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We study the vacuum geometry prescribed by the gauge invariant operators of the minimal super-
symmetric standard model via the plethystic program. This is achieved by using several tricks to perform
the highly computationally challenging Molien-Weyl integral, from which we extract the Hilbert series,
encoding the invariants of the geometry at all degrees. The fully refined Hilbert series is presented as the
explicit sum of 1422 rational functions. We found a good choice of weights to unrefine the Hilbert series
into a rational function of a single variable, from which we can read off the dimension and the degree of the
vacuum moduli space of the minimal supersymmetric standard model gauge invariants. All data in
Mathematica format are also presented.
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I. INTRODUCTION AND SUMMARY

The Standard Model of particle theory containing
specific gauge interactions is expected to have more
structures when extended to energies above 1–10 TeV,
where supersymmetry might be incorporated. Indeed, to
derive the Standard Model as an effective theory from a
unified theory containing gravity is one of the chief
prospects of theoretical particle physics. One of the most
important aspects of a supersymmetric gauge theory is that
its vacuum, due to the omnipresence of scalars in the
theory, can be highly nontrivial, as parametrized by the
vacuum expectation values (VEVs) of gauge invariant
operators (GIOs) composed of these scalar fields [1–3].
This vacuum moduli space (VMS) can be explicitly
obtained as solution of constraints coming from F-flatness
and D-flatness and be realized, in the language of algebraic
geometry, as an algebraic variety [4].
Supersymmetric extensions of the Standard Model

clearly constitute one of the central subjects in particle
phenomenology. In particular, the minimal extension, the
minimal supersymmetric standard model (MSSM), and its
variants, have been subject to intense investigations. The
flat directions of the MSSM have been identified in [5].

Combining these directions of thought, a long program was
launched to study the vacuum geometry of the MSSM and
its relatives [6–11]: under the guiding principle that
“interesting geometry is coextensive with interesting phys-
ics,” the ultimate goal is to use geometric and topological
properties of VMS as a selection rule for operators in the
Standard Model Lagrangian. Specifically, if the VMS were
to be found to have some special form in the mathematical
sense, which (1) cannot be explained in terms of sym-
metries relating the relevant degree of freedom in the low
energy effective field theory; and (2) is very unlikely to
have occurred by chance, then this special form should be
regarded as a consequence of some unknown physics. In
this setting, we take special to mean nontrivial properties of
algebraic geometry, such as exhibited by interesting topo-
logical invariants or emergence of special holonomy.
Under such a spirit, the presence of any special geometry

would be a collective consequence of factors such as gauge
group, particle spectrum and the interactions within the
theory. Therefore, if a special geometry is found within the
low energy sector of a theory and this geometry is very
unlikely to have arisen by chance, then the existence of
such geometry in the VMS should be a fundamental
property across all energy scales. Hence, the addition of
higher dimensional operators to our theory can only occur
when they are compatible with this structure. In such sense,
we are placing very restrictive constraints on allowed
physical processes that are mediated by certain operators.
Already, many interesting features have been found,

such as the VMS of the electroweak sector being an affine
cone over the classical Veronese surface, a structure ruined
by addition of R-parity-violating operators, or the sensitive
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dependence of the geometry on the number of generations,
or the appearance of Calabi-Yau varieties, etc., [9–11].
Supersymmetry and the VMS thus provide us with a low
energy window of how geometry can guide certain phe-
nomenological questions. A good analogy would be the
study of complex numbers: many unforeseen and crucial
properties of analytic functions are visible only after the
complex extension of the real numbers, so too would
important properties of quantum field theories—and the
Standard Model in particular—only be visible after the
supersymmetric extension. In this light, regardless of
whether there exist supersymmetric particles, the study
of supersymmetric structures and the VMS is an integral
part of the study of field theory.
Despite the progress made over the years in the afore-

mentioned program, an important question has remained:
“what is the VMS of the MSSM?” The reason is purely
computational: in component form, there are about 50
scalars and about 1000 GIOs, which by the state-of-the-art
standard procedure in algebraic geometry adapted to
calculate the VMS [10], is beyond the computational
power of even the most sophisticated computers by direct
means. Therefore, investigations thus far have focused on
the electroweak sector wherein, as discussed, so much have
already been uncovered. It is indeed expected that the
geometry of the full MSSM would have far richer and
salient features.
Rather fortuitously, there has been a parallel program in

studying supersymmetric gauge theories: this is the so-
called plethystic program [12,13]. It originated in the study
of quiver gauge theories which arise from string theory, as
world-volume theories on D-branes probing Calabi-Yau
singularities [14], which have become the playground for
the AdS=CFT correspondence [15]. Here, the VMS of the
gauge theory is, by construction, the affine Calabi-Yau
variety transverse to the D-branes, and was in part the initial
motivation for the VMS/phenomenology program. It

allows one to build criteria to rule out certain top-down
string model building to obtain desired low-energy out-
comes: if the VMS is not Calabi-Yau, then one cannot use a
direct top-down method.
The central object to the plethystic program is the Hilbert

series, well-known to algebraic geometry as the generating
function for counting the dimension of graded pieces of the
coordinate ring. Harnessing this analogy with the super-
conformal index [16–23], the original motivation was to
study the chiral ring of Bogomol'nyi-Prasad-Sommerfield
(BPS) operators in supersymmetric gauge theories: the
Hilbert series the counts the single-trace operators, whilst
its plethystic exponential counts the multi-trace, and its
plethystic logarithm encodes the generators and relations of
the variety. A host of activity ensued, developing and
refining various aspects of the program [24–36], even using
the Hilbert-series technology to (the regular, nonsupersym-
metric) Standard-Model phenomenology [37–40].
A natural question therefore arises as to whether the two

programmes can come to a useful syzygy. Specifically, can
certain properties of VMS for the MSSM be obtained
without recourse to the computationally expensive elimi-
nation algorithm, but be deduced from the Hilbert series,
which may be calculated via other means? Luckily, this is
indeed the case. When the algebraic variety has extra
symmetries, such as precisely in our cases, when they come
from certain symplectic quotients of Lie-group invariants,
there is a classic method of Molien-Weyl integration [41] to
obtain the Hilbert series. The purpose of this paper is to
perform this, albeit difficult, integral and obtain the Hilbert
series explicitly for the MSSM, whence one can further
deduce relevant geometrical quantities.
The objects that immediately follow from the Hilbert

series are the degree and dimension of the VMS. In this
work, we obtain the dimension of the VMS to be 40 and
the degree given by the product of the following prime
factors

2898 · 3324 · 5145 · 7120 · 1158 · 1353 · 1731 · 1935 · 2321 · 2916 · 3114 · 3717 · 4110 · 4311 · 4713 · 537 · 598·

6110 · 676 · 714 · 7311 · 796 · 836 · 895 · 975 · 1012 · 1034 · 1073 · 1093 · 1132 · 1273 · 1313 · 1372 · 139·

1493 · 1513 · 1572 · 1635 · 167 · 173 · 1793 · 1813 · 191 · 1935 · 1972 · 199 · 2112 · 229 · 251 · 2572 · 263·

269 · 2713 · 277 · 2832 · 311 · 313 · 331 · 337 · 353 · 3733 · 379 · 389 · 431 · 433 · 443 · 461 · 467 · 491·

509 · 521 · 5412 · 5472 · 5573 · 5632 · 587 · 599 · 607 · 6433 · 727 · 757 · 7733 · 811 · 821 · 977 · 1061·

1151 · 1279 · 1531 · 1549 · 1571 · 1579;

with the following number that does not contain any prime factors between 1579 and number of order 1011,1

1This number itself is not necessarily a prime but factorization of this number beyond primes of order 1011 is out of the capabilities of
normal laptop.
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11196186329560947241455148908824054684468743740728908934170824241971190830192362923

49917341515289692345322263351559861892762333905606780549950560718456751981495721350

72426809129738886481086808646498896030206338463083506395355860193483377616149055621

18460688361209927517001930882524733517050667597849316746015467332076233464803805765

04692754875602278133281298256355246484194394745536495217014696615305675124055952742

70528682628820988014324086631325598762474204655322926194264597267995454863446388500

79630506164699:

The organization of the paper is as follows. Section II
reviews some elements of the plethystic program and we
can see therein how it establishes the connection between
Hilbert series and the geometry of the VMS. Section III
gives examples illustrating the program both in SQCD and
Abelian gauge theory. Section IV establishes the scene for
the plethystic integral for the MSSM using characters of
SUð3Þ, SUð2Þ and Uð1Þ as well as corresponding charges
for the matter content thereof. Section V gives the descrip-
tion of obtaining the Hilbert series for the MSSM with
certain subtleties and the main obstacles within this
procedure. The results are also presented with more details
in this section as well.
Lastly, the VMS obtained here is not constrained by the

superpotential W of the MSSM, i.e., the relations from
requiring ∂W=∂ϕi ¼ 0 with ϕi being the scalar component
of the chiral fields in the MSSM, are not imposed on
reaching the VMS. The case of nontrivial superpotential
W ≠ 0 is therefore left for future work.

II. THE PLETHYSTIC PROGRAM

In this section, we review some aspects of the plethystic
program. The reader is also referred to [42] for a rapid
review of the program and its context within quiver
representations and gauge theory.

A. Elimination algorithm for VMS

We first briefly recall the algorithm for computing the
VMS of a generic N ¼ 1 supersymmetric gauge theory
with gauge group G, fields whose scalar components are ϕi,
and a polynomial superpotential W therein. The most
efficient method to obtain the VMS is as follows.
(1) INPUT:

(a) Superpotential WðfϕigÞ, a polynomial in varia-
bles ϕi¼1;…;n.

(b) Generators of GIOs: rjðfϕigÞ, j ¼ 1;…; k poly-
nomials in ϕi invariant under G.

(2) ALGORITHM:
(a) Define the polynomial ring R ¼ C½ϕi¼1;…;n;

yj¼1;…;k�.
(b) Consider the ideal I ¼ h∂W∂ϕi

; yj − rjðfϕigÞi.

(c) Eliminate all variables ϕi from I ⊂ R, giving the
ideal M in terms of yj.

(3) OUTPUT:
M corresponds to the VMS as an affine variety
in C½y1;…; yk�.

In the ensuing, we will address general varieties X though
ultimately we will specialize to when X is obtained as the
VMS M from the above.

