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Motivated by practical needs to reduce data transmission payloads in wireless sensors for 

vibration-based monitoring of civil engineering structures, this paper proposes a novel approach 

for identifying resonant frequencies of white-noise excited structures using acceleration 

measurements acquired at rates significantly below the Nyquist rate.  The approach adopts the 

deterministic co-prime sub-Nyquist sampling scheme, originally developed to facilitate 

telecommunication applications, to estimate the autocorrelation function of response acceleration 

time-histories of low-amplitude white-noise excited structures treated as realizations of a 

stationary stochastic process.  This is achieved without posing any sparsity conditions to the 

signals.  Next, the standard MUSIC algorithm is applied to the estimated autocorrelation function 

to derive a denoised super-resolution pseudo-spectrum in which natural frequencies are marked 

by prominent spikes.  The accuracy and applicability of the proposed approach is numerically 

assessed using computer-generated noise-corrupted acceleration time-history data obtained by a 

simulation-based framework pertaining to a white-noise excited structural system with two 

closely-spaced modes of vibration carrying the same amount of energy, and a third isolated 

weakly excited vibrating mode.  All three natural frequencies are accurately identified by 

sampling at as low as 78% below Nyquist rate for signal to noise ratio as low as 0dB (i.e., energy 

of additive white noise equal to the signal energy), suggesting that the proposed approach is robust 

and noise-immune while it can reduce data transmission requirements in acceleration wireless 

sensors for natural frequency identification of engineering structures. 

Keywords: Co-prime sampling, MUSIC pseudo-spectrum, compressive sensing, spectral 

estimation, system identification, closely-spaced modes. 

 

1 Introduction 

Linear system identification using solely 

response acceleration measurements is widely 

considered in practice to extract modal 

dynamic properties of civil engineering 

structures exposed to service and/or ambient 

unmonitored low-amplitude broadband/white 

excitations within the so-called operational 

modal analysis (OMA) setting [1].  These 

properties, such as natural frequencies and 

modes of vibration, are subsequently used for 

design verification of newly constructed 

structures, updating/calibrating computational 

models of existing structures, as well as 
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structural condition assessment in the 

aftermath of natural disasters and continuous 

health monitoring through the lifetime of 

structures.  Given the practical importance of 

these tasks, the potential of using wireless 

sensors/accelerometers in OMA deployments 

has been heavily explored over the last 

decades, as they provide low up-front cost and 

rapid deployments compared to arrays of 

tethered sensors [2,3].  Nonetheless, wireless 

sensors are constrained by frequent battery 

replacement requirements leading to increase 

maintenance costs while their bandwidth 

limitations pose restrictions to the amount of 

data that can be reliably transmitted.  It has 

been established that the above disadvantages 

may be alleviated by considering system 

identification techniques using measurements 

sampled at low rates, significantly below the 

nominal application-dependent Nyquist rate 

[4-9].   

Most of these techniques rely on the 

compressive sensing (CS) paradigm in which 

response acceleration time-histories are 

randomly sampled in time at sub-Nyquist rates 

at the front-end (sensor level) and, then, sparse 

recovery algorithms are applied to the 

compressed measurements at the back-end 

(base-station level) to retrieve the acceleration 

time-series [4,7] or, directly, modal data [5,6].  

In CS-based techniques, the achieved level of 

data compression (sub-Nyquist rate) for 

faithful time-series recovery and/or modal 

properties extraction depends on the 

acceleration signals sparsity, i.e., non-zero 

signal coefficients on a given basis.  

Alternatively, the authors developed a power 

spectrum blind sampling (PSBS) approach [9] 

which relies on sub-Nyquist non-uniform in 

time deterministic multi-coset data acquisition 

to estimate the power spectral density (PSD) 

matrix of response acceleration signals treated 

as realizations of a multi-dimensional 

stationary stochastic process without imposing 

any sparsity conditions.  Whilst the latter 

approach does not return the acceleration time-

series, it achieves quality mode shape 

estimation via standard frequency domain 

OMA techniques at lower (sub-Nyquist) 

sampling rates compared to standard CS 

techniques even for noisy signals [8].   

