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Abstract: We extend the branch point twist field approach for the calculation of entan-

glement entropies to time-dependent problems in 1+1-dimensional massive quantum field

theories. We focus on the simplest example: a mass quench in the Ising field theory from

initial mass m0 to final mass m. The main analytical results are obtained from a perturba-

tive expansion of the twist field one-point function in the post-quench quasi-particle basis.

The expected linear growth of the Rényi entropies at large times mt � 1 emerges from a

perturbative calculation at second order. We also show that the Rényi and von Neumann

entropies, in infinite volume, contain subleading oscillatory contributions of frequency 2m

and amplitude proportional to (mt)−3/2. The oscillatory terms are correctly predicted by

an alternative perturbation series, in the pre-quench quasi-particle basis, which we also

discuss. A comparison to lattice numerical calculations carried out on an Ising chain in the

scaling limit shows very good agreement with the quantum field theory predictions. We

also find evidence of clustering of twist field correlators which implies that the entanglement

entropies are proportional to the number of subsystem boundary points.
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A B

Figure 1. Typical bipartition for the entanglement entropy of two semi-infinite intervals.

1 Introduction

Out-of-equilibrium many-body quantum dynamics is one of the most active and challenging

research areas in low-dimensional physics; see the special issue [1] and in particular the re-

view [2]. A typical setup triggering out-of-equilibrium evolution from an initial equilibrium

state is that of a quantum quench [3]. In a quench protocol, a quantum system is prepared

at t < 0 in the ground state, denoted by |0〉, of a Hamiltonian H(λ0) which depends on a

parameter λ0. At t = 0, the parameter λ0 is suddently changed to a new value λ 6= λ0 and

the unitary time evolution for positive times is governed by the new Hamiltonian H(λ).

The state of the system at time t may be then formally written as e−itH(λ)|0〉.
In this context, the evolution of the bipartite, or von Neumann, entanglement entropy

following a quantum quench has been intensively studied; see [4] for a review and references

therein. Consider a space bipartition of a 1+1-dimensional quantum system as sketched

in figure 1 and assume that regions A and B are semi-infinite. Then the entanglement

entropy associated to region A after a quench may be expressed as S(t) = −TrA(ρA log ρA)

where formally

ρA := TrB(e−itH(λ)|0〉〈0|eitH(λ)) , (1.1)

is the reduced density matrix associated to subsystem A. Since the regions are semi-

infinite, the entropies will not explicitly depend on the subsystem’s length. Another set of

entanglement measures is provided by the Rényi entropies which are defined as

Sn(t) :=
log TrρnA

1− n , (1.2)

and have the property limn→1 Sn(t) = S(t). It is in fact these Rényi entropies which we

will mostly be studying in this manuscript.

The universal features of the evolution of entanglement after a quench at a critical

point described by conformal field theory have been studied in [3, 5, 6]. In these works an

intuitive picture was put forward, namely one based on the production of highly entangled

quasi-particle pairs of opposite momenta right after the quench. These then propagate in

space-time until a critical time tsat = `
2v , where ` is the size of the subsystem and v is

the propagation velocity. In this region, the entanglement entropy grows linearly in time.

For tsat >
`

2v the entanglement saturates to a value proportional to the subsystem’s size

`. These features were later demonstrated analytically for the XY chain in a transverse

magnetic field in [7], where the exact coefficients of the terms linear in t and in ` were

computed. Note however that for our configuration of two semi-infinite regions tsat →∞.

Thus we expect the entanglement to continue to grow linearly in time for all times ; this

must be beared in mind when comparing analytic results with lattice numerical calculations.

Although the entanglement evolution after a quench has been studied for many physical

lattice models, both free [5, 7–20] and interacting [21–24], complete analytic derivations

– 2 –
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of such linear behaviour remained elusive so-far. In 1 + 1 dimensions, they are still based

either on conformal field theory techniques [5, 25] or large space-time asymptotics for

block Töplitz matrices [7–9]. Another exception is represented by models with random

unitary evolution such as random circuits [26–28]. More recently, it has also been shown

that for gapped systems, the entanglement dynamics after a quench features other non-

trivial effects. In particular the time-dependence of the entanglement entropy can show

subleading corrections that might qualitatively alter the leading linear increase at large

times. For instance, the studies [29–31] have shown that quasi-particle confinement in a

linear potential can lead to oscillatory behaviour in time, as well as suppression of linear

growth for sufficiently large times.

The purpose of this paper is then twofold: first we will provide a general quantum

field theory framework to analyse entanglement dynamics in massive systems. Secondly,

we will provide evidence that subleading oscillatory terms are actually a common feature of

entanglement dynamics in infinite volume. To this end, we will focus on one of the simplest

and best known theories: the Ising field theory. We may regard this as the scaling limit of

the Ising chain described by the Hamiltonian

HIsing(h) = −J
N∑
i=1

(
σxi σ

x
i+1 + hσzi

)
, (1.3)

where J > 0, and h is known as the transverse field. The Ising spin chain has a quantum

critical point, with a gapless spectrum, at h = 1, which separates a paramagnetic phase

(h > 1) from a ferromagnetic phase (h < 1). The two phases are related by a Kramers-

Wannier duality transformation, which interchanges the spin with the disorder field.

Near the critical point, for |h−1| � 1 it is possible to define the scaling limit by taking

J →∞ and a→ 0, where a is the lattice spacing, while keeping

m := 2J |h− 1| , v := 2Ja , (1.4)

fixed and finite [32]. In the scaling limit, the low energy excitations of (1.3) are then

relativistic real non-interacting fermions with positive mass m, while the speed of light is

fixed to v.

Finally, a word is due on the techniques that we will be using in this paper. We will

exploit the well-known relationship between Rényi entropies and correlation functions of

branch point twist fields [33–35]. For the simple configuration of figure 1 this means that

we will be computing a one-point function of a branch point twist field T (x, t) and studying

its time dependence after the quench. Branch point twist fields are defined on a replicated

quantum field theory containing n identical copies of the original theory, and have been

interpreted as symmetry fields associated to the cyclic permutation of the copies in [35].

Explicitly, the Rényi entropies at time t are given by

Sn(t) =
log
(
ε∆n

n〈0|T (0, t)|0〉n
)

1− n , (1.5)

where ε is some UV cut-off; T (0, t) := eiH(λ)tT (0, 0)e−iH(λ)t is the time-evolved twist field

in the Heisenberg picture; n is the replica number; |0〉n is the ground state of the replica

– 3 –
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theory before the quench that is, for coupling constant λ0 (corresponding to mass gap m0);

∆n is the scaling dimension of the twist field at criticality. For t = 0, (1.5) gives the Rényi

entropies at equilibrium in terms of

τn := n〈0|T (0, 0)|0〉n , (1.6)

the Vacuum Expectation Value (VEV) of the branch point twist field, which by dimensional

analysis must be proportional to m∆n
0 . In particular, the UV cut-off ε is chosen in such

a way that no finite O(1) term appears at t = 0 on the right hand side of (1.5). When

comparing our field theoretical predictions for (1.5) with lattice calculations in the Ising

chain in the scaling limit, we will be actually comparing (1.5) with a similar quantity

involving a two-point function of branch point twist fields n〈0|T (0, t)T †(`, t)|0〉n: that is

the entanglement entropy of an interval of length `. To allow for comparison, we will

take the length of such interval to be very large, in which case we expect clustering of the

two-point function to occur, namely, the factorization

lim
`→∞ n〈0|T (0, t)T †(`, t)|0〉n ∼ n〈0|T (0, t)|0〉2n . (1.7)

Thus our results for (1.5) will generally give half the values obtained from computations

involving a large but finite interval `. We indeed confirm this in section 6 of this paper.

This paper is organized as follows: in section 2 we present a summary of our analytical

results. In section 3 we review the field theoretical tools that we have used: a time-

dependent formulation of the branch-point twist field approach [35] for the calculation of

entanglement measures. In particular, we present an expansion of the twist field one-point

function in the post-quench quasi-particle basis following the route traced in [32] for the

order parameter. In section 4, we derive the main analytical results. In section 5 we

further generalize the perturbative approach to the quench dynamics put forward in [36]

to the calculation of the twist field one-point function. We show that for sufficiently small

quenches, these results are in agreement with the main outcome of section 4. In section 6 we

present a detailed test of our field theoretical predictions against lattice results obtained in

the scaling limit. Finally, we conclude in section 7. An appendix with additional numerical

lattice results completes the paper.

2 Summary of the main results

Consider the Ising field theory with mass scale m0 and a quench that changes it to a new

value m. Let us also introduce the function (θ ∈ R)

K(θ) = i tan

[
1

2
tan−1(sinh θ)− 1

2
tan−1

(
m

m0
sinh θ

)]
:= iK̂(θ) , (2.1)

whose meaning we discuss in section 3. Long time after the quench, namely for mt � 1

the expectation value of the branch point twist field is conjectured to be

n〈0|T (0, t)|0〉n = τ̃ ′n exp

[
−nΓ′mt

2
− nµ2

64πmt
− µ

8
√
πn

cos π
2n

sin2 π
2n

cos(2mt− π
4 )

(mt)
3
2

+ · · ·
]
, (2.2)
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where

µ := 1− m

m0
= −δm

m0
, with δm := m−m0 . (2.3)

The ellipsis in (2.2) denote terms that are subleading with respect to t−3/2 for large times.

The parameters τ̃ ′n and Γ′ in (2.2) are calculated perturbatively in the function K(θ) whose

absolute value is then assumed small for θ real. In particular

τ̃ ′n = τ̃n e
A+O(K3) and Γ′ = Γ +O(K4) , (2.4)

where τ̃n is the expectation value of the branch point twist field in the post-quench ground

state |0̃〉n, similar to the definition (1.6) but with mass gap m. The decay rate Γ and the

constant A in (2.4) are

Γ := 2

∫ ∞
0

dθ

π
K̂2(θ) sinh θ , (2.5)

and

A :=
1

2 sin π
n

∫ ∞
−∞

dθ

2π
K̂2(θ) . (2.6)

We will provide a full derivation of the twist field one-point function up to O(K2) and

conjecture its general form in (2.2) following an analogous calculation as for the one-point

function of the spin operator after a mass quench [32] in Ising field theory. In particular,

we will show that the decay rate Γ in (2.5) is the same as for the spin operator [32] up

to the second-order corrections in the function K. The oscillatory contribution in (2.2)

has also the same frequency and power law in mt as for the spin operator, albeit with a

different n-dependent overall coefficient.

