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ABSTRACT 

Fiber-coupled 405 nm diode laser systems are rarely used with fiber output powers higher than 50 mW. A quick 
degradation of fiber-coupled high power modules with wavelengths in the lower range of the visible spectrum is known 
for several years. Meanwhile, the typical power of single-mode diode lasers around 400 nm is in the order of 100 to 
300 mW, leading to single-mode fiber core power densities in the 1 MW/cm² range. This is three magnitudes of order 
below the known threshold for optical damage. Our profound investigations on the influence of 405 nm laser light 
irradiation of single-mode fibers found the growth of periodic surface structures in the form of ripples responsible for the 
power loss. The ripples are found on the proximal and distal fiber end surfaces, negatively impacting power transmission 
and beam quality, respectively. Important parameters in the generation of the surface structures are power density, 
surface roughness and polarization direction. A fiber-coupled high-power 405 nm diode laser system with a high long-
term stability will be introduced and described. 

Keywords: fiber damage, surface damage, ripples, periodic surface structures, UV defects, long-term stability, single-
mode laser, single-mode fiber 
 

1. INTRODUCTION 
When the output power degradation of 405 nm fiber-coupled diode laser systems was investigated in detail, it became 
apparent that no photo-degradation or contamination absorbed or attenuated the laser light at this wavelength. The 
coupling and transmission loss of the laser light was associated to the growth of a laser-induced periodic surface 
structure (LIPSS) [1]. This LIPSS grows due to the irradiation of the fiber end surface with 405 nm CW laser light and 
forms a lens and a scattering center on the launching surface (see Figure 1). The additional optical element changes the 
coupling conditions into the single-mode fiber (SMF). As the structure grows in height, less power is coupled into the 
fiber core and the fiber output power decreases over time. The main factors contributing to the formation of the LIPSS 
are the power density, surface roughness, generation of UV defect centers, and the polarization direction of the laser 
light. The polarization determines the orientation of the ripples, which in our work on silica were found to form parallel 
to it. This can be confirmed by results from femto-second laser experiments on silica in literature [2]. On the other hand, 
it was concluded that the other three factors determine the thickness of an unstable ionized surface layer. As shown 
before, this layer self-organizes into the LIPSS over the period of irradiation [3]. 

Different end surface preparation methods were compared in earlier work [4]. The application of glass windows is 
widespread in fiber-coupled high-power laser systems for the near-IR region, especially for fiber laser systems. These so-
called end-caps are glass ferrules that are fused to the fiber end, preferably by using CO2 lasers [5]. The result of using 
an end-cap is the reduction of power density on the fiber end surface, to mainly prevent mechanical damage of the glass 
surface. Such a product with silica tubing is also offered commercially [6] and was provided for this work fused to a 
SMF sample with a CO2 laser. Through this silica window the laser beam incides with a large spot, the light is then 
focused into the transmission fiber within the silica material. 

During the search for an own solution a possibility was found to splice pieces of multi-mode fiber (MMF) to SMF and 
cleave the MMF at a precise distance from the splice. Thereby producing a short launch-fiber, like an end-cap, with a 
good surface quality that can be employed with the SMF inside a standard connector for 125 µm fiber. A patent on the 
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use of MMF as launch-fiber for small core fibers was already granted in 1987 [7]. In the future the output power of CW 
diode lasers at 405 nm will increase further and single-mode laser diode modules with 300 mW output power are already 
commercially available. Therefore, the need for the reduction of power density on a surface with low roughness should 
be considered for manufacturing a high performance launch-fiber. 

 

  
Figure 1: AFM topography gradient of launching SMF end after irradiation with SML without protection on the left 

(polarization of the laser beam is denoted by the arrow). SEM micrograph of distal SMF end after irradiation with SML 
without protection on the right (polarization unknown) [1]. 

 

Experimental results for improved fiber assemblies will be presented, including the production of assemblies with a high 
performance launch-fiber. All proximal fiber ends have a launch-fiber. For the investigation of the distal fiber end 
damage assemblies with and without silica end-cap were prepared. The assemblies were long-term irradiated with 
405 nm CW laser diodes. Additionally, a measurement of the beam quality was performed at the fiber output. The results 
on the distal fiber end damage are compared with step-wise simulations of the growth of a LIPSS on the distal fiber end. 

