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Abstract: In this paper we aim to study the global stability of a coupled model of healthy
and cancerous cells dynamics in healthy situation of Acute Myeloid Leukemia. We also clarify
the effect of interconnection between healthy and cancerous cells dynamics on the global
stability. The interconnected model is obtained by transforming the PDE-based model into a
nonlinear distributed delay system. Using Lyapunov approach, we derive necessary and sufficient
conditions for global stability for a selected equilibrium point of particular interest (healthy
situation). Simulations are conducted to illustrate the obtained results.
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1. INTRODUCTION

The mathematical formulations of biomedical problems
are an important phase to understand and predict the
behavior of the controlled organism. It can identify mecha-
nisms that control the progression of a disease, or motivate
and guide future experimental and clinical designs. The
combination of mathematical models, experiments, and
clinical trials can lead to significant improvements in the
treatment of leukemia and lymphoma; see G. Clapp and
D. Levy (2014).

Hematopoiesis is the process of blood cell production
trough a multi-stage sytem starting in the bone marrow by
hematopoiteic stem cells (HSCs). At the first level, HSCs
can proliferate, self renew and differentiate into multiple
lineages. The process of cell division, called proliferation
or cell cycle, consists of four phases: G1, S, G2, and M .
At the end of the M phase cell division occurs resulting
two types of daughter cells: either with the same maturity
as the parent or with a higher level of maturity through a
differentiation process. Finally, several stages down, fully
differentiated cells are released in blood circulation. One
of the first mathematical models, a set of differential
equations, describing haematopoietic stem cell dynamics
was proposed by Mackey (1978). It considered a rest (or
quiescent) phase and a proliferative phase during the cell
division cycle. More recent studies of various dynamical
models of hematopoiesis have been proposed and studied
in the literature as in Adimy et al. (2008), Dingli and
Pacheco (2010), Foley and Mackey (2009), Niculescu et
al. (2010).

� This work was supported by Laboratory of Process Control LCP,
National Polytechnic School ENP, Algiers, ALGERIA.

Acute Myeloid Leukemia (AML) combines at least two
molecular events: a blockade of maturation and differenti-
ation leading to the accumulation of immature myeloid
cells, and an advantage of proliferation leading to the
flooding of bone marrow by a large number of immature
cells as described in Avila et al. (2014, B), where a sys-
tem of delay differential equations inspired by the model
of Adimy et al. (2008) with discrete maturity structure,
has been proposed as a model that takes into account
the differentiation blockade constantly observed in AML.
From the biological and medical point of view, the healthy
situation may be defined by a stable equilibrium represent-
ing the extinction of cancerous cells with positive value
for healthy cells; see J. L. Avila et al. (2014, B). The
aim of such a modelling is to yield conditions that make
biological and medical sense ensuring a disease-free state
for hematopoiesis in the bone marrow. For the equilibrium
and stability analysis (linear and nonlinear system) of this
model, see J. L. Avila et al.(2012) , J. L. Avila et al. (2014,
A-B). and the references therein.

In J. L. Avila et al. (2014, B), a coupled model for healthy
and cancerous cell dynamics in Acute Myeloid Leukemia
is proposed and local stability results are obtained for
the distributed delay model. Furthermore, a Lyapunov
approach is used to derive sufficient conditions for bound-
edness of this distributed delay model in J. L. Avila et al.
(2014, A).

In this paper, we address the problem of global stability
analysis based on the coupled model proposed in J. L.
Avila et al. (2014, B). We first derive necessary and suffi-
cient conditions that guarantee a globally stable trivial so-
lution for the system of cancerous cells taking into account
the interconnection between healthy and cancerous cells
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populations. This provides a global characterization of the
stability conditions compared to J.L. Avila et al. (2014, A),
where cells populations interconnection wasn’t considered.
Then, we manage to obtain conditions that guarantee the
global stability of the healthy situation and show how it is
affected by interconnection between healthy and cancerous
cells. Since they give global asymptotic stability conditions
and are system-parameter free, the obtained results would
be of a certain importance compared to the study of the
local stability presented in J. L. Avila et al. (2014, B)
and the sufficient conditions for boundedness obtained in
J. L. Avila et al. (2014, A). Furthermore, we try to give
biological explanations to them.

The structure of this paper is as follows. Section 2 pro-
vides an exposition of the state space equations of the
coupled model for healthy and cancerous cells dynamics
in Acute Myeloid Leukemia. Section 3 is devoted to the
global stability analysis of the system. Moreover, a detailed
academic example is presented in Section 4. Finally, in
Section 5, some concluding remarks are outlined.

