cost is thus computed as in Acharya and Pedersen (2005). The

starting point is the Amihud (2002) illiquidity measure, which is defined as

(22) ILLIQi,t =
1

Daysi,t

Daysi,t

∑
d=1

∣∣Ri,t,d
∣∣

Voli,t,d

for stock i in month t, where Daysi,t denotes the number of observations available for stock i in

month t, and Ri,t,d and Voli,t,d denote the return and trading volume in millions of dollars for stock

i on day d in month t, respectively.

We follow Acharya and Pedersen (2005) and define a normalized measure of illiquidity

that deals with non-stationarity and is a direct measure of trading costs, consistent with the model

specification. The normalized illiquidity measure can be interpreted as the dollar cost per dollar
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invested and is defined for asset i by

(23) ci,t = min
{

0.25%+0.30ILLIQi,tP
m
t−1,30.00%

}
,

where Pm
t−1 is equal to the market capitalization of the market portfolio at the end of month t−1

divided by the value at the end of July 1962. The product with Pm
t−1 makes the cost series ci,t

relatively stationary and the coefficients 0.30 and 0.25 are chosen as in Acharya and Pedersen

(2005) to match approximately the level and variance of ci,t for the size portfolios to those of the

effective half spread reported by Chalmers and Kadlec (1998). The value of normalized liquidity

ci,t is capped at 30% to make sure the empirical results are not driven by outliers.

As in Acharya and Pedersen (2005), we construct 25 illiquidity portfolios. The portfolios

are formed on an annual basis. For these portfolios, we again require the stock price on the first

trading day of the corresponding month to be between $5 and $1000. For each portfolio, we

require at least 100 observations of the illiquidity measure in the previous year. We also construct

the value-weighted market portfolio and the value-weighted market-wide transaction costs on a

monthly basis.10

Table I and Figure 1 show the estimated average costs and average returns across the 25

illiquidity portfolios. The values correspond quite closely to those found in Table 1 of Acharya

10Acharya and Pedersen (2005) construct a market portfolio by equally weighting the 25 liquidity-sorted portfolios.
Our results are qualitatively similar when we use such an equal-weighted market portfolio. However, as Hou, Xue, and
Zhang (2018) show, liquidity effects are strongest for small caps, and equal weighting puts a relatively high weight on
these small stocks. We thus use value-weighted portfolios and a value-weighted market portfolio in our benchmark
analysis.
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and Pedersen (2005). Most importantly, we see that average returns tend to be higher for illiquid

assets. Also, the table shows that returns on more illiquid portfolios are more volatile. This

finding holds for returns net of costs as well. The returns (net of costs) on more illiquid portfolios

tend to co-move more strongly with market returns (also net of costs).

In Table I we also provide for each portfolio the total market capitalization, averaged over

time, as a fraction of the total market capitalization. This is important for the estimation of our

model, since Proposition 1 uses the supply of each asset when solving for the equilibrium. Table I

shows, not surprisingly, that the market capitalization is lower for less liquid portfolios: the most

liquid portfolio represents 53.5% of the total equity market value. Together with Figure 1, this

implies that the liquidity premium mostly exists in stock portfolios with low market

capitalization. This is in line with the results of Hou et al. (2018), who show that the liquidity

premium is concentrated in small stocks.

V. Empirical Results

In this section, we take the model to the data. First, we estimate the parameters of the

model for a two-horizon model and compare it with single-horizon models (e.g., Acharya and

Pedersen, 2005). We also explore the implications of the estimates for the importance of the

different components of expected returns.
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A. Benchmark estimation results

Our benchmark estimation is based on two classes of investors. The first class (short

horizon) has an investment horizon h1 of 1 month, the second class (long horizon) has an

investment horizon h2 of 120 months (10 years). The choice for the length of the long horizon can

be compared with the estimate we obtain using the methodology of Atkins and Dyl (1997) for our

sample.11 Over the 1964–2009 period, we find an equal-weighted average holding period of 4.76

years (see Internet Appendix III.A).

Having set horizons, we then estimate the model parameters γ j = Q j/(A jS̃′ι) and, in some

cases, a constant term in the expected return equation (α). We denote the models with and

without a constant term as specifications (2HOR+α) and (2HOR), respectively. The role of the

constant term is to provide a specification check, because it should equal zero under the null

hypothesis. Table II shows the estimation results. We find that the model provides a very good fit

of the cross-section of the liquidity-sorted portfolio returns, with a cross-sectional R2 of 72.6%

without an intercept, and 74.1% with a constant term.12 The RMSE for the fit of the average

returns is about 7 basis points per month, which confirms the good fit.

The estimates in Table II can be used to obtain insight in the relative importance of long to

short-term investors as measured by their risk bearing capacity h jγ j. Without a constant term, the

11Atkins and Dyl (1997) find that the mean investor holding period for NYSE stocks during the period 1975–1989
is equal to 4.01 years.