Recognizing that all current sub-Nyquist 

sampling techniques for OMA focus primarily 

on mode shape estimation, herein, a novel sub-

Nyquist approach is put forth to estimate 

accurately natural frequencies of existing 

linearly vibrating structures widely considered 

for structural damage detection [10,11] and for 

assessing the performance of existing slender 

structures as well as for structures controlled by 

passive dynamic vibration absorbers [12].  The 

considered approach couples the deterministic 

sub-Nyquist co-prime sampling scheme 

originally introduced in [13] with the multiple 

signal classification (MUSIC) algorithm for 

spectral estimation (e.g., [14]) – a fusion that 

was originally developed in radar and 

telecommunication applications [15].  At first 

instance, it benefits from the inherent super-

resolution and denoising capabilities of the 

MUSIC algorithm yielding a pseudo-spectrum 

which is found to outperform conventional 

Fourier transform-based spectral estimators for 

extracting natural frequencies in vibration-

based system identification applications using 

ordinary Nyquist-sampled data  (e.g., [16,17]).  

Further, similar to the multi-coset PSBS 

method [9], the proposed approach does not 

rely on any signal sparsity conditions treating 

the acquired signals as wide-sense stationary 

stochastic processes in alignment with the 

OMA framework that assumes stochastic 

(white noise) excitation and linear structural 

response [1].  In this context, it is a signal 

reconstruction-free compressive power 

spectral estimation approach aiming to 

estimate the auto-correlation function of 

stochastic structural response processes 

directly from noisy co-prime sampled 

measurements.  The latter sampling scheme 

utilizes two conventional uniform in time 

sampling units (analog-to-discrete converters) 

per sensor operating at different a priori 

selected sub-Nyquist rates and accumulating, 
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collectively in time, a much smaller number of 

measurements than a single sensor operating at 

Nyquist rate. 

In the numerical part of the work, different 

co-prime sampling schemes achieving 

different data compression (sub-Nyquist 

sampling rates) are considered to sample 

computer-generated response acceleration 

signals from a three degree-of-freedom (DOF) 

white noise excited structure with two closely-

spaced modes and one weakly-excited 

vibration mode having known natural 

frequencies.  The signals are contaminated by 

different levels of additive white noise and 

attention is focused on assessing the potential 

of the co-prime MUSIC approach to resolve the 

natural frequencies for various sub-Nyquist 

sampling rates and signal-to-noise ratios. 

In the remainder of this paper, Section 2 

outlines the adopted co-prime sampling for 

autocorrelation estimation of stationary 

stochastic processes and reviews the 

mathematical details of the MUSIC algorithm.  

Section 3 appraises the usefulness of the 

adopted sub-Nyquist pseudo-spectral 

estimation method in OMA applications and 

numerically attests its efficiency in resolving 

closely-spaced natural frequencies from 

computer-generated compressed data sampled 

at different sub-Nyquist rates and contaminated 

with various levels of additive white noise.  

Lastly, Section 4 summarizes concluding 

remarks.   

 

2   Mathematical Background  

2.1    Co-prime sampling and auto-

correlation estimation of stationary 

stochastic processes 

Let x(t) be a real-valued wide-sense stationary 

band-limited stochastic process assuming a 

spectral representation by a superposition of R 

sinusoidal functions with frequencies fr, real 

amplitudes Br, and uncorrelated random phases 

θr uniformly distributed in the interval [0, 2π].  

