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Abstract

The main objective of this thesis is to provide e¤ective means for the valuation of popular �-
nancial derivative contracts with path-dependence and/or early-exercisable provisions. Starting
from the risk-neutral valuation formula, the approach we propose is to sequentially compute
convolutions of the value function of the contract at a monitoring date with the transition
density between two dates, to provide the value function at the previous monitoring date, until
the present date. A rigorous computational algorithm for the convolutions is then developed
based on transformations to the Fourier domain.

In the �rst part of the thesis, we deal with arithmetic Asian options, which, due to the grow-
ing popularity they enjoy in the �nancial marketplace, have been researched signi�cantly over
the last two decades. Although few remarkable approaches have been proposed so far, these are
restricted to the market assumptions imposed by the standard Black-Scholes-Merton paradigm.
Others, although in theory applicable to Lévy models, are shown to su¤er a non-monotone con-
vergence when implemented numerically. To solve the Asian option pricing problem, we initially
propose a �exible framework for independently distributed log-returns on the underlying asset.
This allows us to generalize �rstly in calculating the price sensitivities. Secondly, we consider an
extension to non-Lévy stochastic volatility models. We highlight the bene�ts of the new scheme
and, where relevant, benchmark its performance against an analytical approximation, control
variate Monte Carlo strategies and existing forward convolution algorithms for the recovery of
the density of the underlying average price.

In the second part of the thesis, we carry out an analysis on the rapidly growing market
of convertible bonds (CBs). Despite the vast amount of research which has been undertaken
about this instrument over the last thirty years, no pricing paradigm has been standardized
yet. This is due to the need for proper modelling of the CBs� composite payout structure
and the multifactor modelling arising in the CB valuation. Given the dimensional capacity
of the convolution algorithm, we are now able to introduce a new jump di¤usion structural
approach in the CB literature, towards more realistic modelling of the default risk, and further
include correlated stochastic interest rates. This aims at �xing dimensionality and convergence
limitations which previously have been restricting the range of applicability of popular grid-
based, lattice and Monte Carlo methods. The convolution scheme further permits �exible
handling of real-world CB speci�cations; this allows us to properly model the �rm�s call policy
and investigate its impact on the computed CB prices. We illustrate the performance of the
numerical scheme and highlight the e¤ects originated by the inclusion of jumps.

iii



Contents

1 Introduction 1

2 Fourier transforms 5

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Fourier transforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2.1 Derivatives of a function and their Fourier transforms . . . . . . . . . . . 6

2.2.2 Convolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2.3 Inverse Fourier transform . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2.4 Multi-dimensional Fourier transforms . . . . . . . . . . . . . . . . . . . . 8

2.3 Characteristic function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.4 Discrete Fourier transforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.5 Fourier transforms on a grid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.5.1 Multi-dimensional discrete approximations . . . . . . . . . . . . . . . . . . 17

3 A¢ ne models and option pricing 19

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2 Lévy processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.3 A¢ ne processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.4 Option pricing with Fourier transforms . . . . . . . . . . . . . . . . . . . . . . . . 23

4 A backward convolution algorithm for discretely sampled arithmetic Asian

options 29

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

iv



4.2 Pricing approaches to arithmetic Asian options . . . . . . . . . . . . . . . . . . . 31

4.3 Modelling on reduced state space . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.4 Pricing of Asian options by convolution . . . . . . . . . . . . . . . . . . . . . . . 36

4.5 The backward price convolution algorithm . . . . . . . . . . . . . . . . . . . . . . 37

4.5.1 Numerical implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.6 Numerical study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.6.1 Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.6.2 Pricing in the Black-Scholes-Merton economy . . . . . . . . . . . . . . . . 41

4.6.3 Pricing in Lévy economies . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.6.4 Standard DFT versus fractional DFT . . . . . . . . . . . . . . . . . . . . 46

4.7 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5 Computation of the Asian option price sensitivities 50

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.2 Price sensitivities via direct di¤erentiation . . . . . . . . . . . . . . . . . . . . . . 52

5.2.1 Distribution-based approach for price sensitivities in a¢ ne models . . . . 54

5.3 A convolution approach for the Asian option price sensitivities . . . . . . . . . . 56

5.4 Computation of the price sensitivities via Monte Carlo simulation . . . . . . . . 62

5.4.1 Likelihood ratio estimators coupled with Fourier transforms . . . . . . . . 64

5.5 Numerical study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.5.1 Convolution versus Monte Carlo . . . . . . . . . . . . . . . . . . . . . . . 67

5.6 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

6 Pricing Asian options under stochastic volatility 71

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

6.2 Pricing approaches to Asian options under stochastic volatility . . . . . . . . . . 73

6.3 Market models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

6.3.1 Laws of a¢ ne stochastic volatility models . . . . . . . . . . . . . . . . . . 76

6.4 Modelling on reduced state space with stochastic volatility . . . . . . . . . . . . . 77

6.5 The backward price convolution algorithm . . . . . . . . . . . . . . . . . . . . . . 78

6.5.1 Numerical implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

v



6.6 Asian option pricing via Monte Carlo simulation . . . . . . . . . . . . . . . . . . 82

6.6.1 Geometric Asian options . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

6.6.2 Simulation of the Heston model . . . . . . . . . . . . . . . . . . . . . . . . 85

6.7 Numerical study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

6.7.1 Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

6.7.2 Pricing via convolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

6.7.3 Monte Carlo pricing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

6.8 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

Appendix 6.A�The truncated Gaussian and quadratic-exponential schemes . . . . . . 96

Appendix 6.B�Spot measure change for Lévy and time-changed Lévy processes . . . . 99

Appendix 6.C�Characterization of the log-return distribution conditional on the vari-

ance at the endpoints of a time interval . . . . . . . . . . . . . . . . . . . . . . . 101

7 Monte Carlo option pricing coupled with Fourier transformation 103

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

7.2 Monte Carlo simulation coupled with Fourier transform . . . . . . . . . . . . . . 104

7.2.1 Numerical implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

7.3 Market model setup and option pricing . . . . . . . . . . . . . . . . . . . . . . . . 107

7.4 The tempered stable framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

7.4.1 Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

7.4.2 CGMY as time-changed Brownian motion . . . . . . . . . . . . . . . . . . 109

7.5 Numerical study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

7.5.1 Distribution function tests . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

7.5.2 Simulation tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

7.6 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

Appendix 7�Simulation of the CGMY process using change of measure . . . . . . . . . 120

8 A backward convolution algorithm for convertible bonds in a jump di¤usion

setting with stochastic interest rates 121

8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

8.2 Market model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

vi



8.2.1 The �rm value-interest rate setup . . . . . . . . . . . . . . . . . . . . . . . 125

8.2.2 Stock versus �rm value and real-world considerations . . . . . . . . . . . . 126

8.2.3 Calibration issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

8.3 Convertible bonds: contract features . . . . . . . . . . . . . . . . . . . . . . . . . 131

8.3.1 The optimal call strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

8.3.2 The payo¤ function and pricing considerations . . . . . . . . . . . . . . . 133

8.4 The backward price convolution algorithm . . . . . . . . . . . . . . . . . . . . . . 134

8.4.1 The call payo¤ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

8.4.2 Numerical implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

8.5 Numerical study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

8.5.1 Black-Scholes-Merton model . . . . . . . . . . . . . . . . . . . . . . . . . . 139

8.5.2 Jump di¤usion setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

8.5.3 E¤ects of discrete coupon and dividend payments . . . . . . . . . . . . . . 143

8.5.4 E¤ects of call policy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

8.6 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

Appendix 8.A�Equivalent martingale measure changes: the t-forward measure . . . . 149

Appendix 8.B�Characterization of the bivariate log-�rm value�interest rate process

under the forward measure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

9 Concluding remarks 155

References 159

vii



Chapter 1

Introduction

In recent years there has been quite an increase in the popularity of path-dependent derivatives,

so called since their payo¤s are related to movements in the price of some underlying asset

throughout the life (or part of the life) of the contract. Of particular interest to the traders are

the Asian options, whose payout depends on the average value of some asset observed over a

preset time window. Their appeal stems partly from the fact that the option payout does not

depend on a single snapshot of the underlying asset�s price, thus reducing the risk of market

speculation. Also, the averaging has a smoothing e¤ect on the �uctuating behaviour of the

underlying asset, resulting in lower option prices.

The way the average is de�ned (geometric versus arithmetic; continuously versus discretely

monitored asset values) plays a key role in the analytical tractability of the option; in contrast

to the more prevalent arithmetic average, a closed analytical pricing formula is available for the

geometric average under the standard Black-Scholes-Merton market model assumptions. This

has given rise to a large amount of research over the last two decades towards the accurate and

e¢ cient calculation of the price and sensitivities of this instrument.