From the explicit calculation of the one-point function of the branch-point twist field,

we can derive an exact expression at O(K2) for the Rényi entropies (1.5) at large times

after the quench which is given by

Sn(t) =
log(ε∆n τ̃ ′n)

1− n +
Γnmt

2(n− 1)
+

nµ2

64πmt(n− 1)
+

µ

8
√
πn

cos π
2n

sin2 π
2n

cos(2mt− π
4 )

(n− 1)(mt)
3
2

+O(t−3) .

(2.7)

Since for |µ| � 1, K̂(θ) is O(µ) and

Γ =
µ2

3π
+O(µ3) , A =

µ2

24π sin π
n

+O(µ3) . (2.8)

Eq. (2.7) can also be viewed as a large-time expansion of a perturbative series in the quench

parameter µ. Due to (2.8), eq. (2.7) is exact up to second-order terms in µ; in particular,

the leading large-time behavior of the Rényi entropies is governed by the decay rate Γ

which is an O(µ2) effect. These results will be checked explicitly against analytical and

numerical lattice calculations in the scaling limit in section 6.

Furthermore, notice that the oscillating term is O(µ). Indeed, under the assumption

|µ| � 1 and provided the replacement m → m0 in the frequency, it can be also derived

within a first-order perturbative approach to the quench dynamics [36, 37]. We will post-

pone details of this alternative derivation to section 5.

– 5 –
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Another interesting feature of (2.7) is that the limit n→ 1 is only well-defined for the

oscillatory term; for the von Neumann entropy we obtain in particular

lim
n→1

µ

8
√
πn(n− 1)

cos π
2n

sin2 π
2n

cos(2mt− π
4 )

(mt)
3
2

=
µ

4

√
π cos(2mt− π

4 )

4(mt)3/2
. (2.9)

The same limit is obviously ill-defined for all the other contributions in (2.7). The reason

for this has to do with the way the O(µ2) terms are computed, namely from branch point

twist fields which are a priori only defined for n ∈ N \ {0, 1}. Taking the limit generally

requires an understanding of the analytic continuation to n ∈ R of the one-point function,

which is non-trivial, particularly for higher particle form factor contributions (e.g. precisely

the ones that give rise to the problematic terms in (2.7)). We have not carried out this

limit here, but we have found good agreement between (2.9) and lattice calculation in the

scaling limit for the Neumann entropy. We report these comparisons in section 6

3 Review of the main techniques

In this section we review the main techniques that we have employed in order to derive

the results of the previous section: branch point twist fields in relation to entanglement

measures in the Ising field theory and the expansion of the one-point function of a local

operator in the post-quench quasi-particle basis, as developed in [32] (see also [38, 39]).

Results obtained from a perturbative approach [36, 37] in the quench parameter will be

given in section 5.

3.1 Branch point twist fields and entanglement

The main properties of branch point twist fields were described at length in [35] and

the subsequent review article [40]. In quantum field theory, it has been known for some

time [33–35] that, for integer n, the Rényi entropies in (1.2) may be expressed in terms of

correlation functions of branch point twist fields, with the number of twist field insertions

equalling the number of boundary points of the subsystems under consideration. This

means that the entanglement entropy of a semi-infinite region is simply given by the one-

point function of the branch point twist field. Eq. (1.5) can be thought as the obvious

time-dependent generalization of the setting in [35] at equilibrium.

Before embarking into the study of the time-dependent one-point function of the twist

field, it is useful to recall some of its properties at equilibrium. At equilibrium, the nth

Rényi entropy of a semi-infinite system in the ground state of H(λ0) is given by (1.5) at

t = 0, namely

Sn(0) =
log
(
ε∆nτn

)
1− n , (3.1)

Obviously in the ground state |0̃〉n of the post-quench Hamiltonian H(λ) (with a mass

gap m) (3.1) applies by replacing τn → τ̃n. The power ∆n is the scaling dimension of the

branch point twist field at criticality, which is given by

∆n =
c

12

(
n− 1

n

)
, (3.2)

– 6 –
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where c is the central charge of the underlying CFT [33, 41, 42]; for instance, c = 1
2 for Ising

field theory. The parameter n, which was already introduced in section 1, is the number of

copies of the replicated Hilbert space of the quantum field theory, upon which the branch

point twist field acts. Therefore, in such a replicated theory, the pre- and post-quench

ground states |0〉n and |0̃〉n are tensor products of n copies of the physical ground states

defined in the introduction. The same construction carries over for the time-dependent case.

Finally, it is useful to remember that when comparing with lattice results for the Ising

spin chain, the natural choice for the cut-off is the lattice spacing a. The UV cut-off ε and a

are related by a model-dependent (i.e. non-universal) proportionality constant. Therefore

on the lattice (3.1) reads [33]

Sn(0) = − c

12

(
n+

1

n

)
log(m0a) +O(1) , (3.3)

where O(1) denotes non-universal terms that are finite or vanish in the scaling limit a→ 0.

The leading logarithmic lattice spacing dependence in (3.3) can be used to extract the twist

field scaling dimension, alias the central charge of the UV fixed point, in lattice numerical

calculations. Actually the quality of such an extrapolation provides a useful measure of how

close the numerical calculation is to the scaling regime of the lattice model; see section 6

and appendix A.

3.2 Expansion of the time-dependent one-point function in the post-quench

basis

In this section we review the approach first employed in [32] to study relaxation dynamics

of a local operator in the Ising field theory after a mass quench. The technique needs two

inputs: an expansion of the initial state into eigenstates of the post-quench Hamiltonian

and the matrix elements of the local operator one is interested in, between states of the

post-quench quasi-particle basis. In principle the method is applicable also to interacting

post-quench theories, provided that such analytical data are known; in particular the post-

quench theory, considered in infinite volume and for all times, should be integrable. See

for instance [43] for recent activity devoted to overlap calculations.

In the specific case of the Ising mass quench, the non-normalized initial state |Ω〉 :=√
〈Ω|Ω〉|0〉, |0〉 being the ground state of the pre-quench Hamiltonian, can be exactly

expressed in terms of eigenstates of the post-quench Hamiltonian as

|Ω〉 = exp

[∫ ∞
0

dθ

2π
K(θ)a†(−θ)a†(θ)

]
|0̃〉 . (3.4)

Notice therefore that |0̃〉 is the vacuum of the post quench Ising field theory (i.e. with mass

gap m); a†(θ) is the fermionic creation operator, and K(θ) is the function given earlier

in (2.1). The integral in (3.4) is over the so-called rapidity which parametrizes the energy

(E) and momentum (P ) of the one-particle state |θ〉 := a†(θ)|0̃〉 as follows: E = m cosh θ

and P = m sinh θ. The normalization of the one-particle states is 〈θ|θ′〉 = 2πδ(θ − θ′).
Quenches leading to states with the structure (3.4) where studied in detail in [44, 45]. A

derivation of the function (2.1) is given in appendix A of [45]. These states have the same

– 7 –
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structure of the boundary states first described by Ghoshal and Zamolodchikov [46]. Their

structure neatly fits with the quasi-particle picture put forward in [3, 5, 6] as the initial

state (3.4) can be regarded as a coherent superposition of particle pairs, also known as a

squeezed coherent state. Exact solvability of the quench dynamics, which is generally not

possible, has been also related [47] to initial states analogous to (3.4), see for instance [36].

In the n-copy theory, this simply generalises to

|Ω〉n = exp

 n∑
j=1

∫ ∞
0

dθ

2π
K(θ)a†j(−θ)a

†
j(θ)

 |0̃〉n , (3.5)

where a†j(θ) is the fermionic creation operator in copy j. We denote by |θ1, . . . , θk〉j1,...,jk;n

an element of an orthonormal basis in the replicated (in or out) Hilbert space consisting of

k particles with rapidities θi and copy labels ji, i = 1, . . . , k. The energy and momentum

of multi-particle states are the sum of the energies and momenta of their one-particle

constituents.

In such a framework, the Rényi entropies after the quench can be written as

Sn(t) =
1

1− n log

(
ε∆n

n〈Ω|T (0, t)|Ω〉n
n〈Ω|Ω〉n

)
. (3.6)

Substituting the representation (3.5) of the replicated initial state into (3.6), both numer-

ator and denominator admit a formal expansion as sums of integrals of matrix elements in

the post quench basis. Borrowing notations from [32], we will write these series as

n〈Ω|T (0, t)|Ω〉n := τ̃n

∞∑
k1,k2=0

C2k1,2k2(t) , (3.7)

with

τ̃nC2k1,2k2(t)=
1

k1!k2!

n∑
j1,...,jk1=1

n∑
p1,...,pk2=1

(3.8)

×
[
k1∏
s=1

∫ ∞
0

dθ′s
2π

K(θ′s)
∗e2itE(θ′s)

][
k2∏
r=1

∫ ∞
0

dθr
2π

K(θr)e
−2itE(θr)

]
×n;j1j1...jk1jk1

〈θ′1,−θ′1,...,θ′k1 ,−θ′k1 |T (0,0)|−θk2 ,θk2 ,...,−θ1,θ1〉pk2pk2 ...p1p1;n ,

and analogously

n〈Ω|Ω〉n :=
∞∑
k=0

Z2k , (3.9)

where now

Z2k =
1

(k!)2

n∑
j1,...,jk=1

n∑
p1,...,pk=1

[
k∏
s=1

∫ ∞
0

dθ′sdθs
(2π)2

K(θ′s)
∗K(θs)

]
(3.10)

×j1j1...jkjk〈θ′1,−θ′1, . . . , θ′k,−θ′k| − θk, θk, . . . ,−θ1, θ1〉pkpk...p1p1 for k > 0 ,

– 8 –
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and Z0 = 1. The ratio in (3.6) can be then expanded formally in powers of the function K

n〈Ω|T (0, t)|Ω〉n
n〈Ω|Ω〉n

:= τ̃n

∞∑
k1,k2=0

D2k12k2(t) , (3.11)

with

D2k1,2k2(t) =

min(k1,k2)∑
p=0

Z̃2pC2(k1−p),2(k2−p)(t) , (3.12)

where Z̃2p are the expansion coefficients of the inverse of the norm, i.e.
∑∞

k,p=0 Z2kZ̃2p = 1.

In section 4 we present the calculation up to O(K2).

