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Abstract We prove a theoremwhich gives a bijection between the support τ -tilting modules
over a given finite-dimensional algebra A and the support τ -tiltingmodules over A/I , where I
is the ideal generated by the intersection of the center of A and the radical of A. This bijection
is both explicit and well-behaved. We give various corollaries of this, with a particular focus
on blocks of group rings of finite groups. In particular we show that there are τ -tilting-finite
wild blocks with more than one simple module. We then go on to classify all support τ -
tilting modules for all algebras of dihedral, semidihedral and quaternion type, as defined by
Erdmann, which include all tame blocks of group rings. Note that since these algebras are
symmetric, this is the same as classifying all basic two-term tilting complexes, and it turns
out that a tame block has at most 32 different basic two-term tilting complexes. We do this
by using the aforementioned reduction theorem, which reduces the problem to ten different
algebras only depending on the ground field k, all of which happen to be string algebras.
To deal with these ten algebras we give a combinatorial classification of all τ -rigid modules
over (not necessarily symmetric) string algebras.
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1 Introduction

The theory of support τ -tilting modules, as introduced by Adachi, Iyama and Reiten in [4],
is related to, and to some extent generalizes, several classical concepts in the representation
theory of finite dimensional algebras.

On the one hand, it is related to silting theory for triangulated categories, which was intro-
duced by Keller and Vossieck in [23] and provides a generalization of tilting theory. Just like
tilting objects, silting objects generate the triangulated category they live in, but in contrast to
tilting objects they are allowed to have negative self-extensions. Using Keller’s version [22]
of Rickard’s derived Morita theorem, a silting object S in an algebraic triangulated category
T gives rise to an equivalence between T and the perfect complexes over the derived endo-
morphism ring R EndT (S). This ring is a non-positively graded DGA, which can however
be very hard to present in a reasonable way (see for example [26]).

On the other hand, τ -tilting theory is related to mutation theory, which has its origins
in the Bernstein–Gelfand–Ponomarev reflection functors. The basic idea is to replace an
indecomposable summand of a tilting object by a new summand to obtain a new tilting
object. This mutation procedure has played an important role in several results concerning
Broué’s abelian defect group conjecture, see [19,25,28]. However, it is not always possible
to replace a summand of a tilting object and get a new tilting object in return, which may
be seen as sign that one needs to consider a larger class of objects. This is why Aihara and
Iyama introduced the concept of silting mutation [6], where one observes quite the opposite
behavior: any summand of a silting object can be replaced to get (infinitely) many new silting
objects, and among all of those possibilities one is distinguished as the “right mutation” and
another one as the “left mutation”. So in this setting it is natural to ask whether the action
of iterated silting mutation on the set of basic silting objects in Kb(projA) is transitive (for
an explicit reference, see Question 1.1 in [6]). In general this question is hard, but to make it
more manageable, one can start by studying not all of the basic silting complexes, but just the
two-term ones. These have the benefit of being amenable to the theory of support τ -tilting
modules mentioned above.

A support τ -tilting module M is a module which satisfies HomA(M, τM) = 0 and which
has as many non-isomorphic indecomposable summands as it has non-isomorphic simple
composition factors. These modules correspond bijectively to two-term silting complexes,
and possess a compatible mutation theory as well. Using τ -tilting theory, the computation of
all the two-term silting complexes and their mutations is a lot more manageable, and in nice
cases, one can deduce from the finiteness of the number of two-term silting complexes, the
transitivity of iterated silting mutation.

In this article, we will be concerned with determining all basic two-term silting complexes
(or equivalently support τ -tilting modules) for various finite dimensional algebras A defined
over an algebraically closed field. To this end, we prove the following very general reduction
theorem:

Theorem 1 (see Theorem 11) For an ideal I which is generated by central elements and
contained in the Jacobson radical of A, the g-vectors of indecomposable τ -rigid (respec-
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A reduction theorem for τ -rigid modules 1379

tively support τ -tilting) modules over A coincide with the ones for A/I , as do the mutation
quivers.

For the purpose of this introduction we will call an algebra obtained from A by taking
successive central quotients a good quotient of A. The proof of the theorem is an application
of a four-term exact sequence

0 → HomCb(projA)(C(α),C(β)) → HomA(P, R) × HomA(Q, S)
fα,β−−−→ HomA(P, S) → HomKb(projA)(C(α),C(β)[1]) → 0

which is constructed in Proposition 3, where P, Q, R and S are projectivemodules, andC(α)

and C(β) are two-term complexes with terms P and Q, respectively R and S. The power
of this theorem lies in its generality. For example, as an immediate corollary, we recover a
result of [3] saying that the mutation quiver and the g-vectors of a Brauer graph algebra do
not depend on the multiplicities of the exceptional vertices, without having to classify all
τ -tilting modules beforehand.

One can often use Theorem 1 to effectively compute all two-term silting complexes over
a given algebra. In fact, it turns out that many algebras of interest such as all special biserial
algebras, in particular all Brauer graph algebras, and all algebras of dihedral, semidihedral
and quaternion type have a string algebra as a good quotient. Thus by Theorem 1 it is enough
to consider string algebras for all aforementioned classes of algebras. In Sect. 5 we give a
combinatorial algorithm to determine the indecomposable τ -rigid modules, the support τ -
tilting modules and the mutation quiver of a string algebra, provided it is τ -tilting-finite i.e.
there are only a finite number of isomorphism classes of τ -tilting modules (otherwise one
still gets a description, but no algorithm for obvious reasons).

As an application, in Sect. 6, we consider blocks of group algebras. Note that because
these algebras are symmetric, silting and tilting complexes coincide. We show that all tame
blocks are τ -tilting-finite, and we give non-trivial (i.e. non-local) examples of wild blocks of
(in some sense) arbitrary large defect which are τ -tilting-finite.

For tame blocks, there is a list of algebras containing all possible basic algebras of these
blocks, which is due to Erdmann [14]. It turns out that all algebras of dihedral, semidihedral
and quaternion type (which are the algebras that Erdmann classifies) have a string algebra as
good quotient, and we exploit this to determine the g-vectors and Hasse quivers (of the poset
of support τ -tilting modules) of all of them. In particular, we obtain the following theorem.

Theorem 2 (see Theorem 16) All algebras of dihedral, semidihedral or quaternion type
are τ -tilting-finite and their g-vectors and Hasse quivers (of the poset of support τ -tilting
modules) are independent of the characteristic of k and the parameters involved in the
presentations of their basic algebras.

The actual computation of the g-vectors and Hasse quivers, which we present in the form of
several tables, has been relegated to Appendix 7.

Using a result of Aihara and Mizuno [7], we deduce the following theorem:

Theorem 3 All tilting complexes over an algebra of dihedral, semidihedral or quaternion
type can be obtained from A (as a module over itself) by iterated tilting mutation.

This implies in particular that if B is another algebra and X ∈ Db(Aop ⊗ B) is a two-sided
tilting complex, then there exists a sequence of algebras A = A0, A1, . . . , An = B and two-
sided two-term tilting complexes Xi ∈ Db(Aop

i−1 ⊗ Ai ) such that X ∼= X1 ⊗L
A1

· · ·⊗L
An−1

Xn .
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1380 F. Eisele et al.

2 Preliminaries

Throughout this paper, k denotes an algebraically closed field of arbitrary characteristic,
and A is a basic finite-dimensional k-algebra with Jacobson radical rad(A). The category of
finitely generated right A-modules is denoted bymodA and the subcategory of finitely gen-
erated projective A-modules is denoted by projA. Let P1, . . . , Pl denote the non-isomorphic
projective indecomposable A-modules. By τ we denote theAuslander–Reiten translate for A.
The category of bounded complexes of projective modules is denoted by Cb(projA). More-
over, Kb(projA) denotes the corresponding homotopy category and K0(projA) denotes its
Grothendieck group. For any M ∈ modA, |M | is defined as the number of indecomposable
direct summands of M . We will use the same notation for complexes.

We will now give a short summary of the theory of silting complexes and the theory of
support τ -tilting modules introduced in [4].

2.1 Two-term silting complexes

Definition 1 AcomplexC = C• ∈ Kb(projA) is called two-term ifCi = 0 for all i �= 0,−1.

Definition 2 A complex C ∈ Kb(projA) is called

1. presilting if HomKb(projA)(C,C[i]) = 0 for i > 0,

2. silting if it is presilting and generates Kb(projA).

It can be shown that a silting complex has exactly |A| summands.

Remark 1 A two-term presilting complex is also known as a rigid two-term complex. These
terms will be used interchangeably.

On the set of basic silting complexes, one can define a partial order as follows:

Theorem 4 [6, Theorem 2.11] For basic silting complexes C and D, we write D ≤ C if

HomKb(projA)(C, D[i]) = 0,

for all i > 0. This defines a partial order on the set of silting complexes.

Let us denote the Hasse quiver of this poset by H(A). Now let C = D ⊕ E be a basic
silting complex with D indecomposable. Then there is a triangle (in Kb(projA))

D
f−→ E ′ → D′ → D[1],

such that f is a minimal left add E-approximation of D.

Definition 3 The left mutation of C with respect to D is defined to be

μ−
D(C) = D′ ⊕ E .

The right mutation μ+
D(C) is defined dually.

We denote by Q(A) the left mutation quiver of A with vertices corresponding to basic
silting complexes, there being an arrow C → C ′ whenever C ′ = μ−

D(C) for some indecom-
posable direct summand D of C .

Remark 2 For symmetric algebras, silting complexes are in fact tilting complexes, so Q(A)

is the mutation quiver of tilting complexes.
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A reduction theorem for τ -rigid modules 1381

Theorem 5 [6, Theorem 2.35] The quivers H(A) and Q(A) are the same.

In general, this quiver can be disconnected and has no regularity properties. However, if
we restrict our attention to basic two-term silting complexes, then more structure appears. In
fact, using the theory of support τ -tilting modules, one can prove the following theorem.

Theorem 6 [4, Corollary 3.8] Any basic two-term rigid complex C with |C | = |A| − 1 is
a direct summand of exactly two basic two-term silting complexes. Moreover, if two basic
two-term silting complexes C and D have |A| − 1 summands in common, then C is a left or
right mutation of D.

This means that if we denote by Q2(A) the full subquiver of Q(A) containing the vertices
corresponding to basic two-term silting complexes, then we get an |A|-regular graph. With
an eye towards explicit calculations, the following properties are very useful.

Proposition 1 [4, Corollary 3.10] If Q2(A) has a finite connected component C, then
Q2(A) = C.

In some cases, finiteness of Q2(A) implies that for every n, there are only finitely many
n-term silting complexes.

Proposition 2 [7, Theorem 2.4][3, Proposition 6.9] Let A be a symmetric algebra. If for
any tilting complex C in the connected component of Q(A) containing A, the set of basic
two-term EndKb(projA)(C)-tilting complexes is finite, then for every n, the set of basic n-term
A-tilting complexes is finite.