B. The Hilbert series

DEFINITION 2.1: Given an algebraic variety X in
C½x1;…; xn�, the Hilbert series is the generating function of
the graded pieces

HX ðtÞ ¼
X∞
i¼0

ðdimCX iÞti; ð2:1Þ

where X i the ith graded piece of the coordinate ring for X
and can be regarded as the number of independent degree i
(Laurent) polynomials on X .
Note that the Hilbert series is not a topological invariant

and it depends on the embedding of X . Of course,HðtÞ can
be generalized to be multivariate Hðt1;…; tnÞ by consid-
ering the multigraded piecesX i1;…;in . The dummy variables
ti are called fugacities in the physics literature. When there
is more than one variable ti, the Hilbert series is called
refined, otherwise it is often called unrefined.
There are two important forms of Hilbert series which will

be used later in this paper for obtaining the degree and
dimension of theunderlyingvariety.Wehave that (cf. [43,44])
Theorem 2.1: The Hilbert series HðtÞ is a rational

function in t and can be written in two ways:

HX ðtÞ ¼
8<
:

QðtÞ
ð1−tÞk ; Hilbert series of the first kind;

PðtÞ
ð1−tÞdimðXÞ ; Hilbert series of the second kind:

ð2:2Þ

Here both PðtÞ and QðtÞ are polynomials with integer
coefficients and the dimension of the embedding space is
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given by the power of the denominators. Moreover,
Pð1Þ ¼ degreeðXÞ.
Thus we have a convenient way to obtain the degree of

the variety.2

Furthermore, since the Hilbert series is a rational
function, we have
Theorem 2.2: HðtÞ affords a partial-fraction expansion

around t ¼ 1 [45,46]

HX ðtÞ ¼
Pð1Þ

ð1 − tÞdimðXÞ þ � � � : ð2:3Þ

Thus, the coefficient of the leading pole gives the degree of
the variety while the order of the pole is the dimension.
Indeed, for Calabi-Yau varieties, the coefficient of the

leading pole can also be interpreted as the volume of a base
Sasaki-Einstein manifold, which in the AdS=CFT context
is related to the central charges of the supersymmetric
gauge theory [30,46–48].
Remark: We remark that when X is a quotient variety,

i.e., X ≃ Cn=Γ for some discrete finite group Γ acting on
the n coordinates of Cn, the problem of computing
Hðt;Cn=ΓÞ reduces to counting the number of algebraically
independent polynomials of each degree that are invariant
under group action. This problem was solved by Molien
[43,49] and the corresponding Hilbert series is the well-
known Molien series, which can be computed by a sum
over group elements:

HX ðtÞ ¼
1

jΓj
X
g∈Γ

detðI − tgÞ−1: ð2:4Þ

C. Molien-Weyl formula

The case of our principle interest is whenX is not a finite
quotient, but of the form of a symplectic quotient by a
(continuous) Lie group coming from the gauge symmetry.
Luckily, there is a generalization of (2.4) into a so-called
Molien-Weyl integral [41] (cf. [8,24,25]). The problem of
finding invariants under continuous gauge group is at the
heart of invariant theory that can be traced back to the 19th
century and we present a rapid review of the origin of
Hilbert series and Gröbner bases in the context of com-
mutative algebra in Appendix C.
For our incarnation in physics, we wish to compute the

Hilbert series for X ¼ M coming from the algorithm in
Sec. II A, whose coordinate ring R is the projection of the
quotient ring R=I onto C½yj�. Now, the complexified gauge
group Gc and global symmetry group act naturally on R

and we can grade the elements therein with gauge and
global charges. Let us denote the global Abelian charge as
ti and the Cartan subgroup of the gauge group Gv by zi. This
gives the generating function, i.e., the Hilbert series, of the
graded ring R as

HRðt; zÞ ¼
X
n;m

anmzntm; ð2:5Þ

which can be written as a power series in the global charge t
and a Laurent expansion in the gauge charges z. Since the
gauge symmetry commutes with global symmetries, all
elements of R with given charge tm should form a
representation χm of Gc. Therefore, the coefficients of tn

in Eq. (2.5) is the character of a Gc representation,

HRðt; zÞ ¼
X∞
m¼0

χmðzÞtm ¼
X∞
m¼0

�X
i

ami χ
ðiÞðzÞ

�
tm: ð2:6Þ

In the last step, we have decomposed χm, the representation
on the elements of charge tm, into irreducible representa-
tions χðiÞ. Therefore, the generating function for invariants
is given by the projection onto the trivial representation
with character χð0Þ ¼ 1,

Hinv
R ðtÞ ¼

X∞
m¼0

am0 t
m: ð2:7Þ

The projection is done by averaging Hðt; zÞ on the gauge
group with Haar measure dμðzÞ,Z

dμðzÞχðiÞðzÞ ¼ δi;0: ð2:8Þ

Explicitly, a group G of rank r has its Haar measure in
terms of contour integral

1

jWj
Yr
i¼1

I
jzij¼1

dzi
2πizi

Y
α∈Δ

�
1 −

Yr
i

zαii

�
; ð2:9Þ

where jWj is the order of the Weyl groupW of G and α is a
root, or the weight of the adjoint representation such that αi
is the ith entry of the weight vector in the Dynkin basis.
Putting all the above together, the Molien-Weyl formula

for the Hilbert series of the variety M whose coordinate
ring is R reads

Hinv
R ðtÞ ¼ 1

jWj
Yr
i¼1

I
jzij¼1

dzi
2πizi

Y
α∈Δ

�
1 −

Yr
i

zαii

�
HRðt; zÞ:

ð2:10Þ

Note that the integration requires knowledge about the
Hilbert series of the coordinate ring R.

2Recall that when an ideal is a single polynomial, i.e., X is a
hypersurface, the degree of the variety is simply the degree of the
polynomial. For multiple polynomials, the degree is a generali-
zation of this notion. It then becomes the number of intersection
points between a generic line and the variety.
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D. Plethystics and syzygies

The next crucial concept needed is that of plethystics.
DEFINITION 2.2: Let gðt1;…; tnÞ be a multivariate

analytic function. The plethystic exponential (PE) is

PE½gðt1;…; tnÞ� ≔ exp

�X∞
k¼1

gðtk1;…; tknÞ − gð0;…; 0Þ
k

�
:

ð2:11Þ

It is easy to show (q.v., [13]) that (being an exponential) the
plethystic exponential is multiplicative in additive argu-
ments, and furthermore

fðtÞ ¼
X∞
n¼0

antn

⇒ PE½fðtÞ� ¼ exp

�X∞
n¼1

fðtnÞ − fð0Þ
n

�

¼
Y∞
n¼1

ð1 − tnÞ−an : ð2:12Þ

The product form is particularly useful and it is usually
called Euler form.
It is a nontrivial fact [13,41] that this has an analytic

inverse function called the plethystic logarithm

PE−1½gðt1;…; tnÞ� ¼
X∞
k¼1

μðkÞ
k

logðgðtk1;…; tknÞÞ; ð2:13Þ

where

μðkÞ ≔
8<
:

0 k has repeated prime factors

1 k ¼ 1

ð−1Þn k is a product of n distinct primes

ð2:14Þ

is the Möbius mu-function.
Remarkably, the plethystic logarithm can be used to find

the defining relation (syzygies) of the generators of an
algebraic variety [12,13].
PROPOSITION 2.1: Given Hilbert series Hðt;XÞ of

an algebraic variety X, the plethystic logarithm is of the
form

PE−1½Hðt;MÞ� ¼ b1tþ b2t2 þ b3t3 þ � � �

where all bn ∈ Z and a positive bn corresponds to a
generator in coordinate ring of X and a negative bn, a
relation. In particular, if X is complete intersection, then
PE−1½Hðt;MÞ� is a finite polynomial.
We illustrative this proposition in detail with concrete

examples in Appendix A.

Lastly, we would like to see the connection between PE
and Hilbert series HR through a quick demonstration. We
first show how HR defined in Sec. II C is calculated and
thus linked to PE with a toy example. Now we consider a
theory of n free chiral fields ϕ1;…;ϕn with UðnÞ global
symmetry. Therefore, we have a collection of maximally
commuting Uð1Þ’s in the UðnÞ and each Uð1Þ has its
corresponding charge fugacity ti to the field ϕi (with
i ¼ 1;…; n). Chiral operators are thus described by
ϕk1
1 � � �ϕkn

n (with k1;…; kn ¼ 0; 1; 2;…). The Hilbert series
HR for such theory is therefore

HR ¼
X∞

k1;…;kn¼0

tk11 � � � tknn ¼
Yn
i¼1

1

1 − ti
:

Now we can rewrite the fugacities ti as

t1¼ tx1; t2¼ t
x2
x1
; t3 ¼ t

x3
x2
;…; tn−1¼ t

xn−1
xn−2

; tn ¼
t

xn−1
;

where x1;…; xn−1 are SUðnÞ fugacities and t is the Uð1Þ
fugacity. With such substitution, we have

HRðt; x1; x2;…; xn−1Þ

¼ 1þ t

�
x1 þ

x2
x1

þ � � � þ xn−1
xn−2

þ 1

xn−1

�
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
the character of the fundamental rep of SUðnÞ

þ � � �

If we denote the Dynkin label of the character of an irrep of
SUðnÞ by ½k1;…; kn−1�, we have

HRðt; x1; x2;…; xn−1Þ ¼
X∞
k¼0

½k; 0;…; 0�tk

≡ PE½½1; 0;…; 0�t�;

where ½k; 0;…; 0� is the kth symmetric product of the
fundamental representation. From the definition of PE in
Eq. (2.11), we see that indeed both the PE and HR in our
example generate the symmetrization of their arguments.
In particular, if we input ½1; 0;…; 0�t into the PE, we
obtain the symmetric products in each term of the
series: PE½½1; 0;…; 0�t� ¼ P∞

k¼0½k; 0;…; 0�tk.

E. Summary

To summarize, the general expression of the Hilbert
series[8,24] in terms of the PE of the character is

PE

�
χGRðzaÞ

XNf

i

ti

�
¼ HRðti; zaÞ

≡ exp

�X∞
k¼1

XNf

i¼1

1

k
ðtki χGRðzkaÞÞ

�
; ð2:15Þ
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where χGRðti; zaÞ is the character for representation R of
group G and it is expanded into monomials of complex
variables zi. Note that the number of complex variables za
is equal to the rank of group G.3 The expansion of the PE
gives the complete set of combinations of “fugacities” ti. To
find the generating function of GIOs under group G, we
need to project the representation generated by the PE onto
trivial subrepresentations ofG. This is can be carried out by
integrating over the whole group. This is precisely the
Hilbert series Hinv

R in Eq. (2.10) whose Molien-Weyl
formula for plethystic integral is given by

g¼
Z
G
dμGPE

�
χGRðzaÞ

XNf

i

ti

�
¼
Z
G
dμGHRðti;zaÞ; ð2:16Þ

where dμG is the Haar measure for groupG. With these data
at hand, we conveniently package them into the following
theorem:
Theorem 2.3 (Molien-Weyl integral for the Hilbert

series): Given gauge group G, with Haar measure
R
G dμG

and corresponding plethystic exponential defined in
Eq. (2.15), the Hilbert series is computed by the following
formula

g ¼ Hinv
R ðtiÞ ¼

Z
G
dμGHRðti; zaÞ

¼
Z
G
dμGPE

�
χGRðzaÞ

XNf

i

ti

�
; ð2:17Þ

where χGRðti; zaÞ is the character for representation R of
group G and it is expanded into monomials of complex
variables zi and the Haar measure is given by

Z
G
dμG¼

1

jWj
YrankðGÞ
i¼1

Z
jzij¼1

dzi
2πizi

Y
α∈Δ

�
1−

YrankðGÞ
i

zαii

�
; ð2:18Þ

whereW is the Weyl group and α is a root, or the weight of
the adjoint representation such that αi is the ith entry of the
weight vector in the Dynkin basis.
The remainder of this paper will be used to evaluate this
integral explicitly, first for some warm-up cases, and
ultimately for the MSSM itself.

III. WARM-UP EXAMPLES

Our goal is to apply the technology introduced in Sec. II to
the MSSM, with gauge group G ¼ SUð3Þ × SUð2Þ ×Uð1Þ.
Before doing so, let us warm up with two illustrative
examples: (1) the SQCD sector and (2) a single Abelian

gauge theory. This will give us a more concrete under-
standing of all the previous definitions from physical side.