Common in the �nancial marketplace are also exotic structures with early-exercise features,

i.e., contracts that may be exercised prior to their expiration. Convertible bonds fall into this

category. These are corporate debt securities that o¤er the investors the right to forgo future

coupon and/or principal payments in exchange for a predetermined number of shares. From

the issuer�s perspective, the key bene�t of raising money by selling CBs is a reduced coupon

level. Hence, CBs depend on variables related to the underlying �rm value (or stock), the �xed

1



INTRODUCTION

income part (interest rates and credit risk), and the interaction between these components; for

this, they are frequently characterized as hybrid claims. So far, CBs have raised signi�cant

challenges for practitioners and academics. This is because no pricing technique, generally

robust and easily adaptable to their complicated structure and the governing random factors,

has been standardized yet.

This thesis is dedicated to the e¢ cient valuation of the abovementioned exotic derivatives

using techniques that strongly rely on numerical integration enhanced by Fourier transforms.

The next two chapters provide the building blocks for the chapters to follow. In particular,

the notion of a Fourier transform and associated key results are delineated in Chapter 2. We

discuss how continuous Fourier integrals can be approximated by discrete, truncated Fourier

series expansions, to allow for fast and accurate computation via the fast Fourier transform

(FFT) algorithm. Chapter 3 illustrates that Fourier transforms provide an important ground

for pricing contingent claims on underlyings that are driven by a¢ ne models with closed-form

characteristic functions; we consider three main applications of Fourier transforms in pricing

European-type options (Heston (1993), Carr and Madan (1999), Fang and Oosterlee (2008a)).

Applications in pricing exotic products, like Asian, Bermudan and American vanilla, barrier and

lookback options (see Carverhill and Clewlow (1990), Eydeland (1994), Broadie and Yamamoto

(2003), (2005), Lord et al. (2008), Fang and Oosterlee (2008b), Feng and Linetsky (2008), Feng

and Lin (2009)), are also discussed.

Chapters 4, 5 and 6 contribute to the e¤ective computation of the prices and sensitivities

of discretely sampled arithmetic Asian options. Similar in spirit to backward pricing on a

lattice, the method is based on backward recursive evaluation of the expected option payout

via numerical integration, relying heavily on Fourier transformations. The core idea is to uti-

lize the risk-neutral valuation integral formula within the so-called Carverhill-Clewlow-Hodges

framework and, following any necessary changes of measure, recognize that this in fact forms

a convolution. The convolution is then expressed in terms of Fourier integrals which are dealt

with numerically by means of the FFT algorithm. The method only requires knowledge of the

characteristic function identifying the joint law of the state variables involved, hence permitting

its applicability within the class of a¢ ne models.

Under Lévy assumptions for the asset log-returns, it is shown in Chapter 4 that modelling

2



INTRODUCTION

the option price straightaway provides substantial numerical improvement over existing forward

convolutions (see Carverhill and Clewlow (1990), Benhamou (2002), Fusai and Meucci (2008))

aimed at recovering the density of the underlying average instead. Additional speed-accuracy

comparisons with a control variate Monte Carlo strategy and the compelling analytical approx-

imation by Lord (2006a) demonstrate the soundness of this approach.

In light of the need for accurate price sensitivities for risk management purposes, but also as a

measure of the pricing error resulting from potentially inappropriate parameter values, Chapter

5 generalizes the pricing methodology introduced in Chapter 4 in computing the sensitivities

with respect to any parameter of interest. Furthermore, standard Monte Carlo techniques

for the estimation of the sensitivities (see Broadie and Glasserman (1996)) are revisited and,

after suitably adapting to non-Gaussian Lévy log-returns, we run numerical experiments for

comparison with the backward convolution technique.

The contribution of Chapter 6 is twofold. Firstly, we extend the valuation scheme of Chapter

4 to two dimensions to allow for non-Lévy log-returns with stochastic volatility. Secondly,

we derive the exact distribution law of the discrete log-geometric average and, subsequently,

obtain the price of the geometric Asian option in terms of a Fourier transform. We then set

up an e¤ective control variate Monte Carlo strategy and use this as a benchmark to the price

convolution method.

The need to generate exact sample trajectories for underlyings driven by exponential Lévy

models, for the purpose of computing the prices and sensitivities of Asian options in Chapters

4 and 5, has motivated our work in Chapter 7. Building on an idea of Broadie and Kaya (2006)

originally implemented for Heston�s stochastic volatility model, a Monte Carlo scheme is set up

and tailored here to Lévy models, coupled with Fourier-inversion of the associated characteristic

functions to recover the implicitly known cumulative distribution functions to sample from. As

an example, we consider the family of tempered stable models, which allow for processes of

�nite or in�nite activity and variation, and whose simulation so far has proved problematic.

In particular, the CGMY subclass, named after Carr et al. (2002), is investigated against two

alternative simulation methods by Madan and Yor (2008) and Poirot and Tankov (2006) in

pricing European-type vanilla and Asian options.

Finally, Chapter 8 focuses on the valuation of convertible bonds. CBs traditionally encom-
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pass the holder�s right for conversion to the issuing �rm�s stock prior to or at maturity, and

features like with-notice premature redemption by the issuer (call-back option), discrete coupons

paid prior to conversion and dividends on the issuing �rm�s stock received post conversion. Such

a speci�cation endows the contract with strong early-exercise features and path-dependence,

limiting the use of Monte Carlo (see Lvov et al. (2004), Ammann et al. (2008)) and lat-

tice techniques (see Goldman Sachs (1994), Ho and Pfe¤er (1996), Takahashi et al. (2001),

Davis and Lischka (2002)) for valuation purposes. Firstly, this chapter proposes a step-by-step

convolution approach which operates on backward propagation from the CB maturity, while

allowing for the abovementioned provisions at the relevant time points, to provide, eventually,

the CB price at inception. Secondly, we consider a four-factor model which comprises stochas-

tic interest rates, and further describes the �rm value evolution by a di¤usion augmented with

jumps, subject to random arrival and size, to the e¤ective modelling of the credit risk. To the

best of our knowledge, such a setup has not been implemented previously in the CB literature

(and also other instruments with early-exercise provisions) due to dimensionality issues a¤ect-

ing standard numerical schemes for partial di¤erential equations (see Brennan and Schwartz

(1977), (1980), Carayannopoulos (1996), Tsiveriotis and Fernandes (1998), Zvan et al. (1998),

(2001), Takahashi et al. (2001), Barone-Adesi et al. (2003), Bermúdez and Webber (2004)).

The proposed convolution procedure is shown to handle �exibly the dimensionality imposed

by the chosen market model, while remaining convergent and precise. The e¤ect of the jump

di¤usion structural approach, as well as the e¤ects of coupons and dividends paid, and the

impact of a varying call policy on the computed prices are explored.

4



Chapter 2

Fourier transforms

2.1 Introduction

This chapter introduces the concept of a Fourier transform in L1 and provides key theory and

results for use in the chapters to follow. Throughout this thesis, we demonstrate that Fourier

transforms o¤er a valuation framework for contingent claims which is generally applicable to

underlyings that are driven by a¢ ne processes with characteristic functions known in closed

form. In Section 2.3, we de�ne the characteristic function of a random variable and interpret this

as the Fourier transform of its distribution. Recognizing that many probability distributions

are only known through their characteristic functions1, we illustrate how to retrieve the density

and distribution functions via inversion of the characteristic function.

In Section 2.4, we introduce the notion of a discrete Fourier transform and analyze e¢ cient

techniques for its computation. We use these techniques in Section 2.5 in order to approximate

continuous Fourier transforms by discrete transforms on a grid.

1Density functions may exist in analytical form for certain Lévy distributions, however they appear rather
complicated involving special functions which render their computation cumbersome and slow. This phenomenon
is even more pronounced in the case of distribution functions. On the contrary, characteristic functions are usually
available in much simpler closed forms.

5



FOURIER TRANSFORMS

2.2 Fourier transforms

The simplest class of functions for which the Fourier transform can be introduced is the Lebesgue

class L1 on R.

De�nition 1 Let f : R ! R be an absolutely integrable function. The Fourier transform

F(f) : R! C is given by

F(f)(u) =
Z
R
eiuxf(x)dx:

The following proposition on Fourier transforms holds.

Proposition 2 Assume real constants x0, u0. Let f be an absolutely integrable function with

Fourier transform F(f). Then

1. h1(x) := f(x+ x0) has Fourier transform F(h1)(u) = e�iux0F(f)(u);

2. h2(x) := eiu0xh1(x) has shifted Fourier transform F(h2)(u� u0) = F(h1)(u).

Proof. See Goldberg ((1961), Theorem 3C).

From Theorem 2, the equality

F(h2)(u� u0) = e�iux0F(f)(u)

holds trivially, resulting in

F(f)(u) = eiux0
Z
R
ei(u�u0)xeiu0xf(x+ x0)dx = ei(u�u0)x0

Z
R
ei(u�u0)(x�x0)eiu0xf(x)dx; (2.1)

where the second equality follows by a change of variable. Result (2.1) will be revisited in

Section 2.5.

2.2.1 Derivatives of a function and their Fourier transforms

The following theorem allows us to express the Fourier transforms of the derivatives of a function

in terms of the Fourier transform of the original function. We will use this property to deduce

useful expressions for the price sensitivities of contingent claims in Chapter 5.