Theorem 7 [5, Theorem 3.5] If for every n, there are only finitely many isomorphism classes
of basic n-term silting complexes, then Q(A) is connected, i.e. mutation acts transitively on
basic silting complexes.

Rigid two-term complexes have a complete numerical invariant.

Theorem 8 [4, Theorem 5.5]A two-term rigid complex C is uniquely determined by its class
[C] ∈ K0(projA).

Expanding out [C] in terms of the basis [P0], . . . , [Pl ], we get

[C] =
l∑

i=1

gCi [Pi ].

The tuple gC = (gC1 , . . . , gCl ) is known as the g-vector ofC . SoTheorem8 says that two-term
rigid complexes are uniquely determined by their g-vectors.

2.2 Support τ -tilting modules

Definition 4 A module M ∈ modA is called

1. τ -rigid if HomA(M, τM) = 0,
2. τ -tilting if it is τ -rigid and |M | = |A|,
3. support τ -tilting if there is an idempotent e ∈ A such that M is a τ -tilting A/(e)-module.
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1382 F. Eisele et al.

We will often think of a support τ -tilting module as a pair (M, e · A), and say that it is
basic if both M and e · A are basic. Also, direct sums are defined componentwise.

For basic support τ -tilting modules, there is again a notion of mutation, and one can then
similarly define a left mutation quiver Qτ (A). Also, there is a partial order on this set giving
rise to a Hasse quiver Hτ (A). For details, see [4, Sect. 2.4]. These quivers are again the same
(see [4, Corollary 2.34]) and isomorphic to Q2(A), as the following shows:

Theorem 9 [4, Theorem 3.2, Corollary 3.9] There are mutually inverse functions

{ basic two-term silting complexes }
f

�
g

{ basic support τ -tilting modules }

which are defined in the following way:

f (C) = H0(C)

g((M, R)) =
(
P ⊕ R

(p 0)−−−→ Q

)
,

where P
p−→ Q → M is a minimal projective presentation of M, and R is the (uniquely

determined, up to isomorphism) basic projective module such that (M, R) is a support τ -
tilting pair. Moreover, this bijection gives an isomorphism of posets between the left mutation
quivers Q2(A) and Qτ (A).

3 Geometry of two-term complexes of projective modules

In this section we construct an exact sequence which will be useful for proving our first main
theorem. It also serves to provide an elementary proof of Theorem 8.

For two fixed projective A-modules P and Q, HomA(P, Q) can be considered as algebraic
variety, isomorphic to affine space. The connected algebraic group G = AutA P × AutA Q
acts on HomA(P, Q), in such a way that there is a bijection between the set of isomorphism
classes of two-term complexes in Cb(projA) with terms P and Q, and the set of orbits of
G in HomA(P, Q). For a morphism of smooth algebraic varieties f : X → Y and a point
x ∈ X , we denote by d( f )x : Tx X → T f (x)Y the differential of f at x , where Tx X and
T f (x)Y denote the tangent spaces of X (respectively Y ) at the point x (respectively f (x)).
In the specific case where X is the algebraic group AutA(P) × AutA(Q) and e ∈ X is the
identity, TeX = HomA(P, P) × HomA(Q, Q).

When we consider α ∈ HomA(P, Q) as a complex in Cb(projA), we will denote it as
C(α). The orbit of α ∈ HomA(P, Q) will be denoted by G · α and its stabilizer by Gα .

Proposition 3 For α ∈ HomA(P, Q) and β ∈ HomA(R, S) (P, Q, R, S projective A-
modules), there is an exact sequence

0 → HomCb(projA)
(C(α),C(β)) → HomA(P, R) × HomA(Q, S)

fα,β−−−→ HomA(P, S)
g−→ HomKb(projA)

(C(α),C(β)[1]) → 0

where
fα,β(X, Y ) = Y ◦ α − β ◦ X

and g is the natural map (we have C(α)0 = P and C(β)[1]0 = C(β)−1 = S, so we may
view an element of HomA(P, S) as a map of chain complexes).
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A reduction theorem for τ -rigid modules 1383

Proof The only place where exactness is not immediately clear is at the HomA(P, S) term.
The kernel of g consists of all γ ∈ HomA(P, S) such that g(γ ) is homotopic to zero. This
is exactly the image of fα,β (the negative sign in the definition of fα,β does not affect the
image).

In Corollary 1 we will use basic properties of algebraic varieties equipped with an action
of an algebraic group, which are summarised in the following proposition.

Proposition 4 Let X be an algebraic variety equipped with an algebraic action of a con-
nected algebraic group G and let x ∈ X. Then:

1. the stabilizer subgroup Gx is closed,
2. the orbit G · x is a locally closed, smooth, connected subvariety of X,
3. The dimension of G · x can be computed via:

dimG · x = dimG − dimGx . (3.1)

Proof Since G is connected, it is also irreducible by [11, Proposition 1.2(b)], and so is the
orbitG ·x , since it is the image ofG underφ(x) : G −→ G ·x : g �→ g·x . By [11, Proposition
6.7]G · x is smooth and locally closed in X , and φ(x) is an “orbit map” (defined earlier in the
same section) for the action of Gx on G by right translation. Then [11, Proposition 6.4(b)]
applied to this orbit map yields (3.1).

Corollary 1 With the same notation as in Proposition 3, if α = β ∈ HomA(P, Q), let again
G = AutA(P) × AutA(Q) and

φα : G −→ HomA(P, Q) : (g1, g2) �→ g2 ◦ α ◦ g−1
1

Then d(φα)e = fα,α (where e denotes the unit element of G), and we get

im d(φα)e = Tα(G · α)

Proof That fα,α can be identified with the differential at the identity of the orbit map is clear.
Let us consider the last statement. We should first remark that the equality Gα =

AutCb(projA)(C(α)) follows immediately from the definition, and hence dimGα =
dim EndCb(projA)(C(α)). Since orbits are smooth by Proposition 4(2), we find

dim Tα(G · α) = dimG · α

= dimG − dimGα

= dim EndA(P) × EndA(Q) − dim EndCb(projA)(C(α))

= dim im fα,α,

where we used Proposition 4(3) in the second line, and also the exactness statement from
Proposition 3 in the last equality. By the identification of fα,α and d(φα)e, we are done.

Using this proposition we can easily reprove the following well-known results by Jensen–
Su–Zimmermann in the special case of two-term complexes.

Lemma 1 [21, Lemma 4.5] A two-term complex C(α) ∈ Kb(projA) with terms P and Q is
rigid if and only if the orbit G · α is open (and thus dense) in HomA(P, Q).
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1384 F. Eisele et al.

Proof By Proposition 4, orbits are locally closed and smooth, so they are open exactly when
there is a point x ∈ G ·α such that dim Tx (G ·α) = dim Tx HomA(P, Q). By Proposition 3,
there is an isomorphism

Tα HomA(P, Q)/Tα(G · α)
∼=−→ HomKb(projA)(C(α),C(α)[1]),

and hence the lemma follows. Note that the denseness of G · α follows from the fact that
HomA(P, Q) is an affine space, and hence irreducible.

We can use this lemma to obtain an alternative proof of Theorem 8. Note that a slightly
weaker form of this theorem was also obtained in [21, Corollary 4.8].

Theorem 10 Two-term rigid complexes inKb(projA) are determined up to isomorphism by
their g-vectors.

Proof We first show that any two-term rigid complex C is isomorphic in Kb(projA) to a
complex with terms having no direct summands in common. So assumeC can be represented
by a complex

0 → P
d−→ Q → 0,

which isminimal with respect to the number of direct summands of P and Q. Thisminimality
ensures that im d ⊆ rad(Q). To now prove that P and Q have no summands in common,
it suffices to show that the image of any morphism f : P → Q is contained in rad(Q). By
rigidity, there exist hP ∈ EndA(P) and hQ ∈ EndA(Q) such that

f = hQ ◦ d + d ◦ hP

But since im d ⊆ rad(Q), also im f ⊆ rad(Q).
Now letC(α) andC(β) denote two-term rigid complexes, both with terms P and Q. Then

by Lemma 1, the orbits G · α and G · β are dense in HomA(P, Q), so they intersect and we
get an isomorphism C(α) ∼= C(β) in Cb(projA). In particular, we find that two-term rigid
complexes are uniquely determined by their terms.

Since we know by the first part of the proof that P and Q do not have any summands in
common, the class [C(α)] ∈ K0(projA) already suffices to determine C(α) up to isomor-
phism, which is exactly what we needed to prove.

4 Quotients by a centrally generated ideal

Suppose z ∈ Z(A) ∩ rad(A) is an element such that z2 = 0 and consider the ideal I = (z)
of A. By P̄1, . . . , P̄l we denote the projective indecomposable Ā = A/I modules. Note that
since z ∈ rad(A), the number of projectives is the same.

We know that HomA(Pi , Pj ) is isomorphic to e j Aei , and under this isomorphism the
kernel of the natural epimorphism

HomA(Pi , Pj ) � HomA/I (P̄i , P̄j ) : α �→ ᾱ

corresponds to e j I ei . Since I = (z) we therefore have for any α ∈ HomA(Pi , Pj )

ᾱ = 0 ⇐⇒ α = z · α0 for some α0 ∈ HomA(Pi , Pj ) (4.1)

The following is our main reduction theorem, which will turn out to be very powerful in
the remainder of this article.
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A reduction theorem for τ -rigid modules 1385

Theorem 11 For an ideal I ⊆ (Z(A) ∩ rad(A)) · A of A, the g-vectors of two-term rigid
(respectively silting) complexes for A coincide with the ones for A/I , as do the mutation
quivers.

Proof It suffices to consider I = (z) a principal ideal, with z ∈ Z(A) such that z2 = 0. From
Proposition 3, we know that for all α ∈ HomA(P, Q), and β ∈ HomA(R, S) (P, Q, R, S
projective A-modules) there is a commutative diagram with exact rows:

0 HomCb(projA)
(C(α),C(β)) HomA(P, R) × HomA(Q, S) HomA(P, S) HomKb(projA)

(C(α),C(β)[1]) 0

0 HomCb(proj Ā)
(C(ᾱ),C(β̄)) Hom Ā(P̄, R̄) × Hom Ā(Q̄, S̄) Hom Ā(P̄, S̄) HomKb(proj Ā)

(C(ᾱ),C(β̄)[1]) 0

fα,β

φ

g

ψ

f
ᾱ,β̄ ḡ

Since ψ is surjective, by commutativity of the rightmost square, so is the right-
most vertical arrow. This ensures that if HomKb(projA)(C(α),C(β)[1]) = 0, also

HomKb(proj Ā)(C(ᾱ),C(β̄)[1]) = 0.