A. SQCD

Let us look at the example of SQCD with Nc colors and
Nf flavors, but without superpotential [8]. Here, the GIOs
are symmetric combinations of quarks and antiquarks,
transforming in the bifundamental ½1; 0;…; 0; 0;…; 0; 1�
of SUðNfÞL × SUðNcÞ and the bifundamental ½1; 0;…; 0;
0;…; 0; 1� of SUðNcÞ × SUðNfÞR respectively. This is the
quark sector of the calculation which we are about to
perform.
In the above, we have used the standard Young diagram

for irreducible representations of SUðnÞ. Let λi be the
length of the ith row (1 ≤ i ≤ n − 1) and let ai ¼ λi − λiþ1

be the differences of lengths of rows. In such notation, we
have a representation written as ½a1; a2;…; an−1�, of length
n − 1. For example, ½1; 0;…; 0� represents the fundamental
representation, ½0;…; 0; 1� represents the antifundamental
representation, and ½1; 0;…; 0; 1� (the second 1 is at the
(n − 1)th position represents the adjoint representation).
For a product gauge group SUðnÞ × SUðnÞ, we use
notation ½…;…� where the (n − 1)-tuple to the left of
the semicolon is the representation for the left SUðnÞ, and
vice versa on the right. Finally, let us denote the character
for the (anti) fundamental representation of SUðNÞ as

χSUðNÞ
½0;…;1� and χSUðNÞ

½1;0;…;0� respectively.
To use the Weyl-Molien formula, we need to introduce

weights for elements in the Cartan subgroup for different
groups. We use za, a ¼ 1;…; Nc − 1 for color weights
and ti, t̃i, i ¼ 1;…; Nf for flavor weights. Therefore, the

character for a quark becomes χ
SUðNfÞL×SUðNcÞ
½1;0;…;0;0;…;0;1� ðti; zaÞ and

that for an antiquark is χ
SUðNcÞ×SUðNfÞR
½1;0;…;0;0;…;0;1� ðt̃i; zaÞ. We further

introduce two more variables for counting number of
quarks and antiquarks t and t̃ respectively. The plethystic
exponential from (2.11) is precisely the object which
constructs symmetric products of quarks and antiquarks:

PE½tχSUðNfÞL×SUðNcÞ
½1;0;…;0;0;…;0;1� ðti; zaÞ þ t̃χ

SUðNcÞ×SUðNfÞR
½1;0;…;0;0;…;0;1� ðt̃i; zaÞ�

≡ exp
�X∞
k¼0

1

k
ðtkχSUðNfÞL×SUðNcÞ

½1;0;…;0;0;…;0;1� ðtki ; zkaÞ

þ
X∞
k¼0

1

k
ðt̃kχSUðNcÞ×SUðNfÞR

½1;0;…;0;0;…;0;1� ðt̃ki ; zkaÞ
�
: ð3:1Þ

Expanding the character more explicitly as

tχ
SUðNfÞL×SUðNcÞ
½1;0;…;0;0;…;0;1� ðti; zaÞ ¼ χSUðNcÞ

½0;…;0;1�ðzlÞ
XNf

i¼1

ti; ð3:2Þ

gives us
3The variable Nf in the expression is the total number of

flavors in terms of gauge theory language.
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PE

�
χSUðNcÞ
½1;0;…;0�ðzlÞ

XNf

i¼1

t̃iþχSUðNcÞ
½0;…;0;1�ðzlÞ

XNf

j¼1

tj

�

¼exp

�X∞
k¼0

�χSUðNcÞ
½1;0;…;0�ðzkl Þ

PNf

i¼1 t̃
k
i þχSUðNcÞ

½0;…;0;1�ðzkl Þ
PNf

j¼1 t̃
k
j

k

��
:

ð3:3Þ

Here we associated dummy variables t and t̃ to stand for
quarks and antiquarks counting the global Uð1Þ charges in
the maximal torus of the global symmetry. Therefore, we
should restrict the values of ti to be jtij < 1 for all i.
As described in Sec. II C, we want gauge invariant

quantities, therefore, it is important that we project these
representations onto trivial subrepresentations that are
made up by quantities invariant under the action of a
gauge group. The Molien-Weyl integral from (2.10) thus
gives the requisite Hilbert series (generating function) for
ðNf; NcÞ as

gðNf;NcÞ ¼
Z
SUðNcÞ

dμSUðNcÞ

× PE

�
χSUðNcÞ
½1;0;…;0�ðzlÞ

XNf

i¼1

t̃i þ χSUðNcÞ
½0;…;0;1�ðzlÞ

XNf

j¼1

tj

�
:

ð3:4Þ

The Haar measure dμSUðNcÞ can be explicitly written using
Weyl’s integration formula as (see, e.g., Sec. 26.2 of [41])Z

SUðNcÞ
dμSUðNcÞ

¼ 1

ð2πiÞNc−1Nc!

I
jzlj¼1

YNc−1

l¼1

dzl
zl

ΔðϕÞΔðϕ−1Þ; ð3:5Þ

where ϕaðz1;…; zNc−1ÞNc
a¼1 are the coordinates on the

maximal torus of SUðNcÞ with
QNc

a¼1 ϕa ¼ 1, and ΔðϕÞ ¼Q
1≤a≤b≤Nc

ðϕa − ϕbÞ is the Vandermonde determinant.
Finally, let us construct the characters in the plethystic

exponential. First we take the weights of the fundamental
representation of SUðNcÞ to be

L1 ¼ ð1; 0;…; 0Þ; Lkð0; 0;…;−1; 1;…; 0Þ;
LNc

¼ ð0;…;−1Þ; ð3:6Þ

where all L’s are ðNc − 1Þ-tuples, and Lk (2 ≤ k ≤ Nc − 1)
has −1 in the (k − 1)th position and 1 in the kth position.
With this particular choice of weights, the coordinates on
the maximal torus of SUðNcÞ are given by

ϕ1 ¼ z1; ϕk ¼ z−1k−1zk; ϕNc
¼ z−1Nc−1; ð3:7Þ

with 2 ≤ k ≤ Nc − 1. Hence, the characters of the funda-
mental and antifundamental representations are

χSUðNcÞ
½1;0;…;0� ¼

XNc

a¼1

ϕa ¼ z1 þ
XNc−1

k¼1

zk
zk−1

þ 1

zNc−1
;

χSUðNcÞ
½0;0;…;1� ¼

XNc

a¼1

ϕ−1
a ¼ 1

z1
þ

XNc−1

k¼1

zk−1
zk

þ zNc−1 ð3:8Þ

Thus, we have that [8]:
Theorem 3.1: The final expression for the Hilbert series

for SQCD is the ordinary integral

gðNf;NcÞðti; t̃iÞ¼
1

ð2πiÞNc−1Nc!

I
jzlj¼1

YNc−1

l¼1

dzl
zl

ΔðϕÞΔðϕ−1Þ

×PE

��
z1þ

XNc−1

k¼2

zk
zk−1

þ 1

zNc−1

�XNf

i¼1

ti

þ
�
1

z1
þ

XNc−1

k¼2

zk−1
zk

þ zNc−1

�XNf

j¼1

t̃j

�
: ð3:9Þ

Note that this a refined Hilbert series in the 2Nf variables ti
an t̃i.

B. An Abelian gauge theory

We have reviewed in the previous subsection, a rather
formal and general example to elucidate the contents of
Molien-Weyl formula for SQCD with SUðNÞ gauge group.
However, the spirit of the integral can be captured by a
simple example using Uð1Þ without loss of generality [38].
First, consider a single complex scalar field charged under a
Uð1Þ symmetry, i.e., ϕ → eiθϕ, ϕ� → e−iθ. Clearly, the
gauge invariants are now ðϕϕ�Þn and there is only one such
operator for each n. We can then define a formal series as

H ¼
X∞
n¼1

cnðϕϕ�Þn; ð3:10Þ

where cn ¼ 1 counts the number of different invariants of a
given n (since there is clearly only one per degree), so when
expanded, it is

H ¼ 1þ ðϕϕ�Þ þ ðϕϕ�Þ2 þ ðϕϕ�Þ3 þ � � � : ð3:11Þ

If ðϕ;ϕ�Þ are formally treated as numbers less than one, it is
simply a geometric series in variables ðϕ;ϕ�Þ,

Hðϕ;ϕ�Þ ¼ 1

1 − ϕϕ� : ð3:12Þ

Here, we obtain a refined Hilbert series in two variables;
because the field itself is a complex scalar, we can identify
the field with its own corresponding fugacity.
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Introducing another variable θ, the same variable that
parametrizes the Uð1Þ, (3.12) can be rewritten as the
integral

H ¼ 1

2π

Z
2π

0

dθ
ð1 − ϕeiθÞð1 − ϕ�e−iθÞ : ð3:13Þ

This reparametrization can be seen by series expa-
nding ð1 − ϕeiθÞ−1ð1 − θ�e−iθÞ−1, which is ð1þ ϕeiθ þ
ðϕeiθÞ2 þ � � �Þð1þ ϕ�e−iθ þ ðϕ�e−iθÞ2 þ � � �Þ. By multi-
plying out and collect terms according to powers of eiθ,
we see that the terms that are free of eiθ are exactly
the formal series we started with, i.e., 1þ ðϕϕ�Þ þ
ðϕϕ�Þ2 þ ðϕϕ�Þ3 þ � � �. The terms with any number of
factors of eiθ or e−iθ vanish upon the θ integration.
Making substitution z ¼ eiθ, the dθ integral becomes a

contour integral around jzj ¼ 1.

H ¼ 1

2πi

I
jzj¼1

dz
z

1

ð1 − ϕzÞð1 − ϕ�z−1Þ : ð3:14Þ

We can further reframe the second part of the integrand

1

ð1−ϕzÞð1−ϕ�z−1Þ
¼ exp½− logð1−ϕzÞ− logð1−ϕ�z−1Þ�

¼ exp

�X∞
n¼1

ðϕzÞn
n

þ
X∞
n¼1

ðϕ�z−1Þn
n

�
¼PE½ϕzþϕ�z−1�: ð3:15Þ

To understand the previous lines, let us expand the LHS
of Eq. (3.15), with ϕ and ϕ� being small complex numbers.
To cubic order in both fields we have

1

ð1 − ϕzÞð1 − ϕ�z−1Þ ¼ 1þ ϕϕ� þ ðϕϕ�Þ2 þ ðϕϕ�Þ3 þ � � � þ zðϕþ ϕðϕϕ�Þ þ ϕðϕϕ�Þ2 þ � � �Þ

þ z2ðϕ2 þ ϕ2ðϕϕ�Þ þ � � �Þ þ z3ϕ3 þ ϕ�3z−3 þ z−2ðϕ�2 þ ϕ�2ðϕϕ�Þ þ � � �Þ
þ z1ðϕ� þ ϕ�ðϕϕ�Þ þ ϕ�ðϕϕ�Þ2 þ � � �Þ: ð3:16Þ

From this expansion, the terms with no factors of z are the
ones invariant under Uð1Þ, which are picked out by the
contour integral. Equation (3.16) shows that we can obtain
the series of charge þ1 by multiplying with z−2 and that of
charge −2 by multiplying with z. These results follow from
the fact that the expansion has already generated all
possible combinations of ϕ and ϕ�. In doing so, we
implicitly used the reasoning behind (2.10). There are
two underlying concepts running in parallel.
First, Eq. (3.15) generates all possible arrangements of

the scalar fields, as graded by charge. Indeed, we see the
natural emergence of the plethystic exponential, as the
generating function of all symmetric combination of its
argument. Second, the integration over dθ ¼ dz

iz is the
integration over the group manifold Uð1Þ. This makes
sense as we want group invariant quantities, so we have to
“average” over group elements. When integrated over dθ,
any terms with nontrivial powers of z ¼ eiθ become
integrals dθeinθ for some integer n. This is identically 0
since integral is from 0 to 2π. Hence, terms with no powers
of z remain and are Uð1Þ invariant.