The matrix elements of the twist field in (3.8) can be related to the so-called elemen-

tary form factors [35, 48, 49], see (3.19) in the next section. The transformation that

relates the two functions is called crossing. Consider for instance the matrix element

n;j1〈θ1|T (0, 0)|θ2〉j2;n. This can be written as

n;j1〈θ1|T (0, 0)|θ2〉j2;n = τ̃n n;j1〈θ1|θ2〉j2;n + n〈0̃|T (0, 0)|θ1 + iπ − iη, θ2〉j1,j2;n

= 2π τ̃n δ(θ12)δj1j2 + F j1j22 (θ12 + iπ − iη) , (3.13)

where θ12 := θ1 − θ2, η is a small positive parameter and F j1j22 (θ) will be given in (3.17).

This relation can be generalized to matrix elements involving states with larger number of

particles [49]. The shift by iη makes the function F j1j22 (θ) on the right hand side of (3.13)

regular for θ → iπ. There are however additional sources of divergences related to the

normalization of the asymptotic states in infinite volume, see the δ function in (3.13).

These infinite volume singularities are expected to be cancelled by similar singularities

in the denominator in (3.10) in the combination as (3.12). The precise way in which this

cancellation occurs has been the object of much investigation over the past decade and a

rigorous understanding now exists. That is, to consider the theory in finite volume V and

use the volume as regulator [50, 51]. However, this rigorous approach is rather involved and

for this reason some simpler methods, have also been developed. In [32] a regularization

scheme known as κ-regularization [52, 53] was used. The technique requires to shift the

coinciding rapidities by a real value κ (or several values κi for multi-particle states) so that

the singularities are avoided. Then introduce a smooth function P (κ) which is strongly

peaked about κ = 0 with the properties

P (0) = V , and

∫ ∞
−∞

dκP (κ) = 1 . (3.14)

Of course, there are many functions that would meet the criteria above but one expects

that in the infinite volume limit V → ∞ they will all lead to the same finite result. A

natural choice also employed in [32] is a gaussian P (κ) = V e−πκ
2V 2

. For instance for a

two-particle form factor the regularization would be implemented as

n;j1〈θ1|T (0, 0)|θ2〉j2;n 7→
∫ ∞
−∞

dκP (κ) n;j1〈θ1|T (0, 0)|θ2 + κ〉j2;n . (3.15)
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After using the crossing relation (3.13), it is possible to isolate the infinite volume di-

vergences, coming from the normalization of the states, and the leading contribution for

V → ∞, by expanding the integrand as a series about κ = 0. Applications can be found

in [32] and in section 4.

3.3 Form factors of the branch point twist field in the Ising field theory

In this section, we will finally recall the necessary results for the form factors of the twist

field in the Ising field theory. The explicit form of the form factors is needed to evaluate

the numerator of (3.6). In the replicated Ising field theory fermionic particles have an

extra copy index j = 1, . . . , n. There is also an internal Z2 symmetry in each copy which

implies, for Z2 even fields, such as the twist field, that only even-particle form factors are

non-vanishing. As already mentioned in the previous section, let |θ1, . . . , θk〉j1,...,jk;n be an

asymptotic in state of the replicated theory consisting of k particles with rapidities θi and

copy labels ji, i = 1, . . . , k. We further assume θ1 > θ2 > · · · > θk. The two-particle twist

field form factor is defined as [35]

F j1j22 (θ1 − θ2) := n〈0|T (0, 0)|θ1θ2〉j1,j2;n , (3.16)

and is given by

F j1j22 (θ) =
τn sin π

n

2n sinh
[
iπ(1+2(j1−j2))+θ

2n

]
sinh

[
iπ(1−2(j1−j2))−θ

2n

] F j1j2min (θ)

F 11
min(iπ)

, (3.17)

with

F j1j2min (θ) =

{
−i sinh[ θ+2πi(j1−j2)

2n ] j1 ≥ j2
+i sinh[ θ+2πi(j1−j2)

2n ] j1 < j2
, (3.18)

and τn was defined in (1.6). Here we have used the fact that the twist field is a Lorentz

scalar and therefore the form factor depends only on the rapidity difference, rather than

two separate rapidities. Due to the free nature of the theory the k-particle form factors

are given in terms of Pfaffians [54],

F j1...jkk (θ1, . . . , θk) := n〈0|T (0)|θ1 . . . θk〉j1,...,jk;n = τnPf(W ) , (3.19)

where Pf is the Pfaffian of the matrix W (i.e. Pf2(W ) = det(W )), which in turn is defined as

Wjijr =
F jijr2 (θi − θr)

τn
. (3.20)

In practice, (3.19) implies that, if we call the two-particle form factor in (3.20) a con-

traction, k-particle form factors (k even) are obtained as sums of products of contractions

as prescribed by the Wick theorem for fermionic fields. Due to the particular monodromy

properties of the branch point twist field discussed in [35], all form factors can be ultimately

expressed in terms of form factors involving only one copy of the theory. In particular

F j1...jkk (θ1, . . . , θk) = F 1...1
k (θ1 + 2πi(j1 − 1), . . . , θk + 2πi(jk − 1)) , (3.21)
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for j1 ≥ j2 ≥ · · · ≥ jk. For the Ising field theory this means that the two-particle form

factor of particles in the first copy is effectively the building block for any other form factor.

For this reason it is useful to adopt a simpler notation for this form factor. We then define

the normalized two-particle form factor

f(θ) :=
F 11

2 (θ)

τn
. (3.22)

All formulas presented in this section are valid when considering the post-quench ground

state |0̃〉n, if one replaces τn with τ̃n.

4 Rényi entropies after a mass quench: field theory results

As outlined at the beginning of section 3.2, the calculation is organized as a perturbation

series in powers of the function K introduced in (2.1). In principle, the final result is not

limited to δm� 1, see (2.3), provided K(θ) is sufficiently small for θ ∈ R. Physically this

is equivalent to truncating the series in (3.4) to a few multi-particle states. In this section

we will fill in the details of the derivation of (2.7).

4.1 Contributions at O(K)

Apart from a trivial K-independent term, corresponding to C00 = D00 = 1 in (3.7), the

leading term in the K expansion of (3.6) is O(K) and given by

C2,0(t) + C0,2(t) = n

[∫ ∞
0

dθ

2π
K(θ)∗f(2θ)e2itE(θ) +

∫ ∞
0

dθ

2π
K(θ)f(2θ)∗e−2itE(θ)

]
= −

∫ ∞
0

dθ

2π
K̂(θ)

2 cos π
2n sinh θ

n

sinh iπ−2θ
2n sinh iπ+2θ

2n

cos [2mt cosh θ] , (4.1)

where we have used (3.22) and (3.17). Notice that the expansion of the denominator

in (3.9) starts as 1+O(K2), therefore, see (3.12), C2,0 +C0,2 = D2,0 +D0,2. At large times,

according to stationary phase analysis, we can expand the integrand in (4.1) close to θ = 0

and observe that

K̂(θ) =
µ

2
θ +O(θ3) , (4.2)

with µ defined by (2.3). By retaining only contributions up to O(K), the one-point function

of the twist field is then for mt� 1

n〈Ω|T (0, t)|Ω〉n
n〈Ω|Ω〉n

= τ̃n

(
1− µ

8
√
πn

cos π
2n

sin2 π
2n

cos(2mt− π
4 )

(mt)3/2
+ . . .

)
+O(K2) . (4.3)

As anticipated in section 1 for |µ| � 1 the same result can be derived from a perturbation

theory approach [36]; see section 5 for details. We will show in a subsequent section that the

terms above are in fact just the first two contributions to the expansion of an exponential,

hence the expression (2.2).
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4.2 Contributions at O(K2)

The O(K2) contributions are considerably more involved and provide a first indication that

Rényi entropies after the quench grow linearly in time. Taking into account numerator and

denominator in (3.6), the O(K2) contributions in the expansion of the one-point function

are given by, see again (3.12)

D2,2(t) = C2,2(t)− Z2C0,0 , (4.4)

and

D0,4(t) +D0,4(t) = C0,4(t) + C4,0(t) . (4.5)

4.2.1 The contribution D2,2

We start analysig D2,2 in (4.4); from (3.8) one has

τ̃nC2,2(t) =

n∑
j,p=1

∫ ∞
0

dθdθ′

(2π)2
M(θ′, θ; t) n;jj〈θ′,−θ′|T (0, t)| − θ + κ, θ + κ〉pp;n

= n

n∑
j=1

∫ ∞
0

dθdθ′

(2π)2
M(θ′, θ; t) n;11〈θ′,−θ′|T (0, t)| − θ + κ, θ + κ〉jj;n . (4.6)

The second equality follows from permutation symmetry of the replicas, and we also defined

M(θ′, θ; t) := K̂(θ′)K̂(θ)e2imt[cosh θ′−cosh θ] . (4.7)

Finally, C0,0 = 1 and from (3.9) it follows

Z2 = n

n∑
j=1

∫ ∞
0

dθ′

2π

∫ ∞
0

dθ

2π
K̂(θ′)K̂(θ) n;11

〈
θ′,−θ′| − θ + κ, θ + κ

〉
jj;n

. (4.8)

To further manipulate (4.6), we exploit the crossing relation [49]

n;11〈θ′,−θ′|T (0, 0)| − θ + κ, θ + κ〉jj;n =

= (2π)2τ̃n
[
δ(θ′ − θ − κ)δ(−θ′ + θ − κ)δ1j − δ(θ′ + θ − κ)δ(−θ′ − θ − κ)δ1j

]
− 2π

[
δ(−θ′ − θ − κ)F 1j

2 (θ′+ − iη + θ − κ)− δ(θ′ − θ − κ)F 1j
2 (−θ′− − iη + θ − κ)

]
δ1j

− 2π
[
δ(θ′ + θ − κ)F 1j

2 (−θ′− − iη − θ − κ)− δ(−θ′ + θ − κ)F 1j
2 (θ′+ − iη − θ − κ)

]
δ1j

+ F 11jj
4 (θ′+ − iη1,−θ′− − iη2,−θ + κ, θ + κ) , (4.9)

which generalises (3.13) to four-particle states. In (4.9) and hereafter, we used the notation:

θ± := θ ± iπ . After substituting (4.9) into (4.6) we regroup the result into three terms:

C2,2 := C
(0)
2,2 + C

(2)
2,2 + C

(4)
2,2 . The integrand of C

(0)
2,2 contains the first line in (4.9), the

integrand of C
(2)
2,2 contains the second and third line in (4.9) while the integrand of C