6



FOURIER TRANSFORMS

Theorem 3 Let f and ~f be absolutely integrable functions with Fourier transforms F(f) and

F( ~f) respectively. If F( ~f)(u) = (�iu)nF(f)(u), n 2 N�, then the derivatives

f (k)(x) :=
@kf(x)

@xk
; k = 1; : : : ; n

are absolutely integrable, and

~f = f (n):

Proof. See Bochner and Chandrasekharan ((1949), Theorems 15-17).

2.2.2 Convolution

The notion of a convolution will form a main premise for the development of the pricing algo-

rithms in Chapters 4, 5, 6, 8.

De�nition 4 The convolution of two functions f1, f2 is given by

(f1 � f2)(x) :=
Z
R
f1(x

0)f2(x� x0)dx0 =
Z
R
f2(x

0)f1(x� x0)dx0:

A key result about convolutions states that the Fourier transform of a convolution is equal

to the product of the Fourier transforms of the functions being convolved. We present this in

the following theorem.

Theorem 5 If f1, f2 are absolutely integrable functions, then their convolution (f1 � f2)(x) is

absolutely integrable and has Fourier transform

F(f1 � f2) = F(f1)F(f2):

Proof. See Bochner and Chandrasekharan ((1949), Theorem 2).

Convolutions of functions on Rd can be de�ned similarly. Straightforward extension of

Theorem 5 to that case also applies (see also Section 2.2.4).

2.2.3 Inverse Fourier transform

We de�ne next the inverse Fourier transform.

7
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De�nition 6 The inverse Fourier transform of g : R! C is given by

F�1(g)(x) = 1

2�
�
Z 1

�1
e�iuxg(u)du := lim

c!1
1

2�

Z c

�c
e�iuxg(u)du;

whenever the limit on the right-hand side exists for x 2 R.

In analogy to (2.1), the equality

F�1(g)(x) = 1

2�
e�iu0(x�x0)�

Z
R
e�i(u�u0)(x�x0)e�iux0g(u)du (2.2)

holds for real constants x0, u0.

We wish to provide some simple conditions under which a function can be recovered from

its Fourier transform.

Theorem 7 Suppose f is absolutely integrable. On any compact interval where f is continuous

and of �nite variation, the inverse Fourier transform of F(f) is well-de�ned and

f = F�1(F(f)):

Proof. See Bochner and Chandrasekharan ((1949), Theorems 4, 8).

2.2.4 Multi-dimensional Fourier transforms

Fourier transforms are also de�ned in multiple dimensions (see Bochner and Chandrasekharan

(1949), Theorem 31). For instance, in two dimensions, the Fourier transform of an absolutely

integrable function f : R2 ! R is given by

F(f)(u) =
Z
R2
eiu

|xf(x)dx: (2.3)

The inverse transform of g : R2 ! C is given by

F�1(g)(x) = 1

(2�)2

Z
R2
e�iu

|xg(u)du: (2.4)

8
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2.3 Characteristic function

Based on the principles presented in Section 2.2, we provide next several results which will

feature prominently in this thesis. This brings us to the de�nition of the characteristic function

of a random variable as the Fourier transform of its distribution.

De�nition 8 The characteristic function of the Rd-valued random variable X with probability

density fX is the function �X : Rd ! C given by

�X(u) = E(eiu
|X) =

Z
Rd
eiu

|xfX(x)dx = F(fX)(u):

The characteristic function of a random variable uniquely characterizes its law; two random

variables with the same characteristic function are identically distributed. A characteristic

function satis�es �X(0) = 1 and is continuous at u = 0, so that �X(u) 6= 0 in the neighborhood

of u = 0. Based on this, one can further de�ne the logarithm of �X : there exists a unique

continuous function  X(u) in the neighborhood of u = 0 such that

 X(0) = 0 and �X(u) = e X(u):

We call  X the cumulant generating function. Note that if �X(u) 6= 0 for all u,  X(u) can be

extended to the entire Rd. We de�ne the cumulants of X by

cj (X) :=
1

ij
@j X
@uj

(0) ; (2.5)

for instance

c1(X) = E(X);

c2(X) = Var(X) = E((X � E(X))2);

c3(X) = E((X � E(X))3);

c4(X) = E((X � E(X))4)� 3Var(X)2:

9
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The normalized versions

s(X) := c3(X)

c2(X)3=2
; �(X) := c4(X)

c2(X)2

are called respectively the skewness coe¢ cient and excess kurtosis of X (see Cont and Tankov

(2004a), Section 2.2.5).

For a univariate random variable X with a continuous distribution, the density function

fX and the cumulative distribution function FX can be obtained from �X using the Gurland

(1948) and Gil-Pelaez (1951) inversion formulae

fX (x) =
1

2�

Z
R
e�iux�X (u) du;

FX (x) =
1

2
� 1

2�

Z
R
e�iux

�X (u)

iu
du: (2.6)

By de�nition, a distribution function FX (x) does not decay to zero as x!1; thus, according

to De�nition 1, the absolute integrability condition for the existence of the Fourier transform

of FX is violated. To �x this, Hughett ((1998), Lemma 9) develops for a continuous function

FX the auxiliary function ~FX as

~FX (x) := FX (x)�
1

2
FX (x� �)�

1

2
FX (x+ �) ; � > 0; (2.7)

which is well-behaved in the sense that both ~FX and its Fourier transform F( ~FX) decay rapidly

to zero. The following theorem then holds.

Theorem 9 Consider a random variable X which obeys to the law of some continuous distrib-

ution FX with �nite variance and has characteristic function �X . Then, the Fourier transform

F( ~FX) of the function ~FX de�ned by (2.7) is given by the continuous function

F( ~FX)(u) =

8<: �1�cos(u�)
iu �X(u); u 6= 0

0; u = 0:
(2.8)

Proof. See Hughett ((1998), Lemma 9).

From Theorem 7, ~FX is recovered via

~FX = F�1(F( ~FX)):

10
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Then, for su¢ ciently large � > 0,

FX (x) � ~FX (x) +
1

2
: (2.9)

Hughett ((1998), Theorem 10) provides precise bound to the error induced by approximation

(2.9) for jxj � 1
2�.

2.4 Discrete Fourier transforms

Recall from Section 2.2 the de�nition of the Fourier transform as a continuous integral. In

practice, this is computed by a discrete approximation. To this end, we de�ne the discrete

Fourier transform and discuss e¢ cient ways to implement this using the fast Fourier transform

algorithm.

De�nition 10 The forward (standard) discrete Fourier transform (DFT) â = fâjgn�1j=0 of some

vector a = fakgn�1k=0 is given by

âj =
1p
n

Xn�1

k=0
ei

2�
n
jkak; j = 0; : : : ; n� 1: (2.10)

Furthermore, the inverse (standard) discrete Fourier transform (IDFT) b̂ = fb̂jgn�1j=0 of some

vector b = fbkgn�1k=0 is given by

b̂j =
1p
n

Xn�1

k=0
e�i

2�
n
jkbk; j = 0; : : : ; n� 1: (2.11)

In short, we write

â = dft(a)

and

b̂ = idft(b):

The following result between forward and inverse transforms holds.

11
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Proposition 11 Consider vector a. We have that

dft(idft(a)) = a;

idft(dft(a)) = a:

Proof. See, for example, µCerný ((2004), Appendix).

We introduce next the notion of circular convolution for vectors.

De�nition 12 Consider two n-dimensional vectors a = falgn�1l=0 , b = fbkg
n�1
k=0 . We de�ne the

circular (cyclic) convolution of a and b to be the n-dimensional vector

c = a~ b;

such that

cj =
X

l=j�kmodn
albk; j = 0; : : : ; n� 1:

A useful application of the discrete Fourier transform is in the computation of the circular

convolution.

Proposition 13 Let c = a~ b, where a and b are n-dimensional vectors. Then

dft(c) =
p
n dft(a)dft(b):

Proof. See, for example, µCerný ((2004), Appendix).

The standard DFT and IDFT (see De�nition 10) can be implemented fast by means of the

fast Fourier transform (FFT) algorithm which is readily available in MATLAB. The forward

and inverse FFT in MATLAB are called ¤t and i¤t respectively. Following these, we calculate

dft(a) =
p
n i�t(a);

idft(a) =
1p
n
�t(a);

for n-dimensional vector a. The length n must be selected with care, otherwise the algorithm

may take long time to compute, especially if n is a large prime. It is common practice that

12
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lengths are chosen to be powers of two (n = 2p) or highly composite (n = 2p3q5r), in order

to ensure high-speed computation of the discrete Fourier transform via the FFT algorithm.

In fact, µCerný (2004) demonstrates that FFT of length n1 = 2p13q5r can be faster than FFT

of length n2 = 2p2 even if n1 > n2, for suitably chosen p1; q; r and p2 values. If the original

vector size is not of the desired form, the appropriate number of zeros can be added: a powerful

result due to Bluestein (1968) states that a discrete Fourier transform of arbitrary size can

be rephrased as a circular convolution and, by zero-padding the input vectors of the circular

convolution, this can be then decomposed in terms of three discrete transforms of larger size.