IV. MOLIEN-WEYL INTEGRAL FOR THE MSSM

In this section, we set up the scene for performing the
Molien-Weyl integral to obtain the Hilbert series of the
MSSM. Then, wewill use the result to interpret geometrical
properties of the VMS for the MSSM. We emphasize that
the analysis will be done with the superpotential W ¼ 0.

The group G under consideration for the MSSM is, of
course, the product gauge group SUð3Þ × SUð2ÞL ×Uð1ÞY .
The corresponding character for the product group is then
also a product for individual factor group, following from the
very definition of a group character. Indeed, for a given group
G, we can associate any representation R with a character
χR∶ G → C, where the map is defined to be the trace of
any group element g in representation R. Under this
definition, the character for the direct sum and the product
of the representations is given by χRi⊕Rj

¼ χRi
þ χRj

and
χRi⊗Rj

¼ χRi
χRj

. Thus equipped, we simply need to input
the particle contents with the corresponding representation
for the product gauge group of the MSSM, along with the
appropriate Haar measure for each factor group, to construct
the integral in Theorem 2.3.
The particle content for the MSSM are well known and

recapitulated in Table I. The characters for each factor
group are taken from [24] and the relevant ones are
presented in Table II. In addition, we note that the Haar
measure μG for gauge group G is given by [50]Z
G
dμG¼

1

ð2πiÞr
I
jz1j¼1

���
I
jzrj¼1

dz1
z1

���dzr
zr

Y
αþ

�
1−

Yr
l¼1

z
αþl
l

�
;

ð4:1Þ

where αþ are positive roots of the Lie algebra of the gauge
group and r ¼ rank G. Specifically, this definition of the
Haar measure is different from that of Eq. (3.5) such that
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only the positive roots are used here. A more detailed
discussion can be found in [8,24]. For example, the
measure for SUð2Þ given by Eq. (3.5)

Z
SUð2Þ

dμSUð2ÞðzÞ→
1

2

1

2πi

I
jzj¼1

dz
z
ð1− z2Þð1− z−2Þ; ð4:2Þ

has the term with negative exponent on z as compared to
that in Table III. Since only positive roots are used here and
Weyl renormalization is not required, the practical calcu-
lation will be extensively reduced. These two seemingly
different measures can be explicitly checked in calculation
and we have done this for the SUð2Þ case, whose results are
indeed the same. Finally, the Haar measures for each group
[24] are presented in Table III.
With the above data, we now proceed to explicitly

construct the Molien-Weyl integral in its plethystic form,
which we will call PI, with the full MSSM content. This
simply involves putting each chiral field into its correct
representation and input its quantum number for associated
character. To do this, we first tabulate the characters of the
particle content within the MSSM in Table IV. We can then
use the formula of plethystic exponential in Eq. (2.11) to
obtain the integrand. For example, the exponent of the
plethystic exponential for left-handed quarks is

log½y9z61z62fðy −Q1

ffiffiffi
x6

p
z1Þð1 −Q1

ffiffiffi
x6

p
yz1Þðy −Q2

ffiffiffi
x6

p
z1Þð1 −Q2

ffiffiffi
x6

p
yz1Þðy −Q3

ffiffiffi
x6

p
z1Þð1 −Q3

ffiffiffi
x6

p
yz1Þ

× ðz2 −Q1

ffiffiffi
x6

p
yÞðz2 −Q2

ffiffiffi
x6

p
yÞðz2 −Q3

ffiffiffi
x6

p
yÞðyz2 −Q1

ffiffiffi
x6

p Þðyz2 −Q2

ffiffiffi
x6

p Þðyz2 −Q3

ffiffiffi
x6

p Þ
× ðyz1 −Q1

ffiffiffi
x6

p
z2Þðz1 −Q1

ffiffiffi
x6

p
yz2Þðyz1 −Q2

ffiffiffi
x6

p
z2Þðz1 −Q2

ffiffiffi
x6

p
yz2Þðyz1 −Q3

ffiffiffi
x6

p
z2Þðz1 −Q3

ffiffiffi
x6

p
yz2Þg−1�; ð4:3Þ

which upon taking exponential gives us the argument inside the logarithm. The plethystic exponentials for the rest of the
particle content can be obtained in a similar fashion. Thus we have the following proposition.

TABLE I. Minimal Supersymmetric Standard Model particle contents are given in the table, where the
Representation column entries give information how each particle transform under the product gauge group.
For example, the first row means the quark Q transforms in fundamental representation 3 of SUð3Þ, 2 of SUð2Þ and
has charge 1

6
under Uð1Þ. In addition, 3̄ means antifundamental representation.

Field Multiplicity Representation SM Particle

Q 3 ð3; 2Þ1
6

Left-handed quark doublet

UC 3 ð3̄; 1Þ−2
3

Right-handed up-type anti-quark

DC 3 ð3̄; 1Þ1
3

Right-handed down-type anti-quark

L 3 ð1; 2Þ−1
2

Left-handed lepton doublet

EC 3 ð1; 1Þ1 Right-handed anti-lepton doublet
Hu 1 ð1; 2Þ1

2
Higgs

Hd 1 ð1; 2Þ−1
2

Higgs

TABLE II. The characters used for constructing the plethystic
exponential of the MSSM.

SUð3Þ fundamental χSUð3Þ
3 ðzaÞ ¼ z1 þ z2

z1
þ 1

z2
SUð3Þ antifundamental χSUð3Þ

3̄
ðzaÞ ¼ 1

z1
þ z1

z2
þ z2

SUð2Þ (anti) fundamental χSUð2Þ
2̄

ðyÞ ¼ χSUð2Þ
2 ðyÞ ¼ yþ 1

y

Uð1Þ χðxÞUð1Þ
Q ðxÞ ¼ xQ

TABLE III. The Haar measure of the MSSM gauge groups. Note here that the Haar measures are different from
those of [8,25]. The ones presented here only use positive roots and do not need Weyl group renormalization.

Group Haar Measure

SUð3Þ R
SUð3Þ dμSUð3Þ ¼ 1

ð2πiÞ2
H
jz1j¼1

dz1
z1

H
jz2j¼1

dz2
z2
ð1 − z1z2Þð1 − z2

1

z2
Þð1 − z2

2

z1
Þ

SUð2Þ R
SUð2Þ dμSUð2Þ ¼ 1

2πi

H
jyj¼1

dy
y ð1 − y2Þ

Uð1Þ R
Uð1Þ dμUð1Þ ¼ 1

2πi

H
jxj¼1

dx
x
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PROPOSITION 4.1: The Hilbert series for the VMS of the MSSM (with zero superpotential) is given by

PI ¼ 1

ð2πiÞ4
I
jxj¼1

I
jyj¼1

I
jz1j¼1

I
jz2j¼1

PEðx; y; z1; z2; Qi; Li; ui; di; ei; Hu;HdÞ; ð4:4Þ

where i ¼ 1, 2, 3 and PEðx; y; z1; z2; Qi; Li; ui; di; ei; Hu;HdÞ is given by

PEðx;y;z1; z2;Qi;Li;ui;di; ei;Hu;HdÞ ¼−x9y13ðy2 − 1Þz101 ðz21 − z2Þz102 ðz1z2 − 1Þðz1 − z22Þ
× ½ðy−Hu

ffiffiffi
x

p ÞðHdy−
ffiffiffi
x

p Þð ffiffiffi
x

p
y−HdÞðHu

ffiffiffi
x

p
y− 1Þðxe1− 1Þðxe2− 1Þ

× ðxe3− 1Þð ffiffiffi
x

p
y−L1ÞðyL1−

ffiffiffi
x

p Þð ffiffiffi
x

p
y−L2ÞðyL2−

ffiffiffi
x

p Þð ffiffiffi
x

p
y−L3ÞðyL3−

ffiffiffi
x

p Þ
× ð ffiffiffi

x3
p

d1− z1Þð
ffiffiffi
x3

p
d2 − z1Þð

ffiffiffi
x3

p
d3− z1Þðx2=3z1−u1Þðx2=3z1 −u2Þðx2=3z1−u3Þ

× ðy− ffiffiffi
x6

p
Q1z1Þð

ffiffiffi
x6

p
yQ1z1 − 1Þðy− ffiffiffi

x6
p

Q2z1Þð
ffiffiffi
x6

p
yQ2z1− 1Þðy− ffiffiffi

x6
p

Q3z1Þ
× ð ffiffiffi

x6
p

yQ3z1− 1Þð ffiffiffi
x6

p
yQ1 − z2Þð

ffiffiffi
x6

p
yQ2− z2Þð

ffiffiffi
x6

p
yQ3 − z2Þð

ffiffiffi
x3

p
d1z1 − z2Þ

× ð ffiffiffi
x3

p
d2z1− z2Þð

ffiffiffi
x3

p
d3z1− z2Þðx2=3z2−u1z1Þðx2=3z2−u2z1Þðx2=3z2−u3z1Þ

× ðyz2 −
ffiffiffi
x6

p
Q1Þðyz2−

ffiffiffi
x6

p
Q2Þðyz2 −

ffiffiffi
x6

p
Q3Þð

ffiffiffi
x3

p
d1z2 − 1Þð ffiffiffi

x3
p

d2z2 − 1Þ
× ð ffiffiffi

x3
p

d3z2− 1Þðyz1 −
ffiffiffi
x6

p
Q1z2Þð

ffiffiffi
x6

p
yQ1z2− z1Þðyz1−

ffiffiffi
x6

p
Q2z2Þð

ffiffiffi
x6

p
yQ2z2 − z1Þ

× ðyz1 −
ffiffiffi
x6

p
Q3z2Þð

ffiffiffi
x6

p
yQ3z2− z1Þðx2=3 −u1z2Þðx2=3−u2z2Þðx2=3−u3z2Þ�−1;

ð4:5Þ

where the fugacities ti ∈ fQi; Li; ui; di; ei; Hu;Hdg are
taken to be jtij < 1 due to the fact that they count the
Uð1Þ charges inside the maximal torus of the global
symmetries.
As can be seen, even though we have reduced the

problem of computing the Hilbert series to an ordinary
contour integral with the help of Molien-Weyl formula, the
result is still a formidable integral, involving an integrand
which is a rational function with 8 factors in the numerator
and 49 factors in the denominator. The remainder of this
paper is concerned with simplifying this integral expli-
citly and obtaining geometrical information therefrom.
Moreover, we remark that there are fractional powers in
the integration variables which might upset the reader: after
all, the final answer is a Hilbert series, which must be a
rational function. We will show in the ensuing section that

all fractional powers actually cancel or disappear in the
course of the integration, as is required.