That is, 

( )
1

cos(2 )
R

r r r

r

x t B f tp q
=

= +å                        (1) 

Co-prime sampling (e.g., [13,15]) assumes that 

the process x(t) is simultaneously acquired by 

two sampling devices, operating at different 

(sub-Nyquist) sampling rates, 1/(N1Ts) and 

1/(N2Ts), where N1, N2 are co-prime numbers 

(N1 < N2), and 1/ Ts = 2fmax is the Nyquist 

sampling rate with fmax being the highest 

frequency component in Eq.(1).  The process 

x(t) is then divided in time blocks of (2 N1-1) 

N2 Ts duration and, within each such block, 

only 2N1+ N2-1 samples are retained from a 

total number of floor{2(N1+N2)-1- N2/ N1} 

acquired measurements.  The thus retained 

samples of x(t) from the two different samplers 

are 
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where 2 1{0, , 1}, {1, ,2 1},k N NÎ - Î -2 1, , 1}, {1, ,2 1},2 12 1, , 1}, {1, ,2, , 1}, {1, ,22 12 12 12 1, , 1}, {1, ,2, {2 12 12 12 1  

and [ ]1 ke  and [ ]2e ]   are zero-mean 

uncorrelated Gaussian white noise sequences 

with common variance 2
es  modelling 

errors/noise introduced during sampling.  In 

this setting, N2 samples are obtained from the 

first sampler operating at sampling rate 

1/(N1Ts) and (2N1-1) samples are obtained from 

the second sampler operating at sampling rate 

1/(N2Ts).  This choice is not arbitrary; it was 

shown in [13] that the cross-difference set of 

numbers { }2 1= N N kW - }2 1N N k2 12 1N NN N  contains all 

possible integers within the range [N1N2,N1N2], 
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with some repetition.  Thus, the cross-

correlation function of the sequences 

1 2[ ], [ ]x k x ]  , whose support involves all the 

time-lags included in the set Ω, can be 

estimated in the above range of interest once 

redundant indices are discarded.   

To this aim, the sequences in Eq.(2) are 

first stacked in the vector 1 2(2 1)N N

n

+ -Îy 1 2(2 1)1 2(2 1(2 11 21 2(2 1(2 11 2(2 1(2 1(2 11 21 21 2   

written as 

,

1 2 2 1

1 2
1

2 2

( ) cos(2 )

T
T T

n

R

r r r s r n
r

y x N n k x N n

B e f f N N nTp q e

é ùé ù é ù
ê úê ú ê úë û ë ûê úë û

=
=

= + + =

+ +å

T
é ùé ùé ù
ê úê úê úê úê úê úê úê úê úê úê ú
ê úê ú
ê úê úê úê ú

ûúú
ê úê úê úê ú+ =é ùé ùé ù
ê ú
é ùé ùùé ùé ù
ê úê ú

ùù
ê úê úê úê ú

  

 

(3) 

where the superscript “T” denotes 

vector/matrix transposition, 1 2(2 1)N N

n

+ -Îε 1 2(2 1)1 2(2 1(2 11 21 2(2 1(2 11 2(2 1(2 1(2 11 21 21 2   is 

the vector collecting the sampling noise terms, 

and 1 2(2 1)
( )

N N

rf
+ -Îe 1 2(2 1)1 2(2 1(2 11 21 2(2 1(2 11 2(2 1(2 1(2 11 21 21 2  is given as  
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Importantly, in Eq.(3), the inclusion of the non-

negative integer index *nÎ *  allows for 

arbitrarily placing the co-prime sampling block 

in time (e.g., for n=0 the time block starts at t=0 

and corresponds to the block considered in 

Eq.(2)).  Therefore, an arbitrary large number 

of blocks (and corresponding vectors ny ) can 

be used for sampling the theoretically infinitely 

long stationary process x(t).  The position of 

each block in time depends on the adopted 

values of n.  The autocorrelation matrix of ny  

is given as [15]  

{ }T

2 T 2

1
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in which 1 2 1 2(2 1) (2 1)N N N N+ - ´ + -ÎI 1 2 1 2(2 1) (21 2 1 21 2 1 2(2 1) (2(2 11 2 1 21 2 1 21 2 1 2(2 1) (2(2 1(2 1) (21 2 1 21 2 1 21 2 1 21 2 1 2  is the 

identity matrix, while the mathematical 

expectation operator E{∙} averages over n, i.e., 

the matrix Ryy in Eq.(5) is computed by 

averaging over all the time blocks considered 

within a Monte Carlo-based context.   