Notation and preliminaries: The functions and vari-
ables needed to read the next equations (1) have the fol-
lowing properties and biological meaning: the death rates
δ and δ̄ satisfy δ > 0 and δ̄ > 0, γ and γ̄ are constant
death rates in the proliferation phases of cancerous and
healthy cells, respectively; the amount of time spent in
the proliferations phases is τ̄ for healthy cells and τ for
cancerous cells; and the division rates of the proliferation
phase is a function depending on age a, denoted by ḡ(a)
for healthy cells and g(a) for cancerous cells. xc(t) and
xcf (t) stand for the total population of resting and fast-self
renewing cells at time t, respectively. Moreover, the total
population of resting healthy cells at time t is denoted by
xh(t), The re-introduction terms β, β̄ and β̃ are differen-
tiable, non-negative and uniformly decreasing functions.
Such that limθ→+∞ β(θ) = 0, limθ→+∞ β̃(θ) = 0 and
limθ→+∞ β̄(θ) = 0.

2. MATHEMATICAL MODEL OF A HEALTHY AND
CANCEROUS CELLS COUPLED POPULATION

The total population densities xc(t), xcf (t) and xh(t) are
described by the following time-delay system, see J. L.
Avila et al. (2014),




ẋc(t) = −(δ + β(z(t)))xc(t) + L (h ∗ ωc) (t),

ẋcf (t) = −β̃(xcf (t))xcf (t) + L̃ (h ∗ ωc) (t),
ẋh(t) = −(δ̄ + β̄(z(t)))xh(t) + L̄

(
h̄ ∗ ωh

)
(t).

(1)

where ωc(t) = β(z(t))xc(t) + β̃(xcf (t))xcf (t), ωh(t) =
β̄(z(t))xh(t), the healthy and cancerous cells are intercon-
nected by means of the common feedback of resting cells
z(t) = xc(t)+xh(t) on the functions β and β̄. The symbol ∗
stands for the usual convolution operator. Also, we define

L = 2σ(1−K), L̃ = 2(1− σ)(1−K), L̄ = 2(1− K̄).

The constants K̄, and K represent the probability of
differentiation of daughter cells so that 0 ≤ K̄ ≤ 1 and
0 ≤ K ≤ 1. The constant σ represents the probability of
fast self-renewal with 0 < σ < 1.
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Fig. 1. Interconnected model of healthy cells (left) and cancer cells
(right)

h(t) and h̄(t) are the division rates of cancerous and
healthy cells, respectively.

As in J. L. Avila et al. (2014, B), we will consider the
following general form for the division rates h(t) and h̄(t)

{
h(t) = f(t)e−γt for 0 ≤ t ≤ τ,
h̄(t) = f̄(t)e−γ̄t for 0 ≤ t ≤ τ̄ .

(2)

where




f(t) =
m

emτ − 1
emt for 0 ≤ t ≤ τ,

f̄(t) =
m̄

em̄τ̄ − 1
em̄t for 0 ≤ t ≤ τ̄ .

f(t) and f̄(t) are density functions describing the mitosis

and are such that
∫ τ

0
f(a) da = 1 and

∫ τ̄

0
f̄(t)(a) da = 1.

This gives




H(s) =

∫ τ

0

h(t)e−st dt = Θ

(
1− e−τ(s−ρ)

s− ρ

)
,

H̄(s) =

∫ τ̄

0

h̄(t)e−st dt = Θ̄

(
1− e−τ̄(s−ρ̄)

s− ρ̄

)
.

(3)

with Θ := m
emτ−1 , ρ := m − γ, Θ̄ := m̄

em̄τ̄−1 , ρ̄ := m̄ − γ̄.
With

H(s) =

∫ τ

0

h(t) exp(−st) dt, H̄(s) =

∫ τ̄

0

h̄(t) exp(−st) dt.

Furthermore, we introduce for later use the following
parameters:

H(0) =

∫ τ

0

h(�) d�, (4)

H̄(0) =

∫ τ̄

0

h̄(�) d�, (5)

α = (L+ L̃)H(0)− 1, (6)

ᾱ = L̄H̄(0)− 1. (7)

In next section, we analyze the global stability conditions
of coupled healthy and cancerous cells dynamics in AML
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defined by equations (1). This study brings out new results
improving those presented in J. L. Avila et al. (2014, B)
which covered only local stability conditions. In addition,
unlike boundedness conditions proposed in J. L. Avila et
al. (2014, A), it gives the exact stability conditions of
equilibrium points.