12The R2 is defined as 1 – (residual variance / total variance). Here, the residual variance is the cross-sectional
variance of the model-implied minus observed average returns, and total variance is the cross-sectional variance of the
average portfolio returns.
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estimates imply that the risk-bearing capacity of short-term investors is about 14 times as large as

the capacity of long-term investors, with similar risk-bearing capacities when we add a constant

term. We thus see that both investor types contribute to the risk sharing in the economy, but

short-term investors are much more important. Table II also shows that the γ j-parameters are not

always estimated with great precision. This is due to the well-known estimation error in estimates

of expected returns, and because we also incorporate estimation errors in all sample estimates,

including average transaction costs and all covariances. Note also that we have fixed the horizons

of the investors ex-ante. If we were to estimate these horizons, this would affect the standard

errors of all parameters.

Next we focus on the optimal demands of the short-term and long-term investors in

equilibrium, obtained using Proposition 1. In panel A of Figure 2 we plot these demands for each

portfolio for the case without a constant term. For each portfolio, the demands add up to the share

of this portfolio in the total market portfolio. For example, the most liquid portfolio 1 contains

53.5% of the total market portfolio value, while the value of portfolio 25 equals 0.4% of the total

market portfolio. We see that the equilibrium generates almost full segmentation. Only 3

portfolios are held by both investors: portfolios 1, 14, and 15.13 Portfolios 2 to 12 are held

exclusively by the short-term investors, while portfolio 13 and the 10 least liquid stock portfolios

are held only by long-term investors. Panel B of Figure 2 presents the holdings as a fraction of the

total holdings of each investor. Note that, even though the holdings of the two investor types only

13To be precise, the short-term investor has positions of 52.29%, 0.06%, and 0.03% in portfolios 1, 14, and 15,
respectively. The long-term investor holds 1.20%, 1.16%, and 1.13% in these portfolios, respectively.
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overlap for three portfolios, their total investment returns will be substantially correlated because

of the return correlations across portfolios which may lead to substantial spillover effects.

We can use the examples in Section III.C to understand these results. As shown there, if

asset returns are highly correlated, an equilibrium with (almost) full segmentation may prevail,

because investors have limited interest in diversifying their wealth across assets. In our data, the

average pairwise return correlation of the 25 liquidity-sorted portfolios is equal to 0.84. Hence, by

investing in a few portfolios most of the diversification benefits have been achieved. The fact that

the long-term investor invests in the illiquid portfolios is then natural. That this investor also holds

the most liquid portfolio can be understood as follows. First, consider the analysis in Section II.C.

Here equations (9) and (10) show the conditions for including or not including an asset in the

optimal portfolio, both for short-term and long-term investors, in case of constant transaction

costs. Then, consider the most liquid portfolios 1 and 2. As shown in Table 1, these two portfolios

have similar transaction cost levels, but portfolio 1 has substantially lower risk, both in terms of

standard deviation and covariance with the market. Table 2 shows that the risk-bearing capacity

of the short-term investors is much higher than that of long-term investors. Thus, long-term

investors care more about the higher risk of portfolio 2 than short-term investors. Given that the

short-term investors will surely hold both portfolios 1 and 2 in equilibrium, because of their high

liquidity, they will set expected returns on these 2 portfolios (equation (9)). Given the high

risk-bearing capacity (“low risk aversion”) of the short-term investors, these investors will price

portfolio 2 at only a slightly higher expected return. However, the long-term investors, with their

lower risk-bearing capacity, require a much higher expected return for portfolio 2, and thus decide
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not to invest in portfolio 2. Portfolio 1, with its lower risk, is partially held by the long-term

investor: given its low risk and its liquidity premium, it improves the risk-return tradeoff of the

portfolio of the long-term investor.

We find almost the same optimal demands when we allow for a constant term in the asset

pricing model. In this case, the short-term investors hold portfolios 1 through 14, and the

long-term investors hold portfolio 1 and portfolios 14 to 25. Hence, portfolios 1 and 14 are held

by both investors.

The results in our paper imply that short-term (one-month) investors hold, in value terms,

88% of the total market, while long-term (ten-year) investors hold 12% of the market. The market

is fairly sharply segmented. The most illiquid stocks are held just by long term investors, and

most of the more liquid stocks are held just by short term investors. However, both types of

investor hold the most liquid stocks, those in portfolio 1, which accounts for about 50% of market

capitalization. The heterogeneity of investors’ horizons, and their associated demand for liquidity

is crucial to our model, and it is therefore important to review the empirical evidence for it.

The empirical evidence strongly supports the heterogeneity of investors on which our

model is based. We also find that average holding periods in our model are of the same order of

magnitude as those observed in practice, but we would not wish to put much weight on this. Our

model is designed to explain how the heterogenous demand for liquidity between investors affects

asset returns. It is not a model of trading behaviour. For tractability, we model demands for

liquidity by having our investors forced to liquidate their portfolios at some defined date, but there

are other reasons for demanding liquidity than having an ineluctable requirement to turn shares
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into cash. For example, open-end funds have to demonstrate that they can meet any likely demand

for withdrawals without harming remaining investors by being forced to sell assets at a discount

to market prices or by changing the risk profile of their portfolio (see Securities and Exchange

Commission (2016) for a fuller discussion on the liquidity management requirements on

open-end funds). This requirement forces funds to hold a more liquid portfolio than the one that

maximizes their expected net return. Furthermore, the demand by investors for index funds, and

the pressures on fund managers to track an index (Basak and Pavlova, 2013) will also increase

demand for liquid assets (which are over-represented in most indices) in a way that our model

does not capture.