This technique speeds up substantially the calculation of an originally prime-sized transform,

while the �rst elements of the re-expressed transform remain unchanged.

Rabiner et al. (1969) apply Bluestein�s idea in calculating a more general transform that is

termed the chirp z-transform.

De�nition 14 Consider vector a = fakgn�1k=0 , and parameters A;W 2 C. The chirp z-transform

â = fâjgn̂�1j=0 of vector a is de�ned as

âj =
Xn�1

k=0
(AW�j)kak; j = 0; : : : ; n̂� 1: (2.12)

In short, we write

â = czt(a; A;W; n̂):

Next, we explain how the chirp z-transform can be implemented e¢ ciently using Bluestein�s

decomposition. Let n̂ = n. Note that 2jk = j2 + k2 � (j � k)2, expression (2.12) then reads

âj =W� j2

2

X
l=jj�kj

blck; j = 0; : : : ; n� 1; (2.13)

where

bl = W
l2

2 ; l = 0; : : : ; n� 1;

ck = W� k2

2 Akak; k = 0; : : : ; n� 1:

13
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Bluestein observes that the sum (2.13) can be reformulated as a circular convolution. To this

end, we choose m � 2n� 1. We extend the vectors b and c of length n to b� and c� of length

m, such that

b�l =

8>>><>>>:
W

l2

2 ; l = 0; : : : ; n� 1;

0; l = n; : : : ;m� n;

W
(l�m)2

2 ; l = m� n+ 1; : : : ;m� 1;

and

c�k =

8<: W� k2

2 Akak; k = 0; : : : ; n� 1;

0; k = n; : : : ;m� 1:

Then,

â�j =W� j2

2 d�j ; j = 0; : : : ;m� 1 (2.14)

with

d�j =
X

l=j�kmodm
b�l c

�
k; j = 0; : : : ;m� 1; (2.15)

forms a m-point circular convolution. By virtue of Propositions 11 and 13, (2.14-2.15) can be

evaluated by utilizing three standard m-point (I)DFTs

d� =
p
m idft(dft(b�)dft(c�)): (2.16)

By construction,

âj = â�j ; j = 0; : : : ; n� 1:

Bailey and Swarztrauber (1991) discuss a special case of the chirp z-transform with A = 1

and jW j = 1, where W = e�i
2�
n
� for some fractionality coe¢ cient j�j 2 (0; 1]. They call this

the fractional discrete Fourier transform.

De�nition 15 Consider vector a = fakgn�1k=0 , and fractionality coe¢ cient j�j 2 (0; 1]. The

fractional discrete Fourier transform â = fâjgn�1j=0 of vector a is given by

âj =
Xn�1

k=0
ei

2�
n
�jkak; j = 0; : : : ; n� 1: (2.17)

14
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We write

â = frft(a; �):

Let vector a be of dimension n. By comparing results (2.12) and (2.17), we relate the

fractional DFT to the chirp z-transform via

frft(a; �) = czt(a; 1; e�i
2�
n
�; n):

By further comparing (2.17) with (2.10) and (2.11), we observe that the fractional DFT reduces

to the standard DFT and IDFT when j�j = 1, such that

dft(a) =
1p
n
frft(a; 1); (2.18)

idft(a) =
1p
n
frft(a;�1): (2.19)

In this thesis, we will focus on applications of the last three special cases of the chirp z-transform.

2.5 Fourier transforms on a grid

In what follows, we will apply the standard (I)DFT and fractional DFT studied in the previous

section to compute continuous Fourier transforms by discrete analogues.

Consider the continuous Fourier transform F(f)(u) given by (2.1). In practice, this is

approximated on a uniform grid u = fu0 + j�ugn�1j=0 as

ei(u�u0)x0
Z
R
ei(u�u0)(x�x0)eiu0xf(x)dx � D(f ;x;u;�)�x; (2.20)

where

D(f ;x;u;�) := ei(u�u0)x0
Xn�1

k=0
ei(u�u0)(xk�x0)eiu0xkfk; (2.21)

and f = ffkgn�1k=0 := ff(xk)g
n�1
k=0 is the collection of the values of function f on a uniform grid

x = fx0 + k�xgn�1k=0 . Substituting for x and u in (2.21) yields

D(f ;x;u;�) = ei(u�u0)x0
Xn�1

k=0
ei

2�
n
�jkeiu0xkfk; � =

n�u�x

2�
: (2.22)

15
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Similarly, for function values g = fgjgn�1j=0 := fg(uj)g
n�1
j=0 , we approximate the inverse transform

F�1(g)(x) in (2.2) on grid x = fx0 + k�xgn�1k=0 as

1

2�
e�iu0(x�x0)�

Z
R
e�i(u�u0)(x�x0)e�iux0g(u)du � 1

2�
D(g;�u;x;��)�u:

Proposition 16 Consider the uniform grids x = fx0 + k�xgn�1k=0 and u = fu0 + j�ugn�1j=0 ,

the parameter � = n�u�x
2� , and the vectors f = ffkgn�1k=0 = ff(xk)gn�1k=0 and g = fgjgn�1j=0 =

fg(uj)gn�1j=0 . The following identities hold

D(f ;x;u;�) = ei(u�u0)x0frft(eiu0xf ; �); (2.23)

D(g;�u;x;��) = e�iu0(x�x0)frft(e�iux0g;��): (2.24)

For � = 1, relations (2.23-2.24) reduce to

D(f ;x;u; 1) =
p
nei(u�u0)x0dft(eiu0xf); (2.25)

D(g;�u;x;�1) =
p
ne�iu0(x�x0)idft(e�iux0g); (2.26)

respectively.

Proof. Result (2.23) follows from (2.22) and (2.17). Result (2.24) follows directly from

(2.23). Results (2.25) and (2.26) follow from (2.18) and (2.19) respectively.

Using the fractional DFT grants us enough �exibility to determine all the three input

elements �u, �x, n independently. Instead, the use of the standard (I)DFT is limited by the

restriction imposed by n�u�x
2� = 1. This has a detrimental e¤ect on the convergence of the

right-hand side in (2.20) as n grows. We illustrate this via a practical example in Section

4.6.4. However, for small sizes n, the (I)DFT can still provide results of comparable accuracy

at reduced CPU e¤ort; given the decomposition of a n-point fractional DFT into three 2n-

point standard (I)DFTs, we anticipate an approximately six times faster FFT-implementation

of a single n-point DFT. The advantage of the operation-saving (I)DFTs becomes even more

pronounced in multi-dimensional settings.
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2.5.1 Multi-dimensional discrete approximations

Multi-dimensional Fourier transforms can be approximated by discrete transforms, too. For

the purposes of this thesis, we focus on the two-dimensional case.

De�nition 17 The forward discrete Fourier transform Â = fÂj1;j2gn1�n2 ofA = fAk1;k2gn1�n2
is given by

Âj1;j2 =
1

p
n1n2

X
k1;k2

e
i 2�
n1
j1k1+i

2�
n2
j2k2Ak1;k2 ;

j1 = 0; : : : ; n1 � 1, j2 = 0; : : : ; n2 � 1.

The inverse discrete Fourier transform B̂ = fB̂j1;j2gn1�n2 of B = fBk1;k2gn1�n2 is given by

B̂j1;j2 =
1

p
n1n2

X
k1;k2

e
�i 2�

n1
j1k1�i 2�n2 j2k2Bk1;k2 ;

k1 = 0; : : : ; n1 � 1, k2 = 0; : : : ; n2 � 1.

In short, we write

Â = dft2(A)

and

B̂ = idft2(B):

Given a n1 � n2 matrix A, we employ the MATLAB functions i¤t2 and ¤t2 to compute

dft2(A) =
p
n1n2 i�t2(A);

idft2(A) =
1

p
n1n2

�t2(A):

Consider the uniform grids xi = fxi;0+ki�xigni�1ki=0
and ui = fui;0+ji�uigni�1ji=0

, i = 1; 2. Sup-

pose the values of the function f : R2 ! R are given on the two-dimensional grid x� = (x1;x2);

we summarize these in the matrix F = fFk1;k2gn1�n2 := ff(x�k1;k2)gn1�n2 . We approximate the

continuous Fourier integral (2.3) by its discrete analogue on grid u� = (u1;u2) asZ
R2
eiu

|xf(x)dx � D(F;x�;u�)�x1�x2;

17
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where

D(F;x�;u�) = pn1n2ei(u
|
1�u1;0)x1;0ei(u2�u2;0)x2;0d�t2(eiu1;0x

|
1eiu2;0x2 � F) (2.27)

is an extended version of the conversion rule (2.25) to two dimensions. We denote by � the

element-wise matrix multiplication. Similarly, for matrix G =fGj1;j2gn1�n2 := fg(u�j1;j2)gn1�n2
representing the values of g : R2 ! C on grid u�, we approximate the inverse transform (2.4)

on grid x� as
1

(2�)2

Z
R2
e�iu

|xg(u)du � 1

(2�)2
D(G;�u�;x�)�u1�u2;

where

D(G;�u�;x�) = pn1n2e�iu1;0(x
|
1�x1;0)e�iu2;0(x2�x2;0)idft2(e�iu

|
1x1;0e�iu2x2;0 �G): (2.28)
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Chapter 3

A¢ ne models and option pricing

3.1 Introduction

A¢ ne models have been used traditionally in mathematical �nance to model random log-asset

price, interest rate and volatility movements. The motivation behind using exponential a¢ ne

asset price models (excluding Samuelson�s geometric Brownian motion) stems from their ability

to �t �exibly on empirical observations, and reproduce the volatility skew and smile common

amongst other stylized empirical facts in the �nancial markets (see Cont and Tankov (2004a),

Chapter 7 for details). Furthermore, closed-form expressions for the characteristic functions are

available for a number of a¢ ne models, making them highly tractable in �nancial applications.