3. GLOBAL STABILITY ANALYSIS OF HEALTHY
SITUATION

Let us denote by xe
c, x

e
cf , and xe

h the equilibrium points of

(1). Clearly, the origin is an equilibrium of this nonlinear
system. Biologically, convergence to this point means the
extinction of all cells. The perturbations affecting cancer
cells system’s origin may provoke the born of cancer cells,
see J. L. Avila et al. (2014, A). On the other hand,
the perturbation of the equilibrium point of the healthy
situation (0, 0, xe

h > 0) may provoke the born of cancer
cells and the death of healthy cells, see J. L. Avila et al.
(2014, A) and J. L. Avila et al. (2014, B). This is the
reason why the stability analysis is performed around these
equilibrium points.

The conditions bellow are necessary for the existence of
positive equilibrium points, see J. L. Avila et al. (2014,
B):
For cancerous cells (xe

c > 0 and xe
cf > 0)

β(0) >
(1− L̃H(0))

α
δ; α > 0; 1− L̃H(0) > 0,

and for healthy cells (xe
h > 0)

β̄(0) >
δ̄

ᾱ
; ᾱ > 0,

where H(0), H̄(0), α and ᾱ are the constant defined in
(4), (5), (6) and (7), respectively.

The following theorem has a great importance since it gives
new results that have not been developed before.

Theorem 1. Lets consider a positive equilibrium point in
healthy situation i.e. xe

c = 0, xe
cf = 0 and xe

h > 0 for

system (1), then the system is globally stable around the
equilibrium point. if and only if:
We have L̃H(0)−1 < 0 and exculsively one of the following

α ≤ 0 (8)

or

β(0) ≤ 1− L̃H(0)

α
δ (9)

or

β̄−1(
δ̄

ᾱ
) > β−1(

(1− L̃H(0))δ

α
) (10)

with β̄−1(.) and β−1(.) are inverse functions of β̄(.) and
β(.), respectively.

Proof. case 1: If L̃H(0) − 1 < 0 and α ≤ 0 then xc(t)
and xcf (t) converge to zero.
Let us introduce for all xh(t) the functional

Φ(t) =

∫ t

t−τ

∫ t

θ

h(θ − a+ τ)ωc(a) da dθ. (11)

with

ωc(t)) = β(xc(t) + xh(t))xc(t) + β̃(xcf (t))xcf (t). (12)

Simple calculations give:

Φ̇(t) =

∫ t

t−τ

h(θ − t+ τ)ωc(t) dθ −
∫ t

t−τ

h(t− a)ωc(a) da.

Now, Let us introduce a lypunov fonction:

V (t) = xc(t) + xcf (t) + (L+ L̃)Φ(t). (13)

Then its derivative along the trajectories of xc(t) and
xcf (t) satisfies

V̇ (t) = ẋc(t) + ẋcf (t) + (L+ L̃)H(0)ωc(t)

−(L+ L̃)

∫ t

t−τ

h(t− a)ωc(a) da. (14)

By replacing ẋc(t) and ẋcf (t) with their expressions, we
find:

V̇ (t) = −ωc(t)− δxc(t) + (L+ L̃)H(0)ωc(t). (15)

Next, we consider the case where α < 0 and we show that
xc(t) and xcf (t) are globally asymptotically stable. We
consider a positive solution of xc(t) and xcf (t) and since
δx(t) ≥ 0 we get

V̇ (t) ≤ αωc(t). (16)

By integrating this inequality, we get, for all t ≥ 0;

V (t)− V (0) ≤ α

∫ t

0

ωc(�) d�. (17)

Since V (t) > 0 for all t ≥ 0 and α �= 0, it follows that

∫ t

0

ωc(�) d� ≤
V (0)

α
. (18)

Moroever, the inequality V (t) ≥ xc(t) + xcf (t) and (16)
imply that xc(t), xcf (t) and ωc(t) are bounded. Then from
(18) and Barbalat’s lemma (see F.Mazenc and M.Malisoff
(2009)), we deduce that:

lim
t→+∞

ωc(t) = 0. (19)

This implies that:

lim
t→+∞

xc(t) = 0. and lim
t→+∞

xcf (t) = 0. (20)

.