 

2. EXPERIMENTAL SET-UP 
2.1 Measurement set-ups 

For the irradiation of the fiber assemblies, a laser diode module (LDM) for 405 nm was used (Omicron-Laserage 
LDM405.120.CWA.L). This single-mode laser (SML) uses only a single diode, which has a maximum output power of 
Pout = 150 mW. The laser beam is collimated and optically corrected for astigmatism, resulting in a beam quality of 
M² = 1.2. This almost Gaussian beam is suitable for a high coupling efficiency into SMF, which have a slightly better 
beam quality of M² = 1.07. The LDM is current and temperature stabilized for long-term irradiation. The collimated laser 
beam with a diameter of 1.2 mm is focused on the fiber end surfaces with an imaging and alignment system (IAS) for 
fibers with FC/PC connectors, which has a focal length of f = 6 mm. The fiber end can be adjusted along the optical axis 
and tumbled around it. Because of the small spot diameter power densities in the range of MW/cm² are achieved for 
output powers of a few hundred milliwatts. 

The fiber output power Pout,fiber from the fibers under test (FUT) was monitored. The FUT were irradiated over a period 
ranging from eight days to over two months. The loss over time was calculated using: 
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Figure 2: The damage set-up consisting of stabilized laser diode module (LDM) with a wavelength of 405 nm, an imaging 

and alignment system (IAS) and a thermopile power meter or camera (PM/CAM). The fiber under test (FUT) is aligned 
for maximal output power. 

 

In all cases the proximal end was adjusted to maximum fiber output power using the IAS. The polarization of the SML 
was aligned to the slow axis of the polarization-maintaining (PM) fiber. During irradiation, the proximal fiber end was 
readjusted from time to time to make sure that the system was not misaligned by mechanical or temperature changes. 
The distal end is in free space and not protected from dust particles. All experiments are conducted in a standard 
laboratory environment at room temperature. To determine the error in the power reading, the standard deviation of a 
daily or semi-daily average is added to the uncertainties seen from the power meter and the LDM. For the error of the 
loss the non-linear propagation of error is used. For the influence of the 405 nm laser radiation on the fiber material the 
power density Icore in the fiber core needs to be taken into account. 

 

 

 



 
 

 
 

Updated 7 January 2013 
 

For launching light into the fiber end with an attached MMF launch-fiber, it is very important to avoid cutting off too 
much of the flanks of the Gaussian power distribution. The power P of a Gaussian-shaped beam that is transmitted 
through an aperture with radius r is given by [9, 10, 11]:  
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3. RESULTS 
3.1 Performance of fiber-coupled diode laser systems with launch fiber 

The coupling efficiency from the laser into the SMF through the launch-fiber also depends on the quality of the splice, 
besides the spot sizes of laser focus and SMF [11]. The light-guiding structure of the SMF could deform in the first few 
10 µm due to the heat of the fusion arc. As a consequence the laser light is not guided or coupled with a low loss. 
Furthermore, the interface between MMF and SMF can get contaminated by burn-off from the electrodes of the fusion 
arc splicer. In Table 1 the achieved coupling efficiencies for the investigated combinations of SMF and PM-PCF with 
launch-fiber of different lengths are reported. The second SMF sample with a single launch-fiber was also checked in 
reverse, with the launch-fiber on the distal end and a bare fiber end on the launching end. In this arrangement the 
assembly had a fiber output power of 90.7 mW. In comparison to the intended arrangement the coupling efficiency was 
better, with 65.7 % compared to 47.2 % and 65.1 mW. But with the launch-fiber on the distal end, interference rings 
were seen in the far field. 

 

Table 1: Coupling efficiencies of transmission systems with SMF and PM-PCF and launch-fibers of different lengths. 