Particularly popular is the subclass of Lévy processes which includes the Gaussian di¤usion

(arithmetic Brownian motion), the jump di¤usion models of Merton (1976) and Kou (2002),

and pure jump models such as the variance gamma (VG) of Madan and Seneta (1990), Madan

and Milne (1991) and Madan et al. (1998), the normal inverse Gaussian (NIG) of Barndor¤-

Nielsen (1998), and the tempered stable (KoBoL/CGMY) of Koponen (1995), Boyarchenko

and Levendorski¼¬(2002), and Carr et al. (2002). Hybrid models with stochastic volatility (e.g.,

Heston (1993)) and/or stochastic interest rates (e.g., see Chapter 8 of this thesis) also appear

in the a¢ ne class. Members of the a¢ ne class will be used frequently in the next chapters.

Section 3.2 brie�y describes the key features and theoretical results relevant to the Lévy

processes, and subsequently Section 3.3 focuses on the more general a¢ ne processes. It demon-

strates how the characteristic function can be derived for this class of models and, by recalling
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its interpretation as a Fourier transform, Section 3.4 reviews how European options can be eval-

uated via inversion of the characteristic function. Popular applications of Fourier transforms to

the pricing of options with path-dependence and/or early-exercise features are also discussed.

3.2 Lévy processes

Consider a complete �ltered probability space (
, F , F = (Ft)t>0, P ). Then, a càdlàg, F-

adapted, R-valued process Lt, with L0 = 0, is called a Lévy process if

1. it has independent increments;

2. it has stationary increments;

3. it is stochastically continuous, i.e., for any t � 0 and " > 0 we have

lim
s!t

P (jLt � Lsj > ") = 0:

Each Lévy process can be characterized by a triplet (�, �2, �) referred to as the Lévy

characteristics of L with drift parameter � 2 R, di¤usion parameter � � 0, and Lévy density �

satisfying �(0) = 0 and
R
Rnf0g(1 ^ jlj

2)� (dl) < 1. The local characteristics are given by (�t,

�2t, �(dl) dt). In terms of this triplet, the characteristic function of the Lévy process is given

by the celebrated Lévy-Khintchine formula

E
�
eiuLt

�
= e L(u)t;

where the Lévy exponent  L of the process L is represented as

 L (u) = iu�� 1
2
�2u2 +

Z
Rnf0g

(eiul � 1� iul1fjlj�1g)� (dl) : (3.1)

Consider the price of a risky asset S to evolve according to an exponential Lévy model: �x

constant S0 > 0 and de�ne

St = S0e
Lt
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under the risk-neutral measure P, i.e., P = P. Assume further the existence of a money

market account M which evolves according to dMt = rMtdt with M0 = 1 and r > 0 being the

continuously compounded risk-free interest rate. Then, to satisfy the fundamental theorem of

asset pricing (see Delbaen and Schachermayer (1994)), we must guarantee that St=Mt = Ste
�rt

is a P-martingale, i.e.,

E
�
Ste

�rt� = E �S0e�rt+Lt� = S0;

which implies that � in (3.1) must be chosen to satisfy  L (�i) = r. Hence,

� = r � 1
2
�2 �

Z
Rnf0g

(el � 1� l1fjlj�1g)� (dl) :

3.3 A¢ ne processes

This class of models has been explored in great detail in Du¢ e et al. (2000) and Du¢ e et al.

(2003). Following their lead, we consider the d-dimensional di¤usion process X = (X1; : : : ; Xd)

in some state space D � Rd satisfying

dXt = � (Xt) dt+ � (Xt) dWt

with � : D ! Rd, � : D ! Rd�d and W a standard Brownian motion on Rd. Process X is

called a¢ ne if and only if

�(x1; : : : ; xd) = m0 +
Xd

j=1
xjmj , for mj 2 Rd, (3.2)

�(x1; : : : ; xd)�(x1; : : : ; xd)
| = s0 +

Xd

j=1
xjsj , for sj 2 Rd�d. (3.3)

Then Du¢ e et al. (2003) uniquely characterize the distribution law of a regular a¢ ne process

X by the characteristic function

E(eiu
|Xt) = e	0(u;t)+	(1;:::;d)(u;t)

|X0 ; u 2 Cd;
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where 	0 and 	(1;:::;d)=(	1; : : : ;	d) are respectively C- and Cd-valued functions solving the

following system of generalized Riccati equations

@	j (u; t)

@t
=  j

�
�i	(1;:::;d) (u; t)

�
; j = 0; : : : ; d; (3.4)

	0 (u; 0) = 0; 	(1;:::;d) (u; 0) = iu; (3.5)

with

 j (u) = iu|mj �
1

2
u|sju:

In fact, 	0 is determined by 	(1;:::;d) via the simple integration

	0 (u; t) =

Z t

0
 0
�
�i	(1;:::;d) (u; s)

�
ds:

In some applications, explicit solutions for the complex-valued ODEs (3.4-3.5) can be found,

whereas in others, solutions may only be found numerically by using, for example, the Runge-

Kutta method.

We consider next two examples from the a¢ ne di¤usion class which will feature in this

thesis: the Heston stochastic volatility model (Chapter 6) and the asset di¤usion with Va�íµcek

stochastic interest rate hybrid model (Chapter 8). In the Heston framework the stochastic

volatility is modelled by the same mean-reverting square-root process that is used for the

interest rate in Cox et al. (1985). In particular, the model is of the form

dXt = (�� �t=2) dt+
p
�tdWt;

d�t = � (� � �t) dt+ �
p
�tdW�;t;

where W and W� are correlated standard Brownian motions with constant correlation �, and

�, �, �, � are constant parameters. In these SDEs, X = lnS represents the logarithm of the

asset S with stochastic volatility
p
�. Viewing jointly (�;X) as the state variables yields an
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a¢ ne process in the spirit of Du¢ e et al. (2000) and Du¢ e et al. (2003). In particular, we get

(m0; s0) =

0@0@��
�

1A ; 0

1A ;

(m1; s1) =

0@0@��
�1
2

1A ;

0@�2 ��

�� 1

1A1A ;

(m2; s2) = (0; 0) :

In the second example, we assume Gaussian interest rate movements according to the model

by Va�íµcek (1977) and constant asset volatility. Denoting by X and r the log-asset price and

interest rate processes respectively, this hybrid model takes form

dXt =
�
rt � �2=2

�
dt+ �dWt; (3.6)

drt = � (�r � rt) dt+ �rdWr;t; (3.7)

where W and Wr are correlated standard Brownian motions, � is the constant correlation

coe¢ cient, and parameters �, �, �r, �r are constant. The form of the bivariate model (r;X)

agrees with the a¢ ne structure (3.2-3.3) such that

(m0; s0) =

0@0@ ��r

�1
2�

2

1A ;

0@ �2r �r��

��r� �2

1A1A ;

(m1; s1) =

0@0@��
1

1A ; 0

1A ;

(m2; s2) = (0; 0) :

In terms of mathematical tractability, both settings are advantageous since they permit closed-

form characteristic functions as we illustrate in Chapters 6 and 8.

3.4 Option pricing with Fourier transforms

Heston (1993) provides the �rst well-established pricing model in the literature for Euro-

pean plain vanilla options based on Fourier-inversion of the characteristic function of the
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log-increment of an underlying asset with stochastic volatility. Heston�s approach allows for

correlated variance and asset price processes, in contrast to the previous attempt by Stein and

Stein (1991) which heavily relies on independent processes, and is further applicable to any

model for the log-asset dynamics providing that the characteristic function is known in closed

form. Since Heston�s seminal paper, the pricing of derivative contracts using Fourier-inversion

techniques has raised the interest of several authors due to their reported accuracy and speed.

Consider a generic European contingent claim C written on a single asset S, with maturity

T , and terminal payo¤ p (XT ) where XT = lnST . From the fundamental theorem of asset

pricing, the forward price of the contingent claim is given under the risk-neutral measure P by

C0 = E (p (XT )) : (3.8)

Heston (1993) deals with the pricing problem (3.8) by decomposing the expectation in terms

of cumulative probabilities of the underlying asset. We illustrate his approach by applying on

a plain vanilla call option with payo¤ p (XT ) =
�
eXT �K

�+
, where K > 0 is the strike price.