The extension to our model provided in Section VI, which incorporates time series

variation in liquidity, predicts that when liquidity deteriorates, there is a shift of portfolios, with

long-horizon investors taking on some of the less liquid stocks held by short-horizon investors

and reducing their holdings of the most liquid securities. There is some evidence that this does

happen in practice. Ben-Rephael (2017) studies mutual fund behavior at times of financial crisis.

He shows that after a deterioration in market conditions there tend to be more retail investor

redemptions/withdrawals from mutual funds that hold illiquid stocks. Mutual fund managers as a

group therefore reduce their exposure to illiquid stocks. This sell-off is accommodated by two

types of institutional investor: those who hold large diversified portfolios and trade infrequently

and investors who trade aggressively on short-term information (respectively “Quasi-indexers”

and “Transient Investors” in the classification of Bushee (1998)).
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B. Comparison with single-horizon models

Does the two-horizon model improve upon single-horizon models? To answer this

question, we compare our model with two single-horizon models. The first model is the

single-horizon obtained by setting Q2 = 0 in equation (6). We choose h1, the single horizon of all

investors, by maximizing the R2 across horizons, which generates an optimal horizon of 16

months (no constant term) and 21 months (with a constant term). We then estimate the single

parameter γ1 (and a constant term in one specification) using GMM and denote the models by

1HOR and 1HOR+α.

The second, closely related, single-horizon model is the benchmark empirical

specification used by Acharya and Pedersen (2005). Their setup has a one-period horizon

(h1 = 1) but allows for a slope coefficient κ on the expected liquidity term E [ct+1],

(24) E [Rt+1−1] = κE [ct+1]+
1
γ1

Cov(Rt+1− ct+1,Rm
t+1− cm

t+1).

We denote these single-horizon specifications as (AP) and (AP+α) if we add the constant term.

Table II shows the estimation results for the 25 illiquidity-sorted portfolios. The 1HOR

and AP models generate very similar R2 values of 27.4% and 26.6%, respectively, both well

below the two-horizon model R2 of 72.6%. Table II also shows that the two-horizon model still

has a substantially higher R2 than the single-horizon models when we allow for a constant term α

in the asset pricing equation. It is important to keep in mind that we fixed the horizons in the

two-horizon model ex-ante. Robustness tests in Internet Appendix Section III.D show that the
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empirical results are similar with the long horizon set at 3 years or longer and the short horizon

set at 3 months or less. However, especially when we fix the short-term horizon at 6 months or

longer, the fit deteriorates.

In Figure 3 we plot the model-predicted expected returns against the observed average

returns across the 25 portfolios. These figures illustrate the much better fit of the two-horizon

model compared to the AP model. The observed average returns exhibit considerable variation

across the 25 portfolios, and panel A of Figure 3 shows that the AP model is not able to generate

and fit this variation. Panel B of Figure 3 shows that the two-horizon model obtains a much better

fit. We then investigate the source of the improved fit in more detail and use the empirical

estimates to decompose expected returns into an expected liquidity component and risk premium

component, according to Proposition 2. We depict this decomposition for the AP and two-horizon

model in Figure 4. We notice that in the single-horizon AP case, the impact of the expected

liquidity term is relatively modest. This is because the expected costs increase exponentially

when moving from liquid to illiquid portfolios, while the expected returns do not exhibit such an

exponentially increasing pattern (see Table I as well as Figure 1). If anything, the expected returns

increase with illiquidity at a lower rate for the more illiquid portfolios: the expected return levels

off after portfolio 19, but the expected liquidity term keeps rising. The AP specification implies a

linear relation between expected costs and expected returns, and thus has difficulty fitting the

cross-section of liquid versus illiquid portfolios. As a result, the expected liquidity effect is rather

small for the AP specification (a few basis points per month for most portfolios).

Due to the segmentation, the two-horizon model reduces the impact of the expected
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liquidity term on the illiquid portfolios relative to the impact on the liquid portfolios. In this way,

the model is able to allow for a much larger overall expected liquidity premium and this improves

the fit as shown in Figure 4. The average expected liquidity premium across portfolios is 4.58%

per year for the 2HOR specification, compared to an average effect of 0.73% per year for the AP

specification.

To understand the mechanisms of the two-horizon model in more detail, we study the

segmentation and spillover effects. The type of segmentation that we find empirically is slightly

more complex than in Section II.C.4, since some portfolios are held by short-term investors only,

some portfolios are held by both investors, and some portfolios are held by long-term investors

only. We can, however, follow the same reasoning as in Section II.C.4.14 We start with the

expected liquidity premium. Figure 5 shows, first of all, the expected liquidity premium that

would obtain in a full integration setting (equation (13)). In this case, the liquidity premium is

simply a constant times expected transaction costs. Next, we graph the impact of segmentation,

without spillover effects, by adding the second term in equation (16).15 These segmentation

effects increase the liquidity premium for portfolios 2 to 12, since these are held only by

short-term investors, while the effects are negative for portfolios 13 and 16 to 25, which are only

held by long-term investors. Finally, Figure 5 contains the total liquidity premium, which also

includes the spillover effects. We see that the spillover effects increase the liquidity premium for

14We again set Var(ct) = 0 to study these effects. As discussed in Section IV.C, this restriction is innocuous for our
application.