(4)
2,2

includes the four-particle form factor in the last line of (4.9). Now it is easy to see that

C
(0)
2,2 = Z2C00 and therefore the only non-vanishing contribution at O(K2) is, see (4.4),

D2,2(t) = C
(2)
2,2 (t) + C

(4)
2,2 (t) . (4.10)
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The double integral C
(2)
2,2 , after integrating the delta function over θ′ and exploiting the

symmetries M(−x, y; t) = −M(x, y; t) and M(−x,−y; t) = M(x, y; t), can be rewritten as

C
(2)
2,2 (t) = nf(−2κ+ iπ − iη)

∫ ∞
−∞

dθ

2π
M(θ + κ, θ; t) . (4.11)

Notice that the sum over j in (4.6) reduces in this case to only one term, due to the

Kronecker delta in (4.9). In the κ regularization scheme, eq. (4.11) should be first integrated

with the measure P (κ), discussed in section 3, and then the outcome of the integration

evaluated in the limit V → ∞ and η → 0. In practice, one expands (4.11) in a power

series in κ close to κ = −iη/2 and observes that
∫
dκP (κ)κn = O(V −n), therefore in the

infinite volume limit only terms that are singular or finite for κ, η → 0 contribute to the

final result. Actually, when summed up at a given order in K, divergent terms in κ should

cancel consistently. Expanding the function C
(2)
2,2 around κ = −iη/2 we obtain

C
(2)
2,2 (t) = − in

2κ+ iη

∫ ∞
−∞

dθ

2π
K̂2(θ) +

1

2 sin π
n

∫ ∞
−∞

dθ

2π
K̂2(θ)

− in
2

∫ ∞
−∞

dθ

2π

dK̂(θ)

dθ
K̂(θ) + nmt

∫ ∞
−∞

dθ

2π
K̂2(θ) sinh(θ) +O(κ) . (4.12)

The third and fourth terms vanish by symmetry, while the first one which is divergent in

the limit κ, η → 0, will be cancelled by an opposite contribution coming from C
(4)
2,2 . In

conclusion only the second time-independent term in (4.12), contributes to the final result

for the twist field one-point function. Such a constant was called A in (2.6).

Let us then finally analyze C
(4)
2,2 . This is a double integral weighted by the function

M(θ′, θ; t) of the four-particle form factor in (4.9). For the Ising model such a form factor

is obtained, see the definition (3.19), applying the Wick theorem as

τ̃nF
11jj
4 (θ′+ − iη1,−θ′− − iη2,−θ + κ, θ + κ) = F 11

2 (2θ′ − i(η1 − η2))F jj2 (−2θ)

−F 1j
2 (θ′+ + θ − iη1 − κ)F 1j

2 (−θ′− − θ − iη2 − κ)

+F 1j
2 (θ′+ − θ − iη1 − κ)F 1j

2 (−θ′− + θ − iη2 − κ) . (4.13)

Using (3.21) and in particular F 1j
2 (θ) = τ̃nf(2πi(j − 1) − θ) = −τ̃nf(θ − 2πi(j − 1)) for

j 6= 1, we can rewrite the two-particle form factors in (4.13) in terms of the elementary

function f , see section 3. The sums over j, needed to construct C4
2,2, see (4.6), can be then

performed by using the identity

G(x, y) :=
n∑
j=1

f(−x+ 2πij)f(y + 2πij)

= − i sinh x+y
2

2 cosh x
2 cosh y

2

[f(x+ y + iπ) + f(x+ y − iπ)] , (4.14)

that can be found for instance in the appendix of [54]. This gives

n∑
j=1

F 11jj
4 (θ′+ − iη1,−θ′− − iη2,−θ + κ, θ + κ) = nτ̃nf(2θ′ − i(η1 − η2))f(−2θ) (4.15)

+τ̃n[G(θ′+ − θ − iη1 − κ, θ′− − θ + iη2 + κ)−G(θ′+ + θ − iη1 − κ, θ′− + θ + iη2 + κ)] .
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The two lines in (4.15) have to be finally integrated over the rapidities θ and θ′ to obtain

the function C4
2,2(t). We define I(t) to be the result of integrating the second line in (4.15)

(i.e. the function inside the square bracket) and I ′(t) to be the result of integrating the

first line (i.e. the product of functions f). In this way C4
2,2(t) = I(t) + I ′(t); we start by

analyzing I ′(t) which is simply

I ′(t) = n2

∫ ∞
0

dθdθ′

(2π)2
M(θ′, θ; t)f(2θ′)f(−2θ) = |C2,0(t)|2 , (4.16)

C2,0 given in (4.1); the result follows from f(θ) = −f(θ)∗ for θ ∈ R. Notice that, according

to the discussion in (2.9), for large times I ′(t) = O(t−3).

The remaining integral to complete our calculation of D2,2(t) is I(t). After substituting

the explicit form for the function G, given in (4.14) into (4.15) and using M(x, y; t) =

−M(x,−y; t) it can be eventually rewritten as

I(t) = n

∫ ∞
0

dθ′

2π

∫ ∞
−∞

dθ

2π
M(θ′, θ; t)

H(θ′, θ)

2 sinh( θ
′−θ−κ−iη1

2 ) sinh( θ
′−θ+κ+iη2

2 )
, (4.17)

where we have introduced the function

H(θ′, θ) = −i sinh

(
θ′ − θ − iη12

2

)[
f(2θ′ − 2θ − iη12 + iπ) + f(2θ′ − 2θ − iη12 − iπ)

]
,

(4.18)

which is regular along the integration contour in the variable θ in the limit η1,2 → 0; also

η12 := η1 − η2.

The denominator in (4.17) has poles at θ = θ′ − κ − iη1 and θ = θ′ + κ + iη2. To

calculate the κ-regularized part of the integral and evaluate the η1,2 → 0 limit, we modify

the integration contour for θ to be the sum of the contours

C1 = {x− s+ iφ|x ∈ [−∞, 0]} ,
C2 = {−s+ ix|x ∈ [φ,−φ]} ,
C3 = {x− s− iφ|x ∈ [0,∞]} , (4.19)

where s and φ are parameters chosen carefully. We have that s < θ′ − κ, η1 < φ, and φ

has to be smaller than the position of the branch point in the function K̂. When shifting

the contour from the real axis to C3 we encounter a pole at θ = θ′ − κ − iη1 and pick up

the residue contribution, in a clockwise direction, with the value

n

∫ ∞
0

dθ′

2π
M(θ′, θ′ − κ; t) [f(2κ+ iη + iπ) + f(2κ+ iη − iπ)] . (4.20)

where η := η1 + η2. Expanding the integrand in (4.20) around κ = −iη/2, sending η → 0,

and calling θ the integration variable, we have

in

κ+ iη2

∫ ∞
0

dθ

2π
K̂2(θ)− 2nmt

∫ ∞
0

dθ

2π
K̂2(θ) sinh θ − n

∫ ∞
0

dθ

2π

dK̂(θ)

dθ
K̂(θ) +O(κ) . (4.21)

The first term in (4.21) exactly cancels the two-particle form factor singularity, i.e. the first

term on the right hand side of (4.12). The second term is remarkably linear in time with
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coefficient −nmΓ
2 and Γ given in (2.5). The third term vanishes due to K̂2(0) = K̂2(∞) = 0.

We can then finally write

I(t) = −nΓmt

2
+ n

∫ ∞
0

dθ′

2π

∫
C1∪C2∪C3

dθ

2π

M(θ′, θ′; t)H(θ′, θ)

2 sinh2( θ−θ
′

2 )
, (4.22)

where the last integral is now well defined as there are no singularities along the contour

of integration of the rapidity θ. It is also possible to extract the large time limit of the

integral

R(t) := n

∫ ∞
0

dθ′

2π

∫
C1∪C2∪C3

dθ

2π

M(θ′, θ′t)H(θ′, θ)

2 sinh2( θ−θ
′

2 )
, (4.23)

which appears in (4.22). The integrand of (4.23) has a double pole on the real axis of the

variable θ, however this can be cured, without spoiling convergence at infinity, by taking a

double derivative with respect to time. After taking the double derivative the integration

contour for θ can be lifted back to the real axis. We are then led to consider the large t

asymptotics of the following double integral

d2R(t)

dt2
= −4m2n

∫ ∞
0

dθ′

2π

∫ ∞
−∞

dθ

2π

M(θ′, θ)H(θ′, θ)(cosh θ′ − cosh θ)2

2 sinh2
(
θ−θ′

2

) . (4.24)

This can be done by standard application of the stationary phase approximation for two-

dimensional integrals. There is only one stationary point at θ = θ′ = 0; Taylor-expanding

the integrand about θ = θ′ = 0 gives at leading order

d2R(t)

dt2
= − nµ2

32mπt3
+O(t−5) . (4.25)

Integrating back twice we obtain the desired asymptotic for the integral R(t) in (4.22)

which is

R(t) = − nµ2

64mπt
+O(t−3) . (4.26)

Notice that when integrating back, we are setting to zero possible terms O(t) and O(1),

due to the asymptotic of the original integral. In summary, we have shown that

I(t) = −nΓmt

2
− nµ2

64mπt
+O(t−3) . (4.27)

We will revisit this result in subsection 4.3 where we argue that these contributions are

nothing but the first non-trivial term in the expansion of the exponential featuring in (2.2).

4.2.2 The contributions D0,4 and D4,0

Finally we analyze the contributions D0,4 and D4,0. Since D4,0 = D∗0,4, we focus only on

D0,4, which is given by D0,4 = C0,4 with

τ̃nC0,4(t) = −n
2

n∑
j=1

∫ ∞
0

dθdθ′

(2π)2
N(θ′, θ; t)F 11jj(−θ′, θ′,−θ, θ) , (4.28)
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and we defined, analogously to (4.7)

N(θ′, θ; t) := K̂(θ′)K̂(θ)e−2imt(cosh θ′+cosh θ) . (4.29)

The four-particle form factor in (4.28) can be decomposed as in (4.13) by applying Wick’s

theorem and the sum over the index j performed by recalling (4.15). By repeating steps

similar to those employed in the section 4.2, the integral C0,4 can be written as a sum of

two terms, namely C0,4(t) := C
(1)
0,4 (t) + C

(2)
0,4 (t). In particular, one obtains

C
(1)
0,4 (t) = −1

2

[
n

∫ ∞
0

dθ

2π
K̂(θ)f(−2θ)e−2imt cosh θ

]2

=
1

2
[C0,2(t)]2 , (4.30)

and

C
(2)
0,4 (t) =

n

2

∫ ∞
0

dθ′

2π

∫ ∞
−∞

dθ

2π
N(θ′, θ; t)

H(θ′, θ)

2 cosh2
(
θ′−θ

2

) , (4.31)

where H(x, y) is the same function given in (4.18). By applying the stationary phase

approximation we can estimate the large time limit of (4.31). This gives another O(t−3)

contribution (since (4.30) is also of O(t−3)), namely

C
(2)
0,4 (t) + C

(2)
4,0 (t) =

bnµ
2

32π

sin(4mt)

(mt)3
+O(t−7/2) , (4.32)

with

bn =
2 + n2 − 12 cot

(
π
n

)
csc
(
π
n

)
48n

. (4.33)

This closes our calculation of the branch point twist field one-point function at O(K2).