V. OBTAINING THE MSSM HILBERT SERIES

In the previous section, we constructed the contour
integral to obtain Hilbert series of the MSSM in (4.5),
which gives the generating function that counts the GIOs.
As we can see, there are 4 variables ðx; y; z1; z2Þ that need
to be integrated over and the pole structure of the
integrand is quite complicated. Therefore, it would be
illuminating to record the detailed steps in performing
the integration and we shall see that the subtleties of the
pole positions become important during the integration
procedure. The full codes and results can be accessed
form [51].

TABLE IV. The characters of the MSSM particles under the Standard Model gauge group SUð3Þ × SUð2ÞL × Uð1ÞY .
Particle Label Character under SUð3Þ × SUð2ÞL × Uð1ÞY
Left-handed quarks Qi x

1
6ðyþ 1

yÞðz1 þ 1
z2
þ z2

z1
Þ

Right-handed up-type anti-quarks ui x−2=3ðz1z2 þ z2 þ 1
z1
Þ

Right-handed down-type anti-quark di x1=3ðz1z2 þ z2 þ 1
z1
Þ

Left-handed lepton Li x−1=2ðyþ 1
yÞ

Right-handed anti-lepton ei x
Up-type Higgs Hu x1=2ðyþ 1

yÞ
Down-type Higgs Hd x−1=2ðyþ 1

yÞ
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A. Finding poles and residues

The integration procedure can be carried out as follows.
The intermediate results are too complicated to be pre-
sented in the text, or even in an appendix, but is available at
the following link to the repository.

1. The y integral

We simply integrate over the variable y over contour
jyj ¼ 1. More specifically, according to the residue

theorem, we calculate the residue for poles for y inside
the contour prescribed. The poles for y are functions of
other complex variables with variable x having fractional
power due to 1=6Uð1Þ charge of left-handed quarks. These
fractional powers will become a main reason for the
complexity of later parts of the integral. With the only
requirement of fugacities with modulus smaller than 1, the
positions of these poles are completely determined, i.e.,
whether inside or outside the unit circle prescribed for
variable y. In fact, there are only 14 such poles for y:
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For each of these 14 poles, the residue can be readily
obtained. Normally, we would sum these 14 separate
residues, put them under the same denominator and cancel
any common factors between the initial denominator and
numerator. However, this direct approach is already beyond
computer package such as Mathematica. To get a taste of

the complexities of the rational functions under discussion,
let us present 2 of the 14 residues, all of which are
complicated rational functions of similar complexity
(again, the reader is referred to the above url for the full
expressions as well as the Mathematica code). The residue
for pole at y ¼ Hd=
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and the residue for pole at y ¼ L1=
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We can see from the above expressions that the denom-
inators have over 40 terms and the current built-in functions
from the likes of Mathematica have difficulties in finding
the common denominator and summing over the numer-
ators even for these 2 terms, let along summing over all 14.
The reason is that with 40 terms, when brought to the same
denominator and expanded, we are confronted with 240 ∼
1012 monomial terms; factoring a polynomial with this
many terms is clearly hopeless. It is remarkable that we
could forge ahead and obtain a final answer, as we shall see.

2. The z1 integral

To circumvent the issue of summing all 14 residues from
the y integral, we perform the contour integral separately
for each of the 14 expressions. Specifically, these 14
rational expressions give poles whose positions are not

fixed by the condition in (4.5) with respect to the contour
jz1j ¼ 1, i.e., we do not know whether some on the poles
are inside or outside the contour. This simply means that the
contour integral cannot be performed with the data avail-
able to us. However, the plethystic integral for the MSSM
should lead to a definite result and this indeterminacy of
pole positions of the intermediate steps should be a result of
the redundancy of doing the 14 integrals separately and not
combining them into one rational expression. If we could
combine to previous 14 expressions into a single rational
function with common factors canceled between top and
bottom, the terms that give indeterminate pole positions in
the denominators should disappear.
Therefore, we can simply make a choice for the

fugacities. The ultimate answer cannot depend on this
choice by construction. We take the following choice:
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At first sight, this choice of variable seems random and
arbitrary. Indeed, this choice is made randomly by Math-
ematica subject to the constraints that all the fugacities have
modulus smaller than 1. It is reasonable to argue that there
are infinitely many such choices and one could possibly
obtain some other final results with other choice of
fugacities. However, the final answer from this choice
of fugacities shows that the denominator is in Euler form ofQð1 − tnÞan , the coefficients of numerators are all integer
and the Taylor expansion of the Hilbert series that is a
rational function, gives positive integer coefficients. It is
reassuring to see all the checks for a legitimate Hilbert
series go through and it also would be satisfying to see that
different choices of fugacities can lead to the same result to
appear in any future works.
With this choice of variables at hand, we can fully

determine whether a pole is inside or outside the contour,
thus we know whether the pole should be included when
residues are collected. For example, we have a pole for the
first of the 14 expression as z1 ¼ L2

Q1x2=3
. If we only use the

condition from Eq. (4.5), we will not be able to decide if
this should be included in the residue or not. However, with
the choice from (5.4), it is clear that this should be
discarded since it is outside the contour of jz1j ¼ 1.
Using this choice of fugacities, we arrive at a total of

198 poles that are inside the contour for collecting residues.
We obtain the integral for each individual rational functions
usingMathematica built-in functions. After performing the
198 integrals, we clean up the results to reduce the amount

of work for later integrals. This is done by collecting the
terms sharing the same denominator and combining them
into a single term. After these procedures, we arrive at a
total of 114 terms (again, available at the aforementioned
URL) that need to be integrated separately.

3. The z2 integral

Using the results from the previous step, we proceed to
perform these 114 integrals over the variable z2. Using the
choice of fugacities (5.4), the number of poles found to be
located inside the contour jz2j ¼ 1 is 1622. This amount
of computation requires under 1 hour to complete on a
laptop/PC with 4 cores using Mathematica built-in func-
tions. However, there are large amount of redundancies
within this computation. It can be seen that there are terms
that simply cancel when we sum all the terms and the
number of terms is reduced to 838. In addition, we can use
the same method in the previous paragraph to collect
together terms that share the same denominator. The
number of terms is now reduced to 574 to enter our final
integration over x, which is quite reasonable.

4. The x integral

First, the number of poles that are inside contour jxj ¼ 1
with the fugacity choice (5.4) is 3106. We proceed
normally with the integral as before. To clean up the
redundancies within these results, we sum up all the terms
so that some of the terms will just cancel as they are simply
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negative of each other. In addition, terms sharing common
denominator are collected. Finally, we obtain a list of 1538
terms. One important aspect of these results comes from the
fact that even when we started with a plethystic integral
with fractional power 1=6 in variable x, we still end up with
all terms having integer exponents and coefficients.
However, the raw results of 1538 terms contain terms
with fractional exponents in some variables. Remarkably,

these fractional exponents combine into integer ones
when summed up. Of course, the final answer for the
Hilbert series is a rational function and cannot contain
any fractional powers. These extraordinary cancellations
give us confidence that we are indeed doing the right
thing.
To get a flavor of these terms, we present two of these

terms which combine to give integer exponents, viz.,
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As one can see, both expressions are sprinkled with troubling terms involving
ffiffiffiffi
ui

p
and u3=2i . Summing the expression (5.5)

and (5.6) gives the common denominator to be
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and all fractional powers disappear. It is indeed reassuring that of the 3106 terms, any term with a fractional power
therein has exactly 1 partner which cancels it upon summation. This is guaranteed by representation theory (characters) in
the Molien-Weyl formula. The numerator is expanded to check for integer coefficients and exponents (note that
this expansion gives us over 4 millions terms). The integer criterion indeed checks out for this example and the first few
terms are
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B. Unrefining the Hilbert series

After the previous section, we now have a list of 1538 rational expressions that should be combined into a single rational
function, which is the Hilbert series for the MSSM. However, due to the complexity of each rational expression, it is
impossible to combine even two terms under a common denominator using common computer packages such as
Mathematica or Mccaulay2. To show the complexity of each term, we present an example below
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dQ
2
1 − u3ÞðHuQ1u1 − 1ÞðL1 −Q1u1ÞðL2 −Q1u1Þ

× ðL3 −Q1u1ÞðHdQ1 − d1u1ÞðHdQ1 − d2u1ÞðHdQ1 − d3u1Þðe1HdQ1u1 − 1Þ
× ðe2HdQ1u1 − 1Þðe3HdQ1u1 − 1Þ�−1

L15
1 Q14

1 u91½ðL1 − L2ÞðL1 − L3ÞðQ1 −Q2Þ2ðQ1 −Q3Þ2ðu1 − u2Þ2ðu1 − u3Þ2
× ðL1 −HdÞðHuL1 − 1ÞðL1Q3

1 − 1ÞðL1Q2
1Q2 − 1ÞðL1Q2

1Q3 − 1Þðd1L1Q1 − 1Þ2
× ðd2L1Q1 − 1Þ2ðd3L1Q1 − 1Þ2ðHd −Q1u1ÞðHuQ1u1 − 1ÞðL2

1Q1Q2 − u1Þ
× ðL2

1Q1Q3 − u1ÞðL1 −Q1u1ÞðL2 −Q1u1ÞðL3 −Q1u1ÞðL1 −Q2u1Þ2ðL1 −Q3u1Þ2
× ðL2

1Q
2
1 − u2ÞðL2

1Q
2
1 − u3ÞðL1Q1 − d1u1ÞðL1Q1 − d2u1ÞðL1Q1 − d3u1Þ

× ðe1L1Q1u1 − 1Þðe2L1Q1u1 − 1Þðe3L1Q1u1 − 1Þ�−1: ð5:9Þ

As we can see, a typical rational expression has roughly 33
factors in the denominator, thus combining them implies
finding the lowest common multiple between each denom-
inator with roughly 30 factors. That is, we need to compute
resultants between all pairs from 1538 multivariate poly-
nomials each with about 230 ≃ 109 monomial terms,

rendering the process impractical on an average PC/
Laptop. Nevertheless, each of the 1538 rational functions,
as seen from the above expression, is not too complicated.
Therefore, we have
PROPOSITION 5.1: The multivariate, fully refined

Hilbert series for the MSSM (without superpotential) is a
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sum of 1538 rational functions in 17 variables, viz., Qi, Li,
ui, di, ei for i ¼ 1, 2, 3 as well as Hu and Hd. The full
expressions are given in this link.
It is difficult to extract geometrical information directly

from this full Hilbert series. Happily, we can “unrefine,”
i.e., force the Hilbert series to be univariate by setting all
18 variables to a single one, say t, but to different powers.
That is, the unrefinement is simply a substitution of
variables by expression tα, where t is also a fugacity
and α is the weight for particular variable that is being
substituted. This weight normally corresponds to some
particular Uð1Þ charges and some particular choice should
render the common denominator nonzero when unrefining
(cf. [13]). This particular choice of weight we make is as
follows:
With this choice of weights, we are able to greatly

simplify the expression in Proposition 5.1 to a single
rational function with denominator being in Euler product
form and numerator having integer coefficients and expo-
nents, as we shall now see. The astute reader might argue
that this choice of weights seems arbitrary and that we can
as well make other choices with more straightforward
physical implications. In fact, we have made weight
choices that represent baryron numbers, lepton numbers
etc and find that they all give 0 in the denominator, thus
disqualifying themselves as legitimate weight choices. This
particular choice is by far the most reasonable weights that
do not give 0 in the denominator in the rational function of
Hilbert series.