The forward price of the option reads

C0 = eX0+rT �P (XT > k)�KP (XT > k) ; (3.9)

where k = lnK and r > 0 is the risk-free interest rate. �P indicates the equivalent spot measure

induced by taking ST as the numéraire (see Appendix 6.B). Using the Gil-Pelaez formula (2.6),

both probabilities in (3.9) are given by

�P (XT > k) =
1

2
+
1

�

Z 1

0
Re e�iuk

�XT (u� i)
iu�XT (�i)

du;

P (XT > k) =
1

2
+
1

�

Z 1

0
Re e�iuk

�XT (u)

iu
du;

where

�XT (u) = E
�
eiuXT

�
is the characteristic function of the log-asset price XT . Note that method (3.9) requires that

we calculate two inverse transforms.
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Carr and Madan (1999) suggest an alternative representation for the forward price of a

European call option in terms of its Fourier transform with respect to the log-strike k. In

particular, they express the option payo¤ in the integral form

�
ex � ek

�+
=
1

2�

Z iR+1

iR�1
e�iuk

ex(iu+1)

iu (iu+ 1)
du;

for arbitrary constant R < 0. The risk-neutral pricing formula (3.8) then reads

C0 (k) = E
��

eXT � ek
�+�

=
1

2�

Z iR+1

iR�1
e�iuk

�XT (u� i)
iu (iu+ 1)

du: (3.10)

Constant R is chosen to ensure that C0 (k) is absolutely integrable as k ! �1 (see Carr and

Madan (1999), Section 3).

Raible (2000) and Lewis (2001) consider a similar approach to Carr and Madan (1999),

except that they express the (forward) option price in terms of Fourier transforms taken with

respect to the log-forward and log-spot prices respectively. Their approach is general in that it

can be adapted to a wide range of European payo¤ functions, providing their Fourier transforms

exist. Following them, we represent continuous payo¤ functions p (XT ) in the integral form

p (XT ) =
1

2�

Z iR+1

iR�1
e�iuXTF (p) (u)du; (3.11)

where F (p) (u) is the Fourier transform of the payo¤ function with respect toXT , in consistency

with De�nition 1. For example, F (p) (u) = Kiu+1

iu(iu+1) with R 2 (1;1) corresponds to a plain

vanilla call option with payo¤ p (XT ) =
�
eXT �K

�+
. Substituting the integral (3.11) for p (XT )

in the risk-neutral valuation formula (3.8) yields

C0 (X0) = E (p (XT )) =
1

2�

Z iR+1

iR�1
�XT (�u)F (p) (u)du: (3.12)

In practice, the three price representations (3.9), (3.10) and (3.12) are calculated using dis-

crete approximations for the continuous Fourier transforms as discussed in the previous chapter.

In particular, Carr and Madan (1999) compute (3.10) on a grid of strikes by utilizing a standard

DFT approximation, whereas Chourdakis (2004) implements a fractional DFT approximation.

The same numerical techniques can also be used to compute (3.12). A more recent technique

25



AFFINE MODELS AND OPTION PRICING

by Fang and Oosterlee (2008a) replaces DFTs by Fourier-cosine series expansions truncated

at N < 1 points. For a European call/put option with payo¤ function (�ex �K)+, the

approximate pricing formula reads

C0 �
X0N�1

j=0
Vj (�;K)Re e

�i jL�
U�L�XT

�
j�

U � L ;X0
�
; (3.13)

where
P0 indicates that the �rst term in the summation is weighted by a half. � takes value 1

(-1) for a call (put) option. Coe¢ cients Vj are given by

Vj (�;K) =
2

U � L

Z U

L
(� (ex �K))+ cos

�
j�
x� L
U � L

�
dx

for some closed interval [L;U ] � R. Coe¢ cients fVjgN�1j=0 exist in closed form for payo¤s of the

form (� (ex �K))+ (see Fang and Oosterlee (2008a), Section 3). Fang and Oosterlee (2008a)

prove that the error of the Fourier-cosine series approximation (3.13) decays exponentially

to zero as N grows to in�nity for smooth probability densities, whereas Carr and Madan�s

implementation of (3.10) by DFT achieves only fourth-order convergence.

In addition to plain vanilla options, exotic contracts with possible early exercise and/or

path-dependence form another important class. Carverhill and Clewlow (1990) are the �rst to

make use of FFT applications in pricing arithmetic average (Asian) options written on some

asset S, whose price is recorded at points ftjgnj=1 on the time line [0; T ], with t0 = 0 and

tn = T . In general terms, their scheme retrieves the density of the terminal average asset

price by employing, on a reduced state space, forward recursive convolutions of the density

of the running average at a monitoring date tj�1 with the density of the asset log-return

Zj = Xj �Xj�1 = lnSj � lnSj�1 over the next sub-period, until maturity. We refer to Section

4.4 for more details. Instead, Eydeland (1994) computes backward sequential convolutions of

the payo¤ function �Cj at a monitoring date tj with the density of the asset log-return Zj , to

provide the option value function Cj�1 at tj�1. Ultimately, the convolution algorithm provides

the option value at t0. For example, a Bermudan vanilla call option with strike K has payo¤

function �Cj (Xj) = max
�
Cj (Xj) ; e

Xj �K
�
at tj , 1 � j < n, and �Cn (Xn) = max

�
eXn �K; 0

�
at tn. For n equidistant monitoring dates with step size �t, the problem is formulated under
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Lévy log-returns as

Cj�1 (Xj�1) = e�r�t
Z
R
�Cj (Xj�1 + z) fj (z) dz; j = 1; : : : ; n; (3.14)

where r > 0 denotes the risk-free interest rate, and fj the risk-neutral density of the asset

log-return Zj . Convolution (3.14) is then discretized and extended to a circular convolution

for e¢ cient computation using Bluestein�s decomposition (2.16). To skip explicit use of the

densities of the log-returns, Lord et al. (2008) directly compute the Fourier transform of the

convolution (3.14), and subsequently invert this to obtain the option value at tj�1. More

speci�cally, following Theorems 5 and 7, they express

Cj�1 = F�1(F( �Cj)'j);

where 'j = E
�
e�iuZj

�
=
R
R e

�iuzfj (z) dz. Whereas Lord et al. (2008) employ standard

(I)DFTs to approximate the continuous Fourier transforms subject to polynomially decaying

errors, Fang and Oosterlee (2008b) achieve exponentially decaying errors by utilizing Fourier-

cosine series expansions. Alternatively, Feng and Linetsky (2008) and Feng and Lin (2009)

replace Fourier transforms by Hilbert transforms, and subsequently develop discrete approxi-

mations based on fast-convergent Sinc expansions for faster convergence. It is also worth to

mention the method by Broadie and Yamamoto (2005), which combines the double exponential

quadrature rule and the fast Gauss transform introduced earlier in Broadie and Yamamoto

(2003). Their technique is remarkably fast, as it is linear in both the monitoring dates n and

the number of quadrature points N used in the log-asset price dimension, i.e., it is of order

O(nN), in contrast to all the other techniques with computational complexity O(nN log2N).

Still, the applicability of Broadie and Yamamoto�s method is restricted to return distributions

which are mixtures of independent Gaussians, as in the Merton jump di¤usion in addition to

the Black-Scholes-Merton model.

The backward techniques for exotic products discussed above have been employed to eval-

uate mainly discrete barrier and Bermudan vanilla options. The case of discrete arithmetic

Asian options is more complicated, since the value function at each monitoring date not only

depends on the state of the underlying asset, but also the running average level; this raises
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substantially the dimensionality of the pricing problem. In the next chapter, we exploit the

state-space reduction of Carverhill and Clewlow (1990) to construct an e¢ cient backward price

convolution for discrete arithmetic Asian options.
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Chapter 4

A backward convolution algorithm

for discretely sampled arithmetic

Asian options

4.1 Introduction

First introduced in the Tokyo Stock Exchange, Asian options are path-dependent derivatives

whose payo¤ depends on the average price of the underlying asset monitored over a predeter-

mined period of time. The fact that the averaging reduces the impact of the volatility of the

underlying asset leads to lower option prices, rendering these favourable to the traders. Also,

the dependence of the option payout on the average value of the underlying, rather than a single

snapshot, makes them more robust against price manipulation. For more on the history and

evolution of Asian options, we refer to Boyle and Boyle (2001).

The way the average is de�ned (geometric versus arithmetic and discrete versus continu-

ous monitoring) plays a critical role in the analytical tractability of the option. Although a

true pricing formula exists in closed form for the geometric average under the standard Black-

Scholes-Merton market assumptions (see Kemna and Vorst (1990), Conze and Viswanathan

(1991), Turnbull and Wakeman (1991)), this is not the case for the more popular discrete and

Chapter 4 draws heavily on the forthcoming paper µCerný and Kyriakou (2010).
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arithmetic average. For this, several approaches have been proposed in the literature, including

analytical approximations, numerical integration methods, partial di¤erential equations (PDEs)

and Monte Carlo simulation. The �rst category encompasses analytical expressions resulting

from approximations of the distribution of the average by �tting di¤erent distributions, analyt-

ical representations in terms of (e.g., Laplace) transformed functionals that require numerical

evaluation, and lower and upper bounds for the option price. So far, numerical integration

methods have been used to produce the exact density of the average price by forward-in-time

recursive integration, either direct or via transforms to the Fourier or Laplace spaces, for use

in the computation of the price. Pricing PDEs implemented numerically by �nite di¤erence

schemes occupy a signi�cant part in the literature, while control variate Monte Carlo strategies

are common, especially following recent generalization to any Lévy model for the log-returns,

and simple to implement. All four pricing approaches are revisited in more detail in Section

4.2.