4.2.3 The complete formula at O(K2) for the twist field one-point function

We can finally summarize the result for the twist field one-point function up to O(K2)

n〈Ω|T (0, t)|Ω〉n
n〈Ω|Ω〉n

= τ̃n

[
1 +A+ C2,0(t) + C0,2(t)− nΓmt

2
+ (4.34)

+
(C2,0(t) + C0,2(t))2

2
+R(t) + C

(2)
4,0 (t) + C

(2)
0,4 (t)

]
+O(K3) ,

where A is given in (2.6), C2,0(t) +C0,2(t) in (4.1), Γ in (2.5), R(t) in (4.23) and C
(2)
0,4 (t) =

[C
(2)
4,0 (t)]∗ in (4.31). Note also that

(C2,0(t) + C0,2(t))2

2
= C

(1)
0,4 (t) + C

(1)
4,0 (t) + I ′(t) , (4.35)

with I ′(t) given in (4.16) and the other terms in (4.30). The presence of the contributions

1 +C2,0(t) +C0,2(t) +
(C2,0(t)+C0,2(t))2

2 suggests that these and higher-order terms may arise

from the exponentiation of C2,0(t)+C0,2(t). Indeed, it is possible to argue that all terms in

the expansion (4.34) exponentiate. We will give a simple argument towards this conclusion

in subsection 4.3.
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Reinserting the cut-off dependence ε∆n in (4.34), taking the logarithm, expanding its

argument up to O(K2) and dividing by 1 − n we obtain the following expression up to

O(K2) for the Rényi entropies

Sn(t)− S̃0,n =
1

1− n

[
A+ C2,0(t) + C0,2(t)− nΓmt

2
+R(t) + C

(2)
0,4 (t) + C

(2)
0,4 (t)

]
+O(K3) ,

(4.36)

where S̃0,n is the Rényi entropy in the ground state of the post-quench Hamiltonian i.e.

S̃0,n =
log(ε∆n τ̃n)

1− n . (4.37)

Expanding (4.36) for mt� 1, we obtain the result quoted in (2.7).

4.3 An argument towards exponentiation at higher orders

A simple combinatorial argument can be provided to show that all the terms in the expan-

sion (4.34) exponentiate. In other words, they result from the expansion of an exponential

at order O(K2). The exponent will receive O(K3) and higher corrections which we will

not investigate in this paper. Note that in [32] an argument was given for the exponenti-

ation of the term −Γmt (the equivalent of our −Γnmt
2 term but for the order parameter).

An entirely similar argument can be given for the branch point twist field to show the

exponentiation of this term. However, we find that exponentiation is a much more general

feature of the one-point function, extending to other terms at O(K2) as well. As we will

see, our calculation does not use any special properties of the branch point twist field form

factors, apart from their Pfaffian structure. Therefore we expect the same exponentiation

to occur for the order parameter 〈Ω|σ(0,t)|Ω〉
〈Ω|Ω〉 .

Examining the generalization of the crossing relation (4.9) and the Wick contraction

nature of the form factor expressions (3.19) and (3.20), it is natural to expand the C2k,2l(t)

functions as sums of products of connected contributions, that is

C2k,2l(t) =
∑
{ni,j}

∞∏
i,j=0

(
Cc2i,2j(t)

)ni,j
ni,j !

, (4.38)

where Cc2i,2j(t) are related to integrals of “connected” matrix elements, which are de-

fined recursively from the condition of not being factorizable into other connected expres-

sions. The ni,j are non-negative integers that satisfy the constraints
∑∞

i,j=0 i ni,j = k and∑∞
i,j=0 j ni,j = l. By inverting the expansion (4.38), for the first few connected terms we

get for instance

Cc2,0(t) = C2,0(t) , Cc0,2(t) = C0,2(t) , (4.39)

Cc4,0(t) = C4,0(t)− 1

2
(C2,0(t))2 , Cc0,4(t) = C0,4(t)− 1

2
(C0,2(t))2 , (4.40)

Cc2,2(t) = C2,2(t)− C2,0(t)C0,2(t) . (4.41)

These new combinations of terms are immediately recognizable from our earlier computa-

tion. For instance, Cc0,4(t) is nothing but C
(2)
0,4 (t) defined in (4.31), and Cc2,2(t) is obtained
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from C2,2(t) after subtracting the term I ′(t) defined in (4.16). The norm of the initial state

|Ω〉n admits an analogous expansion

Z2k =
∑
{ñi}

∞∏
i=0

(Zc2i)
ñi

ñi!
, (4.42)

where
∑∞

i=0 i ñi = k. To calculate the regular terms of the one-point function D2k,2l(t),

see eq. (3.12), we need to calculate the inverse of the norm defined by the condition∑∞
km,p=0 Z2kZ̃2p = 1. From observation of the first few terms of the inverse of the norm,

we expect its connected expansion to have the form

Z̃2k =
∑
{ñi}

∞∏
i=0

(−Zc2i)ñi
ñi!

. (4.43)

In the following, we are only focusing on terms of the one-point function, that contain

connected matrix elements of at most O(K2), i.e. we consider only terms where powers

ni,j = 0 for i+ j > 2 and ñi = 0 for i > 1. With this assumption (4.38) takes the form

C2(k+l),2k =

k∑
r=0

(
Cc2,2(t)

)k−r
(k − r)! Lr+l(t)Rr(t) , (4.44)

where

Lk(t) =

b k
2
c∑

p=0

(
Cc4,0(t)

)p
p!

(
Cc2,0(t)

)k−2p

(k − 2p)!
, and Rk(t) =

b k
2
c∑

q=0

(
Cc0,4(t)

)q
q!

(
Cc0,2(t)

)k−2q

(k − 2q)!
,

(4.45)

with b.c denoting the integer part. Plugging these formulas and (4.43) into D2(k+l),2k using

the form (3.12), and exchanging the order of the summations leads to

D2(k+l),2k(t) =

k∑
r=0

(
Dc

2,2(t)
)k−r

(k − r)! Lr+l(t)Rr(t) , (4.46)

where the combination Dc
2,2(t) = Cc2,2(t)−Zc2 is both connected and regular. Similar results

hold for D2k,2(k+l)(t) and D2k,2k(t), hence the one-point function (3.11) takes the form

n〈Ω|T (0,t)|Ω〉n
n〈Ω|Ω〉n

= τ̃n

{ ∞∑
k=0

k∑
r=0

(
Dc

2,2(t)
)k−r

(k−r)!

[ ∞∑
l=1

[
Lr+l(t)Rr(t)+Lr(t)Rr+l(t)

]
+Lr(t)Rr(t)

]

+O(K3)

}
. (4.47)

Further manipulation of the order and range of the summations, allows us to write the

one-point function as

n〈Ω|T (0, t)|Ω〉n
n〈Ω|Ω〉n

= τ̃n

{
eD

c
2,2(t)

∞∑
r=0

Lr(t)

∞∑
s=0

Rs(t) +O(K3)

}
= τ̃n e

Dc2,2(t)+Dc2,0(t)+Dc4,0(t)+Dc0,2(t)+Dc0,4(t)+O(K3) , (4.48)
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where Dc
2i,0(t) = Cc2i,0(t), Dc

0,2i(t) = Cc0,2i(t), since these terms are regular without any

subtraction. Note that the terms in the exponent are precisely those inside the bracket

in (4.36). With this we showed, using the assumption (4.43), that the one-point function

exponentiates up to O(K2) terms. The expression is regular, since all the singularities are

cancelled as explained in detail in the previous sections.

Given the simplicity of the Ising form factors, we expect exponentiation to occur also

at higher orders in K, and we are planning to investigate this further in the future.

5 Perturbation theory in the quench parameter

Integrable model perturbation theory was developed in [55] for the study of integrable

models subject to a small integrability-breaking perturbation. The case considered there

was translation invariant in time. In a non-equilibrium protocol, such as a quench, the

field theory action is no longer time-translation invariant. In [36] it was then observed that

requiring factorization of the scattering at all times for such an action is consistent only if

the latter is free. An approach to tackle the quench problem was also proposed in which the

state in the Heisenberg picture after the quench could be expanded perturbatively in the

quench parameter over the pre-quench quasi-particle basis. The approach requires the pre-

quench theory to be integrable but allows for considering integrability breaking protocols.

Let us first review the main results of [36]. Consider an integrable quantum field theory

with ground state |0〉 and action A0. At time t = 0 the system is quenched and from t = 0

onwards it is described by the new action

A = A0 − λ
∫ ∞

0
dt

∫ ∞
−∞

dxΨ(x, t) , (5.1)

where Ψ(x, t) is some local field. In the interaction picture, with respect to the Hamiltonian

of the pre-quench theory, the state of the system at infinite time after the quench is the

time ordered exponential

|ψ0〉 = lim
t→∞

T

[
exp

(
−iλ

∫ t

0
ds

∫ ∞
−∞

dxΨ(x, s)

)]
|0〉 . (5.2)

The state |ψ0〉 in (5.2) can then be expanded perturbatively in λ over the basis of the out-

states of the pre-quench theory. k-particle states of this type are denoted by |θ1, . . . , θk〉out,

with θ1 < θ2 < · · · < θk, being the rapidities. It can then be shown that the properties

of the form factors allow for relaxing the constraint of ordering on the rapidities in the

expansion over the out-states. In fact, the expansion [36]

|ψ0〉 = |0〉+ λ

∞∑
k=1

2π

k!