Next, following the spatial smoothing 

technique in [14], the autocorrelation matrix in 

Eq.(5) is first stacked in a column vector, 

( )vec=y yyr R , with 
2

1 2(2 1) 1N N+ - ´Îyr 1 2(2 1) 11 2(2 1(2 11 21 2(2 1) 1(2 1) 11 2(2 1(2 1(2 11 21 21 2 .  Then, 

the elements of ry are sorted and truncated 

within the range [-N1N2, N1N2], while repeated 

terms are eliminated, so that the integer indices 

of the exponential terms in Eq.(4) are given in 

increasing order with no repetition.  The thus 

generated reduced autocorrelation vector ˆ
yr  

(i.e. sorted and truncated), is subsequently 

divided into i={1,2,…, N1N2+1} overlapping 

subarrays, ˆ
iyr , each consisting of (N1N2+1) 

elements, which are averaged as in 

1 2

T

1

11 2

1
ˆ ˆ

1 i i

N N

ss

iN N

+

=

=
+ å y y

R r r ,                          (6) 

to generate the spatially smoothed matrix Rss 
1 2 1 2( 1) ( 1)N N N N+ ´ +Î 1 2 1 2( 1) ( 1)1 2 1 21 2 1 2( 1) ( 1)( 1)1 2 1 21 2 1 21 2 1 2( 1) ( 1)( 1) ( 1)1 2 1 21 2 1 21 2 1 21 2 1 2 .  In the following section, 

this matrix is used as input to the MUSIC 

super-resolution spectral estimator to detect the 

R frequencies fr, (r= 1,2,…,R), of the 

considered stochastic process x(t).   
 

2.2    Multiple signal classification (MUSIC) 

algorithm for natural frequencies estimation  

The Multiple Signal Classification (MUSIC) 

algorithm is a super-resolution pseudo-

spectrum estimation method, which relies on 

the eigenvalue decomposition of 

autocorrelation matrices estimated by field 

measurements (e.g., [14]).  Herein, the MUSIC 

algorithm is applied to the autocorrelation 

matrix Rss in Eq.(6), which is decomposed as 
in  
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1 2 1

2 T 2 T

1 1

( )
N NR

ss i i i i i

i i R

+
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= + +å åR v v v ve el s s       (7) 

where the eigenvectors iv  are orthonormal, 

i.e. T 0i j =v v  for i j¹ .  The first term in Eq.(7) 

represents the signal sub-space with R 

eigenvalues 2( )i el s+ , i=1,…,R, and R 

principal eigenvectors spanning the same 

subspace with the signal vector in Eq.(4).  The 

second term corresponds to the noise sub-space 

with (N1N2-R) identical eigenvalues 2
es , and 

(N1N2-R) eigenvectors.  Then, the unbiased 

MUSIC pseudo-spectrum estimator is defined 

as  

1 2 1
T T

1

1
( )

( ) ( )

MUSIC N N

i i

i R

G f

f f
+

= +

=
æ ö
ç ÷
è ø
åe v v e

      (8) 

The above estimator becomes theoretically 

infinite at f=fr, that is, at the location of the 

structural natural frequencies (i.e., the 

frequencies in the stochastic process of Eq.(1)). 

Numerical implementation, though, involves 

errors in approximating the solution of the 

eigenvalue problem in Eq.(7) and, therefore, 

Eq.(8) takes on finite values observing sharp 

peaks at each fr, resulting in a spectrum-like 

shape (pseudo-spectrum).  Limitations of the 

MUSIC algorithm are the a priori knowledge 

on the number of R signal components and the 

increased computational cost with R.  

Nonetheless, the significance of the proposed 

approach lies on its capability to capture up to 

R £N1N2 natural frequencies in noisy signals, 

at the high frequency resolution of 1/(N1N2Ts) 

(in Hz), outperforming conventional 

approaches at Nyquist rate that can only 

retrieve up to (2N1+N2-2) frequencies (see also 

[15]).   