The other way round, if HomKb(proj Ā)(C(ᾱ),C(β̄)[1]) = 0, we claim that also
HomKb(projA)(C(α),C(β)[1]) = 0. From the exact sequence, we see that fᾱ,β̄ is surjec-
tive, and it suffices to prove that fα,β is also surjective. Let γ ∈ HomA(P, S) be arbitrary,
then there exists an element (X, Y ) ∈ HomA(P, R) × HomA(Q, S) such that

ψ(γ ) = ( fᾱ,β̄ ◦ φ)(X, Y )

= (ψ ◦ fα,β)(X, Y ),

so γ − fα,β(X, Y ) ∈ kerψ , and therefore, by (4.1),

γ = fα,β(X, Y ) + zγ ′,

for some γ ′ ∈ HomA(P, S). Using surjectivity of fᾱ,β̄ ◦ φ again, there exists (X ′, Y ′) ∈
HomA(P, R) × HomA(Q, S) such that

γ ′ = fα,β(X ′, Y ′) + zγ ′′.

Thus we find that

γ = fα,β(X, Y ) + zγ ′

= fα,β(X, Y ) + z fα,β(X ′, Y ′)
= fα,β(X + zX ′, Y + zY ′),

where we used that z ∈ Z(A). Thus fα,β is surjective.
We conclude that for all α and β:

HomKb(projA)(C(α),C(β)[1]) = 0 ⇐⇒ HomKb(proj Ā)(C(ᾱ),C(β̄)[1]) = 0. (4.2)

Since the assignment C(α) ∈ Kb(projA) �→ C(ᾱ) ∈ Kb(projA/I ) does not change the
g-vectors, and these uniquely determine a rigid complex by Theorem 8, it is bijective. For
the same reason it preserves and reflects direct sums, which means that the aforementioned
assignment induces a bijection between the two-term rigid complexes for A and the two-
term rigid complexes for A/I which restricts to a bijection between the indecomposable
complexes, and therefore also between the silting complexes. The mutation quivers will
coincide as well since by Theorem 5 they coincide with the Hasse quivers of the posets
formed by the two-term silting complexes, and the order is preserved due to (4.2).

As an immediate corollary of Theorem 11, we obtain [1, Theorem B] in the symmetric
case.

123



1386 F. Eisele et al.

Corollary 2 For a symmetric algebra A with soc(A) ⊆ rad(A), the g-vectors of two-term
rigid (respectively silting) complexes for A coincide with the ones for A/ soc(A), as do the
mutation quivers.

Proof We may assume without loss of generality that A is basic. In this case A/ rad(A)

is a commutative ring. That implies that a · m = m · a for all m ∈ A/ rad(A) (which
we now see as an A-A-bimodule), and all a ∈ A. Since A is symmetric we have soc(A) ∼=
Homk(A/ rad(A), k) as an A-A-bimdule, which implies that a ·m = m ·a for allm ∈ soc(A)

and all a ∈ A. That is, soc(A) ⊆ Z(A).

Here is another immediate application of the foregoing theorem, which recovers the result
of [3] saying that the mutation quiver and the g-vectors of a Brauer graph algebra do not
depend on themultiplicities of the exceptional vertices, without having to classify all τ -tilting
modules beforehand.

Definition 5 Recall that an algebra A = kQ/I is called special biserial if

1. There are at most two arrows emanating from each vertex of Q.
2. There are at most two arrows ending in each vertex of Q.
3. For any path α1 · · · αn /∈ I (n ≥ 1) there is at most one arrow α0 in Q such that

α0 ·α1 · · · αn /∈ I and there is at most one arrow αn+1 in Q such that α1 · · · αn ·αn+1 /∈ I .

Now suppose A is symmetric special biserial. By the main result of [29], these correspond
exactly to the Brauer graph algebras. Using Theorem 11 we now get as a corollary [3,
Proposition 6.16].

Corollary 3 The poset of two-term tilting complexes of a Brauer graph algebra is indepen-
dent of the multiplicities involved.

Proof The centers of such algebras have been described in [9, Proposition 2.1.1]. More
precisely, the sum of all walks around a vertex in the Brauer graph, with each adjacent edge
occurring as a starting point precisely once, is a central element. Now one can fairly easily
check that all relations involving the exceptional multiplicities become zero modulo the ideal
generated by these central elements. Thus all Brauer graph algebras with the same Brauer
graph but different exceptional multiplicities have the same quotient A/ rad(Z(A))A and
Theorem 11 indeed yields the corollary.

5 String algebras

As a consequence of Theorem 11 the classification of indecomposable τ -rigid modules over
an algebra A often reduces to the same problemover a quotient A/I , whichwill typically have
a simpler structure than A itself. But of course this quotient still needs to be dealt with. One
class of algebras for which one might hope to determine all indecomposable τ -rigid modules
are the algebras of radical square zero (see [2]), but this class is not large enough for our
purposes. In this section we study the τ -rigid modules of string algebras, which are special
biserial algebras (as defined in Example 5) with monomial relations. There is a well-known
classification of indecomposable modules over these algebras, in terms of combinatorial
objects known as “strings”, which are certain walks around the Ext-quiver of the algebra. All
Auslander–Reiten sequences are known as well. Hence it is clear that it should be possible
to give a combinatorial description of the τ -rigid modules and support τ -tilting modules in
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A reduction theorem for τ -rigid modules 1387

terms of these “strings”. Note that for symmetric special biserial algebras such a classification
exists already (see [3]). But, as A being symmetric does not imply that A/I is symmetric as
well, it is useful to consider non-symmetric special biserial algebras even if one is merely
interested in symmetric algebras A. By Remark 5 below we may then restrict our attention
to string algebras, even if we are interested in arbitrary special biserial algebras.

Definition 6 (String algebra) Let Q be a finite quiver and let I be an ideal contained in the
k-span of all paths of length ≥ 2. We say that A = kQ/I is a string algebra if the following
conditions are met:

1. There are at most two arrows emanating from each vertex of Q.
2. There are at most two arrows ending in each vertex of Q.
3. I is generated by monomials.
4. (Unique Continuation) For any path α1 · · · αn /∈ I (n ≥ 1) there is at most one arrow

α0 in Q such that α0 · α1 · · · αn /∈ I and there is at most one arrow αn+1 in Q such that
α1 · · · αn · αn+1 /∈ I .

We will now introduce the combinatorial notions which are needed to classify τ -rigid
modules over string algebras. For themost part we use the same terminology as used byButler
and Ringel in [13], where they classify all (finite dimensional) indecomposable modules over
string algebras, as well as all Auslander–Reiten sequences. We will nonetheless make some
definitions which are particular to our situation, since we only have the very specific goal of
classifying τ -rigid modules in mind. One noteworthy detail on which we deviate from [13]
is that, since the convention we use for multiplication in path algebras is the opposite of the
one used in [13], the string module M(α1 · · · αm) we define below is going to correspond to
the string module M(α−1

1 · · · α−1
m ) as defined in [13].

Definition 7 (Direct, inverse and unidirectional strings) Let A = kQ/I be a string algebra,
and let Q1 = {α1, . . . , αh} denote the set of arrows in Q. By α−1

i for i ∈ {1, . . . , h} we
denote formal inverses of the arrows αi .

1. A string C is a word c1 · · · cm , where ci ∈ {α1, α
−1
1 , . . . , αh, α

−1
h } such that ci �= c−1

i+1
for all i ∈ {1, . . . ,m − 1} and for every subword W of C , W /∈ I and W−1 /∈ I . We
also ask that if C contains a subword of the form αi · α−1

j , then the target of αi is equal

to the target of α j , and if C contains a subword of the form α−1
i · α j , then the source of

αi is equal to the source of α j . Moreover, for each vertex e of Q, we define two paths
of length zero, one of which is called “direct” and one of which is called “inverse” (this
will make sense in the context of the next point below).

2. We call a string of length greater than zero direct if all ci ’s are arrows, and inverse if all
ci ’s are inverses of arrows. We call a string unidirectional if it is either direct or inverse.

3. For an arrow αi we denote by s(αi ) its source and by t (αi ) its target. We define s(α−1
i ) =

t (αi ) and t (α−1
i ) = s(αi ). We extend this notion to strings by defining s(c1 · · · cm) =

s(c1) and t (c1 · · · cm) = t (cm). For a string C of length zero, given by a vertex e, we
define s(C) = t (C) = e.

4. If C is unidirectional, then we define the corresponding direct string C̄ as follows: if C
is direct, then C̄ := C , and if C is inverse, then C̄ := C−1.

5. Given a string C of length greater than zero let C1 · · ·Cl be the unique factorization
of C such that each Ci is unidirectional of length greater than zero, and for each i ∈
{1, . . . , l − 1} exactly one of the strings Ci and Ci+1 is direct. If C is of length zero we
set l = 1 and define C1 = Cl := C .
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While the above definition is essentially standard, the next definition is rather specific
to the problem we are considering. We should note at this point that we use strings in two
different ways. Usually, a stringC corresponds to a string module M(C). However, the string
PCP we construct in Definition 8 (1) below will correspond to the differential of a two-term
complex of projective modules, namely a minimal projective presentation of M(C). It is
helpful to keep this in mind.

Definition 8 (PCP and intermediate points)

1. We call C1 a loose end if C1 is inverse and C
−1
1 · αi ∈ I for all arrows αi . Similarly, we

call Cl a loose end if Cl is direct and Cl · αi ∈ I for all arrows αi . The other constituent
factors C2, . . . ,Cl−1 are never considered loose ends.

2. Assume that C is not of length zero. Then we define a string PC as follows: if C1 is a
loose end, we define PC = C2 · · ·Cl (or one of the strings of length zero corresponding
to t (C1) if l = 1). If C1 is not a loose end then there is at most one arrow αi such that
α−1
i · C is a string, and we define PC := α−1

i · C if such an αi exists, and PC := C
otherwise. In the same vein, if Cl is a loose end we define CP := C1 · · ·Cl−1 (or one of
the strings of length zero corresponding to s(Cl) if l = 1). If Cl is not a loose end, then
there is at most one arrow αi such that C · αi is a string and we define CP := C · αi if
such an αi exists, and CP := C otherwise.
Now, ifC is of length zero, thenC is given by a vertex e, and we defineCP = PC = α−1

i
for some αi emanating from e, provided such an arrow exists, and CP = PC := C if
no such arrow exists (note that we make a choice here, so in order to make PC and CP

well-defined, we technically have to designate one of the arrows emanating from each
vertex as the one to be used).
Unless l = 1 and C1 = Cl is a loose end, we define PCP := (PC)P = P (CP ). If l = 1
and C1 = Cl is an inverse loose end, then we define PCP := P (CP ), and if C1 = Cl is
a direct loose end we define PCP := (PC)P .
Note that we always have P (C−1)P = (PCP )−1.