C. Simplifying the unrefined Hilbert series

After the unrefinement with weights in Table V, the
Hilbert series is simplified into a rational function, with a
polynomial of degree 816,890 as the numerator and a
denominator with 994 factors of total degree 824,397.
Note that the factors are already in Euler form and should
correspond to the GIOs which parametrize the VMS of the
MSSM. Even this rational function looks unmanageable at
first sight, we can still extract useful information out of it.
Importantly, as a preliminary step, we need to perform a
Taylor series in t for the Hilbert series in order to know
how many independent generators there are in each
degree. In terms of the supersymmetric gauge theory, this
counts the number of independent 1=2-BPS single-trace
operators at each Uð1Þ charge [12,13]. Doing so we
obtain:

HðtÞ ¼ 1þ 2t2 þ 4t3 þ 6t4 þ 10t5 þ 16t6 þ 20t7 þ 28t8

þ 38t9 þ 48t10 þ 64t11 þ 84t12 þ 104t13 þ 134t14

þ 168t15 þ 202t16 þ 250t17 þ 304t18 þ 360t19

þ 436t20 þOðt21Þ: ð5:10Þ

It is very assuring that all coefficients are non-negative, as
it is a requirement in the series development of the Hilbert
series (since it counts the number of independent mono-
mials in the polynomial ring corresponding to the variety).
This requires highly nontrivial conspiracy between the
numerator and denominator since each contains many
terms with explicitly negative coefficients. Furthermore,
the leading term is 1, as is also required. The coefficient
list f1;0;2;4;6;10;16;20;28;38;48;64;84;104;134;168;
202;250;304;360;436…g, unfortunately does not resem-
ble anything known in the literature. It would be interest-
ing indeed if this appeared in some combinatorial context.
It is important that we cover the details for simplifying

the Hilbert seriesHðtÞ ¼ PðtÞ=QðtÞ to a usable form. Now,
since after adding up the various partial fractions from the
Molien-Weyl integral, the numerator PðtÞ is a polynomial
of degree 816; 890 ¼ 2 · 5 · 81; 689 of no particularly
apparent structure and the denominatorQðtÞ, one of degree
824; 397 ¼ 3 · 7 · 37 · 1061, it is already beyond conven-
tional packages such as Mathematica to simplify it in any
way. At least the denominator is already in Euler form4

consisting of 991 unique factors, ranging from 2 at degree 1
to 1 at degree 1664 in our weighting.5

We can present the full expression for the denominator in
a compact form: by the array wa1

1 ; wa2
2 ;… we mean the

polynomial ð1 − tw1Þa1 · ð1 − tw2Þa2…. In this notation, the
denominator QðtÞ is given by

TABLE V. The weights for unrefining the Hilbert series of MSSM.

d1 d2 d3 e1 e2 e3 Hd Hu L1 L2 L3 Q1 Q2 Q3 u1 u2 u3
t512 t256 t128 t512 t512 t512 t512 t512 t256 t128 t64 t32 t16 t8 t4 t2 t

4As a technical aside, we have to ensure that there are no terms
like ð1þ twÞ in the product in the denominator since the Euler
form must have all terms strictly with the minus sign. We can
guarantee this by multiplying, each time a term such as ð1þ twÞ
appear, numerator and denominator by ð1 − twÞ so as to con-
tribute a legitimate ð1 − t2wÞ factor in the denominator. This
actually happens only thrice: ð1þ t8Þð1þ t16Þð1þ t24Þ in our
case.

5With this 991 we are in fact familiar. There are 991
generators of gauge invariants to the MSSM [6,7] However,
by more recent recalculations, this number is slightly higher
than the correct value [10]. But we shall see that after more
simplification, the number of factors in the denominator
reduces to 445. Thus, at this stage, it seems to be a curious
coincidence.
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240 282 358 376 386 392 400 4082 413 417 422 423 424 427 429 4322 433 434 435 437

438 441 442 443 444 445 448 461 462 463 4642 465 466 469 470 471 4722 473 474 475

4762 4782 4792 480 484 485 486 4882 489 490 492 494 4952 496 500 503 5062 514 520 528

5312 5333 5342 5372 5382 5392 5403 5413 5422 545 5463 5473 5483 5492 5502 5523 5532 5543

5553 5563 5572 5583 559 5602 5612 5623 5632 5643 5653 5663 567 5683 569 5702 5722 573

576 578 5793 580 5812 5822 5842 5853 5863 587 5883 590 591 5923 5933 5943 595 5963 598 599

6003 601 6023 6043 605 606 607 6082 6093 6103 611 6123 614 615 6163 620 623 6242 625 628

631 6322 633 637 642 6433 644 6452 6462 6482 6493 6503 651 654 655 6563 6573 6583 659 662

663 664 668 669 670 671 6722 6733 6743 675 6763 678 679 684 686 687 688 696 700 702 703

7043 710 718 720 721 7223 723 7243 726 727 7283 729 7303 7323 7362 737 738 740 7443 745

7463 747 7483 749 750 7523 753 758 7603 766 767 768 769 770 7713 772 7733 7742 776 7773

7783 7803 781 782 7843 7853 7863 7883 790 7923 794 796 797 798 799 8002 8013 8023 803 8043

805 806 807 8083 810 811 812 813 814 815 816 819 821 822 824 828 830 831 8323 848 856 864

872 880 888 892 894 895 8963 903 912 920 934 936 959 963 965 974 977 9783 9803 982 9843

985 986 988 991 992 994 995 996 997 999 10003 1001 1002 1004 1007 1008 1011 1012 1013 1014

1015 10163 1020 1022 1023 10242 10262 10273 10282 10293 10303 10313 10322 10333 10343 1035

10363 1037 1038 1039 10403 10413 10423 1043 10444 1045 1046 1047 10483 1050 1051 1052 1054

1055 10562 10573 10583 1059 10604 1061 1062 1063 10643 1068 1070 1071 10723 1076 1078 1079

1083 1084 1086 1087 10883 1090 1098 1100 1101 1102 1103 1114 1120 1124 1126 1127 1136 1140

1142 1143 1144 1148 1150 1151 11523 1154 1155 1162 1164 1166 1167 1178 1216 1241 1242 1244

1248 1252 1254 1257 1258 1260 1264 1268 1270 1272 1276 1278 1279 12803 1282 1290 1292 1293

1294 1295 13043 1306 13203 1472 1508 15123 1514 1515 1517 1524 1526 1527 15283 1530 1531

1533 1536 1547 1548 1549 1550 15523 1555 1557 1558 1563 1565 1566 1571 1573 1574 1578 1579

1581 1582 1587 1589 1590 1664

We now need to extract as much of the list of factors in
QðtÞ from the numerator PðtÞ. First, we know this is going
to be possible because we can check that Pð1Þ ¼ 0 (even on
Mathematica this is still doable as this is simply the
sum over all coefficients) so that it must divide (1 − t) at
least once (and as we will see, many times). To efficiently
perform factorization, we will use a so-called extended
synthetic division algorithm [52] for monovariate poly-
nomials. Luckily, there is an available Python/Sage
implementation(c.f. Appendix B for a detailed discussion
of this algorithm) of whose liberal use we will take
advantage.

Our strategy is to first go over the 991 factors (with
multiplicity this amounts to 1477 factors) of the form 1 − ta

and try synthetic division into the numerator, this will
cancel any such Euler factors therefrom. Doing so (and
even with Python, it still takes on the order of 3 days on a
regular laptop due to the large degree of the dividend), we
find that the numerator now reduces to a polynomial P1ðtÞ,
of degree 816; 890 − 259; 498 ¼ 557, 392, (significantly
reduced from the 816,890 of PðtÞ), likewise, the denom-
inator reduces toQ1ðtÞmwith only 445 unique factors (and
with multiplicity, 684 factors), in the shorthand notation for
the Euler form, Q1ðtÞ is
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240 282 358 376 386 392 400 4082 413 417 422 423 424 427 429 4322 433 434 435 437

438 441 442 443 444 445 448 461 462 463 4642 465 466 469 470 471 4722 473 474 475

4762 4782 4792 480 484 485 486 4882 489 490 492 494 4952 496 500 503 5062 514 520 528

5312 5333 5342 5372 5382 5392 5403 5413 5422 545 5463 5473 5483 5492 5502 5523 5532 5543 5553 5563

5572 5583 559 5602 5612 5623 5632 5643 5653 5663 567 5683 569 5702 5722 573 576 578 5793 580

5812 5822 5842 5853 5863 587 5883 590 591 5923 5933 5943 595 5963 598 599 6003 601 6023 6043

605 606 607 6082 6093 6103 611 6123 614 615 6163 620 623 6242 625 628 631 6322 633 637

642 6433 644 6452 6462 6482 6493 6503 651 654 655 6563 6573 6583 659 662 663 664 668 669

670 671 6722 6733 6743 675 6763 678 679 684 686 687 688 696 700 702 703 7043 710 718

720 721 7223 723 7243 726 727 7283 729 7303 7323 7362 737 738 740 7443 745 7463 747 7483

749 750 7523 753 758 7603 766 767 768 769 770 7713 772 7733 7742 776 7773 7783 7803 781

782 7843 7853 7863 7883 790 7923 794 796 797 798 799 8002 8013 8023 803 8043 805 806 807

8083 810 811 812 813 814 815 816 819 821 822 824 828 830 831 8323 848 856 864 872

880 888 892 894 895 8963 903 912 920 934 936 959 963 965 974 977 9783 9803 982 9843

985 986 988 991 992 994 995 996 997 999 10003 1001 1002 1004 1007 1008 1011 1012 1013 1014

1015 10163 1020 1022 1023 10242102621027310282102931030310313103221033310343 1035 103631037 1038 1039

104031041310423104310444 1045 1046 1047 10483 1050 1051 1052 1054 1055 105621057310583105910604 1061

1062 1063 106431068 1070 1071 10723 1076 1078 1079 1083 1084 1086 1087 10883 1090 1098 1100 1101 1102

1103 1114 1120 1124 1126 1127 1136 1140 1142 1143 1144 1148 1150 1151 11523 1154 1155 1162 1164 1166

1167 1178 1216 1241 1242 1244 1248 1252 1254 1257 1258 1260 1264 1268 1270 1272 1276 1278 1279 12803

1282 1290 1292 1293 1294 1295 13043 1306 13203 1472 1508 15123 1514 1515 1517 1524 1526 152715283 1530

1531 1533 1536 1547 1548 1549 1550 15523 1555 1557 1558 1563 1565 1566 1571 1573 1574 1578 1579 1581

1582 1587 1589 1590 1664

ð5:11Þ

It is also worthwhile to show a few terms of the numerator after this simplification

1þ 644tþ 207692t2 þ 44723872t3 þ 7234295277t4 þ 937600779818t5 þ 101422033650142t6

þ 9418304332530212t7 þ 766466167260384451t8 þ 55530492150394701928t9

þ 3626455298524160306256t10 þ 215630005089109137483320t11 þ 11771050533831821348659441t12

þ � � � þ 102352219991766t556741 þ 944789516589t556742 þ 7278808875t556743 þ 44930916t556744

þ 208335t556745 þ 645t556746 þ t556747: ð5:12Þ

Using the simplified set of numerator and denominator, we
should proceed to extract more information such as
dimension and degree of the variety. To do this, let us
recall that there are two forms of Hilbert series in Eq. (2.2).
However, our HS has a different form in the denominator
due to our specific choice of weights. We can still obtain the
dimension using the data at our disposal. The process is as
follows
(1) Collect all the (1 − t) factors from the numerator,

which in our case, the multiplicity is 644.