 

 

 

3 Numerical Application 

3.1    Simulation framework for Nyquist-

sampled response acceleration signals 

generation  

Consider a viscously-damped linear multi-

degree-of-freedom (MDOF) structural system 

with R modes of vibration, excited by zero-

mean Gaussian white-noise band-limited to 

ωmax with unit amplitude power spectral 

density (PSD).  Let x(t) be the real-valued 

response/output acceleration process along a 

single monitored DOF of the MDOF system.  

The PSD of the latter process can be written as 

[18].   
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       (9) 

in which ωr (ωs) is the resonant frequency and 

ζr (ζs) the damping ratio of the r-th (s-th) mode 

of vibration of the MDOF system, while the 

amplitude Ars is a parameter associated with the 

mode shapes and the modal participation 

factors whose value depends on the monitored 

DOF one line space before and after the figure 

caption. 

In numerically assessing the potential of 

the proposed approach to estimate the resonant 

frequencies ωr for any given white-noise 

excited MDOF structural system, a simulation-

based framework is adopted to generate the 

required time-histories.  The framework first 

defines the continuous-time (analog) PSD in 

Eq.(9) corresponding to the acceleration 

response process of a white noise excited 

MDOF structural system with known modal 

properties (ωr, Ar, ζr).  This represents the 

“target” PSD which is, then, replaced by a 

surrogate discrete-time auto-regressive moving 
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average (ARMA) filter of order (p, q) given by 

the transfer function 

0
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where Ts=π/ωmax is the time-discretization step 

used in defining the ARMA filter to avoid 

aliasing and bk , k=(1,2,…,p), and c , 

(0,1,..., )q= (0,1,..., )=  are the ARMA filter 

coefficients.  The latter coefficients are derived 

by using the auto/cross-spectrum correlation 

matching method [19], widely used for 

spectrum compatible simulation applications 

(e.g., [20,21]). 

Next, the thus defined ARMA filter is excited 

by Gaussian white-noise sequences to generate 

a discrete-time Nyquist-sampled realization of 

an underlying stochastic process representing 

the acceleration response of the original 

MDOF structural system with properties 

(ωr,Ar,ζr). Finally, the above realization is 

contaminated by additive white noise to model 

ambient/environmental noise observed in field 

recorded response acceleration signals in OMA 

applications and co-prime sampled as detailed 

in section 2.1.   

 

3.2    Adopted structural system and 

simulated noisy acceleration responses   

A continuous MDOF structural system with 

R=3 DOFs is taken with two equally-excited 

closely-spaced modes of vibration and a third 

higher weaker excited mode attaining a low 

spectral amplitude.  Specifically, the first two 

resonant frequencies are at f1=66 Hz and 

f2=70Hz having, thus, a percentage difference 

of 6%.  The third natural frequency is at 

f3=120Hz.  The critical damping of ζr =5% 

(r=1,2,3) is assumed for all vibrating modes 

and coefficients A11= A13= A31=A22= A23= 

A32=1, A12=A21=2, A33=0.25 are taken in Eq.(9).   

Figure 1 plots the target PSD of Eq.(9), 

which is desired to be approximated by the 

proposed sub-Nyquist pseudo-spectral 

estimation method (i.e., MUSIC algorithm 

fused with co-prime sampling).  To this aim, 

the target PSD is first replaced by a surrogate 

discrete-time ARMA filter of order (120, 12) 

which is then subjected to a clipped white-

noise excitation of 20s duration, sampled at a 

Nyquist rate of Fs=1/Ts=500Hz (i.e., Ts 

=0.002s) following the simulation framework 

of section 3.1.   

 

 
 

Figure 1.   Normalized target PSD for the adopted 

3DOF system. 

 

To assess the efficacy of the proposed system 

identification approach at different additive 

noise levels, the generated discrete-time 

ARMA response signal is corrupted by 

additive white noise at five different signal-to-

noise ratios (SNRs) ranging within [0, 20] dB. 
 