3. If C has length greater than zero, then we call

IC (0) = s(C1), IC (1) = t (C1), IC (2) = t (C2), . . . , IC (l) = t (Cl)

the intermediate points of C , and for 1 ≤ i < l we call Ci and Ci+1 the adjacent
unidirectional strings of the intermediate point IC (i). We say that C1 is the adjacent
unidirectional string of IC (0) and Cl is the adjacent unidirectional string of IC (l). We
say that IC (i) is an upper intermediate point if Ci (if it exists, i.e. if i > 0) is inverse and
Ci+1 (if it exists) is direct. We call IC (i) a lower intermediate point if Ci (if it exists) is
direct andCi+1 (if it exists) is inverse. In particular, IC (0) is an upper (respectively lower)
intermediate point ifC1 is direct (respectively inverse) and IC (l) is an upper (respectively
lower) intermediate point if Cl is inverse (respectively direct).

If C is of length zero, then it corresponds to a vertex e, which we consider an upper
intermediate point of C . That is, IC (0) = e is an upper intermediate point (and, by
definition, the only intermediate point of C), and we say that there are no adjacent
unidirectional strings.

Example 1 Let

A = k

⎛

⎝ •0 •1ε η

α

β

⎞

⎠
/ (

αβ, βα, ε2, η2, αηβ, βεα
)
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Consider the string C = ε−1 · α · η−1. We also denote this string by 0
ε← 0

α→ 1
η← 1.

In the latter notation, the intermediate points can easily be read off: IC (0) = 0, IC (1) = 0,
IC (2) = 1 and IC (3) = 1. Among these, IC (0) and IC (2) are lower intermediate points (as
arrows are pointing towards them), and IC (1) as well as IC (3) are upper intermediate points
(arrows pointing away).

Note that C1 = ε−1 is not a loose end, since C−1
1 · α = εα is non-zero. Hence PC =

1
εα← 0

α→ 1
η← 1. The other end, C3 = η−1 is not a loose end either, since a loose end on

the right has to be direct by definition. Hence PCP = 1
εα← 0

α→ 1
η← 1

β→ 0. As a second

example, consider the string D = 0
αη→ 1. In this case l = 1, and D1 = D is a direct loose

end. To form P DP we therefore first need to form P D = 0
ε← 0

αη→ 1, and then remove the
loose end to form P DP = 0

ε← 0.

Definition 9 (Presilted strings) Let C and D be two strings. Write C ′ = PCP = C ′
1 · · ·C ′

m
and D′ = P DP = D′

1 · · · D′
n . We say that D is C-presilted if the following two conditions

are met:

1. For any i ∈ {0, . . . ,m} such that IC ′(i) is a lower intermediate point of C ′ and any
j ∈ {0, . . . , n} such that ID′( j) is an upper intermediate point of D′ we have that any
direct string W with s(W ) = ID′( j) and t (W ) = IC ′(i) factors as either W = X̄ · W ′,
where X is an adjacent string of ID′( j), or as W = W ′ · Ȳ , where Y is an adjacent string
of IC ′(i).

2. Assume that there are i ∈ {0, . . . ,m} and j ∈ {0, . . . , n} such that IC ′(i) = ID′( j)
and IC ′(i) and ID′( j) are either both upper intermediate points or they are both lower
intermediate points. By replacing, if necessary, D′ by D′−1 (and, as a consequence, D′

x

by D′−1
n−x+1 for each x) and j by n − j we can assume without loss of generality that if

i + 1 ≤ m and j + 1 ≤ n, then the strings C ′
i+1 and D′

j+1 both start with the same arrow
or inverse of an arrow, and if i > 0 and j > 0 then the strings C ′

i and D′
j both end on

the same arrow or inverse of an arrow. Define t (1) = 1 and t (−1) = 0. For σ ∈ {1,−1}
we define e(σ ) ∈ Z≥0 to be the maximal integer with respect to the property that

C ′
i+σ x+t (σ ) = D′

j+σ x+t (σ ) for all 0 ≤ x < e(σ )

whilst at the same time satisfying 0 ≤ i + σe(σ ) ≤ m and 0 ≤ j + σe(σ ) ≤ n. Now we
ask that one of the following holds for at least one of the two choices for σ :

(a) IC ′(i + σe(σ )) is an upper intermediate point and i + σ(e(σ ) + 1) ∈ {−1,m + 1}
(b) IC ′(i + σe(σ )) is an upper intermediate point, the previous condition is not met,

j + σ(e(σ ) + 1) /∈ {−1, n + 1} and
C̄ ′
i+σe(σ )+t (σ ) = D̄′

j+σe(σ )+t (σ ) · W
for some direct string W (which, by the maximality of e(σ ), must have positive
length).

(c) IC ′(i + σe(σ )) is a lower intermediate point and j + σ(e(σ ) + 1) ∈ {−1, n + 1}
(d) IC ′(i + σe(σ )) is a lower intermediate point, the previous condition is not met,

i + σ(e(σ ) + 1) /∈ {−1,m + 1} and
D̄′

j+σe(σ )+t (σ ) = W · C̄ ′
i+σe(σ )+t (σ )

for some direct string W (which, by the maximality of e(σ ), must have positive
length).

123



1390 F. Eisele et al.

Example 2 Let A be as in Example 1.

1. Let C = D = 0
ε→ 0. We would like to check whether D is C-presilted. We have

C ′ = D′ = PCP = 1
α← 0

εα→ 1. We need to check the first condition of Definition 9
for IC ′(a) with a ∈ {0, 2} and ID′(1). For a = 0 this means checking that every direct
stringW from ID′(1) = 0 to IC ′(0) = 1 factors either as α ·W ′, εα ·W ′ or asW ′ ·α. For
a = 2 we require a factorization either as α ·W ′, εα ·W ′ or asW ′ · εα. The direct strings
from 0 to 1 are α, εα, αη and εαη, and all of these have factorizations as required.
Since C = D we only need to check the second condition for i �= j . For i = j we
always end up with either 2a or 2c holding. Hence it suffices to check (i, j) = (0, 2) and
(i, j) = (2, 0). In either case we need to replace D′ by (D′)−1, that is, assume from now
on that D′ = 1

εα← 0
α→ 1, and look at (i, j) = (0, 0) and (i, j) = (2, 2).

By definition, e(σ ) is the largest non-negative integer such that the constituent factors of
C ′ between the intermediate points IC ′(i) and IC ′(i+σe(σ )) coincidewith the constituent
factors of D′ between the intermediate points ID′(i) and ID′(i + σe(σ )). In our case, C ′
and D′ share no common constituent factors (recall that D′ was replaced by D′−1), so
e(+1) = e(−1) = 0 both if (i, j) = (0, 0) and if (i, j) = (2, 2).
If (i, j) = (0, 0), then condition 2c holds for σ = −1. If (i, j) = (2, 2), then condition
2c holds for σ = +1. It follows that D is C-presilted.

2. Let us now consider an example where the conditions 2b and 2d come into play. Let

C = D = 1
εαη← 0

α→ 1
εαη← 0

αη→ 1
α← 0

εαη→ 1. Note that both C1 and C6 are loose
ends. Hence C ′ = D′ = PCP = 0

α→ 1
εαη← 0

αη→ 1
α← 0. We will perform part of the

verification that D is C-presilted. Namely, we will check that the second condition holds
for (i, j) = (2, 0). In this case it is not necessary to replace D′ by D′−1. Since j = 0
we get e(−1) = 0 and since D′

j+1 �= C ′
i+1 we also get e(+1) = 0. One can check that

for σ = −1 neither one of the conditions 2a–2d is satisfied. For σ = +1, only 2b has a
chance of holding. This condition asks that C̄ ′

i+1 = D̄′
j+1 · W for some direct string W .

Concretely, we need a W such that αη = α · W . Hence condition 2b holds with W = η.

Definition 10 (Presilting strings and support)

1. We say that a string C is presilting if C is C-presilted.
2. We say that a vertex e lies in the support of a stringC if one of the following holds (again

C ′ = PCP = C ′
1 · · ·C ′

m):

(a) IC ′(i) = e for some lower intermediate point IC ′(i) of C ′ with i �= 0,m.
(b) There is a direct string W whose source is an upper intermediate point IC ′(i) of C ′

and whose target is e, such that W does not factor as W = C̄ ′
j · W ′ for any adjacent

unidirectional string C ′
j of IC ′(i).

For a vertex e of Q we denote by Pe = e · A the corresponding projective indecomposable
module. Given two vertices e and f we will identify direct strings C with s(C) = e and
t (C) = f with the homomorphism from Pf to Pe induced by left multiplication with C
(considered as an element of A). We will define the string module associated to a string C as
the cokernel of a map ψC , which is constructed in the following definition.

Definition 11 (The map ψC ) Let A = kQ/I be a string algebra and let C be a string.
Decompose C ′ = PCP = C ′

1 · · ·C ′
m and consider the length of C ′:

1. If C ′ is of length zero, then it is given by a vertex e, and we define ψC : 0 → Pe.
2. If C ′ has length greater than zero than there are four cases to consider:
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(a) If C ′
1 is direct and C ′

m is inverse (note that in this case m is even): define Q(i) :=
Pt (C ′

2i−1)
and P(i) := Ps(C ′

2i−1)
for i ∈ {1, . . . , m

2 }. Define P(m2 + 1) := Pt (C ′
m ).

Define

Q :=
m
2⊕

i=1

Q(i) and P :=
m
2 +1⊕

i=1

P(i)

Furthermore, for each i ∈ {1, . . . , m
2 }, we denote by πQ(i) the projection from Q

onto Q(i), and for each i ∈ {1, . . . , m
2 + 1} we denote by ιP(i) the embedding of

P(i) into P . We define a homomorphism ψC : Q −→ P as follows:

ψC =
m
2∑

i=1

ιP(i) ◦ C ′
2i−1 ◦ πQ(i) + ιP(i+1) ◦ C ′−1

2i ◦ πQ(i)

(b) If C ′
1 is inverse and C ′

m is direct (in this case m is even): define Q(i) := Ps(C ′
2i−1)

and P(i) := Pt (C ′
2i−1)

for i ∈ {1, . . . , m
2 }. Define Q(m2 + 1) := Pt (C ′

m ). Define

Q :=
m
2 +1⊕

i=1

Q(i) and P :=
m
2⊕

i=1

P(i)

Furthermore, for each i ∈ {1, . . . , m
2 + 1}, we denote by πQ(i) the projection from

Q onto Q(i), and for each i ∈ {1, . . . , m
2 } we denote by ιP(i) the embedding of P(i)

into P . We define a homomorphism ψC : Q −→ P as follows:

ψC =
m
2∑

i=1

ιP(i) ◦ C ′−1
2i−1 ◦ πQ(i) + ιP(i) ◦ C ′

2i ◦ πQ(i+1)

(c) If C ′
1 is direct and C ′

m is direct (in this case m is odd): define Q(i) := Pt (C ′
2i−1)

and

P(i) := Ps(C ′
2i−1)

for i ∈ {1, . . . , m+1
2 }. Define

Q :=
m+1
2⊕

i=1

Q(i) and P :=
m+1
2⊕

i=1

P(i)

Furthermore, for each i ∈ {1, . . . , m+1
2 }, we denote by πQ(i) the projection from Q

onto Q(i), and by ιP(i) the embedding of P(i) into P . We define a homomorphism
ψC : Q −→ P as follows:

ψC = ιP(m+1
2 ) ◦ C ′

m ◦ πQ(m+1
2 ) +

m−1
2∑

i=1

ιP(i) ◦ C ′
2i−1 ◦ πQ(i) + ιP(i+1) ◦ C ′−1

2i ◦ πQ(i)

(d) If C ′
1 and C ′

m are inverse, then C−1 falls under case (2c), so we can define ψC :=
ψC−1 .