15To be precise, for portfolios i =2,..,12, which are only held by short-term investors, we add(
1
h1
− γ1+γ2

γ1h1+γ2h2

)
E [ci,t+1] , while for portfolios 15 to 25, we add

(
1
h2
− γ1+γ2

γ1h1+γ2h2

)
E [ci,t+1] . Portfolios 1, 14 and 15

are held by both investors and hence the segmentation effect is zero.
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portfolios 13 and 16 to 25, and decrease the liquidity premium for portfolios 2 to 12. This is

intuitive. Given that portfolios 2 to 12 are positively correlated with the portfolios that are held by

both short-term and long-term investors, the liquidity premium on portfolios 2 to 12 is dampened

to prevent long-term investors from buying these portfolios (instead of the illiquid portfolios).

Similarly, the spillover effect on portfolios 13 and 16 to 25 is positive to make sure that long-term

investors want to buy these portfolios.

Figure 5 also contains the segmentation and spillover effects for the risk premium.

Following the same approach as above, we start with the integration case (equation (17)). Then

we add the pure segmentation effect (equation (18)), which is strictly positive for all assets, and

more so for portfolios 13 and 16 to 25 since the risk-bearing capacity is smallest for the long-term

investors. Finally, adding the spillover effects we obtain the total risk premium in Figure 5. These

spillover effects are negative: due to the positive correlation among the portfolios, the effect of

segmentation is neutralized to a large extent. In sum, we see that both for the liquidity and risk

premiums the segmentation and spillover effects play an important role.

So far, we focused on comparing the economic fit of different models. We now turn to a

statistical test on whether the two-horizon model improves upon single-horizon models. Given

that the two-horizon model does not nest the single-horizon models, this is not trivial. We follow

Rivers and Vuong (2002) and Hall and Pelletier (2011) who derive a test statistic for comparing

two non-nested models that are estimated using GMM on the same set of moment conditions.

Their test statistic is given by the difference of the GMM J-values (equation (21)). If both models

are misspecified, in the sense that the expected J-value is strictly positive for both models, then
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the difference between the J-values has an asymptotically normal distribution. This comparison

of misspecified models is similar to the approach of Hansen and Jagannathan (1997). In Internet

Appendix Section II.B we describe how we use a bootstrap procedure to obtain the asymptotic

variance of the test statistic. Given this variance, we can directly calculate a t-statistic given by

the difference between the J-values divided by the asymptotic standard deviation.

Comparing the two-horizon model with the AP single-horizon model, the t-statistic for the

test described above is equal to 1.64 if we exclude a constant term in the models, and 1.79 with a

constant term. Hence, based on this statistical test we can conclude only with moderate

confidence that the two-horizon model outperforms the single-horizon AP model.

C. Liquidity risk and robustness checks

Next we examine the role of liquidity risk in more detail. We do this by shutting down

liquidity risk: we take constant transaction costs, equal to the time-series average, throughout the

sample period, and assess how much model-implied expected returns change (keeping the

γ−parameters the same). This allows us to quantify the size of the liquidity risk premium implied

by our theoretical model. We find that the liquidity risk premium equals 2 basis points per year

(averaged across portfolios) and shutting down liquidity risk hardly affects the R2 of the model

(72.5% and 74.0%, without and with a constant term, respectively). This liquidity risk premium is

small for several reasons. First, consider the illiquid portfolios held by long-term investors.

Table I shows that these portfolios have substantial liquidity risk, but since the horizon of the

long-term investors is long they hardly care about this liquidity risk. Second, as shown in Table I,
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the portfolios held by short-term investors (portfolios 1 to 12, and 14 to 15) exhibit very small

liquidity risk. Hence, even though short-term investors do care about liquidity risk, the liquidity

risk premium remains negligible given that the risk itself is so small.

Of course, the reasoning above is within the restrictions imposed by the theoretical model.

It might be that liquidity risk does matter empirically, but that our model is not able to pick up this

effect. We therefore take the GMM fitting errors g(ψ̂, γ̂) of the 25 portfolios, and regress these on

the composite AP liquidity covariance (Cov(c,cm)−Cov(R,cm)−Cov(c,Rm)) . This allows us

to see if the two-horizon model can be improved by adding a separate liquidity risk component.

The results show this is not the case. Adding this additional covariance increases the R2 from

72.6% to 74.1% (and from 74.1% to 76.4% with a constant term), and the slope coefficient on this

liquidity covariance has a t-statistic of 0.49 (0.67 with constant term).

This confirms that the good fit of the two-horizon model is not obtained through the

liquidity risk channel, but rather via the expected liquidity effect and the associated spillover and

segmentation effects. This is an important finding, as existing work (Pástor and Stambaugh, 2003,

Sadka, 2006) often documents sizeable estimates for the liquidity risk premium. However, these

existing studies do not incorporate expected liquidity in their analysis. We show that the effect of

expected liquidity is large, especially once we allow for segmentation. Hence, our results suggest

that liquidity risk may be less important for pricing the cross-section of U.S. stocks than

previously thought. However, as noted by Acharya and Pedersen (2005), separating liquidity level

and liquidity risk premiums remains difficult given the strong relation between liquidity level and

risk.
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In Internet Appendix Section III we perform a wide range of robustness checks on these

empirical results. First, we show that the results are not very sensitive to the chosen horizons, as

long as the short-term horizon is 3 months or lower and the long-term horizon 3 years or longer.