∫ ∞
−∞

k∏
i=1

dθi
2π

δ(
∑

i P0(θi))[F
Ψ
k (θ1, . . . , θk)]

∗∑
iE0(θi)

|θ1 . . . θk〉+O(λ2) , (5.3)

represents the state in the pre-quench basis in the Heisenberg picture at all times after the

quench, up to first order in λ. E0(θ) = m0 cosh θ and P0(θ) = m0 sinh θ are the pre-quench

energy and momenta of the particles, and

FΨ
k (θ1, . . . , θk) := 〈0|Ψ(0, 0)|θ1, . . . , θk〉 , (5.4)
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is a k-particle form factor of the local field Ψ, calculated in the pre-quench quasi-particle

basis. This state can then be employed to compute perturbative corrections to the one-

point function of any local field Φ after the quench. These are found to be

δ〈Φ(t)〉 = 〈ψ0|Φ(0, t)|ψ0〉 − 〈0|Φ(0, 0)|0〉 = λ

∞∑
k=1

2π

k!

×
∫ ∞
−∞

k∏
i=1

dθi
2π

δ(
∑

i P0(θi))∑
iE0(θi)

2Re
[
[FΨ
k (θ1, . . . , θk)]

∗FΦ
k (θ1, . . . , θk)e

−i∑k
i=1 E0(θi)t

]
+CΦ +O(λ2) , (5.5)

where [37]

CΦ = −λ
∞∑
k=1

2π

k!

∫ ∞
−∞

k∏
i=1

dθi
2π

δ(
∑

i P0(θi))∑
iE0(θi)

2Re
[
[FΨ
k (θ1, . . . , θk)]

∗FΦ
k (θ1, . . . , θk)

]
, (5.6)

is a constant which is introduced to ensure that δ〈Φ(0)〉 = 0 at first order in perturbation

theory.

5.1 Perturbation theory for the entanglement entropy

In order to calculate the quantity δ〈T (t)〉n, defined similarly to (5.5), we shall work in a

replica version of (5.1); however this introduces a few changes. As discussed in section 3

particles are labelled by a replica index j = 1, . . . , n and we will denote the replicated

normalized pre-quench ground state by |0〉n = ⊗n|0〉. By repeating the steps leading

to (5.3), it follows that the first order expansion of the state of the system in the replica

theory after the quench is

|ψ0〉n = |0〉n+λn
∞∑
k=0

2π

k!

∫ ∞
−∞

k∏
i=1

dθi
2π

δ(
∑

i P0(θi))[F
Ψ
k (θ1, . . . , θk)]

∗∑
iE0(θi)

|θ1 . . . θk〉1...,1;n+O(λ2) .

(5.7)

The expression (5.7) is essentially identical to (5.3) except for the prefactor n, which takes

into account the sum over the replicas. Such a sum is however trivial since the local

operator Ψ when insterted in the j-th replica has only non-vanishing form factors among

particles with copy index j. Similarly, the generalization of (5.5) and (5.6) for the twist

field is also straightforward and given by

δ〈T (t)〉n = n〈ψ0|T (0,t)|ψ0〉n−n〈0|T (0,0)|0〉n=λn

∞∑
k=1

2π

k!

×
∫ ∞
−∞

k∏
i=1

dθi
2π

δ(
∑

iP0(θi))∑
iE0(θi)

2Re
[
[FΨ
k (θ1,...,θk)]

∗F 1...1
k (θ1,...,θk)e

−i∑k
i=1E0(θi)t

]
+CnT +O(λ2), (5.8)

where

CnT = −λn
∞∑
k=1

2π

k!

∫ ∞
−∞

k∏
i=1

dθi
2π

δ(
∑

i P0(θi))∑
iE0(θi)

2Re
[
[FΨ
k (θ1, . . . , θk)]

∗F 1...1
k (θ1, . . . , θk)

]
,

(5.9)
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and Fk are the form factors defined in (3.19), see section 3. The entanglement entropy may

then be computed at first order in perturbation theory as

Sn(t) =
log[ε∆n(τn + δ〈T (t)〉n)]

1− n =
log(ε∆nτn)

1− n +
δ〈T (t)〉n
τn(1− n)

+O(λ2) . (5.10)

Finally, we can define the first order correction to the Rényi entropies as

δS1
n(t) :=

δ〈T (t)〉n
τn(1− n)

. (5.11)

Notice that in the perturbative approach, the pre-quench VEV (i.e. τn) appears at the

denominator of (5.11).

5.2 Entanglement entropy oscillations after a small mass quench

Let us now evaluate (5.11) for a mass quench in the Ising field theory. In this case the

field Ψ(x, t) is the energy field, denoted by ε(x, t), which has only a non-vanishing two-

particle form factor with the pre-quench basis. Indeed, the pre-quench action A0 in (5.1)

is obtained by perturbing the conformal invariant UV fixed point by the energy operator

itself. The two-particle form factor, suitably normalized reads

F ε2 (θ) = −2m0i sinh
θ

2
. (5.12)

With the normalization choice for the energy form factor given in (5.12), we can directly

identify [37] λ in (5.8) with δm � 1, given in (2.3). From (5.8)–(5.10), and also recall-

ing (3.17), the first order correction in δm to the Rényi entropies after the quench can be

easily calculated:

δS1
n(t) =

1

1− n
δm

m0

∫ ∞
−∞

dθ

4π cosh2 θ

sinh θ sinh θ
n cos π

2n

sinh iπ−2θ
2n sinh iπ+2θ

2n

cos(2m0t cosh θ) +
CnT

τn(1− n)
.

(5.13)

The constant CnT can be determined exactly in this case [37] and it turns out to be

CnT
τn

=
δm

m0
∆n , (5.14)

where ∆n is the scaling dimension of the twist field in (3.2). Observing that at first order

in the quench parameter

τ̃n = τn

(
1 + ∆n

δm

m0

)
+O

(
δm2

m2
0

)
, (5.15)

then from (5.10) and (5.13), the large time limit at first order in perturbation theory for

the Rényi entropies finally follows

Sn(0) + δS1
n(t) =

log(ε∆n τ̃n)

1− n +
1

8
√
πn(1− n)

δm

m0

cos π
2n

sin2 π
2n

cos(2m0t− π
4 )

(m0t)
3
2

+O(t−5/2) . (5.16)

Eq. (5.16) reproduces the main result in (2.7), up to O(µ) as anticipated in section 2. By

expanding K̂ around µ = 0, it is actually easy to verify that eq. (5.13) coincides with the

first order of (4.36) at all times.
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6 Lattice results and numerical study in the scaling limit

In this section we present a detailed comparison of the field theory results obtained in

section 4 against lattice numerical calculations in the Ising spin chain with Hamiltonian

HIsing(h) = −J
N∑
i=1

(σxi σ
x
i+1 + hσzi ) . (6.1)

In the following, as already anticipated in the introduction, the lattice spacing will be de-

noted by a. In a lattice model, it is not possible to access directly the Rényi entropies Sn(t)

for a semi-infinite interval after a quench. Numerical techniques, based on the correlation

matrix, are however known for calculating the Rényi entropies SLn (t) of a subsystem of L

neighbouring sites with physical length ` := La, embedded into an infinite system (i.e. in

the limit N → ∞ in (6.1)). To extract the semi-infinite Rényi entropies, which we deter-

mined analytically in section 4, we then assume the validity of the same clustering property

that holds for the spin-operator two-point function. The clustering property translates for

the Rényi entropies into

lim
L→∞

SLn (t) = 2Sn(t) . (6.2)

As also discussed in section 1, from a field theoretical perspective (see for instance (1.7))

eq. (6.2) is a consequence of locality of the branch point twist field, nevertheless it consti-

tutes a non-trivial and new prediction when applied to the lattice model.

6.1 Correlation matrix

For the Ising spin chain, the time evolution of correlation functions and entropies can

be calculated using the restricted correlation matrix of a subsystem A of L sites [5, 56],

embedded into an infinite system

ΓAL =


Π0 Π−1 · · · Π1−L

Π1 Π0
...

...
. . .

...

ΠL−1 · · · · · · Π0

 , with Πj =

[
−fj gj

−g−j fj

]
, (6.3)

where1

gj =
1

2π

∫ π

−π
dϕe−iϕje−iθϕ (cos Φϕ − i sin Φϕ cos 2εϕt) ,

fj =
i

2π

∫ π

−π
dϕe−iϕj sin Φϕ sin 2εϕt ,

(6.4)

1Note that the matrix ΓAL has nothing to do with the decay rate Γ introduced earlier in (2.5). Both

these notations have been previously used in the literature so we maintain them here.
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and, for the Ising chain, we have

εϕ =
1

a

√
(1 + am− cosϕ)2 + sin2 ϕ , ε0ϕ =

1

a

√
(1 + am0 − cosϕ)2 + sin2 ϕ

e−iθϕ =
cosϕ− (1 + am)− i sinϕ

aεϕ
, (6.5)

sin Φϕ =
sinϕ(am0 − am)

a2εϕε0ϕ
, cos Φϕ =

1− cosϕ(am0 + am+ 2) + (1 + am)(1 + am0)

a2εϕε0ϕ
.

Here, we already rewritten the transverse fields h0 and h in terms of the pre- and post-

quench masses defined in the scaling field theory by: h0 = 1 + am0, h = 1 + am. Since

m0,m are positive, the lattice calculations will be performed in the paramagnetic phase,

the results should hold also in the ferromagnetic phase by duality. We also set the speed

of light to v = 1, therefore, according to (1.4), J = 1
2a .

The matrix ΓAL has 2L purely imaginary eigenvalues ±iνk, k = 1, . . . , L, and the 2L

eigenvalues of the reduced density matrix ρA matrix have the form

λj =
1

2L

L∏
k=1

(
1 + (−1)a

(j)
k νk

)
, (6.6)

where a
(j)
k ∈ {0, 1}. A straightforward calculation gives the Rényi entropies for an interval

of length L

SLn (t) =
1

1− n log TrρnA =
1

2(1− n)
Tr log

(
Pn(iΓAL)

)
, (6.7)

where the polynomials are

Pn(x) =

(
1 + x

2

)n
+

(
1− x

2

)n
. (6.8)

Therefore the Rényi entropies can be easily calculated numerically by diagonalizing the

correlation matrix.

6.2 Linear growth in the scaling limit

Exact lattice results are available [7] for the leading, linear in time, contribution to the

Rényi entropies SLn (t). The linear growth is obtained in the regime 1 � t � L, while for

t� L, according to a semi-classical quasi-particle picture the Rényi entropies saturate to

a value proportional to the size L of the interval.