Remark 3 Note that Definition 11 is much less technical than it looks: given a string C , we
form C ′ = PCP , and then define a presentation Q −→ P such that the indecomposable
direct summands of P are in bijection with the upper intermediate points of C ′ and the
indecomposable direct summands of Q are in bijection with the lower intermediate points
of C ′. The map between Q and P is then the sum of the direct versions C̄ ′

1, . . . , C̄
′
m of the
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factors C ′
1, . . . ,C

′
m , each being considered as a map from the summand of Q corresponding

to its target to the summand of P corresponding to its source.

Definition 12 (String modules) Let A = kQ/I be a string algebra and let C be a string. The
associated string module M(C) is defined as:

M(C) = cokerψC .

In fact, ψC is a minimal projective presentation of M(C).

Remark 4 Note M(C) ∼= M(C−1) for cases (2a), (2b) and (2c), justifying the seemingly ad
hoc definition in (2d).

Proposition 5 Let A = kQ/I be a string algebra and let M be an indecomposable τ -rigid
A-module. Then M is a string module.

Proof By [13, Theorem on page 161] each indecomposable A-module is either a string
module or a so-called band module. By [13, Bottom of page 165] each band module occurs
in an Auslander–Reiten sequence as both the leftmost and the rightmost term, which means
that each bandmodule is isomorphic to its Auslander–Reiten translate. But by definition such
a module cannot be τ -rigid.

The next proposition is the main technical result of this section.

Proposition 6 Let A = kQ/I be a string algebra and let C and D be two strings. Denote
by T (C)• ∈ Kb(projA) and T (D)• ∈ Kb(projA) minimal projective presentations of
M(C) respectively M(D). Then HomKb(projA)(T (C)•, T (D)•[1]) = 0 if and only if D
is C-presilted.

Proof We know that a minimal projective presentation of the string module M(C) is given
by the following two-term complex:

T (C)• =
⊕

i

Q(C)(i)
ψC−→

⊕

j

P(C)( j)

where i ranges over all lower intermediate points of C ′ = PCP and j ranges over all upper
intermediate points of C ′ (just as in Definition 11, we merely added the superscript (C),
and are intentionally less explicit about the range of the direct sum in order to avoid having
to deal with three different cases again). In the same vein we have the minimal projective
presentation

T (D)• =
⊕

i

Q(D)(i)
ψD−→

⊕

j

P(D)( j)

of M(D), where i and j range over the lower respectively upper intermediate points of
D′ = P DP . We adopt the following notation for homomorphisms: given a direct string W
whose source is the upper intermediate point of D′ associated with P(D)( j) and whose target
is the lower intermediate point of C ′ associated with Q(C)(i), we denote byWj,i the element
of HomA(Q(C)(i), P(D)( j)) induced by left multiplication withW . Whenever we writeWj,i

below,wewillmean this to tacitly imply thatW starts and ends in the right vertices.Moreover,
we identify

⊕

i, j

HomA(Q(C)(i), P(D)( j)) = HomCb(A)(T (C)•, T (D)•[1])
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Note that the Wj,i form a basis of the above vector space, and we will refer to them as basis
elements in what follows. We say that Wj,i is involved in an element ϕ of the above space
if the coefficient of Wj,i is non-zero when we write ϕ as a linear combination of the basis
elements.

Now the condition HomKb(projA)(T (C)•, T (D)•[1]) = 0 is equivalent to asking that for

each summand Q(C)(i) of Q(C) (that is, for each lower intermediate i point of C ′) and each
summand P(D)( j) of P(D) (that is, for each upper intermediate point j of D′) each basis
element Wj,i is zero-homotopic. One deduces from the definition of ψC and ψD that the
space of zero-homotopic maps from T (C)• to T (D)•[1] is spanned by the following two
families of maps:

1. Let u be an upper intermediate point of D′ and let u′ be an upper intermediate point of
C ′. We define

hC (W, u, u′) = (W · C̄ ′
u′)u,u′−1 + (W · C̄ ′

u′+1)u,u′+1 if 0 < u′ < m

hC (W, u, u′) = (W · C̄ ′
u′+1)u,u′+1 if 0 = u′ < m

hC (W, u, u′) = (W · C̄ ′
u′)u,u′−1 if 0 < u′ = m

if C ′ has length greater than zero, and hC (W, u, u′) = 0 otherwise.
2. Let l be a lower intermediate point of D′ and let l ′ be a lower intermediate point of C ′

hD(W, l, l ′) = (D̄′
l · W )l−1,l ′ + (D̄′

l+1 · W )l+1,l ′ if 0 < l < n

hD(W, l, l ′) = (D̄′
l+1 · W )l+1,l ′ if 0 = l < n

hD(W, l, l ′) = (D̄′
l · W )l−1,l ′ if 0 < l = n

By definition, D′ having a lower intermediate point implies that D′ is of length greater
than zero, so the length zero case does not need to be considered.

The source and target of the direct stringW are ID′(u) and IC ′(u′) in the first case and ID′(l)
and IC ′(l ′) in the second.

The first condition in the definition of C-presiltedness is fulfilled if and only if each basis
elementWj,i is involved in some hC (W ′, u, u′) or some hD(W ′, l, l ′) for someW ′. So clearly
the first condition is necessary.

Now notice that if W has positive length, then the unique continuation condition (see
Definition 6(4)) ensures that hC (W, u, u′) respectively hD(W, l, l ′) actually involves at most
one basis element. Hence everyWj,i is zero-homotopic if and only if all basis vectors involved
in maps of the form hC (IC ′(u′), u, u′) with IC ′(u′) = ID′(u) and hD(IC ′(l ′), l, l ′) with
IC ′(l ′) = ID′(l) are zero-homotopic. So assume that we have such a pair l ′, l respectively
u′, u. These correspond precisely to the pairs i, j which are considered in the second part
of the definition of C-presiltedness. We may assume that D′ is oriented as in the definition
of C-presiltedness, and we get non-negative integers e(σ ) for σ ∈ {1,−1} just as in said
definition. For ease of notation we will write h instead of hC and hD (the parameters do in
fact determine which of the two we are dealing with). So we want to know when the basis
elements involved in h(IC ′(i), j, i) are zero-homotopic, that is, can be written as a linear
combination of other h’s. Without loss of generality we can assume that all h’s occurring in
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such a linear combination lie in the equivalence class of h(IC ′(i), j, i) with respect to the
transitive closure of the relation h(W, a, b) ∼ h(W ′, c, d) if there is a basis element which is
involved in both h(W, a, b) and h(W ′, c, d). We call h(W, a, b) and h(W ′, c, d) neighbors
of each other. Note that either c = a + 1 and d = b + 1, in which case we call h(W ′, c, d)

a right neighbor of h(W, a, b), or c = a − 1 and d = b − 1, in which case h(W ′, c, d) is
called a left neighbor of h(W, a, b). Left and right neighbors are unique if they exist. For any
−e(−1) < x < e(1) we have

h(IC ′(i + x), j + x, i + x) =
⎧
⎨

⎩

(C̄ ′
i+x ) j+x,i+x−1 + (C̄ ′

i+x+1) j+x,i+x+1

or
(C̄ ′

i+x ) j+x−1,i+x + (C̄ ′
i+x+1) j+x+1,i+x

depending on whether IC ′(i + x) is an upper or a lower intermediate point. Hence h(IC ′(i +
x), j + x, i + x) has exactly two neighbors, namely the right neighbor h(IC ′(i + x + 1), j +
x + 1, i + x + 1) and the left neighbor h(IC ′(i + x − 1), j + x − 1, i + x − 1). It hence
suffices to check what the right neighbor of h(IC ′(i + e(1)), j + e(1), i + e(1)) and the left
neighbor of h(IC ′(i − e(−1)), j − e(−1), i − e(−1)) are.

If IC ′(i + e(1)) is an upper intermediate point, and i + e(1) = m (i. e. 2a for σ = +1 is
met), then h(IC ′(i+e(1)), j+e(1), i+e(1)) has no right neighbors, but in this case h(IC ′(i+
e(1)), j+e(1), i+e(1)) = (C̄ ′

i+e(1)) j+e(1),i+e(1)−1 or h(IC ′(i+e(1)), j+e(1), i+e(1)) = 0
(ifC ′ has length zero). If 2a is met neither for σ = 1 nor for σ = −1 then h(IC ′(i+e(1)), j+
e(1), i+e(1)) involves two different basis elements. If i+e(1) < m, then a right neighbor of
h(IC ′(i+e(1)), j+e(1), i+e(1))must have the form h(W, i+e(1)+1, j+e(1)+1)where
D̄′

j+e(1)+1 · W = C̄ ′
i+e(1)+1. That is, a right neighbor exists if and only if the factorization

condition 2b for σ = +1 is met, and this right neighbor involves just a single basis element.
Similarly one verifies that if IC ′(i + e(1)) is a lower intermediate point, and j + e(1) = n

(i. e. 2c for σ = +1 is met), then h(IC ′(i + e(1)), j + e(1), i + e(1)) has no right neighbors,
but in this case h(IC ′(i + e(1)), j + e(1), i + e(1)) = (D̄′

j+e(1)) j+e(1)−1,i+e(1). If 2c is met
neither for σ = 1 nor for σ = −1 then h(IC ′(i + e(1)), j + e(1), i + e(1)) involves two
different basis elements. If 2c is not met for σ = +1, then h(IC ′(i+e(1)), j +e(1), i+e(1))
has a right neighbor (which necessarily involves but a single basis element) if and only 2d is
met for σ = +1.