Second, we use other portfolio sorts, including sorts on size and book-to-market, and double sorts

on the liquidity level and liquidity risk of stocks. Third, we split the sample in two. Fourth, we

use exactly the same sample period as Acharya and Pedersen (2005). In almost all these

robustness checks, the two-horizon generates a good fit to the average portfolio returns, and the fit

is substantially better than the single-horizon AP model. Only when we split the sample in two,

we find that for the second half of the sample both the two-horizon model and the AP model

generate a relatively low R2.

VI. Extension: Time-varying Liquidity Premiums

The theoretical model implies that liquidity premiums and risk premiums are constant

over time. In this section, we estimate an extended model that generates time variation in the

liquidity premium, and also allows for a time-varying degree of endogenous segmentation. We

achieve this by assuming two regimes for transaction costs.

A. A model with time-varying transaction costs

We introduce persistent transaction costs by allowing the level of transaction costs to

depend on a liquidity state It . Specifically, in the liquid state, defined by It = 0, transaction costs
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are low with Ci,t =C0
i +η0

i,t , where η0
i,t is a mean-zero, i.i.d. variable that captures variation in

transaction costs within the regime. Similarly, in the illiquid state (It = 1) we have

Ci,t =C1
i +η1

i,t , with C1
i ≥C0

i . The liquidity state follows a Markov-switching process.

Under additional assumptions, stated in Internet Appendix I.D, we obtain the following

asset pricing equation when transaction costs follow this Markov-switching process (setting

R f = 1 and h1 = 1 for notational purposes)

E [Rt+1−1 | It ] = (γ1V1,t + γ2h2V2,t)
−1

γ1V1,tE [ct+1 | It ](25)

+(γ1V1,t + γ2h2V2,t)
−1 Cov

(
Rt+1− ct+1,Rm

t+1− cm
t+1 | It

)
,

where

(26) V1,t = Var(Rt+1− ct+1 | It)Var(Rt+1− ct+1 | It)−1
y1,t>0,p ,

and

(27) V2,t = h2Var(Rt+1− ct+1 | It)Var(h2Rt+1 | It)−1
y2,t>0,p .

This expression for expected returns is very similar to the benchmark model (equation (6)), with

two important differences. First, all expectations and (co)variances are conditional on the

liquidity state. The model thus generates time variation in expected returns, driven by variation in

expected transaction costs, and variation in covariances of returns and transaction costs. Note that
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we allow for differences across regimes in both the level and variation of transaction costs.

The second difference with the benchmark model is that the degree of endogenous

segmentation may differ across regimes. The optimal demands in the two regimes can be

calculated using the conditional version of Proposition 1.16

B. Estimation approach: Time-varying transaction costs

To estimate the asset pricing model with time-varying transaction costs we first need to

identify liquidity regimes. To this end, we estimate a regime-switching model for the monthly

time series of the market-wide transaction cost level cm
t , as constructed from the ILLIQi,t values

following equation (23). The main goal of this first step is to identify the regime at each point in

time, so that we can subsequently estimate the conditional expectations and covariances in

equation (25). Our specification follows the standard regime-switching approach,

cm
t = c0 +δ

0t +η
0
t , if It = 0(28)

cm
t = c1 +δ

1t +η
1
t , if It = 1

with η0
t ∼N (0,σ2

0) and η1
t ∼N (0,σ2

1). We thus allow both the mean and variance of the

market-wide transaction costs to differ across regimes, consistent with the assumptions in the

16An additional minor difference is that in the extended model the long-term investors do not contribute to the
expected liquidity premium. The term γ2h2V2 multiplying E [ct+1], which is present in the benchmark model, is absent
in the extended model. This is because we assume in this extended model that the horizon of long-term investors is
very long, so that transaction costs are not relevant for these investors.
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theoretical model discussed above. We also allow for a linear time trend in both regimes, captured

by the coefficients δ0 and δ1. This is to correct for trends in illiquidity over our sample period.

Finally, the regime-switching probabilities are assumed to be constant over time.

We estimate this model using the standard Maximum Likelihood procedure. In Table III

we present the estimation results. The results show a difference in the level of value-weighted

transaction costs across regimes, 0.31% versus 0.35%. As discussed below in more detail,

Figure 6 shows that for the less liquid portfolios the difference in transacion costs across regimes

is much larger. Importantly, the switching probabilities in Table III show that the regimes are

quite persistent. The probability of staying in the illiquid (liquid) regime equals 90.95%

(96.51%). This supports our focus in the theoretical model on the limit case where switching

probabilities tend to zero.

The Maximum Likelihood procedure also delivers an estimate of the prevalent regime at

each point in time t, P(It = 0 | ct ,ct−1, . . .), conditional upon all information at time t. In Internet

Appendix Section III.E we plot these probabilities and relate them to measures of financial and

economic stress, and find, as expected, that the probability of being in the liquid regime is lower in

times where these measures indicate adverse economic circumstances. We use these probabilities

to construct estimates of the conditional expectations and covariances of returns and transaction

costs for all portfolios. Specifically, if P(It = 0 | ct ,ct−1, . . .)> 0.5, the subsequent month t +1 is

assigned to the set of “liquid months”, and else it is assigned to the set of “illiquid months”. We

then calculate the means and covariances for the liquid months and illiquid months, respectively.