We will then compare the field theoretical results of section 4 valid up to the second

order in the quench parameter µ, with the scaling limit of the lattice predictions in [7].

Computationally, see again (1.4) and the remarks below (6.5), the scaling limit is defined

as follows: replace lattice quantities according to (6.5), then introduce the continuum

momentum variable p substituting ϕ := pa, and 0 ≤ p ≤ 2π
a , and eventually take the limit

a→ 0. The mathematical operation will be denoted by the shorthand notation limscal. For

instance, it is easy to verify that

lim
scal

εϕ := Em(p) =
√
m2 + p2 . (6.9)
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The main result in [7], evaluated for L→∞ then reads

lim
L→∞

SLn,lin(t) =
2t

1− n

∫ π

0

dφ

π
|ε′ϕ| log(Pn(cos Φϕ)) , (6.10)

with ε′ϕ :=
dεϕ
dϕ and Pn as in (6.8). The lin subscript indicates that the formula only

captures the linear growth part of the entanglement. With the definition

ζ(p) :=
mm0 + p2

Em0(p)Em(p)
, (6.11)

the scaling limit of (6.10) is thus

lim
scal

lim
L→∞

SLn,lin(t) =
2t

π(1− n)

∫ ∞
0

dp p

Em(p)
log

[(
1 + ζ(p)

2

)n
+

(
1− ζ(p)

2

)n]
. (6.12)

Expanding (6.12) for small quenches (i.e. m = m0 + δm) and substituting p = m0 sinh θ,

which is consistent at second order in δm, we find

lim
scal

lim
L→∞

SLn,lin(t) =
nt δm2

2πm0(n− 1)

∫ ∞
0

dθ
tanh3 θ

cosh θ
+O(δm3) =

nm0tµ
2

3π(n− 1)
+O(µ3) , (6.13)

where we used the definition (2.3). It then follows, as expected according to (6.2), that the

result in (6.13) is precisely twice the leading large-time asympotics obtained expanding (2.7)

for a small quench, see in particular (2.8). By considering the limit n → 1 in (6.10), the

scaling limit of the von Neumann entropy turns out to be

lim
scal

lim
L→∞

SL1,lin(t) = −2t

π

∫ ∞
0

dp p

Em(p)
(6.14)

×
[(

1 + ζ(p)

2

)
log

(
1 + ζ(p)

2

)
+

(
1− ζ(p)

2

)
log

(
1− ζ(p)

2

)]
,

and expanding for small quenches

lim
scal

lim
L→∞

SL1,lin(t) = −
t δm2 log

(
δm2

m2
0

)
3πm0

+O(δm2) . (6.15)

In the scaling limit, and for small quenches, the von Neumann entropy determined in [7] is

dominated by a term O(δm2 log δm) and therefore is not analytic in the quench parame-

ter. This unexpected result provides another indication that the limit n→ 1 in the Rényi

entropies does not commute with a pertubative expansion in δm. Incidentally, the emer-

gence of logarithmic corrections to the expectation values of certain fields in the massive

Ising field theory is compatible with previous studies, such as [57]. It is generally due to

ambiguities in the definition of some local operators: for instance in the Ising field theory,

the energy field can be regarded as a linear combination of the usual fermion bilinear and

a term proportional to the identity field with proportionality constant equal to the mass.
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6.3 Numerical evaluation of the correlation matrix

In this section we test the field theory results against the numerical results on the lattice,

where one can directly diagonalize the correlation matrix (6.3) and calculate the entropies

as shown in section 6.1.

We expect that the results match in the scaling limit defined in the previous section

and for small quenches. Therefore we chose the transverse field to be close to the critical

value i.e. m,m0 � 1 and the quench δm � 1. Then the scaling limit can be carried out

by decreasing a while keeping the physical subsystem size ` = La fixed. Then one can

extrapolate to a = 0 taking into account corrections to the scaling of the entropies as

discussed in appendix A.

This method gives the entanglement entropies of a finite subsystem, which is propor-

tional to the logarithm of the two point function of branch point twist fields. Therefore

one needs to consider large enough subsystem sizes in order to observe clustering, namely

factorization into a one-point function squared. All our numerical results show excellent

agreement with analytical predictions up to a factor two due to clustering. We note that for

larger subsystems and times the evaluation of (6.3) gets harder due to the highly oscillatory

integrands in (6.4).

As recalled in (3.3), in a massive field theory the logarithmic divergence of the von

Neumann entropy is encoded in the term

S1 = − c
6

logma+O(1) , (6.16)

where c is the central charge of the ultraviolet CFT and the O(1) corrections are discussed

in appendix A. The scaling limit technique can be then used to extract the central charge

c. For instance at values of the mass m = 0.04 we obtained c = 0.50195(3), which is very

close to the theoretical value c = 1
2 . The central charge extrapolation provides a means to

numerically probe the scaling regime of the Ising spin chain. We found that differences of

entropies calculated at different times do not have any divergences in the scaling limit as

expected. More details on the numerical results corresponding to the scaling limit can be

found in appendix A.

6.3.1 Saturation and oscillations

As was already pointed out in [5] for a finite subsystem size the entanglement entropy

saturates to a constant after a finite time. The saturation constant is linear in the subsystem

size. The authors studied large quenches, where the leading behaviour is the linear growth,

and there was no trace of oscillatory behaviour. The left panel of figure 2 shows the time

evolution of the von Neumann entropy of different subsytems for a small quench with fixed

lattice spacing. It is clear that also after saturation the entropy continues to oscillate. The

baseline of the oscillations saturates as well, but apart from this offset, the functional form

is predicted well by the field theory formula (4.1), which in principle is not supposed to be

valid for t� L.

For a comparison we plot the entanglement entropy together with (4.1) shifted by an

arbitrary constant. In the right panel of figure 2 we plot the differences of the entanglement
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Figure 2. Left: the time evolution of the von Neumann entropy after the mass quench m0 =

0.0095→ m = 0.01 for various subsystem sizes with a = 1. The symbols correspond to the numerical

evaluation of the correlation matrix, while the continuous line is limn→1 2(C2,0(t)+C0,2(t))+1.1082.

For short times, before the saturation sets in, the points corresponding to different subsystem sizes

overlap. After the saturation, all curves exhibit oscillations that persist for large times, and are

well reproduced by the formula (4.1) for C2,0(t) + C0,2(t) up to a constant offset and a factor of

two, due to clustering of the branch point twist field two-point function. The different heights of

the curves are due to the different subsystem finite sizes and the presence of a contribution to the

entanglement entropy that is proportional to the subsystem size. Right: differences between the von

Neumann entropies calculated at different subsystem sizes after the same quench. For large enough

times all curves coincide, demonstrating that the oscillatory part of the entropies is independent of

the subsystem size and the dependence on the subsystem size is (as expected) linear.

entropy, calculated at different subsystem sizes. After the saturation the curves are equally

spaced, which shows that the oscillations do not depend on the subsystem size.

From figure 2 we can draw several conclusions:

• Before saturation, the values of the entanglement entropy are independent of the

subsystem’s size. This demonstrates the clustering of the two point function of twist

fields.

• The saturation times and saturation values are equally spaced for different subsys-

tem sizes (with fixed difference in the size). This shows the ∝ L behaviour of the

saturation values, which was already discussed in [5, 7].

• The oscillations are present, independently of the linear growth and the saturation.

After the saturation sets in, the shape of the oscillations is the same for different

subsystem sizes. Moreover, they persist for large times and are well reproduced by

the formula (4.1) up to a constant offset, and a factor of two. As already discussed,

the factor of two is the result of the clustering.

6.3.2 Linear growth and oscillations

To observe linear growth in time and test the field theory result (4.36), one needs larger sub-

system sizes in order to prevent saturation within the time window. Figure 3 shows the time

evolution of the Rényi entropies after a mass quench. The theoretical prediction (4.36) is in
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Figure 3. The time evolution of the 2nd and 3rd Rényi entropies after the mass quench m0 =

0.048 → m = 0.04 for subsystem size ` = 128 extrapolated to a = 0. The S̃l
0,n subtraction

is the equilibrium entropy of the post-quench ground state, analogously to (4.37). The curves

exhibit both oscillations and linear growth. The dotted line corresponds to the contribution c2(t) =

C2,0(t) + C0,2(t). Other curves incorporate the indicated contributions to (4.36) one-by-one with

c4(t) := C
(2)
40 (t) + C

(2)
04 (t). The full prediction (4.36) is in remarkably good agreement with the

numerical data.

0 0.5 1 1.5 2 2.5

0

5

·10−2

mt

d
S
`
=
1
2
8

1 d
t

numerics
theory

Figure 4. The time derivative of the von Neumann entropy after the mass quench m0 = 0.048→
m = 0.04 for subsystem size ` = 128 extrapolated to a = 0. The numerics was shifted by the value

calculated in (6.14). In other words, the linear time growth has been subtracted to leave only the

oscillatory part.
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remarkably good agreement with the numerical data. One can also see how the successive

contributions of the different terms in (4.36) improve accuracy. For the quench considered in

figure 3 the ratio between the subsystem length and the correlation length is at least m` ' 5.

Within our field theoretical approach, as mentioned in section 2, for the von Neumann

entropy we can obtain only the oscillatory behaviour. Additional contributions are also

expected to be present in this case. One can then take the time derivative in order to elim-

inate the time independent offset and subtract the value predicted by (6.15) to eliminate

the linear growth, which, in turn, produces an offset in the time derivative. The results

can be seen in figure 4. The agreement with the field theory prediction is again very good

except for the small t region. Notice that the corrections coming from C
(2)
40 (t)+C

(2)
04 (t) and

R(t) can not be calculated at n = 1 and, although subleading for large time, they might

affect the small time behaviour.

7 Conclusion

In this paper we have presented an analytic derivation of the leading large-time post-quench

dynamics of entanglement in the massive Ising field theory. We considered in particular a

global quench resulting from a sudden change in the mass of the fermionic particle, from

an initial value m0 at time t = 0 to a subsequent value m for t > 0. For the first time in a

dynamical context for massive quantum field theories, we have employed the branch point

twist field approach [35] in our computations. We have computed the Rényi entropies of

a semi-infinite interval, which are proportional to the logarithm of the one-point function

of a branch point twist field in a replica quantum field theory. In particular, the twist

field one-point function has been computed exactly up to O(K2), in the post-quench quasi-

particle expansion of the initial state by employing a regularization scheme for the infinite

volume divergences discussed in [32].