We can of course apply the same line of reasoning to the left neighbors of h(IC ′(i −
e(−1)), j − e(−1), i − e(−1). What we obtain then is the statement that the equivalence
class of h(IC ′(i), j, i)with respect to the neighborhood relation contains an element involving
only a single basis element if and only if one of the conditions 2a–2d is met for either σ = +1
or σ = +1.

Now one just has to realize that if some element in the equivalence class of h(IC ′(i), j, i)
involves just a single basis element, then any basis element involved in any element of the
equivalence class can be written as a linear combination of the elements of the equivalence
class. Conversely, if every element of the equivalence class of h(IC ′(i), j, i) involves two
basis elements, then no basis element involved in any of the elements of the equivalence class
can be written as a linear combination of elements of the equivalence class (note that this is
just linear algebra, since such an equivalence class written as row vectors with respect to the
basis consisting of all involved basis elements in the right order, looks like (1, 1, 0, . . . , 0),
(0, 1, 1, 0, . . . , 0), …, (0, . . . , 0, 1, 1), and possibly (1, 0, . . . , 0) and/or (0, . . . , 0, 1)).

Proposition 7 Let A = kQ/I be a string algebra and let C be a string. Denote by T (C)• ∈
Kb(projA) a minimal projective presentation of M(C). Let e be a vertex of Q, and denote by
P•
e the stalk complex belonging to the projective indecomposable Pe. Then we always have
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HomKb(projA)(T (C)•, P•
e [2]) = 0, and HomKb(projA)(P

•
e [1], T (C)•[1]) = 0 if and only if

e is not in the support of C.

Proof Analogous to Proposition 6. ��

These propositions allowus to give a combinatorial characterisation of the indecomposable
τ -rigid modules over a string algebra.

Theorem 12 Let A = kQ/I be a string algebra.

1. There are bijections

{ presilting strings for A}
�

{ indecomposable τ − rigid A − modules }
�

{ indecomposable rigid two-term complexesT • ∈ Kb(projA) with H0(T •) �= 0}
where the first bijection is given by the correspondence between strings and indecom-
posable A-modules, and the second bijection is given by taking a minimal projective
presentation of an indecomposable τ -rigid module and, in the other direction, taking
homology in degree zero.

2. If {C(1), . . . ,C(l)} is a collection of presilting strings, and {e(1), . . . , e(m)} is a collec-
tion of vertices of Q, then ⎛

⎝
l⊕

i=1

M(C(i)),
m⊕

j=1

Pe( j)

⎞

⎠

is a support τ -tilting pair if and only if l + m = |A|, each C(i) is C( j)-presilted for all
i, j ∈ {1, . . . , l}, and none of the e( j)’s is in the support of any of the C(i)’s.

3. If {C(1), . . . ,C(l)}, {e(1), . . . , e(m)} and {D(1), . . . , D(l ′)},{ f (1), . . . , f (m′)} both
give rise to a support τ -tilting module in the sense of the previous point, say M and
N, then M ≥ N if and only if D(i) is C( j)-presilted for all i, j .

In fact, Theorem 12 shows that there is a combinatorial algorithm to determine the inde-
composable τ -rigid modules, the support τ -tilting modules and the mutation quiver of a
string algebra, provided A has only finitely many indecomposable τ -rigid modules. The
steps involved are as follows:

1. Run through a list of all strings up to a given length, check which of these strings are
presilting and which vertices lie in their support.

2. Determine the support τ -tilting modules involving only the presilting strings from Step
1 using Theorem 12(2).

3. Determine which of the support τ -tilting modules from Step 2 are mutations of one
another, which gives a subquiver of the Hasse quiver of sτ -tilt (the direction of the
arrows follows from Theorem 12(3) above).

4. If each vertex in the quiver has exactly |A| neighbors, then we are done by Theorem 6
and Proposition 1. Otherwise we need to use a bigger maximal length in Step 1 and start
over.

Of course, in practice, this can be done somewhat more efficiently.
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Example 3 (cf. [20]) Consider the quiver

Q = •1 •2 · · · •n−1 •n
α1

β2

α2

β3

αn−2

βn−1

αn−1

βn

and define A = kQ/I , where

I = 〈α1 · β2, αi · βi+1 − βi · αi−1 | i = 2, . . . , n − 1〉
Then

z =
n∑

i=2

βi · αi−1

is central in A. We have

J := 〈I, z〉 = 〈αi · βi+1, βi+1 · αi | i = 1, . . . , n − 1〉
So by Theorem 11 the poset of 2-term silting complexes over A is isomorphic to the poset
of 2-term silting complexes over kQ/J , which is a string algebra.

In the same vein, the algebra

B := kQ/〈I, βn · αn−1〉
also has kQ/J as a central quotient, because z obviously remains central modulo βn · αn−1.

This shows that A, which is the Auslander algebra of k[x]/(xn), and B, which is the
preprojective algebra of type An , have isomorphic posets of 2-term silting complexes. In fact,
Theorem 11 immediately recovers all of [20, Theorem 5.3]. Now by a result of Mizuno [24],
the poset of 2-term silting complexes over B is isomorphic to the group Sn+1 with the
generation order as its poset structure.

One could in principle try to reprove that last assertion using string combinatorics for the
algebra kQ/J , but it is not clear whether this would make matters easier. However, what we
can easily see is that each string for kQ/J is presilting (and strings can easily be counted in
this case), and hence both A and B have exactly 2 · (2n − 1) − n indecomposable τ -rigid
modules. Note that for n = 3, the algebra kQ/J is equal to the algebra R(3C) given in
the appendix. R(3C) has, as expected, 24 support τ -tilting modules and 11 indecomposable
τ -rigid modules, and all (presilting) strings are listed in Fig. 4.

Remark 5 Suppose A = kQ/I is a special biserial algebra and denote by P a full set of non-
isomorphic indecomposable projective-injective non-uniserial A-modules. Then it is well
known (see for example [30]) that the quotient algebra

B = A/
⊕

P∈P
soc(P)

is a string algebra. By [1, Theorem B], the support τ -tilting modules of A can be explicitly
computed from those of B, so the techniques in this section can be used for arbitrary special
biserial algebras.

6 Blocks of group algebras

Now we will apply our Theorem 11 and the results of Sect. 5 to blocks of group algebras.
Throughout this section, k is an algebraically closed field of characteristic p, and G is a finite
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group. Remember that since (blocks of) kG are symmetric, two-term silting complexes are
in fact tilting.

6.1 τ -tilting-finite blocks

Let us first recall the definition of τ -tilting-finiteness, which was already briefly mentioned
in the introduction.

Definition 13 (τ -tilting-finite algebras) An algebra is called τ -tilting-finite if there are only
finitely many isomorphism classes of basic support τ -tilting modules.

There is a nice sufficient criterion for τ -tilting-finiteness, which is particularly useful for
blocks.

Theorem 13 Let A be a symmetric algebrawith positive definiteCartanmatrix and a derived
equivalence class inwhich the entries of theCartanmatrices are bounded. Then A is τ -tilting-
finite.

Proof For a two-term tilting complex T = T1 ⊕ · · · ⊕ Tl (remember that l = |A|), write

Ti : 0 →
l⊕

j=1

P
⊕t−i j
j →

l⊕

j=1

P
⊕t+i j
j → 0,

and consider B = EndKb(projA)(T ). Denote by CA (respectively CB ) the Cartan matrix of A
(respectively B), and denote by χ the Euler form on K0(projA). Then:

(CB)m,n = dimk HomKb(projA)(Tm, Tn)

=
∑

i

(−1)i dimk HomKb(projA)(Tm, Tn[i])

= χ(Tm, Tn)

= χ

⎛

⎝
∑

j

(t+mj − t−mj )[Pj ],
∑

j

(t+nj − t−nj )[Pj ]
⎞

⎠

=
∑

i, j

(t+mi − t−mi )χ([Pi ], [Pj ])(t+nj − t−nj )

=
∑

i, j

(t+mi − t−mi )(CA)i, j (t
+
nj − t−nj ),

where in the second equality we used that the Ti are tilting. Defining M ∈ Ml(Z) by Mi j =
t+i j − t−i j , we obtain

CB = MCAM
t . (6.1)

In fact, there are only finitely many such M . To see this suppose that M ′ ∈ Ml(Z) also
satisfies CB = M ′CAM ′t . Then

CA = M−1M ′CAM
′t (M−1)t ,

which shows that M−1M ′ ∈ O(Zn,CA), the group of orthogonal, integral matrices pre-
serving CA. Since the Cartan matrix CA is positive definite by assumption, this is a finite
group.

123



1398 F. Eisele et al.

As we assume that the entries of the Cartan matrices of algebras derived equivalent to A
are bounded, it follows that only finitely many matrices occur as Cartan matrices of algebras
in the derived equivalence class of A (as there are only finitely many l × l-matrices with
integer entries between 0 and the assumed upper bound). For each of these finitely many
Cartan matrices, there are only finitely many matrices M satisfying (6.1). Since the matrix
M above is just the matrix of g-vectors of the Ti , this matrix already determines the tilting
complex T by Theorem 8, so we are done.

Now we would like to get some idea of how, if at all, τ -tilting-finiteness of a block
relates to its defect group and representation type. The following theorem determines the
representation type of (blocks of) group algebras.

Theorem 14 [10,12,16] Let B be a block of kG and let P be a defect group of B. The block
algebra B and the group algebra kP have the same representation type. Moreover:

1. kP is of finite type if P is cyclic.
2. kP is of tame type if p = 2 and P is the Klein four-group, or a generalized quaternion,

dihedral or semi-dihedral group.
3. In all other cases kP is of wild type.

Corollary 4 There exist τ -tilting-finite blocks of group algebras of every representation type
and of arbitrary large defect.

Proof Let G denote a finite p-group, so kG is local with defect group G. It is easy to see that
local algebras are τ -tilting-finite, and by Theorem 14 they can be of arbitrary representation
type.

A more interesting question is whether there exist non-local blocks of group algebras
which are τ -tilting-finite but not representation finite. Using Theorem 11 we can show the
following:

Theorem 15 There exist non-local τ -tilting-finite wild blocks of group algebras with arbi-
trary large defect groups, in the sense that every p-group occurs as a subgroup of the defect
group of a τ -tilting-finite non-local block.

Proof Assume B is a block of kG, with defect group P . For Q an arbitrary p-group, the
algebra kQ ⊗k B is a block of k(Q × G) with defect group Q × P (see for example [8, Ch.
IV, §15, Lemma 6]). Since Q is a p-group, there is a non-trivial element z ∈ Z(Q), and we
can form the quotient

kQ ⊗k B/((1 − z) ⊗ 1) ∼= k Q̄ ⊗k B,

with Q̄ = Q/〈z〉. Since Q̄ is again a p-group and Q is finite we can keep repeating this until
we get B as a quotient. Now Theorem 11 provides a bijection between the support τ -tilting
modules for B and the support τ -tilting modules for kQ ⊗k B, so it suffices to take for B a
block of cyclic defect or (as we will see below) a tame block, to obtain examples as in the
statement of the theorem.