This gives sample estimates for E [Rt+1−1 | It ], E [ct+1 | It ], and all conditional covariances.
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Figure 6 plots the conditional mean returns and transaction costs across the 25 portfolios.

We see that for all portfolios transaction costs are higher in the illiquid regime, and more so for

the less liquid portfolios, which shows that the regime-switching model for market-wide

transaction costs captures liquidity regimes for all portfolios. We also calculate the composite

liquidity covariance (Cov(c,cm)−Cov(R,cm)−Cov(c,Rm)) in both regimes, and find that this

liquidity covariance is a factor 2.4 higher in the illiquid regime compared to the liquid regime

(averaged across portfolios). Hence, even though we construct the regimes based on transaction

cost levels, the regimes also exhibit changing liquidity risk. These results are similar to Watanabe

and Watanabe (2008), who find that liquidity betas are about 4 times higher in their regime with

high liquidity risk.

We see in Figure 6 that average returns are a bit lower for the illiquid regime. To

accommodate for this difference, we incorporate a constant term for the illiquid regime αIt=1 in

the conditional asset pricing model in equation (25). This way, we focus on explaining the

cross-sectional variation of expected returns in both regimes, rather than explaining why average

returns are mostly lower in the illiquid regime. Our empirical model thus becomes

E [Rt+1−1 | It ] = αIt=1 +(γ1V1,t + γ2h2V2,t)
−1

γ1V1,tE [ct+1 | It ](29)

+(γ1V1,t + γ2h2V2,t)
−1 Cov

(
Rt+1− ct+1,Rm

t+1− cm
t+1 | It

)
.

In the estimation of the unconditional benchmark model, we focused on explaining

unconditional average returns across 25 portfolios sorted on illiquidity. Now, we have 50 moment
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conditions for the GMM estimation, as for each of the 25 portfolios we have an equation for the

conditional expected return in the liquid and illiquid regime.

The theoretical model allows both expectations and covariances of costs and returns to

differ across regimes. For our benchmark estimation, we focus on the variation in expected costs

and returns across regimes, and restrict all covariances to be the same across regimes. As

discussed below, this simplifies the interpretation of the results. In Internet Appendix

Section III.F we show that also allowing the covariances to differ across regimes does not change

the fit substantially and gives very similar results. We thus fill in all sample equivalents of the

(conditional) moments, using the classification of months into liquid versus illiquid, and then

estimate the conditional asset pricing model by applying GMM to the 50 moment conditions.

This gives estimates of the parameters γ1 and γ2.

C. Estimation results

In Table III we report the estimates. We find that the risk-bearing capacities γ jh j are quite

similar for the short-term and long-term investors, hence both investors are important for risk

sharing. The cross-sectional R2 equals 38.5%, which shows that the model provides a reasonable

fit to the cross-sectional variation in expected returns for both regimes, once we include a constant

term for the illiquid regime. Note that this is the R2 for the 50 conditional expected returns, and

hence this number cannot be compared directly with the unconditional case in Table II.

In Figure 2 we plot the optimal demand of the long-term investor in both regimes, as a
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fraction of total supply, obtained from the conditional version of Proposition 1. We see that in the

liquid regime the long-term investors hold portfolio 1 and 15 to 25. The long-term investor invests

in portfolio 1, thus accepting its relatively low expected return, because this portfolio delivers

diversification benefits for this investor. Moving to the illiquid regime, we see a flight-to-liquidity

effect: the long-term investor sells (part of) portfolio 1, and buys portfolio 13 and 14. This implies

that, when moving to the illiquid regime, the short-term investors are buying more of the most

liquid portfolio 1, and selling their least liquid portfolios 13 and 14. This effect can be understood

using the example in Section III.C. Specifically, equations (9) and (10) show when short-term

investors choose to invest in an asset or not. This depends both on transaction costs and return

covariances. To isolate the effect of higher transaction costs in the illiquid regime, we restrict the

covariances to be constant across regimes in our benchmark estimation. Then, equations (9) and

(10) tell us that, if transaction costs increase substantially when moving from the liquid to illiquid

regime, the short-term investor may stop investing in a given asset. This is exactly what we see in

our results. In Internet Appendix Section III.F we show the results for the case where we also

allow the covariances to change across regimes. We find a similar flight-to-liquidity effect in this

case.

We then calculate the expected liquidity premium. There are two opposing effects that

determine the expected liquidity premium across regimes. First, transaction costs are higher in the

illiquid regime, which increases the liquidity premium. Second, in the illiquid regime more

portfolios are held by the long-term investors who care less about liquidity, which decreases the

liquidity premium. Empirically, we find that the first effect dominates. Across all portfolios, the
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liquidity premium implied by our model equals 4.79% per year in the liquid regime, while it is

higher, at 4.90%, in the illiquid regime.