We recognize that most Asian options are not monitored continuously, indeed it is typi-

cal for the underlying asset value to be recorded at discrete points in time, e.g., on a daily,

weekly, monthly basis, etc. With the focus on the numerical (recursive) integration meth-

ods, we mention three existing contributions in the literature for discretely sampled arithmetic

Asians, Carverhill and Clewlow (1990), Benhamou (2002) and Fusai and Meucci (2008), which

have been developed on a reduced state space using the so-called Carverhill-Clewlow-Hodges

factorization. The idea of these works is to evaluate the density of the arithmetic average by

employing forward recursive density convolutions. All three papers have a signi�cant advantage

over the abovementioned approaches in that they can easily be adapted to non-Gaussian Lévy

log-returns. In what follows, we illustrate how to replace the forward density convolution by

a backward price convolution. We show that this has substantial numerical and theoretical

merits.

The remainder of the chapter is structured as follows. Section 4.2 reviews previous contri-

butions in the �eld of arithmetic Asian options pricing. Section 4.3 presents the Carverhill-

Clewlow-Hodges factorization and, given this, Section 4.4 focuses on the existing forward density

convolution schemes and their limitations. Section 4.5 develops the main theoretical results for

the backward price convolution scheme, and Section 4.5.1 discusses its implementation via dis-
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crete Fourier transform. Section 4.6 describes parameterizations of the log-return distribution

and illustrates speed-accuracy comparisons of our scheme with previous studies, and Section

4.7 concludes the chapter.

4.2 Pricing approaches to arithmetic Asian options

Even in the simple Black-Scholes-Merton model, arithmetic Asian options do not admit an ex-

act formula in closed form. This is because the sum of correlated lognormal asset prices is not

lognormal anymore. With the focus on the continuous arithmetic average asset price, Geman

and Yor (1993) are the �rst to write the price of the Asian option as the inverse of its Laplace

transform which they derive in analytical form. Thereafter several authors have attempted

to compute the inverse transform using standard numerical approaches, including Fourier se-

ries expansion, Laguerre series expansion, sequence of Gaver functionals, and deformation of

Bromwich contour (for a thorough review of these techniques, see Davies (2002), Chapter 19),

and all have encountered signi�cant numerical instabilities for short maturities and low volatil-

ities (see Dufresne (2000), Linetsky (2004)). These limitations have been attributed to the slow

convergence of the inversion algorithms and computational di¢ culties related to the Kummer

con�uent hypergeometric function appearing in the Laplace transform. Instead, Fusai (2004)

and Cai and Kou (2010) obtain analytical expressions for the double Laplace transform of

the option price, which they invert numerically using a two-sided Euler inversion algorithm.

Although the two methods share similarities, Cai and Kou�s inversion technique is faster, for

given accuracy, for low asset volatility, e.g., smaller than 0.1, and performs better under jump

di¤usion model assumptions.

Other authors choose to approximate the unknown distribution law of the arithmetic (either

continuous or discrete) average by �tting di¤erent distributions, and subsequently deduce ap-

proximate analytical formulae for the option price in the Black-Scholes-Merton economy: Turn-

bull and Wakeman (1991) and Levy (1992) employ Edgeworth series expansions to approximate

the true density of the average with a lognormal density. While this method works well for

short maturities, longer maturities have a detrimental e¤ect on the quality of the approxima-

tion. Turnbull and Wakeman (1991) also provide an algorithm to compute the moments of the
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true distribution of the average. It is observed that the performance of the method is a¤ected

when the third and fourth moments di¤er signi�cantly from the ones implied by the lognormal

distribution (the �rst two are matched by construction).1 Milevsky and Posner (1998) instead

use moment-matching to approximate the density of the average with a reciprocal gamma den-

sity. This method yields poor results when a small number of asset variables is used in the

average (low monitoring frequency), since the density of the average is then far from its as-

ymptotic limit (the reciprocal gamma density). Ju (2002) �ts a lognormal distribution to the

average. A Taylor expansion is then employed around zero volatility to approximate the ratio

of the characteristic function of the average to that of the approximating lognormal variable.

Based on this, an approximation to the density of the average is provided, which further allows

for a closed-form pricing formula; this is observed to work particularly well for low volatilities.

More recently, Lord (2006a) determines the Black-Scholes-Merton price of a discretely sampled

Asian option as the composition of an exact part and a part that is approximated using con-

ditional moment-matching arguments from Curran (1994a), and further shows that the total

price lies between the sharp lower bound of Rogers and Shi (1995) and a sharpening of their

upper bound by Nielsen and Sandmann (2003) and Vanmaele et al. (2006). This is known as a

partially exact and bounded approximation. In approximating the conditional distribution law

of the arithmetic average, the geometric average serves as an optimal conditioning variable. In

fact, with his work, Lord (2006a) �xes the divergence of the original approximation of Curran

(1994a) for large strike prices.

Signi�cant contributions to the pricing of Asians also rely on PDE approaches. The PDE

setup for the Asians is complicated by the fact that one wishes to achieve a reduction in the

number of state variables. This reduction, foreshadowed in Ingersoll (1987) and employed in

Rogers and Shi (1995), Andreasen (1998) and Veµceµr (2001), (2002), follows from homogeneity

of degree 1 of the option payo¤ and a change to the spot measure. In particular, all the previous

PDEs, excluding Veµceµr (2002), su¤er from instability under standard (explicit, implicit, Crank-

Nicolson) �nite di¤erence schemes; this is because the drift dominates the di¤usion term in

some regions of the grid. To deal with this, Zhang (2001) adjusts the di¤usion term and

1For applications in Lévy economies similar in spirit to Turnbull and Wakeman (1991) and Levy (1992), see,
for example, Albrecher and Predota (2002) (use a variance gamma distribution for the average), Albrecher and
Predota (2004) (normal inverse Gaussian), Ballotta (2010) (exponential variance gamma).

32



ARITHMETIC ASIAN OPTIONS

obtains an analytical solution to the modi�ed PDE as a �rst-order approximation to the true

price, which is however not as accurate as the one provided by Ju�s method. Accuracy can be

improved by adding a correction term satisfying another PDE which can be solved numerically

to high precision. Alternatively, Veµceµr (2001) sets up a new PDE for Asian options based on

techniques developed in Shreve and Veµceµr (2000) for pricing options on a traded account, while

Veµceµr (2002) provides an even simpler two-term PDE which can be solved to give fast and

accurate results, rendering this the most numerically competitive one. Veµceµr and Xu (2004)

further extend in pricing Asian options in a semimartingale model and derive a PIDE, which

is later implemented numerically for continuously monitored options under jump di¤usions

in Bayraktar and Xing (2011). Although the previous PDE techniques can be modi�ed to

accommodate discrete sampling (see Andreasen (1998), Veµceµr (2002)), this has a side e¤ect

on the �nite di¤erence algorithms by making the PDE coe¢ cients discontinuous and therefore

impacting the quadratic convergence in time of the Crank-Nicolson scheme.

Monte Carlo is typically too slow to compete with the other methods at low dimensions.

However, in the Asian case this is not a foregone conclusion since geometric Asians provide

a control variate technique that works e¤ectively in the simulation of the arithmetic Asians

(see Kemna and Vorst (1990)). Fusai and Meucci (2008) extend the work of Kemna and Vorst

(1990) on Gaussian log-returns by deriving the characteristic function of the log-geometric

average distribution law under non-Gaussian Lévy log-returns. This in turn yields the price

of the geometric Asian option as a Fourier integral which can be computed very e¢ ciently by

numerical means (see Section 3.4).

Methods based on recursive integration are speci�cally adapted to discrete monitoring and

can be adjusted to any Lévy assumption for the log-asset returns by simply switching to the rel-

evant characteristic function. Following necessary de�nitions in the next section, we present in

more detail in Section 4.4 the Carverhill-Clewlow forward density convolutions. Subsequently,

we provide a new backward price convolution scheme, and demonstrate its numerical and theo-

retical advantages over the density convolutions, the partially exact and bounded approximation

and the control variate Monte Carlo.
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Option type �0 �1; : : : ; �n�1 �n

Fixed-strike call/put �
�



n+
 �

K
S0

�
�

n+

�

n+


Floating-strike call/put � �
��

n+
 � ���

n+
 �
�
1� ��

n+


�
Table 4.1: Choice of � corresponding to di¤erent types of Asian options. �� > 0 is the coe¢ cient of
partiality for �oating-strike options. Coe¢ cient 
 takes value 1 (0) when S0 is (is not) included in the
average. Coe¢ cient � takes value 1 (-1) for the call (put) option.