Now, if α = 0, we have V (t) ≥ 0 is Lyapunov functional

positive definite and V̇ (t) = −δxc(t) is negative semidefi-
nite. To find

S = {(xc, xcf ) ∈ R2
+ | V̇ (t) = 0 } (21)

notice that
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populations. This provides a global characterization of the
stability conditions compared to J.L. Avila et al. (2014, A),
where cells populations interconnection wasn’t considered.
Then, we manage to obtain conditions that guarantee the
global stability of the healthy situation and show how it is
affected by interconnection between healthy and cancerous
cells. Since they give global asymptotic stability conditions
and are system-parameter free, the obtained results would
be of a certain importance compared to the study of the
local stability presented in J. L. Avila et al. (2014, B)
and the sufficient conditions for boundedness obtained in
J. L. Avila et al. (2014, A). Furthermore, we try to give
biological explanations to them.

The structure of this paper is as follows. Section 2 pro-
vides an exposition of the state space equations of the
coupled model for healthy and cancerous cells dynamics
in Acute Myeloid Leukemia. Section 3 is devoted to the
global stability analysis of the system. Moreover, a detailed
academic example is presented in Section 4. Finally, in
Section 5, some concluding remarks are outlined.

Notation and preliminaries: The functions and vari-
ables needed to read the next equations (1) have the fol-
lowing properties and biological meaning: the death rates
δ and δ̄ satisfy δ > 0 and δ̄ > 0, γ and γ̄ are constant
death rates in the proliferation phases of cancerous and
healthy cells, respectively; the amount of time spent in
the proliferations phases is τ̄ for healthy cells and τ for
cancerous cells; and the division rates of the proliferation
phase is a function depending on age a, denoted by ḡ(a)
for healthy cells and g(a) for cancerous cells. xc(t) and
xcf (t) stand for the total population of resting and fast-self
renewing cells at time t, respectively. Moreover, the total
population of resting healthy cells at time t is denoted by
xh(t), The re-introduction terms β, β̄ and β̃ are differen-
tiable, non-negative and uniformly decreasing functions.
Such that limθ→+∞ β(θ) = 0, limθ→+∞ β̃(θ) = 0 and
limθ→+∞ β̄(θ) = 0.

2. MATHEMATICAL MODEL OF A HEALTHY AND
CANCEROUS CELLS COUPLED POPULATION

The total population densities xc(t), xcf (t) and xh(t) are
described by the following time-delay system, see J. L.
Avila et al. (2014),




ẋc(t) = −(δ + β(z(t)))xc(t) + L (h ∗ ωc) (t),

ẋcf (t) = −β̃(xcf (t))xcf (t) + L̃ (h ∗ ωc) (t),
ẋh(t) = −(δ̄ + β̄(z(t)))xh(t) + L̄

(
h̄ ∗ ωh

)
(t).

(1)

where ωc(t) = β(z(t))xc(t) + β̃(xcf (t))xcf (t), ωh(t) =
β̄(z(t))xh(t), the healthy and cancerous cells are intercon-
nected by means of the common feedback of resting cells
z(t) = xc(t)+xh(t) on the functions β and β̄. The symbol ∗
stands for the usual convolution operator. Also, we define

L = 2σ(1−K), L̃ = 2(1− σ)(1−K), L̄ = 2(1− K̄).

The constants K̄, and K represent the probability of
differentiation of daughter cells so that 0 ≤ K̄ ≤ 1 and
0 ≤ K ≤ 1. The constant σ represents the probability of
fast self-renewal with 0 < σ < 1.
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Fig. 1. Interconnected model of healthy cells (left) and cancer cells
(right)

h(t) and h̄(t) are the division rates of cancerous and
healthy cells, respectively.

As in J. L. Avila et al. (2014, B), we will consider the
following general form for the division rates h(t) and h̄(t)

{
h(t) = f(t)e−γt for 0 ≤ t ≤ τ,
h̄(t) = f̄(t)e−γ̄t for 0 ≤ t ≤ τ̄ .

(2)

where




f(t) =
m

emτ − 1
emt for 0 ≤ t ≤ τ,

f̄(t) =
m̄

em̄τ̄ − 1
em̄t for 0 ≤ t ≤ τ̄ .

f(t) and f̄(t) are density functions describing the mitosis

and are such that
∫ τ

0
f(a) da = 1 and

∫ τ̄

0
f̄(t)(a) da = 1.