Such an expansion can be also recast as a perturbative series in the quench parameter

δm := m−m0, and is then exact up to O(δm2). At first order in the quench parameter δm

the result for the twist field one-point function can also be recovered from a perturbative

expansion in the pre-quench quasi-particle basis by generalizing the approach introduced

in [36]. We demonstrated, moreover, that crucial effects of the relaxation dynamics, such as

linear growth of entanglement must manifest as second order corrections in such a pertur-

bative expansion. The main conclusions from the analytic results can be then summarized

as follows:

• We showed the presence of a contribution to the Rényi entropies which grows linearly

in time with slope nΓm
2(n−1) , where Γ is up to O(K2) exactly the decay rate of the spin

operator after a mass quench found in [32].

• The Rényi and von Neumann entropies contain contributions which are oscillatory,

with frequency of oscillation 2m and amplitude proportional to (mt)−3/2 for large-

time. Those contributions are of first order in K and can be also obtained from a

perturbative expansion in the quench parameter δm. Our result implies that oscil-

lations in the entanglement entropies are not produced by finite size-effects, as for
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instance stated in [7], but are rather inherent properties of those quantities. The

same reasoning will apply to the constant shift of the Rényi entropies, which we also

determined in section 4.

• We have provided a simple argument to show that, up to a constant normalization by

the VEV of the twist field, the one-point function can be expressed as the exponential

of a Laurent polynomial in the variables (mt)
p
2 for p ≤ 2 and p 6= 1. We have shown

this at O(K2) and expect to generalize this conclusion to higher orders in the future.

Interestingly, the arguments leading to exponentiation of the one-point function also

apply to the order parameter discussed in [32].

As expected, our field-theoretical results for the linear large-time behaviour of the

Rényi entropies reproduce the scaling limit of the formulae found in [7] up to O(δm2). The

field-theoretical expansion, however, extends the lattice results to intermediate times and

is confirmed with remarkable accuracy by numerical calculations directly in the scaling

limit. Comparison between analytic and numerical results also shows that the two-point

function of branch point twist fields after a global quench satisfies clustering, as previously

observed for the spin field [8, 9, 32]. Thus the entanglement entropies are proportional to

the number of subsystem boundary points, just as in equilibrium situations.

It would be interesting to use twist fields and the approaches discussed in section 3.2

and section 5 to consider other (small) global quenches. In particular, quenches that drive

the theory away from an integrable point or to a different interacting integrable model. A

particular case is the quench of the longitudinal magnetic field in the Ising spin chain while

fixing the transverse field at its critical value h = 1. In the scaling limit, this corresponds

to a mass quench in the so-called minimal E8 Toda theory. The prediction is then that the

entanglement entropies will oscillate with frequencies that are directly the quasi-particle

masses of the E8 field theory. An analogous phenomenon has been observed numerically

in the Ising spin chain [29–31], for a quench of the longitudinal magnetic field, but in the

ferromagnetic phase h < 1. The presence of oscillations in the entanglement entropies and

their slower (linear) growth in time were ascribed to the confinement of the kinks.

Finally, it would be useful to develop a quasi-particle interpretation/derivation of the

oscillatory contributions to entanglement. Even though our results are restricted to the

Ising field theory, the emergence of such oscillations in the context of form factor expansions

seems very natural. This suggests that it is a universal feature of quenches in gapped

theories.

A powerful unifying picture emerges from our work: the dynamics of entanglement

and that of correlators of local fields after a global quench are not fundamentally distinct.

Rather, the dynamics of entanglement is just the dynamics of correlators of a particular

field, the branch point twist field. As a consequence, the large time linear growth of entan-

glement emerging from the quasi-particle picture of [5] is nothing but the exponential decay

of correlators (in our case, the one-point function) at large time after the quench. Sugges-

tively, out-of-equilibrium dynamics where no indication of linear growth of entanglement

is observed, such as in the presence of confinement [29–31], could signal that certain local

observables fail to relax exponentially fast at large times. The present work extends the
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seminal results of [3] out-of-criticality and, for a very simple model, provides further evi-

dence of the rich and interesting dynamics of correlators in out-of-equilibrium massive QFT.
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his insights into the wider interpretation and applicability of our results.

OCA and IMSZ are also grateful to Benjamin Doyon and Cecilia De Fazio for many use-

ful discussions and feedback. They gratefully acknowledge support from EPSRC through

the standard proposal “Entanglement Measures, Twist Fields, and Partition Functions in

Quantum Field Theory” under reference number EP/P006108/1 and from the International

Institute of Physics in Natal (Brazil). This project was initiated during the Workshop on

Transport in Strongly Correlated Systems held there in the summer of 2018. OCA’s research

was partly supported by an Emmy Noether Visiting Fellowship of the Perimeter Institute

for Theoretical Physics. Research at Perimeter Institute is supported by the Government

of Canada through the Department of Innovation, Science and Economic Development and

by the Province of Ontario through the Ministry of Research, Innovation and Science.
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A Numerics in the scaling limit

A.1 Extrapolations and extraction of the central charge and scaling dimen-

sions

In this appendix we present further details on the numerical scaling limit discussed in

section 6.3. The central charge and the operator scaling dimensions can be extracted from

the evaluation of the restricted correlation function at t = 0. We fix m to a certain value in

the scaling field theory, and change a and L in such a way that the physical subsystem size

` = aL is kept fixed. Then one can fit the lattice spacing dependence of the logarithm of

the one-point function of the disorder operator and the Rényi entropies with the following

functional forms

log〈µ(a)〉 ≈ A+B log a+ Ca+Da2 , (A.1)

Sn ≈ A+B log a+ Ca1/n +Da2/n . (A.2)

For the Rényi entropies unusual corrections are present [58]. For the disorder operator one

assumes standard corrections, more on this operator can be found in section A.2.

The coefficient of the log a term corresponds to the scaling dimension of the operators

or in the case of the von Neumann entropy the central charge of the UV CFT. We carried

out the fit with the following parameters: m = 0.04, ` = 128, a = 1/4, 1/7, 1/8 . . . 1/20.

The results are summarized in table 1.

The agreement for the central charge, the dimension of the disorder operator, and

of the twist field with n = 2, 3, 4 is excellent (see equation (3.2)). Note that the central
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c ∆µ ∆2 ∆3 ∆4

Theory 0.5 0.125 0.0625 0.11111 0.15625

Fit 0.50195(3) 0.124969(4) 0.06258(1) 0.11002(9) 0.1525(3)

Table 1. UV central charge and operator dimensions from the scaling limit extrapolations in the

ground state with m = 0.04 and ` = 128.

charge can be extracted with better precision by calculating the von Neumann entropy

at the critical point, with fixed lattice spacing and changing the number of sites in the

subsystem, based on the logarithmic violation of the area law. In our case we extract the

UV central charge away from the critical point, therefore we have less precision.

Using the above fits one can extrapolate to a = 0. At different times, we used the

same set of lattice spacings to carry out the extrapolations. Note that in our comparison we

subtract the post-quench ground state entropy from the numerical results. The logarithmic

singularity cancels from these differences, therefore we did not include the logarithm when

extrapolating these quantities.

Note that going closer to the critical point would require more computational power

since one has to increase the subsystem size correspondingly, therefore the size of the

correlation matrix increases. The calculation of the intergrals (6.4) gets also more difficult.

One also has to make sure, that the chosen subsystem size is large enough for the clustering

of the two-point functions. For the quench studied in this paper we checked this using the

saturation of the post-quench entropies. We found that for a = 1 and L ≈ 120 the entropies

are saturated up to O(10−6), therefore we claim that our numerical results for the entropies

have errors of this order.

A.2 Scaling limit and the disorder operator

In [8, 9] the decaying exponential characterizing the post-quench behaviour of the spin

operator was found to be

log〈σ(t)〉 = t

∫ π

0

dϕ

π
|ε′ϕ| log(cos(Φϕ)) , (A.3)

therefore, in the scaling limit, see (6.11)

lim
scal

log〈σ(t)〉 = t

∫ ∞
0

dp p

πEm(p)
log(ζ(p)) . (A.4)

For small quenches, eq. (A.4) becomes

log〈σ(t)〉 = − t δm
2

2πm0

∫ ∞
0

dθ
tanh3 θ

cosh θ
+O(δm3) = − t δm

2

3πm0
+O(δm3) , (A.5)

that agrees with the field theory result presented in [32], when expanded up to the second

order in the quench parameter.

In [9] the authors determine the time dependence of the order parameter by calculating

the determinant of the correlation matrix. However, their definition of the correlation
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Figure 5. Time evolution of µ̃(t) compared to [32] after quench m0 = 0.048 → m = 0.04 in the

paramagnetic phase. The dots are the numerical results extrapolated to a = 0, the line is the

theoretical prediction for the oscillation and the linear growth of [32]. The agreement is excellent,

and it is clear that for smaller times one has to take into account the 1/t correction and there is no

visible offset.

matrix is slightly different. In particular, in our notations, their Töplitz matrix starts with

Π−1 in the upper left corner. From [59] one can see that this can be absorbed into the

redefinition of h→ 1/h, realizing the Kramers-Wannier duality. Therefore calculating the

determinant of (6.3) gives the square of the two-point function of the disorder operator,

up to a constant:

Det ΓL(t) ∝ (〈µ(L, t)µ(0, t)〉lattice)
2 ∝ a2∆µ (〈µ(` = aL, t)µ(0, t)〉field theor.)

2 . (A.6)

Using the fitting procedure outlined in section A.1 we obtained ∆µ ≈ 0.12497, which is

very close to the theoretical value 1
8 = 0.125.

If the separation is large, the two-point function of µ clusters, just as for the order

parameter in the ferromagnetic phase [9]

〈µ(`, t)µ(0, t)〉 = (〈µ(0, t)〉)2 +O(e−`m) . (A.7)

Therefore for large enough separations one can get access to the one-point function. It can

be also seen that in the scaling limit µ̃(t) = log〈0̃|µ(0, t)|0̃〉 − log〈0̃|µ(0, 0)|0̃〉 has a finite

limit. Based on the Kramers-Wannier duality the formulas of [32] for the order parameter

in the ferromagnetic phase can be directly used to test the disorder operator in the para-

magnetic phase. Such a comparison can be seen in figure 5. The agreement is excellent.

Note that in the case of the order/disorder operator there is no offset at O(K2) [32].
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