3.3    Sub-Nyquist pseudo-spectral estimation  

The noisy discrete-time acceleration response 

signals generated as previously described are 

co-prime sampled as detailed in section 2 using 

4 different sampling settings listed in Table 1.  

In particular, the four considered pairs (N1, N2) 

of co-prime numbers are reported together with 

the pertinent average sub-Nyquist sampling 

rates ( ) ( )1 21  1s sN T N T+ , spectral 
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resolutions 1/(N1N2Ts), and sizes (N1N2+1) ´  

(N1N2+1) of the smoothed autocorrelation 

matrix Rss in Eq.(6).  To illustrate the 

calculations involved, consider the sampling 

case with co-prime N1=7 and N2=11.  The 

underlying assumption is that two samplers are 

deployed per recording location to acquire 

uniform samples of the same acceleration 

response signal (in time), with sampling rates 

equal to 1/(7 Ts) and 1/(11 Ts), respectively.  

The two samplers accumulate measurements at 

an average rate of 1/(7 Ts) + 1/(11 Ts) samples 

per second, which is about 76.6% lower than 

the Nyquist rate.  Further, the assumed co-

prime numbers define the cross-difference set 

[ ] [ ]{ }11 7 ,  0,10 , 1,13k kW = - Î Î[ ] [ ]} 7 ,  0,10 , 1,13[ ] [k k 7 ,   7 ,  [ ] 7 ,  0,10 , 1,  , 1[ ]k k 7 ,   7 ,  , which 

includes all discrete time lags within the 

support [-77, 77] of the cross-correlation 

function between the measurements of the two 

sensors (see also section 2).  It is further 

assumed that the measured acceleration signal 

is divided in K non-overlapping time-blocks 

that are used for the computation of the 

autocorrelation matrix in Eq.(5).  Each block 

contains (2 N1-1)´  N2=143 Nyquist samples 

from which only 2 N1+ N2-1= 24 samples are 

taken to populate the Ryy 
24 24´Î 24 2424 224 2  matrix in 

Eq.(5).  Next, the spatial smoothing technique 

is employed to generate the semi-positive 

correlation matrix Rss 
78 78´Î 78 7878 778 7  in Eq.(6) 

directly from the coprime-sampled 

(compressed) measurements.  Finally, the 

MUSIC estimator in Eq.(8) is evaluated, based  

on the assumption of R=3 degrees of freedom 

being present in the measured acceleration 

response signals.  For the other sub-Nyquist 

sampling cases in Table 1 the pertinent co-

prime parameters are defined in a similar 

manner as above. 

From a practical viewpoint, it is important 

to note that the K block length depends on the 

co-prime numbers and, thus, is different for 

each sampling scheme considered.  To this end, 

in establishing a meaningful comparison 

among sampling schemes, the number of 

blocks K observed is set such that the total 

length of the observation window (latency) 

remains roughly the same for all four sampling 

schemes.  Under this assumption, the last 

column of the table reports the total number of 

samples acquired by co-prime sampling: 

ultimately, this is the number of measurements 

that need to be transmitted by a (wireless) 

sensor in an actual monitoring deployment.  It 

is seen that higher co-prime numbers improves 

both frequency resolution and data 

compression which, under the assumption of 

constant latency, results in fewer 

measurements.  These benefits come at the 

expense of a larger eigenvalue problem to solve 

(size of matrix Rss) to obtain the MUSIC 

pseudo-spectrum which implies higher 

computational cost.  Nevertheless, this 

operation is expected to be undertaken off-line, 

Table 1.  Co-prime sampling specifications 

Co-prime 

numbers  

(N1, N2) 

Average 

sampling 

rate below 

Nyquist 

Resolution 

[Hz] 

Size of 

matrix 

Rss 

Block 

length 

(2N1-

1)N2 

Number 

of 

blocks K 

Total number 

of co-prime 

measurements 

(3,7) 52.4% 23.81 22x22 35 285 3420 

(5,7) 65.7% 14.29 36x36 63 144 2304 

(7,11) 76.6% 6.49 78x78 143 69 1656 

(7, 13) 78.0% 5.49 92x92 169 59 1534 
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at a base-station and, therefore, does not 

compromise the efficiency of the sensors 

deployment.  