6.2 Tame blocks

In [14], Erdmann determined the basic algebras of all algebras satisfying the following
definition, which is satisfied in particular by all tame blocks of group algebras.
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Definition 14 A finite-dimensional algebra A defined over an algebraically closed field k
of arbitrary characteristic is of dihedral, semidihedral or quaternion type if it satisfies the
following conditions:

1. A is tame, symmetric and indecomposable.
2. The Cartan matrix of A is non-singular.
3. The stable Auslander–Reiten quiver of A has the following properties:

Dihedral type Semidihedral type Quaternion type

Tubes: Rank 1 and 3 Rank ≤ 3 Rank ≤ 2
At most two 3-tubes At most one 3-tube

Others: ZA∞∞/� ZA∞∞ and ZD∞

The Appendix of Erdmann [14] furnishes a complete list of basic algebras satisfying said
definition. Later, Holm [17] showed that non-local tame blocks must actually be of one of
the following types:

Dihedral: D(2A), D(2B), D(3A), D(3B)1, D(3K )

Semidihedral: SD(2A)1,2, SD(2B)1,2, SD(3A)1, SD(3B)1,2, SD(3C),

SD(3D), SD(3H)

Quaternion: Q(2A), Q(2B)1, Q(3A)2, Q(3B), Q(3K )

We can show that all tame blocks are τ -tilting-finite, even without looking at Erdmann’s
classification [14] in greater detail. Namely, the class of algebras defined in Definition 14 is
clearly closed under derived equivalences (cf. [18, Proposition 2.1]), and it follows from [14]
that the entries of theCartanmatrices of algebras in the derived equivalence class of an algebra
satisfying Definition 14 are bounded (to see this one has to use the fact that the dimension of
the center is a derived invariant). Moreover, a block of a group algebra always has a positive
definite Cartan matrix. Hence, Theorem 13 implies that all tame blocks are τ -tilting finite.

So it is in principle possible to completely classify the two-term tilting complexes over
tameblocks, anddescribe the associatedHasse quivers (seeTheorem4 for the poset structure).
Using Theorem 11 and the results on string algebras, we are able to achieve this (in fact, for
all algebras in Erdmann’s list, not just blocks). In Appendix 7, we provide the presentations
of the algebras from the appendix of [14], along with central elements and the quotients one
obtains. A direct application of Theorem 11 then reduces the computation of g-vectors and
Hasse quivers for all tame blocks to the same computation for five explicitly given finite
dimensional algebras (with trivial center): R(2AB), R(3ABD), R(3C), R(3H) and R(3K )

(see Table 2 below), which do not depend on any extra data. The computation of g-vectors and
Hasse quivers for all algebras of dihedral, semidihedral or quaternion type reduces to the same
computation for the aforementioned five algebras, and in addition the five algebras W (2B),
W (3ABC), W (Q(3A)1), W (3F) and W (3QLR) (also given in Table 2). The following
theorem follows immediately from these considerations.

Theorem 16 All algebras of dihedral, semidihedral or quaternion type are τ -tilting-finite
and their g-vectors and Hasse quivers (of the poset of support τ -tilting modules) are inde-
pendent of the characteristic of k and the parameters involved in the presentations of their
basic algebras.
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If we restrict our attention to tame blocks of group algebras, the results listed in Appendix 7
imply that the g-vectors and Hasse quiver for such a block depend only on the Ext-quiver
of its basic algebra. The isomorphism class of the defect group (dihedral, semidihedral or
quaternion) does not play a role.

Corollary 5 All tilting complexes over an algebra A of dihedral, semidihedral, or quaternion
type can be obtained from the regular module AA by iterated tilting mutation.

Proof By [18, Proposition 2.1], the class of algebras satisfying Definition 14 is closed under
derived equivalence, so the result follows immediately from Proposition 2 and Theorem 7.

Since R(2AB), R(3ABD), R(3C), R(3H), R(3K ), W (2B), W (3ABC), W (Q(3A)1),
W (3F) and W (3QLR) are all string algebras one can go further and actually compute
(using the results in Sect. 5) the g-vectors and Hasse quivers of the poset of support τ -tilting
modules for all algebras of dihedral, semidihedral and quaternion type. For details we refer
to Appendix 7.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license, and indicate if changes were made.

7 Appendix: Computations for algebras of dihedral, semidihedral and
quaternion type

In this appendix, we use Theorem 11 and the results in Sect. 5 to give a complete description
of the g-vectors and Hasse quivers (of basic two-term silting complexes, see Sect. 2) of all
algebras in Erdmann’s list (see Definition 14). These include all the basic algebras of tame
blocks of group algebras.

In the first three columns of Table 1, we give the presentations of the basic algebras listed
in [14], along with their names and parameters. Let us look at a single row, which describes
an algebra A. Then the fourth column describes elements z1, . . . , zn ∈ rad(A) such that
zi + (z1, . . . , zi−1) ∈ Z(A/(z1, . . . , zi−1)). Note that a horizontal bar above an element zi
means that the image of this element in Z(A/(z1, . . . , zi−2)) is not central. For instance,
all zi appearing before the first horizontal bar lie in Z(A), the zi after the first horizontal
bar is not central in A, only in A/(z1, . . . , zi−1) (this extra piece of information is meant to
help verification, it is not technically required). Taking the quotient A/(z1, . . . , zn)we obtain
the finite dimensional algebra listed in the fifth column, whose presentation can be found in
Table 2. Since A/(z1, . . . , zn)was obtained from the original algebra A by taking successive
central quotients, Theorem 11 ensures that the g-vectors and Hasse quiver of A coincide with
the ones of the algebra specified in the fifth column. Using the presentations in Table 2 one
checks easily that all of them are string algebras. Hence we can use the results of Sect. 5 to
determine their support τ -tilting modules using string combinatorics, see Figs. 1, 2, 3, 4, 5,
6, 7, 8, 9 and 10. Calculations dealing with string combinatorics were done using GAP [15],
and the results were checked against computations done over k = F2 using the GAP-package
QPA [27]. The GAP code we wrote for this purpose is available at https://github.com/feisele/
tau-tilting-article-code. It is however also possible to check the correctness of the results by
hand.
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Table 1 Algebras from Erdmann’s list together with central quotients

melelartnecevisseccuSsnoitaleRsretemarap&emaNreviuQ ents Quotient

•0 •1α

β

γ

D(2A)
k ≥ 1, c = 0 or 1

γβ = 0
α2 = c(αβγ)k

(αβγ)k = (βγα)k

(βγα)k−1βγ
αβγ + γαβ + βγα

βγ

R(2AB)

Q(2A)
k ≥ 2, c ∈ K

βγβ = (αβγ)k−1αβ
γβγ = (γαβ)k−1γα

α2 = (βγα)k−1βγ + c(βγα)k

α2β = 0

α2

αβγ + βγα + γαβ
γβ + (αβγ)k−1α

βγ

R(2AB)

SD(2A)1
k ≥ 2, c ∈ K

α2 = c(αβγ)k

βγβ = (αβγ)k−1αβ
γβγ = (γαβ)k−1γα

(αβγ)kα = 0

α2

αβγ + βγα + γαβ
γβ + (αβγ)k−1α

βγ

R(2AB)

SD(2A)2
k ≥ 2, c ∈ K

α2 = (βγα)k−1βγ + c(αβγ)k

γβ = 0
(αβγ)k = (βγα)k

(βγα)k−1βγ
αβγ + γαβ + βγα

βγ
R(2AB)

•0 •1α

β

γ

η
D(2B)

k ≥ 1, s ≥ 1, c = 0 or 1

βη = 0 = ηγ = γβ
α2 = c(αβγ)k

(αβγ)k = (βγα)k

(γαβ)k = ηs

η
(βγα)k−1βγ

αβγ + γαβ + βγα
βγ

R(2AB)

Q(2B)1
k ≥ 2, s ≥ 3, c ∈ K

γβ = ηs−1

βη = (αβγ)k−1αβ
ηγ = (γαβ)k−1γα
βη = (αβγ)k−1αβ

α2 = (βγα)k−1βγ + c(βγα)kα2β = 0

(βγα)k−1βγ

(αβγ)k−1α + η
αβγ + γαβ + βγα

βγ

R(2AB)

SD(2B)1
k ≥ 1, t ≥ 2, c ∈ K

γβ = 0 = ηγ = βη
α2 = (βγα)k−1βγ + c(βγα)k

ηt = (γαβ)k

(αβγ)k = (βγα)k

η
(βγα)k−1βγ

αβγ + γαβ + βγα
βγ

R(2AB)

SD(2B)2
k ≥ 1, t ≥ 3, c ∈ K

βη = (αβγ)k−1αβ
ηγ = (γαβ)k−1γα

γβ = ηt−1

α2 = c(αβγ)k

βη2 = 0 = η2γ

(βγα)k−1βγ

(αβγ)k−1α + η
αβγ + γαβ + βγα

βγ

R(2AB)

SD(2B)s4(c)
s ≥ 2, c ∈ K

βγ = α2, αβ = βη, ηγ = γα
γβ = η2(1 + cηs+1), αsβ = 0

γαs = 0 = ηsγ, αs+2 = 0 = ηs+2

βηs = 0

βγ + γβ
α + η

W (2B)

Q(2B)2
s ≥ 4, a = 0, p(t) ∈ K[t], p(0) = 1

αβ = βη, ηγ = γη
βγ = α2p(α), γβ = η2p(η) + aηs−1 + cηs

αs+1 = 0 = ηs+1

γαs−1 = 0 = αs−1β

βγ + γβ
α + η

W (2B)

Q(2B)3
t ≥ 3, a, c, d ∈ K, a = 0

αβ = βη, ηγ = γη
βγ = α2 + cα3, γβ = aηt−1 + dηt

α4 = 0 = ηt+1 = γα2 = α2β

βγ + γβ
α + η

W (2B)

•1 •0 •2
γ

β δ

η

D(3A)1
k ≥ 1

βγ = 0 = ηδ
(γβδη)k = (δηγβ)k

γβδη + βδηγ + δηγβ + ηγβδ
γβδη

R(3ABD)

Q(3A)2
k ≥ 2

βγβ = (βδηγ)k−1βδη
γβγ = (δηγβ)k−1δηγ
ηδη = (ηγβδ)k−1ηγβ
δηδ = (γβδη)k−1γβδ

βγβδ = 0 = ηδηγ

γβδη + βδηγ + δηγβ + ηγβδ
γβδη
βγ
ηδ

R(3ABD)

SD(3A)1
k ≥ 1

βγ = 0
δηδ = (γβδη)k−1γβδ
ηδη = (ηγβδ)k−1ηγβ

γβδη + βδηγ + δηγβ + ηγβδ
γβδηηδ

R(3ABD)