We also calculate the liquidity risk premium implied by the model, in the same way as

before: we shut down the time variation in transaction costs and recalculate the model-implied

expected returns. Even though we find that liquidity risk is higher in the illiquid regime, the

liquidity risk premium is 2.6 basis points per year in the illiquid regime and 1.4 basis point in the

liquid regime. This is because all assets with substantial liquidity risk are held by long-term

investors, who hardly care about this risk. This does not necessarily mean that our empirical

findings conflict with Watanabe and Watanabe (2008), who find a higher liquidity risk premium in

their illiquid regime. This is because, on a purely empirical basis, it is difficult to distinguish

expected liquidity and liquidity risk effects. Our structural model is thus helpful, as it puts

structure on the size of expected liquidity and liquidity risk premiums.

To validate the liquidity risk effects of the structural model, we perform the same analysis

as in Section IV.C. We calculate the composite liquidity beta of Acharya and Pedersen (2005),

where we allow this beta to differ across regimes, and perform a cross-sectional regression of the

residual pricing errors of the two-horizon model on this liquidity beta. Again, we find that

liquidity risk does not matter much. In fact, the coefficient on the liquidity beta is even

(counterintuitively) negative. The R2 increases from 38.5% to 44.6% when adding this negative

liquidity risk premium.

In sum, in this section we have shown that it is possible to extend the model to a setting

with regimes for transaction costs, and that our main empirical findings are unchanged: we
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continue to find that segmentation is important to fit the cross-section of expected returns, and we

again find evidence for a large expected liquidity premium. In addition, we obtain the intuitive

result that in illiquid times short-term investors reduce their investments in illiquid assets and

invest more in liquid assets.

VII. Conclusions

Heterogeneous demands for liquidity amongst investors, deriving from different

investment horizons, can have important asset pricing effects. Liquidity, as measured by trading

costs, varies widely across stocks and is valued very differently by short-term versus long-term

investors. We present a new liquidity-based asset pricing model with investors with

heterogeneous investment horizons and stochastic transaction costs. Our model contributes to the

literature by effectively combining the clientele of investors in the Amihud and Mendelson (1986)

paper with the risk-averse agents and stochastic illiquidity of the Acharya and Pedersen (2005)

model. The increased generality of our model delivers a number of new theoretical insights. In

equilibrium, investors may choose to hold only a subset of the assets, depending on the liquidity

and risk-return profile of each asset. This endogenous segmentation has an effect on the expected

liquidity premium and risk premiums, and the size of these segmentation effects depends on the

correlation between segmented and integrated assets.

We estimate our model on the cross-section of U.S. stock returns, and find it generates a

good fit to the cross-section of liquidity-sorted portfolio returns. The main reason for the good fit
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is the interaction between the expected liquidity premium and segmentation effects. Two aspects

of the empirical results are particularly striking. First, our model generates a much larger

expected liquidity premium than previous work. Second, our estimates imply a negligible

liquidity risk premium. Once we allow for segmentation and multiple horizons, we obtain a good

fit of the cross-section of liquidity-sorted equity portfolios even when we shut down liquidity risk.

There are several interesting extensions to our work. A natural extension of our paper

would be to model investor horizons, so that one could jointly test for a better fit on returns,

investor holding periods, and the portfolio weights of investors with these horizons. Development

of a more sophisticated modelling of liquidity demand, going beyond the simple imposition of a

fixed liquidation horizon, and a more nuanced measure of liquidity than the bid-ask spread, could

help refine and deepen our understanding of the pricing of liquidity. Making liquidity endogenous

would also be an important step forward, as the trading behavior of short-term and long-term

investors is likely to influence liquidity and the relation between returns and liquidity. On the

empirical side, it would be interesting to study the pricing of different asset classes using our

model. For example, our model has predictions on the liquidity premiums in private equity.

Private equity is usually less liquid than public equity, but the correlation between their returns is

substantial, which affects the liquidity premiums according to our model.
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Table II
Benchmark estimation results: Illiquidity-sorted portfolios

This table shows the estimation results for various model specifications. The estimates are based on monthly data
corresponding to 25 value-weighted US stock portfolios sorted on illiquidity with sample period 1964–2009. An
equal-weighted market portfolio is used. The parameters are estimated using GMM. For each coefficient the t-value
is given in parentheses. The cross-sectional R2 and root mean squared error (RMSE) are also reported, as well as
the risk-bearing capacity of investors with a given horizon (γ jh j). The first model is a two-horizon model ((6)), with
h1 = 1, and h2 = 120, without and with a constant term α (2HOR and 2HOR+α). AP indicates that the specification
corresponds to a variant of the Acharya and Pedersen (2005) specification given by equation (24), where κ is the slope
coefficient on expected liquidity. Finally, estimates for a single-horizon model are given (setting Q2 = 0 in equation
(6)), with the horizon h1 chosen to maximize the R2, which gives h1 = 16 without constant, and h1 = 21 with constant.