 

3.4    Identification of closely-spaced 

structural resonances from noisy data  

Figure 2 plots the obtained MUSIC 

pseudo-spectra for the adopted 3DOF 

structural system for all four co-prime 

sampling specifications of Table 1 and for all 

five SNR values.  All spectra are normalized to 

unit amplitude to facilitate comparison and 

plotted with different colors along a horizontal 

axis labelled after the pertinent SNRs. From 

Figure 2, it is readily observed that the efficacy 

of the MUSIC pseudo-spectrum in extracting 

the two closely-spaced natural frequencies 

depends strongly on the frequency resolution 

achieved by the adopted co-prime  

sampling scheme.  

 

 
Figure 2.  MUSIC pseudo-spectra for the target PSD spectrum of Figure 1 and for 5 different SNR values 

and co-prime sampling specifications of Table 1. 
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Specifically, the sampling scheme 

corresponding to the lowest frequency 

resolution cannot discriminate the closely-

spaced frequencies in Figures 2(a); the closely-

spaced resonant frequencies are merged 

yielding a single spectral peak at a frequency 

value of 70Hz.  Still, the third high-frequency  

and least excited mode is retrieved at 120Hz.  

By increasing resolution, (N1=5, N2=17) 

scheme, the two peaks of the closely-spaced 

frequencies become discernible at least for 

SNR>5dB.  As the co-prime numbers increase, 

achieving higher resolution, the proposed 

approach yields sharper spectral peaks, capable 

to clearly discriminate the two closely-spaced 

natural frequencies as well as resolve the 

weakly excited mode of vibration with high 

accuracy.  More importantly, this particular 

example shows that the estimator is practically 

immune to additive noise suggesting that the 

choice of the pair of co-prime numbers will be 

based on the trade-off between computational 

cost required in obtaining the eigenvalue 

decomposition in Eq.(7) and the number of the 

acquired co-prime measurements as seen in 

Table 1. 
 

4 Concluding Remarks 

A novel natural frequency identification 

approach has been established utilizing 

response acceleration measurements of white-

noise excited structures sampled at rates 

significantly below the Nyquist rate supporting 

reduced data transmission in wireless sensors 

for vibration-based structural monitoring.  The 

approach relies on the standard MUSIC 

pseudo-spectrum applied to the autocorrelation 

function of response acceleration time-

histories estimated from co-prime sampled 

sub-Nyquist measurements.  In this context, 

acceleration time-histories are treated as 

realizations of a stationary stochastic process 

without posing any sparse structure 

requirements.  Further, the considered 

approach benefits from the super-resolution 

and denoising capabilities of the MUSIC 

spectral estimator to achieve high-accuracy in 

structural natural frequency identification even 

for noise-corrupted measurements. 

The potential of the proposed approach 

was numerically verified using computer-

generated acceleration time-history data 

obtained by a simulation-based framework 

pertaining to a white-noise excited structural 

system with two closely-spaced modes of 

vibration carrying the same amount of energy, 

and a third isolated weakly excited vibrating 

mode.  Parametric analysis was conducted 

using co-prime sampled measurements at four 

different sub-Nyquist rates contaminated by 

additive white noise at five different SNRs.  All 

three natural frequencies have been 

successfully retrieved for co-prime sampling 

schemes achieving sampling rates up to 78% 

below Nyquist and for high level of additive 

noise with even equal signal and noise power 

(SNR=0dB).  Overall, the herein furnished 

results demonstrate that the adopted co-prime 

sampling-based MUSIC pseudo-spectrum is a 

potent tool for accurate natural frequency 

identification in a noise-immune setting and 

thus it can be readily implementable in wireless 

sensors for cost-efficient (in terms of data 

sampling and wireless transmission rates) 

vibration-based structural monitoring.   
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