Type Mode-field diameter [µm] Length [µm] Pout,fiber [mW] Coupling efficiency 

SMF 2.5 420 53.1 mW 38.5 % 

SMF 2.5 450 65.1 mW 47.2 % 

PM-PCF 2.6 / 4.3 (elliptical) 490 72.2 mW 52.3 % 

 

The fiber output power Pout,fiber was stabilized to a large degree in the samples with launch-fiber. Figure 4 shows that the 
damage rate is below 0.03 dB/day for the protected samples. For comparison, the damage rate for SMF samples without 
protection irradiated with the SML was 0.2 to 1 dB/day, depending on the surface preparation [4]. On the surfaces of the 
launch-fiber no damage could be found after the irradiation. The first assemblies had a low coupling efficiency. 
Nevertheless, power densities Icore in the SMF cores of 800 kW/cm² to 1.3 MW/cm² were reached. 

 

 
Figure 4: Loss over time of SMF and PM-PCF samples with launch-fiber irradiated with the SML. The second sample (red 

circle) was adjusted several times during irradiation. The given power is the fiber output power at the beginning of the 
measurement. 
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When the second assembly with SMF (red circle in Figure 4) showed a higher loss of 0.38 dB after 14 days, the distal 
end was cleaved off. The loss was thereby reduced by 0.13 dB. It was noticed that the divergence angle of the beam 
coming from the fiber was smaller after the damaged distal end was cleaved off. Therefore it was assumed that the 
reduction in power that was measured was not due to a loss, but due to an increase in far-field angle. The light spot was 
larger than the aperture of the power meter and could not be completely collected. The distal end was then repeatedly 
cleaved off to achieve constant power measurement over the course of irradiation. The last of seven cleaved surfaces 
showed the lowest measured power after 12 days of irradiation, but when it was cleaved off all the light could be 
collected again for the power measurement. For this last sample of damaged end surfaces an M² measurement was 
performed directly after cleaving and after the 12 days of irradiation. On one axis a degradation from M² = 1.2±0.2 to 
M² = 5±0.5 was measured and on the axis perpendicular to that a degradation from M² = 1.6±0.2 to M² = 9±0.5. 

The increase in far-field angle of the light emitted from the fiber end was most notable for the assembly with PM-PCF. 
Before the irradiation the web around the PCF core was also illuminated and projected onto the screen, shown in 
Figure 5 a). This projection of the web got more blurry over the course of irradiation, until after five days in Figure 5 c) 
mainly the core was projected onto the screen. At the same time the increase in divergence angle was obvious, but 
constrained to the vertical axis. 

 

 
a) b) c) 

Figure 5: Photographs of the far-field of the PM-PCF assembly on a screen for a) the pristine end surface, b) irradiated for 
one day and c) irradiated for five days. 

 

3.2 Performance of fiber-coupled diode laser system with launch fiber and silica end-cap 

In Table 2 the achieved coupling efficiency for the investigated combination of PM-SMF with launch-fiber on the 
proximal and a silica end-cap on the distal end is reported. The PM-SMF assembly was irradiated with the SML and the 
longest irradiation experiments were performed on this particular assembly. A very slow linear degradation of 
0.01 dB/day is visible in Figure 6 for the first 35 days. After an inspection of the freely accessible end-cap with an 
optical microscope and with a white screen in the far field the issue could be resolved (see Figure 7). Over the long 
irradiation period dust particles had accumulated in the area where the beam passed through the silica-air interface. The 
dust particles scattered the light which then could not be collected by the power meter completely. The end-cap could be 
easily cleaned by wiping off the dust. The far-field image showed a clean Gaussian distribution again and the power 
meter could collect more power. However, the loss could only be improved by 0.35 dB. After the cleaning process the 
slow degradation commenced. 

When the experiment was discontinued after 60 days, the surface of the launch-fiber on the PM-SMF was inspected, too. 
It showed an accumulation of contamination across the whole surface. This contamination was also easily removable by 
using optics cleaning wipes. In a parallel experiment the launch-fiber was observed to be completely clean after 
irradiation. 
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Table 2: Coupling efficiency of transmission system with PM-SMF, launch-fiber and silica end-cap on the distal end. 