This gives




H(s) =

∫ τ

0

h(t)e−st dt = Θ

(
1− e−τ(s−ρ)

s− ρ

)
,

H̄(s) =

∫ τ̄

0

h̄(t)e−st dt = Θ̄

(
1− e−τ̄(s−ρ̄)

s− ρ̄

)
.

(3)

with Θ := m
emτ−1 , ρ := m − γ, Θ̄ := m̄

em̄τ̄−1 , ρ̄ := m̄ − γ̄.
With

H(s) =

∫ τ

0

h(t) exp(−st) dt, H̄(s) =

∫ τ̄

0

h̄(t) exp(−st) dt.

Furthermore, we introduce for later use the following
parameters:

H(0) =

∫ τ

0

h(�) d�, (4)

H̄(0) =

∫ τ̄

0

h̄(�) d�, (5)

α = (L+ L̃)H(0)− 1, (6)

ᾱ = L̄H̄(0)− 1. (7)

In next section, we analyze the global stability conditions
of coupled healthy and cancerous cells dynamics in AML
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V̇ (t) = 0 =⇒ δxc(t) = 0 =⇒ xc(t) = 0. (22)

Hence,

S = {(xc, xcf ) ∈ R2
+ | xc(t) = 0 } (23)

Let xcf be a solution that belongs identically to S:

xc(t) = 0 =⇒ ẋc(t) = 0 =⇒ xcf (t) = 0. (24)

Therefore, the only solution that can stay identically in S
is the trivial solution xcf (t) = 0. Thus, from LaSalle’s
invariance principle theorem (see Jinhuan Wang et al.
(2008)), we conclude that:

lim
t→+∞

(xc(t), xcf (t)) = (0, 0) (25)

case 2: If α > 0, L̃H(0) − 1 < 0 and β(0) ≤ 1−L̃H(0)
α δ

then xc(t) and xc,f (t) converge to zero.

Now, we consider the case where α > 0 and L̃H(0)−1 < 0.
Then we define the Lyapunov functional Λ(t) ∈ R+:

Λ(t) =
1− L̃H(0)

α
V (t) + xcf (t) + L̃Φ(t) (26)

Simple calculations give:

Λ̇(t) = (β(z(t))− 1− L̃H(0)

α
δ)xc(t) (27)

Thus, if

β(0) ≤ 1− L̃H(0)

α
δ (28)

By using the decreasing property of the function β, we
deduce that Λ̇(t) < 0. Thus, xc(t) and xcf (t) admit
the origin as a globally asymptotically stable equilibrium
point.

If we have α > 0 and L̃H(0) − 1 ≥ 0 then we define the
Lyapunov functional Υ(t) ∈ R+:

Υ(t) = xcf (t) + L̃Φ(t) (29)

Simple calculations give:

Υ̇(t) = L̃H(0)ωc(t)− β̃(xc,f (t)) ≥ (L̃H(0)− 1)ωc(t).

we have

(1) Υ(t) = 0 ⇐⇒ xc(t) = 0 and xcf (t) = 0;

(2) Υ(t) > 0 and Υ̇(t) > 0 for all xc(t) > 0 and
xcf (t) > 0;

This allows us to conclude from Lyapunov Instability
Theorem (see H. Khalil (1996) and Cristian Carcamo and
Claudio Vidal (2009)) , that The system of the cancerous

cells has the origin unstable if L̃H(0)− 1 ≥ 0.

Next, Let us introduce for all xc(t) the functional

ξ̄(t) =

∫ t

t−τ̄

∫ t

θ

h̄(θ − a+ τ̄)β̄(z(a))xh(a) da dθ. (30)

Simple calculations give:

˙̄ξ(t) =

∫ t

t−τ̄

h̄(θ − t+ τ̄)β̄(xh(t) + xc(t))xh(t) dθ

−
∫ t

t−τ̄

h̄(t− a)β̄(xh(a) + xc(a))xh(a) da.

Now, Let us introduce a lyapunov functional:

ς̄(t) = xh(t) + L̄ξ̄(t). (31)

Then its derivative along the trajectories of xh(t) satisfies

˙̄ς(t) = (−δ̄ + ᾱβ̄(xh(t) + xc(t)))xh(t). (32)

where ᾱ is the constant defined in (7).