(2) Count the number of Euler factors of the form
ð1 − tmiÞ with multiplicity, which is 684. The di-
mension is simply 688 − 644 ¼ 40.

(3) To get the degree, we put the HS into the form

HS ¼ ð1 − tÞ644P1ðtÞ
Q1ðtÞ

;

whereQðtÞ is in Euler form and P1ð1Þ ≠ 0. Now the
degree is P1ð1Þ with factors of 2 being pulled out
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and ignored as they come from our choice of weights.
This is a rather large number about −2.24 × 101633

and we present it in Sec. I.
Summarizing what we have obtained so far, we start

with the plethystic integral proposition 4.1 and perform
the contour integral stepwise by finding residues of the
integrand. Due to the complexities of combining the
intermediate results under the common denominator, we
perform the ensuing integrations separately as discussed
after Eq. (5.3). This brings extra redundancies during the
integration as it is not possible to determine whether some
poles should be included in the integration since we do not
know if they are inside the contour or not. To eliminate
these redundancies, we make some choice of fugacities in
Eq. (5.4) and this choice is justified by the final result
which has Euler form in its denominator and is free from
fractional powers and coefficients. After obtaining the final
unrefined results, we are still presented with the problem of
extracting useful geometric information out of this complex
expression. Unrefining the expression as suggested in
Table V is thus necessary. Carrying out this procedure,
we still have to use the extended synthetic division
algorithm in Appendix B to further simplify the rational
function. Finally, the dimension and degree are obtained by
transforming the HS into the two forms of Hilbert series in
theorem 2.1 and theorem 2.2. Finally, we obtain the
dimension of the Hilbert series to be 40 and the degree
as stated in Sec. I. With such results, we summarize them
into the following theorem
Theorem 5.1: The Hilbert series for MSSM with gauge

group SUð3Þ × SUð2Þ × Uð1Þ and particle content in
Table I is a rational function with its numerator being a
polynomial of degree 557,392 and its denominator being in
Euler form with structure shown in Eq. (5.11). The detailed
results for Hilbert series can be found in this link.
Particularly, the dimension obtained from the HS is 40
and the degree is shown in Sec. I, where the dimension is
independent of choice of weights whereas the degree
depends on the particular choices.
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APPENDIX A: ILLUSTRATIVE EXAMPLES
FOR THE PLETHYSTIC PROGRAM

The first part of this Appendix reviews the application of
plethystics in converting between single- and multitrace
partition functions that count BPS operators.

1. Single-Trace at N → ∞
To familiarize ourselves with the definitions in

Eq. (2.11), we take C3 for illustration. This comes from
the AdS=CFT correspondence where the CY threefold is
simply C3 with associating Sasaki-Einstein manifold being
S5. There is no baryonic charge since the third homology of
S5 is trivial and the isometry group is SUð4Þ of rank 3,
meaning CY manifold is toric and has 3 Uð1Þ charges. So
we can define 3 variables t1, t2, t3 for measuring charges in
their powers. The N ¼ 4 UðNÞ gauge theory in N ¼ 1
language has three adjoint chiral multiplets x, y and z. Since
wewant to count GIOs, we therefore need to impose F-term
relations from superpotential W ¼ Trðx½y; z�Þ. By solving
these constraints, we have the relation ½x; y� ¼ ½y; z� ¼
½z; x� ¼ 0. Therefore, a generic single-trace GIO in the
chiral ring will be of the form TrðxiyjzkÞ. Then we can
assign t1 to count the number of field x, t2 the number of y
and t3, the number of z. Putting together, we have the
generating function to be

fðt1; t2; t3;C3Þ ¼
X∞
i¼0

X∞
j¼0

X∞
k¼0

ti1t
j
2t

k
3

¼ 1

ð1 − t1Þð1 − t2Þð1 − t3Þ
: ðA1Þ

This result becomes exact when we take the limit N → ∞.
In the next paragraph, we direct out attention to the relation
between single- and multitrace generating function via
plethystic exponential.

2. Multi-Trace at N → ∞
For the case of a single D3-brane on C3, the adjoint

fields x, y and z are simple complex numbers and thus
any product of these fields are multitrace operators.
Therefore, we only have 4 single trace operators: the
identity, x, y and z. So the generating function for
single-trace becomes

f1ðt1; t2; t3Þ ¼ 1þ t1 þ t2 þ t3:

Now we look at the single-trace generating function for
N → ∞, which is Eq. (A1). Each of such operators is
represented by a monomial ti1t

j
2t

k
3, which can be interpreted

as a multitrace operator for just N ¼ 1 or one D3-brane.
Therefore, this means g1, the generating function for multi-
trace operators on a single D3-brane is the same as f∞, the
generating function for single-trace operators for infinite
D3 branes: g1 ¼ f∞. Now we find the relation between f1
and g1:
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g1ðt1; t2; t3Þ ¼
1

ð1− t1Þð1− t2Þð1− t3Þ
¼ exp½− logð1− t1Þ− logð1− t2Þ− logð1− t3Þ�

¼ exp

�X∞
r¼1

tr1 þ tr2 þ tr3
r

�

¼ exp
�X∞

r¼1

f1ðtr1; tr2; tr3Þ− 1

r

�
: ðA2Þ

We can see from the above that the function g1 is the
plethystic exponential of f1 and this relation in fact
generalize to any value of N.
After this short review on plethystic exponential, we see

that it is a combinatoric tool for generating the Hilbert
series or simply a generating function of all symmetric
combination of its argument. It is interesting to see that the
inverse of the exponential also contains certain geometric
information as we shall shortly cover. The definition of
plethystic logarithm is as follows:

fðtÞ ¼ PE−1ðgðtÞÞ ¼
X∞
k¼1

μðkÞ
k

logðgðtkÞÞ; ðA3Þ

where μðkÞ is the Möbius function

μðkÞ ¼

8>><
>>:

0 k has one or more repeated prime factors;

1 k ¼ 1;

ð−1Þn k is a product of n distinct primes:

ðA4Þ
To illustrate the reverse of the plethystic exponential, i.e
the plethystic logarithm, we use two examples: (1) the
simplest non-Abelian subgroup of SUð3Þ Valentiner group,
Δð3 · 32Þ and (2) the simple Abelian Z3, to illustrate how
we can obtain the information on the generators and
syzygies thereof for C3=Δð3 · 32Þ and C3=Z3 as we as
the determination of whether these two orbifolds are
complete intersections. Consider the simplest non-
Abelian discrete subgroup of SUð3Þ, i.e., the Valentiner
group Δð3 · 32Þ, defined as

Δð27Þ≔

*0
B@ω3 0 0

0 1 0

0 0 ω−1
3

1
CA;

0
B@1 0 0

0 ω3 0

0 0 ω−1
3

1
CA;

0
B@0 1 0

0 0 1

1 0 0

1
CA
+
:

ðA5Þ
The Molien series is given by

Mðt;Δð27ÞÞ ¼ −1þ t3 − t6

ð−1þ t3Þ3
¼ 1þ 2t3 þ 4t6 þ 7t9 þ 11t12 þ 16t15

þ 22t18 þ � � �

First we need to construct its invariant generators and
syzygies using a technique from Reynolds and Gröbner
basis. Then we can check these results against those from
plethystic logarithm.
The defining equations (syzygies), are constrained

by the order of the group Δð3 · 32Þ6 and we can construct
this finite set of invariants. There is an averaging technique
due to O. Reynolds (c.f. [53]. Given some polynomial
FðxÞ, one can construct the Reynolds operator

RG½FðxÞ� ≔
1

jgj
X
g∈G

Fðg∘xÞ:

Then the polynomial RG½FðxÞ� is invariant under G by
construction. Therefore, we go up to degree 27 to find the
list of invariants for group Δð3 · 32Þ. More specifically,
there are 174 invariants of degrees 0; 3; 6;…; 24; 27. With
Gröbner basis, we find that there are only 4 nontrivial
generators for there 174 polynomials:

fm ¼ 2xyz; n ¼ x3 þ y3 þ z3; p ¼ x6 þ y6 þ z6;

q ¼ x3y6 þ x6z3 þ y3z6g:

We also find a single relation in C½m; n; p; q�:

8m6 þm3ð−48n3 þ 72npþ 72qÞ
þ 81ððn2 − pÞ3 − 4nðn2 − pÞqþ 8q2Þ ¼ 0: ðA6Þ

So we find that C3=Δð3 · 32Þ is a complete intersection
given by a single hypersurface in C4.
Let us turn to plethystic logarithm, we find it for

Δð3 · 32Þ to be

f1 ¼ PE−1
�
−1þ t3 − t6

ð−1þ t3Þ3
�

¼ 2t3 þ t6 þ t9 − t18:

We see that the RHS terminates and it can be interpreted as
follows: there are 2 degree 3 invariants, 1 degree 6 and
1 degree 9 invariant, these 4 invariants obey a single
relation of total degree 18. Comparing this with Eq. (A6),
we indeed see that this is the defining relation for
C3=Δð3 · 32Þ. In fact, the finiteness of plethystic logarithm
indicates that the underlying variety is a complete inter-
section, i.e., the number of defining equation is equal to the
codimension of the variety in the embedding space. The
story for noncomplete intersection has more content to it.
Now let us look at the Abelian orbifold C3=Z3, which is
toric and also dP0 as a cone over P2. For the group action
ðx; y; zÞ → ω3ðx; y; zÞ, we can construct the Molien series
to be

6Specifically, this is a theorem due to Nöther: The polynomial
ring of invariants is finitely generated and the degree of the
generators is bounded by the order of the group jGj.
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f∞ðtÞ ¼ Mðt;Z3Þ ¼
1þ 7t3 þ t6

ð1 − t3Þ3 ; ðA7Þ

where we can get the plethystic logarithm to be

f1ðtÞ ¼ PE−1½f∞ðtÞ�
¼ 10t3 − 27t6 þ 105t9 − 540t12 þ 3024t15 þOðt18Þ:

ðA8Þ

This agrees with known facts that the equation for this
orbifold is 27 quadrics in C10, that is 10 degree three
invariants satisfying 27 relations of degree 6. However,
these information are only included in the first two terms in
the series and the rest of the terms are a reflection of the fact
that we no longer have a complete intersection. Therefore,
the plethystic logarithm of the Hilbert series is no longer a
polynomial and continues ad infinitum. In this final para-
graph, let us explain why the plethystic logarithms for
noncomplete intersections are infinite. First, the Poincaré
series is always a rational function when simplified and
collected. Particularly, the denominator of the series is of
the form of products of ð1 − tkÞ with possible repeats of k
while the numerator being some complicated polynomial.
We call this the Euler form. When taking plethystic
logarithm, we are essentially trying to solve the following
problem: find integers bn such that

fðtÞ ¼ 1Q∞
n¼1ð1 − tnÞbn ;

where fðtÞ is a rational function in Euler form. Note that
PE−1½fðtÞ� ¼ P∞

n¼1 bnt
n does not need to have all positive

bn. Since the denominator is already in form of products of
ð1 − tnÞ, positive values of n and bn can be read off
immediately. The numerator in the rational function gives
the negative values of bn and contribute to the relations
among invariants. For example, we can find bn forΔð3 · 32Þ