Type Mode-field diameter [µm] Length [µm] Pout,fiber [mW] Coupling efficiency 

PM-SMF 3.2 530 81.2 mW 58.8 % 

 

 
Figure 6: Loss over time of the PM-SMF sample with launch-fiber and end-cap irradiated with the SML. The sample was 

adjusted several times during irradiation. The given power is the fiber output power at the beginning of the 
measurement. 

 

  
Figure 7: Picture of silica end-cap on PM-SMF after 44 days of irradiation on the left. Picture of far field emitted from 

contaminated silica end-cap on PM-SMF on the right. 

 

4. SIMULATION OF DISTAL END SURFACE DAMAGE 
The influence of a growing surface structure on the beam quality at the distal end was reconstructed using simulations. 
The software that was employed uses the finite-difference time-domain method and is called FDTD Solutions 
(Lumerical Solutions, Inc.). A SMF with a core radius of a = 1.2 µm, a refractive index of nCo = 1.45441 (SiO2 glass at 
405 nm, [12]) in the core and of nCl = 1.44956 (F doped SiO2) in the cladding was designed, giving a numerical aperture 
of 0.12 and a V number of 2.2 at λ0 = 405 nm. The cut-off wavelength for this SMF is 376 nm. These values are in good 
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correspondence to the specifications of the SMF. As a light source the fundamental mode with λ0 = 405 nm was excited 
in the fiber core, which is easily possible with the simulation tool. 

The surface structure was also modeled out of SiO2 glass with a diameter of 3 µm and eleven sinusoidal ripples across, 
which is a periodicity of about Λ = 273 nm. Additional parameters for the growth of the structure, like height in the 
center, the radius of curvature, and the amplitude of the ripple, are given in Table 3. The periodic structure was designed 
to fit the surface structure measured with AFM on a launching surface of a SMF [4]. The smaller periodic structures are 
down scaled designs of the 700 nm high structure. After the actual form of LIPSS on pre-irradiated cores were found 
with SEM analyses, an additional structure was modeled with a diameter of 2 µm and almost no lens property or more 
specifically with high ripple amplitude. Seven sinusoidal ripples across the 2 µm result in Λ = 285 nm. 

 

Table 3: Parameters and determined properties of simulated surface structures. 

Height [nm] Radius of curvature [µm] Ripple amplitude [nm] Focal length [µm] w0 [µm] zR [µm] 

0 N/A N/A N/A 1.3 12.25 

100 11 15 5.3 1.08 8.46 

300 3.6 40 4.2 0.67 3.25 

500 2.2 70 3.3 0.465 1.57 

700 1.5 100 2.6 0.33 0.79 

700 (no lens) 0.7 500 ∥ 1.3; ⊥ 1.3 ∥ 0.31; ⊥ 0.29 ∥ 0,697; ⊥ 0,61 

 

Examples of the power distribution of light excited inside the SMF and transmitted through the LIPSS is shown in 
Figure 8. The SMF light source has a length of 3 µm after which the LIPSS is positioned. In the case without LIPSS the 
light propagation is according to the Gaussian beam equations (a). In case of the 700 nm high LIPSS with lens property 
the light is strongly focused behind the end surface (b). The result for the LIPSS without lens property and smaller 
diameter also exhibits the focusing effect. This is shown in Figure 8 c) for the power distribution perpendicular to the 
orientation of the ripples. The focal length f and spot size w0 can be determined at the point of highest intensity. 

If a LIPSS forms a lens and a scattering center on the distal end of the fiber its major impact is on the divergence angle 
of the emitted light. If the light is collected with a detector with an aperture radius of r, then the detected power Pdet is 
described by Formula 6. The beam radius w(z) and the Rayleigh length zR are calculated according to Formulae 7 and 8, 
with n = 1 and M² = 1.07 for a SMF. The beam spot size w0 depends on the LIPSS that was simulated and was 
determined in the focus behind the fiber end. For a distal fiber end without a structure the spot size of the fiber was 
determined. The Rayleigh lengths and the spot sizes received from the experiments are shown in Table 3. 