It is clear that if ᾱ ≤ 0 or ᾱ > 0 and β̄(0) ≤ δ̄
ᾱ we have

˙̄ς(t) ≤ 0

We deduce easily from Barbalat’s lamma that

lim
t→+∞

xh(t) = 0. (33)

Now, consider case 1 or case 2 where (xc(t), xcf (t))
converges to zero (0, 0) and the necessary conditions for
the existence of positive equilibrium points for healthy cells

ᾱ > 0 and β̄(0) > δ̄
ᾱ . Then, let tc > 0 be the necessary

time for xc(t) to converges to zero.
It is clear that for all t ≥ tc

˙̄ς(t) = [−δ̄ + ᾱβ̄(xh(t))]xh(t). (34)

This implies that:

• If xh(t) > xe
h then ˙̄ς(t) < 0.

• If xh(t) < xe
h then ˙̄ς(t) > 0

• If xh(t) = xe
h then ˙̄ς(t) = 0

And allows us to deduce

lim
t→+∞

(xc(t), xc,f (t), xh(t)) = (0, 0, xh(t) > 0) (35)

case 3: If α > 0, L̃H(0) − 1 < 0, β(0) > 1−L̃H(0)
α δ

and β̄−1( δ̄
ᾱ ) > β−1( 1−L̃H(0)

α δ) then (xc(t), xc,f (t), xh(t))
converge to (0, 0, xh(t) > 0)

To illustrate the effect of the interconnection between
healthy and cancerous populations on cellular dynamics,
let us introduce the functional

χ(t) = ζ̄(t) + Λ(t) (36)

where Λ(t) and ζ̄(t) are the functionals defined in (25) and
(31), respectively.
Using (26) and (32), we obtain




χ̇(t) = ˙̄ς(t) + Λ̇(t)
˙̄ς(t) = (−δ̄ + ᾱβ̄(z(t)))xh(t)

Λ̇(t) = (β(z(t))− 1− L̃H(0)

α
δ)xc(t)

(37)

It is clear that the signs of ˙̄ς(t) and Λ̇(t) depend on z(t).
Now, we consider the case where necessary conditions for
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the existence of positive equilibrium points are satisfied.
Since the functions β and β̄ are decreasing, we have:





z(t) = β̄−1(
δ̄

ᾱ
) =⇒ ˙̄ς(t) = 0

z(t) > β̄−1(
δ̄

ᾱ
) =⇒ ˙̄ς(t) < 0

z(t) < β̄−1(
δ̄

ᾱ
) =⇒ ˙̄ς(t) > 0

(38)

Also,




z(t) = β−1(
1− L̃H(0)

α
δ) =⇒ Λ̇(t) = 0

z(t) > β−1(
1− L̃H(0)

α
δ) =⇒ Λ̇(t) < 0

z(t) < β−1(
1− L̃H(0)

α
δ) =⇒ Λ̇(t) > 0

(39)

We deduce easily that, ∃η ∈ R∗
+, such that:

{
z(t) = η =⇒ χ̇(t) = 0
z(t) > η =⇒ χ̇(t) < 0
z(t) < η =⇒ χ̇(t) > 0

(40)

This allows us to conclude that:

lim
t→+∞

z(t) = η. (41)

Thus, we distinguish three different cases:

• If β̄−1( δ̄
ᾱ ) > β−1( 1−L̃H(0)

α δ) then

β̄−1(
δ̄

ᾱ
) > η > β−1(

1− L̃H(0)

α
δ) (42)

also,


z(t) = η =⇒ Λ̇(t) < 0, ˙̄ς(t) > 0

β̄−1(
δ̄

ᾱ
) > z(t) > η =⇒ Λ̇(t) < 0, ˙̄ς(t) > 0

β−1(
1− L̃H(0)

α
δ) < z(t) < η =⇒ Λ̇(t) < 0, ˙̄ς(t) > 0

β−1(
1− L̃H(0)

α
δ) > z(t) =⇒ Λ̇(t) > 0, ˙̄ς(t) > 0

β̄−1(
δ̄

ᾱ
) < z(t) =⇒ Λ̇(t) < 0, ˙̄ς(t) < 0

This allows us to conclude for this case that:

lim
t→+∞

(xc(t), xcf (t), xh(t)) = (0, 0, xh(t) > 0). (43)

By using the same above development, we can
prove that: the healthy situation is not stable for the
cases :

• β̄−1( δ̄
ᾱ ) < β−1( 1−L̃H(0)

α δ),

• β̄−1( δ̄
ᾱ ) = β−1( 1−L̃H(0)

α δ).