γ1 γ2 α κ R2 RMSE γ1h1 γ1h2

(2HOR) 0.70398 0.00045 72.6% 0.075% 0.70398 0.05334
(1.30) (1.31)

(2HOR+α) 0.70941 0.00034 0.004% 74.1% 0.073% 0.70941 0.04065
(4.18) (2.51) (0.00)

(AP) 0.32636 0.05305 26.6% 0.122% 0.32636
(2.62) (2.10)

(AP+α) -0.47145 1.007% 0.04184 32.3% 0.117% -0.47145
(-0.43) (1.06) (1.64)

(1HOR) 0.02091 27.4% 0.122% 0.33457
(2.63)

(1HOR+α) 0.04118 0.359% 29.0% 0.120% 0.87727
(3.12) (0.92)
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Table III
Estimation results: Regime-switching model

This table shows the estimation results for the dynamic version of the model (Section VI), as well as the regime-
switching model that generates the regimes. The estimates are based on monthly data corresponding to 25 value-
weighted US stock portfolios sorted on illiquidity with sample period 1964–2009. An equal-weighted market portfolio
is used. Panel A reports estimation results for ML estimation of the regime-switching model in equation (28),

cm
t = c0 +δ

0t +η
0
t , if It = 0,(A1)

cm
t = c1 +δ

1t +η
1
t , if It = 1,

which specifies the dynamics of market-wide transaction costs. Panel B reports the regime-switching probabilities
of the regime-switching model. Panel C reports GMM estimates of the asset pricing model with two regimes for
transaction costs, as given in equation (29), with a constant term for the expected returns in the illiquid regime, and
where we allow transaction costs to differ across regimes, but restrict variances and covariances of returns and costs
to be the same across regimes. We set h1 = 1, and h2 = 120. For each portfolio, we have two moment conditions:
the mean return in the illiquid regime and the mean return in the liquid regime. The parameters are estimated using
GMM. For each coefficient the t-value is given in parentheses. The cross-sectional R2 and RMSE are also reported, as
well as the risk-bearing capacities (γ jh j).

Panel A: Regime-switching estimates
Liquid regime Illiquid regime

c 0.311% 0.350%
(47.27) (24.00)

δ (annualized) -0.0014% -0.0007%
(14.56) (7.85)

Panel B: Regime-switching probabilities
From / To Liquid regime Illiquid regime

Liquid regime 96.51% 3.49%
Illiquid regime 9.05% 90.95%
Panel C: GMM estimates of conditional asset pricing model

γ1 γ2 αIt=1 R2 RMSE γ1h1 γ2h2

0.68818 0.00033 -0.2401% 38.5% 0.167% 0.68818 0.04004
(2.08) (0.89) (-0.58)
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Figure 1. Average returns and transaction costs
This figure illustrates the average monthly return (left axis) and average transaction costs (right
axis) for the 25 US stock portfolios sorted on illiquidity. Portfolio 1 is the most liquid portfolio,
while portfolio 25 is the least liquid portfolio.
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Figure 2. Optimal portfolio holdings of investors
This figure gives, for each of the 25 equity portfolios sorted on transaction costs, the optimal
holdings of short-term (1-month) and long-term (120 months) investors for the benchmark two-
horizon model in Table II (without constant term). These holdings are obtained using Proposition 1,
and are presented as a fraction of total supply of the value-weighted market portfolio in panel A,
and as a fraction of the total holdings of each investor in panel B.
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Figure 3. Predicted versus observed returns
The upper panel plots the model-implied expected returns for the Acharya and Pedersen (2005)
specification (AP), across the 25 liquidity-sorted portfolios, against the observed average returns.
The lower panel plots the model-implied expected returns for the two-horizon model (2HOR),
across the 25 liquidity-sorted portfolios, against the observed average returns.
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Figure 4. Decomposition of expected excess returns into the expected liquidity premium and
the risk premium
In each panel the lower part shows the expected liquidity premium and the upper part the risk
premium following Proposition 2. The line indicates the actual average excess return. The upper
panel shows the decomposition for the Acharya and Pedersen (2005) specification (AP). The lower
panel shows the decomposition for the two-horizon model (2HOR). The graphs correspond to the
estimation results as given in Table II.
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Figure 5. Segmentation and spillover effects
Panel A of this figure gives, for each of the 25 equity portfolios sorted on transaction costs, ex-
pected liquidity premiums implied by the benchmark two-horizon model with h1 = 1 and h2 = 120
(Table II, without constant term). First, the liquidity premium in case of integration (equation (13))
is plotted (for portfolios 24 and 25 the premium is 3.2% and 5.8%, respectively). Then, segmen-
tation effects are added to this premium (as discussed in Section IV.B). Finally, the total liquidity
premium generated by the model is given, thus also including spillover effects. Panel B provides
the same effects, but now for the risk premium.
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Figure 6. Average returns and transaction costs across regimes
This figure illustrates the average monthly return (top panel) and average transaction costs (bottom
panel) for the 25 U.S. stock portfolios sorted on illiquidity. Portfolio 1 is the most liquid portfolio,
while portfolio 25 is the least liquid portfolio. Each graph shows the values in the liquid regime
and the illiquid regime, obtained from estimation of the regime switching model (28).
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Figure 7. Optimal portfolio holdings in different regimes
This figure gives, for each of the 25 equity portfolios sorted on transaction costs, the optimal
holdings of long-term (120 months) investors for the dynamic two-horizon model in Table III, both
in the liquid regime and the illiquid regime. These holdings are obtained using Proposition 1 for
each regime, and are presented as a fraction of total supply of the value-weighted market portfolio.
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