1 − t3 þ t6

ð1 − t3Þ3 ¼ ð1 − t18Þ
ð1 − t6Þð1 − t9Þð1 − t3Þ2 ¼

1Q∞
n¼1ð1 − tnÞbn ;

where we used the identity

ð1 − t3Þð1 − t18Þ
ð1 − t6Þð1 − t9Þ ¼ 1 − t3 þ t6:

Now we find the solution: the denominator contributes
terms 2t3; t6 and t9 and the numerator contributes the terms
−t18. Thus, PE−1½MðtÞ� ¼ 2t3 þ t6 þ t9 − t18. This means
there are 2 degree 3, 1 degree 6, and 1 degree 9 invariants,
obeying a single degree 18 relation. The crucial fact that the
numerator can be factorized into Euler form dictates that
the plethystic logarithm terminates in a series expansion.
Therefore, finding relation in this language corresponds to

finding factorizations of the numerator into Euler
form. Take C3=Z3, we have its Poincaré series as
ð1 − 7t3 þ t6Þ=ð1 − t3Þ3. No rational identity can put the
numerator 1 − 7t3 þ t6 into Euler form and the plethystic
logarithm does not terminate. If we convert the numerator
into Euler form, we get

1þ 7t3 þ t6 ¼ ð1 − t6Þ27ð1 − t12Þ540 � � �
ð1 − t3Þ7ð1 − t9Þ105 � � � ; ðA9Þ

where we have 10t3 from ð1 − t3Þ10 and −27t6 from
ð1 − t6Þ27. However, for higher degree invariants, i.e.,
28 degree 6 and 55 degree 9 invariants, etc., we need
further expansion on both top and bottom for Eq. (A9).
Using computer package such as Mccaulay2, we can find 595
relations for 10 degree 3 and 28 degree 6 invariants: 55 of
degree 6, 225 of degree 9 and 315 of degree 12. This thus
reads

10t3 þ 28t6 − 55t6 − 225t9 − 315t12

¼ 10t3 − 27t6 − 225t9 − 315t12:

For higher degree invariants and relations, we can correct
the coefficients for higher order terms such as t9 and t12.

APPENDIX B: EXTENDED
SYNTHETIC DIVISION

In this section, we review some basic materials of
extended synthetic division with the Python implementation
codes presented. Synthetic division is a method of perform-
ing Euclidean division of polynomials with less calculation
than regular polynomial long division. It is first developed
for division by monomial of the form x − a, but later
generalized to division by any monomials and polynomials.
The advantage of this method is that it allows one to
calculate division without writing out variables and it uses
less calculations. Let us first look at a simple example:

x3 − 12x2 − 42

x2 þ x − 3
:

The steps are as follows
(1) We negate them as before and write every coef-

ficients but the first on to the left of the bar in an
upward.

(2) We copy the first coefficient and multiply the
diagonal by the copied number and place them
diagonally to the right from the copied entry.

(3) We sumup thenext columnuntilwegopast the entries
at the top with the next diagonal multiplication.

(4) We sum up the remaining column. Since there are
two entries to the left of the bar, so the remainder is
of degree 1. We then mark the separation with a
vertical bar as
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1x − 13j16x − 81;

so we have the final quotient and remainder as

x3 − 12x2 − 42

x2 þ x − 3
¼ x − 13þ 16x − 81

x2 þ x − 3
:

We present the division here for the convenience of the reader

More specifically, we present a Python implementation of
the algorithm here
def extended_synthetic_division(divi-
dend, divisor):

out=list(dividend)
normalizer=divisor[0]
for i in xrange (len(dividend)-(len(divi-
sor)-1)):

out[i]/=normalizer
coef=out[i]
if coef !=0:

for j in xrange (1, len(divisor)):
separator=-(len(divisor)-1)
return out [:separator], out [separator:]

APPENDIX C: HILBERT SERIES GRBNER
BASIS AND EXAMPLES FROM
COMMUTATIVE ALGEBRA

In this Appendix, we review some of the foundation of
Hilbert series and see how it is constructed for specific
counting purposes. First, we are most interested in poly-
nomial ring K½x1;…; xn� consisting polynomials in varia-
bles x1;…; xn with coefficients in the ring K. We typically
take K to be a field, such as real numbers R. We also have
monomials in the form xα11 � � � xαnn , whose linear combina-
tion gives a polynomials. So monomials serve as building
blocks for polynomials via addition. Since we are ulti-
mately interested in counting things in polynomial ring
using Hilbert series, we would like to simplify this counting
to monomial level. Therefore, the notion of grading is
introduced for this counting purpose. On the physical side
story, the grading is usually from the charges of certain

global symmetries. Let us look at some natural choice
for grading, the degree of a polynomial, defined as
degðxα11 � � � xαnn Þ ¼ α1 þ � � � þ αn. Adding up monomials
of the same degree gives us a homogeneous polynomial.
Using this notation, we can decompose a set of all
homogeneous, degree k polynomials Rk into direct sum
R ¼ ⨁k∈NRk. Mathematically, variables x1;…; xn are said
to form a N graded algebra.
The dimension of Rk is defined to be the number of

independent degree k monomials. A Hilbert function is
defined as HFðR; kÞ ¼ dimðRkÞ. The Hilbert series is then
naturally defined as

HðR; tÞ ¼
X
k

HFðR; kÞtk: ðC1Þ

For polynomial ring R ¼ K½x1;…; xn�, to construct a
degree k monomial, we need to choose k items from n
candidates, with multiples being allowed, i.e.,

HFðK½x1;…; xn�; kÞ ¼
X

k1þk2þ���þkn¼k

�
nþ k − 1

k

�
; ðC2Þ

and the Hilbert series is

HðK½x1;…;xn�;kÞ¼
X∞
k¼0

�
nþk−1

k

�
tk ¼ 1

ð1− tÞn : ðC3Þ

The power of the denominator actually shows that there are
n degree 1 generators with no relations among them. Note
that this identity also gives the generating function of
multiset coefficients.
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Now let us discuss a bit more about ideal in a polynomial
ring. First take s polynomials from the ring, f1,
f2;…; fs ∈ K½x1;…; xn�. Then the variety V defined by
fi are the points in Kn, which are zeroes of the s
polynomials. The ideal hf1;…; fsi is then the set of
polynomials that vanishes on V. With this definition in
hand, we can proceed to define quotient variety now. Let
R ¼ K½x1;…; xn� be a polynomial ring graded by degree
and let I ¼ hf1;…; fsi be an ideal of R. Formally, the ideal
formed by polynomials f1;…fs ∈ K½x1;…; xn� is the set
of polynomials obtained by taking fi as basis vectors, with
coefficients hi from K½x1;…xn�

hf1;…; fsi ¼
�Xs

i¼1

hifi∶h1;…; hs ∈ K½x1;…; xn�
	
:

We can quotient the ring by the ideal,

M ¼ R=I:

So by definition, M is made of equivalence classes of
polynomials. So in this sense, the elements of ideal are zero
polynomials and are removed by this quotient procedure,
where the algebraic structure is preserve as M is also a ring.
For homogenous ideal, thequotient ringderived fromit is then
defined to be a gradedmodule since the grading is understood
to be the degree of polynomials. This means the quotient
preserves the grading and M is decomposed as a direct sum
M ¼ ⊕kMk, where Mk is the set of homogenous polyno-
mials. So the Hilbert function for M is then defined to be

HFðM; kÞ ¼ dimðMkÞ ¼ dimðRkÞ − dimðIkÞ: ðC4Þ
The Hilbert series is then HðM; tÞ ¼ P

k HFðM; kÞtk.
Usually, we would like to construct the quotient ring M

by finding a typical ideal, which is usually generated by a
few polynomials f1;…; fs. Then questions such as inclu-
sion of a polynomial inside the ideal and nontrivial
relations among generators, arise in this process. The
answers to these questions are computational and generally
quite hard. However, a special set of basis of the ideal,
called Gröbner basis can be constructed most efficiently to
describe the polynomial sequence f1;…; fs. Now we
denote the set of polynomials in Gröbner basis by
g1;…; gr, where r ≠ s in general. Since fi are taken as
basis vectors for the ideal, we can change the basis to the
new Gröbner basis, which simply generate the same ideal.
A more thorough treatment for this topic can be found in
[43]. To construct the Gröbner basis, we need to define an
ordering of monomial first.7

This monomial ordering “>” determines whether
xα > xβ;xα ¼ xβ or xα < xβ for two monomials xα ¼
xα11 � � � xαnn and xβ ¼ xβ11 � � � xβnn . With this ordering, we can
then find the “largest” monomial inside a polynomial
h ∈ K½x1;…; xn�. This is defined to be the initial monomial
of h, denoted by inðhÞ.8 For every polynomial in
I ¼ hf1;…; fsi, we take their initial monomial and
denote this set to be in(I). In general, in(I) is not
equal to the set generated by initial monomials of the fi.
But the defining property of Gröbner basis is that
inðIÞ ¼ hinðg1Þ;…; inðgrÞi.
With the above abstract definition, we shall benefit

from a few concrete examples. First let us take the
polynomial ring of two variables with coefficients in
the real numbers, R ¼ R½x; y�. Here we take monomial
ordering to be graded reverse lexographic ordering,
which is the default setting for computer package
Mccaulay2.
Example 1: Let R ¼ R�x; y� and I ¼ hxþ yi. As the

ideal has just a single polynomial, it is then by definition,
a Gröbner basis. Hence, the initial ideal is generated
by the inðxþ yÞ ¼ x, inðIÞ ¼ hxi. The Hilbert series for
the quotient ring M ¼ R=I is equivalent to the Hilbert
series of R=inðIÞ ¼ R½x; y�=hxi ¼ R½y�. Therefore, we
have

HðR½x; y�=hxþ yi; tÞ ¼ 1

1 − t
:

Example 2: Let R ¼ R½x; y� and I ¼ hx2; y3i. A mono-
mial of the form xαyβ is in the ideal for α ≥ 2 and β ≥ 3.
Therefore, the monomials for the quotient ring are
1; x; y; xy; y2; xy2. Since the Hilbert series counts the
independent monomials, it is then

HðR½x; y�=hx2; y3i; tÞ ¼ 1þ 2tþ 2t2 þ t3:

This finite polynomial hints us that it can be written as a
rational function with both numerator and denominator
being in Euler form. This is actually

H ¼ ð1 − t2Þð1 − t3Þ
ð1 − tÞ2 ¼ 1 − t2 − t3 þ t5

ð1 − tÞ2

where the denominator is the Hilbert series of free ring
R½x; y�, while the numerator reflects the relation among
generators of the ideal.

7The common choices of monomial ordering are lexographic,
graded lexographic and graded reverse lexographic ordering.
Take two monomials xα1…xαnn and xβ1…xβnn of total degree α ¼
α1 þ � � � þ αn and β ¼ β1 þ � � � þ βn. We take xα > xβ if α > β;
if α ¼ β, then xα > xβ if α1 > β1; if α ¼ β and α1 ¼ β1, then
xα > xβ if α2 > β2 and so on.

8This is also commonly defined as the leading term of h and
denoted by LTðhÞ.
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