D(3A)2
l, k ≥ 2

βδ = 0 = ηγ
(γβ)k = (δη)l

γβ + βγ
δη + ηδ

W (3ABCD)

Q(3A)1
a ≥ b ≥ 2, 0 = d ∈ K

βδη = (βγ)a−1β
δηγ = (γβ)a−1γ
ηγβ = d(ηδ)b−1η
γβδ = d(δη)b−1δ
βδηδ = 0 = ηγβγ

δη + ηδ + (βγ)a−1

γβ + βγ + (δη)b−1 W (Q(3A)1)

SD(3A)2
k ≥ 2

γβ = δη
(βγ)k−1βδ = 0 = (ηδ)k−1ηγ

βγ + γβ + ηδ R(3C)

•1 •0 •2
γ

β δ

η

α
D(3B)1

k ≥ 1, s ≥ 2

αβ = 0 = γα
βγ = 0 = ηδ

(γβδη)k = (δηγβ)k

αs = (βδηγ)k

α
γβδη + βδηγ + δηγβ + ηγβδ

γβδη
R(3ABD)

Q(3B)
k ≥ 1, s ≥ 3

βγ = αs−1

αβ = (βδηγ)k−1βδη
γα = (δηγβ)k−1δηγ
ηδη = (ηγβδ)k−1ηγβ
δηδ = (γβδη)k−1γβδ

α2β = 0 = βδηδ

α + (δηγβ)k−1δη
γβδη + βδηγ + δηγβ + ηγβδ

γβδη
ηδ

R(3ABD)

SD(3B)1
k ≥ 1, s ≥ 2

αβ = 0 = γα = βγ
αs = (βδηγ)k

ηδη = (ηγβδ)k−1ηγβ
δηδ = (γβδη)k−1γβδ

α
γβδη + βδηγ + δηγβ + ηγβδ

γβδη
ηδ

R(3ABD)

SD(3B)2
k ≥ 1, s ≥ 3

ηδ = 0
βγ = αs−1

γα = (δηγβ)k−1δηγ
αβ = (βδηγ)k−1βδη

α + (δηγβ)k−1δη
γβδη + βδηγ + δηγβ + ηγβδ

γβδη
R(3ABD)

D(3B)2
k ≥ 1, s ≥ 3

γα = 0 = αβ
βδ = 0 = ηγ
(γβ)k = (δη)l

(βγ)k = αs

α
βγ + γβ
δη + ηδ

W (3ABCD)

•1 •0 •2
γ

β δ

η

α ζ
SD(3D)

k ≥ 1, s ≥ 3, t ≥ 2

ηδ = 0 = δζ = ζη
βγ = αs−1

γα = (δηγβ)k−1δηγ
αβ = (βδηγ)k−1βδη

ζt = (ηγβδ)k

α + (δηγβ)k−1δη
γβδη + βδηγ + δηγβ + ηγβδ

ζ
γβδη

R(3ABD)

D(3D)1
s, t ≥ 2, k ≥ 1

βγ = 0 = ηδ, αβ = 0 = γα
δζ = 0 = ζη

αs = (βδηγ)k

ζt = (ηγβδ)k

(γβδη)k = (δηγβ)k

α
ζ

βδγη + δηγβ + ηγβδ + γβδη
δηγβ

R(3ABD)
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Table 1 continued

melelartnecevisseccuSsnoitaleRsretemarap&emaNreviuQ ents Quotient

D(3D)2
s, t ≥ 2, k, l ≥ 1

γα = 0 = αβ, βδ = 0 = ηγ
δζ = 0 = ζη

(βγ)k = αs, (ηδ)l = ζt

(γβ)k = (δη)l

α
ζ

βγ + γβ
ηδ + δη

W (3ABCD)

Q(3D)
s, t ≥ 3, k ≥ 1

βγ = αs−1

γα = (δηγβ)k−1δηγ
αβ = (βδηγ)k−1βδη

ηδ = ζt−1

δζ = (γβδη)k−1γβδ
ζη = (ηγβδ)k−1ηγβ

α2β = 0 = δηδ

βγ
ηδ

βδηγ + δηγβ + ηγβδ + γβδη
α
ζ

δηγβ

R(3ABD)

•1 •0 •2
γ

β δ

η

ρ

SD(3C)2,I/II

k ≥ 2, s ≥ 2

βρ = 0 = ρδ
ηρ = 0 = ργ

γβ = δη
(βγ)k = ρs

(βγ)k−1βδ = 0 = (ηδ)k−1ηγ

ρ
γβ + βγ + ηδ

R(3C)

SD(3C)1
s ≥ 3

βδ = 0 = βρ = ργ
ηγ = 0 = ηρ = ρδ

ρs = γβ = δη
βγβ = 0 = ηδη

ρ
γβ + βγ

ηδ
W (3ABCD)

Q(3C)
k ≥ 2, s ≥ 3

βρ = 0 = ργ
ηρ2 = 0 = ρ2δ

δη − γβ = ρs−1

ηρ = (ηδ)k−1η
ρδ = (δη)k−1δ

(βγ)k−1βδ = 0 = (ηδ)k−1ηγ

γβ + δη
βγ + δη + ηδ

ρ
R(3C)

•0 •1

•2

γ

β

δ

η

λ

SD(3H)
k ≥ 2, s ≥ 2

δλ = (γβ)k−1γ
λβ = (ηδ)s−1η
βδη = γβδ = 0

ηγ = 0

βγ + γβ
ηδ + δη

R(3H)

•0 •1

•2

γ

β

δ

η

λ

κ

D(3K)
a ≥ b ≥ c ≥ 1

βδ = δλ = λβ = 0
γκ = κη = ηγ = 0
(βγ)a = (κλ)b

(λκ)b = (ηδ)c

(δη)c = (γβ)a

βγ + γβ
λκ + κλ
δη + ηδ

R(3K)

Q(3K)
a ≥ b ≥ c ≥ 2

βδ = (κλ)a−1κ
ηγ = (λκ)a−1λ
δλ = (γβ)b−1γ
κη = (βγ)b−1β
λβ = (ηδ)c−1η
γκ = (δη)c−1δ

γβδ = 0 = δηγ = λκη

βγ + γβ
λκ + κλ
δη + ηδ

R(3K)

SD(3K)
a ≥ b ≥ c ≥ 2

κη = ηγ = γκ = 0
δλ = (γβ)k−1γ
βδ = (κλ)b−1κ
λβ = (ηδ)c−1η

βγ + γβ
δη + ηδ
κλ + λκ

βδλ + δβλ + λβδ

R(3K)

•0 •1

•2

β

δ

η

λ

SD(3F )
k ≥ 2

λβ = (ηδ)k−1η
βδη = 0 = ηδλ

δλβδ = 0

δη + ηδ
βδλ + δλβ + λβδ

W (3F )

•0 •1

•2

α

β

δλ

ρ
D(3Q)

s, t ≥ 2, k ≥ 1

λα = 0 = αβ
βρ = 0 = ρδ
(βδλ)k = αs

(δλβ)k = ρt

α
ρ

βδλ + δλβ + λβδ
W (3QLR)

•0 •1

•2

α

β

δλ

D(3L)
k, s ≥ 2

αβ = 0 = λα
(βδλ)k = αs

(δλβ)kδ = 0

α
βδλ + δλβ + λβδ

W (3QLR)

•0 •1

•2

α

β

δλ

ρ

ζ

D(3R)
s, t, u ≥ 2

αβ = 0 = βρ = ρδ
δζ = 0 = ζλ = λα

αs = (βδλ)k

ρt = (δλβ)k

ζu = (λβδ)k

α
ρ
ζ

βδλ + δλβ + λβδ

W (3QLR)
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Table 2 Description of the quotient algebras

Quiver Name Relations # of supp. τ-tiltings Figure

•0 •1α

β

γ

R(2AB)
βγ = 0 = γβ

α2 = 0
γαβ = 0

8 Fig. 1

•0 •1
β

γ

W (2B) βγ = 0 = γβ 6 Fig. 2

•1 •0 •2
γ

β δ

η

R(3ABD)
βγ = 0 = ηδ

βδηγ = 0 = ηγβδ
γβδη = 0 = δηγβ

32 Fig. 3

•1 •0 •2
γ

β δ

η

R(3C)
βγ = 0 = γβ
ηδ = 0 = δη

24 Fig. 4

•0 •1

•2

γ

β

δ

η

λ

R(3H)

δλ = 0 = λβ
ηδ = 0 = δη
βγ = 0 = γβ

ηγ = 0

28 Fig. 5

•0 •1

•2

γ

β

δ

η

λ

κ

R(3K)

βδ = δλ = λβ = 0
γκ = κη = ηγ = 0

βγ = 0 = γβ
λκ = 0 = κλ
δη = 0 = ηδ

32 Fig. 6

•1 •0 •2
γ

β δ

η

W (3ABCD)
βγ = 0 = γβ
δη = 0 = ηδ
βδ = 0 = ηγ

20 Fig. 7

•1 •0 •2
γ

β δ

η

W (Q(3A)1)

βγ = 0 = γβ
δη = 0 = ηδ

βδη = 0 = δηγ
γβδ = 0 = ηγβ

24 Fig. 8

•0 •1

•2

β

δ

η

λ

W (3F )
δη = 0 = ηδ

λβ = 0
βδλ = 0 = δλβ = λβδ

24 Fig. 9

•0 •1

•2

β

δλ

W (3QLR) βδλ = 0 = δλβ = λβδ 20 Fig. 10

As for the notation used in Figs. 1, 2, 3, 4, 5, 6, 7, 8, 9 and 10: we first give a list of all
presilting strings C . The notation used for strings should be more or less self-explanatory
(and was already seen in Example 1): for instance,

1
β←− 0

αβ−→ 1

123



1404 F. Eisele et al.

Fig. 1 R(2AB)

Fig. 2 W (2B)

denotes the string β−1αβ. We give a name to each such string (listed in the first column),
which is essentially arbitrary (apart from the fact that we use the name X∨ for a string whose
g-vector is equal to the g-vector of X multiplied by −1). For each presilting string C we
give PCP and its g-vector, as well as the names of all other presilting strings which are C-
presilted. Among these, we highlight those D for which C is D-presilted. When P∨

i figures
among the C-presilted strings, it simply means that the corresponding vertex ei is not in the
support of C . This information determines the Hasse quivers completely.
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Fig. 3 R(3ABD)
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Fig. 4 R(3C)
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Fig. 5 R(3H)
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Fig. 6 R(3K )
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Fig. 7 W (3ABCD)

123



1410 F. Eisele et al.

Fig. 8 W (3QA1)
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Fig. 9 W (3F)
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Fig. 10 W (3QLR)
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