 

 
a) b) c) 

Figure 8: Power distributions of light transmitted from SMF a) without LIPSS, b) through 700 nm high LIPSS, c) through 
700 nm high LIPSS without lens property perpendicular to orientation of the ripples. The graphs exhibit some 
interferences from reflections at the boundary conditions. 
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A simple aperture test, with the power detector as aperture (r = 9.5 mm), was performed before and immediately after 
cleaving off the last distal end of the second SMF sample. The detector is located 17 mm inside the power meter housing. 
The power meter was being moved away from the fiber and measurements of Pdet were taken at distances z of 17, 22, 27, 
32, 37, 77 and 102 mm between fiber surface and detector plane. The loss Ldet(z) due to less detected power with a 
movable aperture in z direction is shown in Figure 9. For the case without a surface structure, simulation and 
measurement are in very good agreement. The distal end that was damaged for 12 days had an unknown height and a 
base diameter of 2 µm, which is smaller than the fiber mode-field diameter. The simulation of a LIPSS with 3 µm in 
diameter might not be very appropriate, but the measured loss curve after 12 days falls well onto the LIPSS with a height 
of 700 nm. A comparison with the loss curves of the LIPSS with the smaller diameter of 2 µm and without lens property 
reveals a similar behavior. The loss at z = 27 mm (10 mm distance between power meter and fiber) is the same as the 
maximum in Figure 4, because this was the standard distance in the long-term experiments. 

 

 
Figure 9: Loss due to less detected power along z, the distance from the fiber end surface, for a detector radius of 9.5 mm. 

The lines represent the simulation results for different heights of LIPSS. The symbols are the measurements at specific 
distances from the fiber end surface for an undamaged surface and a surface exposed for 12 days. 

 

5. DISCUSSION 
The propagation of a beam into a launch-fiber or silica end-cap can be completely described using Gaussian beam and 
far-field equations. The optimal length for a high performance concerning surface damage was found to be in the range 
of 500 µm for the laser system used in this work. The prepared samples had lengths of the launch-fiber between 420 µm 
and 530 µm. In all cases a fiber output power of 50 mW was achieved and for the best samples the coupling efficiency 
was above 50 %. 

The loss in fiber output power that was measured in some cases cannot be attributed to an actual transmission loss. When 
a laser-induced periodic surface structure (LIPSS) forms on the distal end surface, the light is scattered and focused with 
a very short focal length. This in turn degrades the beam quality and increases the far-field angle. Since the detected 
power was just a part of the fiber output power for higher far-field angles, Formula 1 needs to use Pdet instead of Pout,fiber. 
This was also proven by the simulations of a LIPSS on a distal fiber end. The detected power decreases at a constant 
distance from the fiber surface due to an increasing far-field angle. Thereby, the transmitted power Pout.fiber is proven to 
have been constant. 

The most stable fiber system was found to have a launch-fiber on the proximal end, for ease of assembling with a 
connector, and a silica end-cap on the distal end. Thus, both silica-air interfaces were protected from high power 
densities. The launch-fiber was prepared from a MMF with low solarization and by using improved surface roughness. 
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These improvements should show their effect for extremely long-term irradiation or very high laser power. The two 
systems that were examined had a high output power with good coupling efficiencies of about 60 and 75 %. The only 
degradation of the measured power that was found was an accumulation of dust particles on the silica-air interface. 
Those are attracted by the lightly ionised surface and can be easily wiped off. A high stability of the systems with a loss 
rate of only 0.01 dB/day and no damage on either end promises high performance for long-term use in high-power 
applications. 

 

6. CONCLUSIONS 
An improvement in the damage behavior of SMF in fiber-coupled 405 nm diode laser systems was achieved by 
specifically implementing conditions which take the influential parameters into account. The major advance was the 
reduction of the power density on the fiber launching end. For that purpose a short cleaved launch-fiber was produced. 
As a preparation for future higher power laser diodes, the launch-fiber was made from a very low solarization multi-
mode fiber. The damage on the distal fiber end was characterized by M² measurements and aperture tests. Simulations 
showed the negative impact of the damage on the beam quality. In order to prevent this damage, a silica end-cap was 
used on the distal end. This assembly performed with high stability over a period of two month of constant irradiation 
with the 405 nm single-mode laser. 
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