Remarks:

• This result would be of a certain importance in the
treatment of this type of cancer. Let us now interpret
this result relative to therapy of AML. The coefficient
L̃ models the effect of a new anti-proliferative drug
(an inhibitor of Flt-3 receptors) that specifically acts
on fast cell renewal dynamics, see B. Douglas Smith
et al. (2004)and J. L. Avila et al. (2014, A).

• The obtained result brings some suggestions in the
treatment of AML and has not been developed in
previous researches. It allows us to propose a new
treatment approach for this type of cancer interpreted
as follows: According to relation (10) that represents
the effect of interconnection between healthy and
cancerous cell dynamics, and in order to eliminate
cancerous cells, we can develop a new drug which acts
specifically on the interconnection between healthy
and cancerous cells.

• Biologically, this result clearly explains the hematopo-
iesis phenomenon and how the biological system
makes the number of cells in a biologically acceptable
range, see Eric M. Pietras and Matthew R. Warr
(2011). Thus, if the number of cells is more or less
than the equilibrium point, the system will work to
return it to a positive steady state.

4. NUMERICAL EXAMPLES AND SIMULATION
RESULTS

Consider a system with H(0) = 1, H̄(0) = 1, β(z(t)) =
β(0)

1+z(t)3 , β̄(z(t)) =
β̄(0)

1+z(t)3 and the parameters indicated in

the tables bellow.

Example 1. see Table 1. It can be verified that with the

Table 1. Simulation parameters.

δ β(0) L β̃(0) L̃ δ̄ β̄(0) L̄

0.2 1 0.35 12 0.6 0.02 1 1.2

parameters in Table 1 the global stability conditions (9)
are satisfied,

α = 0.01 > 0; ᾱ = 0.002 > 0; β̄(0) = 1 >
δ̄

ᾱ
= 0.1;

β(0) = 1 <
1− L̃H(0)

α
δ = 10.

For this example, time domain simulation, showed that
the states xc(t) and xcf (t) converge to the origin, and the
state xh(t) converges to xhe > 0, see Figure 2.

To complete the above numerical study we also illustrate
the effect of the interconnection between healthy and can-
cerous cells on the cellular population dynamics. The other
parameters as indicated in Example 2.

Example 2. see Table 2.
Indeed, it can be verified that with the parameters in

Table 2. Simulation parameters.

δ β(0) L β̃(0) L̃ δ̄ β̄(0) L̄

0.1 1 0.8 12 0.6 0.2 1 1.2

Table 2 that the global stability conditions (10) hold.

β̄−1(
δ̄

ᾱ
)> β−1(

(1− L̃H(0))δ

α
).
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V̇ (t) = 0 =⇒ δxc(t) = 0 =⇒ xc(t) = 0. (22)

Hence,

S = {(xc, xcf ) ∈ R2
+ | xc(t) = 0 } (23)

Let xcf be a solution that belongs identically to S:

xc(t) = 0 =⇒ ẋc(t) = 0 =⇒ xcf (t) = 0. (24)

Therefore, the only solution that can stay identically in S
is the trivial solution xcf (t) = 0. Thus, from LaSalle’s
invariance principle theorem (see Jinhuan Wang et al.
(2008)), we conclude that:

lim
t→+∞

(xc(t), xcf (t)) = (0, 0) (25)

case 2: If α > 0, L̃H(0) − 1 < 0 and β(0) ≤ 1−L̃H(0)
α δ

then xc(t) and xc,f (t) converge to zero.

Now, we consider the case where α > 0 and L̃H(0)−1 < 0.
Then we define the Lyapunov functional Λ(t) ∈ R+:

Λ(t) =
1− L̃H(0)

α
V (t) + xcf (t) + L̃Φ(t) (26)

Simple calculations give:

Λ̇(t) = (β(z(t))− 1− L̃H(0)

α
δ)xc(t) (27)

Thus, if

β(0) ≤ 1− L̃H(0)

α
δ (28)

By using the decreasing property of the function β, we
deduce that Λ̇(t) < 0. Thus, xc(t) and xcf (t) admit
the origin as a globally asymptotically stable equilibrium
point.

If we have α > 0 and L̃H(0) − 1 ≥ 0 then we define the
Lyapunov functional Υ(t) ∈ R+:

Υ(t) = xcf (t) + L̃Φ(t) (29)

Simple calculations give:

Υ̇(t) = L̃H(0)ωc(t)− β̃(xc,f (t)) ≥ (L̃H(0)− 1)ωc(t).

we have

(1) Υ(t) = 0 ⇐⇒ xc(t) = 0 and xcf (t) = 0;

(2) Υ(t) > 0 and Υ̇(t) > 0 for all xc(t) > 0 and
xcf (t) > 0;

This allows us to conclude from Lyapunov Instability
Theorem (see H. Khalil (1996) and Cristian Carcamo and
Claudio Vidal (2009)) , that The system of the cancerous

cells has the origin unstable if L̃H(0)− 1 ≥ 0.

Next, Let us introduce for all xc(t) the functional

ξ̄(t) =

∫ t

t−τ̄

∫ t

θ

h̄(θ − a+ τ̄)β̄(z(a))xh(a) da dθ. (30)

Simple calculations give:

˙̄ξ(t) =

∫ t

t−τ̄

h̄(θ − t+ τ̄)β̄(xh(t) + xc(t))xh(t) dθ

−
∫ t

t−τ̄

h̄(t− a)β̄(xh(a) + xc(a))xh(a) da.

Now, Let us introduce a lyapunov functional:

ς̄(t) = xh(t) + L̄ξ̄(t). (31)

Then its derivative along the trajectories of xh(t) satisfies

˙̄ς(t) = (−δ̄ + ᾱβ̄(xh(t) + xc(t)))xh(t). (32)

where ᾱ is the constant defined in (7).

It is clear that if ᾱ ≤ 0 or ᾱ > 0 and β̄(0) ≤ δ̄
ᾱ we have

˙̄ς(t) ≤ 0

We deduce easily from Barbalat’s lamma that

lim
t→+∞

xh(t) = 0. (33)

Now, consider case 1 or case 2 where (xc(t), xcf (t))
converges to zero (0, 0) and the necessary conditions for
the existence of positive equilibrium points for healthy cells

ᾱ > 0 and β̄(0) > δ̄
ᾱ . Then, let tc > 0 be the necessary

time for xc(t) to converges to zero.
It is clear that for all t ≥ tc

˙̄ς(t) = [−δ̄ + ᾱβ̄(xh(t))]xh(t). (34)

This implies that:

• If xh(t) > xe
h then ˙̄ς(t) < 0.

• If xh(t) < xe
h then ˙̄ς(t) > 0

• If xh(t) = xe
h then ˙̄ς(t) = 0

And allows us to deduce

lim
t→+∞

(xc(t), xc,f (t), xh(t)) = (0, 0, xh(t) > 0) (35)

case 3: If α > 0, L̃H(0) − 1 < 0, β(0) > 1−L̃H(0)
α δ

and β̄−1( δ̄
ᾱ ) > β−1( 1−L̃H(0)

α δ) then (xc(t), xc,f (t), xh(t))
converge to (0, 0, xh(t) > 0)

To illustrate the effect of the interconnection between
healthy and cancerous populations on cellular dynamics,
let us introduce the functional

χ(t) = ζ̄(t) + Λ(t) (36)

where Λ(t) and ζ̄(t) are the functionals defined in (25) and
(31), respectively.
Using (26) and (32), we obtain





χ̇(t) = ˙̄ς(t) + Λ̇(t)
˙̄ς(t) = (−δ̄ + ᾱβ̄(z(t)))xh(t)

Λ̇(t) = (β(z(t))− 1− L̃H(0)

α
δ)xc(t)

(37)

It is clear that the signs of ˙̄ς(t) and Λ̇(t) depend on z(t).
Now, we consider the case where necessary conditions for
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Fig. 2. Trajectories of the states xc(t), xcf (t) and xh(t) (case 1 of
the healthy situation)
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Fig. 3. Trajectories of the states xc(t), xcf (t) and xh(t) (case 2 of
the healthy situation)

For this example, time domain simulation, showed that the
states (xc(t); xcf (t); xh(t)) converge to (xe

c = 0; xe
cf =

0; xe
h > 0), see Figure 3.

5. CONCLUSION

We have presented global stability analysis of a coupled
healthy and cancerous dynamics model, in healthy sit-
uation of Acute Myeloid Leukemia. The first problem
we addressed was to establish necessary and sufficient
conditions that guarantee a globally stable trivial solu-
tion of cancerous cells system. We obtained conditions in
terms of biological parameters that ensure global stability,
taking into account the interconnection between healthy
and cancerous cell dynamics. We conducted simulations
to illustrate the effect of such an interconnection on cells
dynamics, and to verify that the obtained results have
biological explanations, and medically make sense. Lastly,
we would like to say that novel results presented in this
work, could be an important step forward in studying
Acute Leukemia dynamic.
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