4.3 Modelling on reduced state space

Consider the probability space (
, F , P). De�ne the collection of independent random variables

fZkgnk=1, n 2 N�, as the log-returns, ln
Sk
Sk�1

, on some asset S, with S0 > 0, over sub-periods

f[tk�1; tk]gnk=1 of the time line [0; T ]. Assume tk � tk�1 = �t for all k, t0 = 0 and tn = T (the

maturity). Let also F = fFkgnk=1 be the information �ltration generated by fZkg, with F0
trivial. If we interpret P as a risk-neutral measure, we have that under this measure

E(eZk) = er(tk�tk�1);

where r > 0 is the continuously compounded risk-free interest rate.

The forward price of an Asian option is provided by the unifying form

E(�+n ); (4.1)

where �k =
Pk

j=0 �jSj , for some deterministic process � originally described in Veµceµr (2002).

Di¤erent choices of the process � (see Table 4.1) re�ect di¤erent type of contracts (call or

put; �xed or �oating strike price). The di¢ culty in the computation of the expectation (4.1)

arises from the fact that � is not a Markov process under P. Instead, (S;�) jointly form a

Markov system which means, when evaluating (4.1) recursively, that the conditional expectation

E(�+n jFk), k < n, depends on both Sk and �k. This implies pricing must be performed on a

two-dimensional (excluding time) grid (S;�), raising signi�cantly the computational workload,

since, for N grid points in the S dimension, there is a vast of Nn possible averages to the

contract expiration (see Andricopoulos et al. (2007) for pricing on a two-dimensional grid using

quadrature).
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To reduce dimensionality, we de�ne the one-dimensional process

�Xk =
�k
Sk

=

Pk
j=0 �jSj

Sk
= �k +

�k�1
Sk

= �k +
�k�1
Sk�1

e�Zk = �k + �Xk�1e
�Zk (4.2)

for k = 1; : : : ; n, and

�X0 = �0:

From (4.2), process �X is adapted to �ltration F and is Markov under measure P. Additionally,

we de�ne a new �ltration G = fGkgnk=1 with

Gk = �fZn; Zn�1; : : : ; Zn+1�kg:

Intuitively, �ltration G is a �ltration in which we �rst observe the log-return in the last time

period, then the log-return in the last but one period etc. Then, we de�ne the process X

Xk = �n�k +Xk�1e
Zn+1�k ; 0 < k � n;

X0 = �n;

which is adapted to �ltration G and is Markov under measure P. Having �k > 0 for k = 1; : : : ; n

implies Xk > 0 for 0 � k < n and Yk = Xk � �n�k > 0 for 0 < k � n, such that

lnYk = ln(Yk�1 + �n+1�k) + Zn+1�k; 1 < k � n; (4.3)

lnY1 = ln�n + Zn; (4.4)

which corresponds to the so-called Carverhill-Clewlow-Hodges factorization. From (4.3-4.4), it

follows by recursive substitution that

�n =
Xn

k=0
�kSk = S0 (Yn + �0) = S0

�
elnYn + �0

�
;

hence the valuation equation (4.1) can be restated as

E(�+n ) = S0E
��

elnYn + �0

�+�
: (4.5)
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Expectation (4.5) can now be evaluated iteratively on the one-dimensional grid lnY .

4.4 Pricing of Asian options by convolution

Carverhill and Clewlow (1990), Benhamou (2002) and Fusai and Meucci (2008) use the tran-

sition equation (4.3) to compute the unconditional risk-neutral density of lnYn, which they

subsequently apply to compute the pricing expectation for the Asian option. The target den-

sity is retrieved via recursive evaluation of the density of lnYk as the convolution of the densities

of the independent variables ln(Yk�1 + �n+1�k) and Zn+1�k in line with equation (4.3). In the

�rst two papers the convolution is computed by Fourier transform, while in the third this is

computed directly with numerical integration.

In all three papers the di¢ culty stems from the fact that the density of lnYk accumulates as

k increases and is no longer related to the density of Zn beyond k = 1. Ideally, one should use

a dense and narrow grid for lnY1, and wide and relatively sparse grid for lnYn. Clewlow and

Carverhill (1990) use the same equidistantly spaced grid for all variables lnYk. On this ground,

Benhamou (2002) argues on the slow convergence of their algorithm. To speed up convergence,

he models re-centred variables lnYk � E(lnYk) on a common grid based on the approximation

E(lnYk) � lnE(elnYk�1 + �n+1�k) + E(Zn+1�k) (4.6)

from (4.3). The approximate re-centring technique (4.6), which misses a convexity-adjusting

term by Jensen�s inequality2, becomes weaker especially at high volatilities. More recently,

Fusai and Meucci (2008) adopt the original transition mechanism (4.3) (without re-centring)

and construct forward-recursive convolution integrals which they evaluate by recursive Gaussian

quadratures on a non-equidistant grid, skipping the Fourier transform route. In fact, they

only utilize Fourier-inversion to retrieve the densities of fZn+1�kgnk=1 known through their

characteristic functions. Although in theory Gaussian integration promises faster convergence

than the trapezoidal or Simpson integration, the price pattern of Fusai and Meucci (2008)

exhibits non-monotone convergence in the number of integration points when tested on di¤erent

strikes, sampling frequencies and model assumptions for the log-returns.

2 In fact, Jensen�s inequality implies that E ln(elnYk�1 + �n+1�k) � lnE(elnYk�1 + �n+1�k).
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The main di¤erence between our approach and the foregoing papers is that we model the

price of the Asian option directly, rather than the density of the underlying average. Our

method resembles backward pricing on a lattice, as opposed to the forward density convolution.

Note that smoothness of the densities of fZn+1�kgnk=1 is not required here, as opposed to the

aforementioned density convolutions, therefore our result is applicable also to models where the

density has a singularity. This occurs, for example, in the variance gamma and normal inverse

Gaussian distributions for very short time intervals.

In the next section we write down our recursive pricing algorithm.

4.5 The backward price convolution algorithm

From Section 4.3, expectation E(�+n ) = S0E
��
elnYn + �0

�+�
can be expressed iteratively in

�ltration G as

S0E
�
E
�
� � �E

��
elnYn + �0

�+����Gn�1� � � � ����G1�����G0� (4.7)

by virtue of the law of iterated expectations. We take lnY as the state variable, and express

(4.7) in terms of the following recursion for 1 < k � n,

pn(lnYn) = (elnYn + �0)
+; (4.8)

hk�1(lnYk�1) = ln(elnYk�1 + �n+1�k);

qk�1(hk�1(lnYk�1)) = E(pk(lnYk)j Gk�1) (4.9)

= E(pk(hk�1(lnYk�1) + Zn+1�k)j Gk�1) (4.10)

=

Z
R
pk(hk�1(lnYk�1) + z)fk(z)dz = (pk � fk(�z))(hk�1(lnYk�1)); (4.11)

pk�1(lnYk�1) = qk�1(hk�1(lnYk�1)):

Equation (4.8) follows from the inner part of the expectation (4.7) and initializes the recursion.

Equation (4.9) follows from the law of iterated expectations, equality (4.10) follows from (4.3),

while equality (4.11) holds by virtue of the Markov property of the process lnY where fk is

the density of the log-return Zn+1�k for any k = 1; : : : ; n and � denotes a convolution (see

De�nition 4). The integral (4.11) is computed recursively for k = n; : : : ; 1 to provide eventually

the forward price of the option

S0q0(ln�n) (4.12)
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by virtue of (4.4). We apply to the case of a �xed-strike Asian call with �1 = : : : = �n =
1

n+
 > 0

(see Table 4.1). A rigorous proof of result (4.12) is given in µCerný and Kyriakou ((2010),

Theorem 3.1).

Given the equation (4.11), we obtain from Theorem 5 that

F(pk � fk(�z)) = F(pk)F(fk(�z)) = F(pk)'k;

where F denotes the Fourier transform, and 'k the complex conjugate of the characteristic

function �k of Zn+1�k

'k(u) = �k(�u) = E(e�iuZn+1�k) =
Z
R
e�iuzfk(z)dz:

qk�1 is recovered via

qk�1 = F�1(F(pk)'k): (4.13)

Note that functions pk(y) and qk(x) are not absolutely integrable on the entire real line,

therefore their Fourier transforms do not exist (see De�nition 1). µCerný and Kyriakou ((2010),

Theorem 3.2) show that the integrability condition over the negative axis is assisted when

y and x are restricted to some compact intervals. In practice, this is taken into account in

the approximation of the continuous Fourier transforms by truncated, discrete transforms (see

Section 4.5.1).

4.5.1 Numerical implementation

Preliminaries. To evaluate numerically F(pk) and subsequently qk�1 = F�1(F(pk)'k), we

select evenly spaced grids u = fu0+ j�ugN�1j=0 , y = fy0+ l�yg
N�1
l=0 and x = fx0+m�xgN�1m=0 with

N grid points and spacings �u and �y = �x. More precisely, grid u is chosen to be symmetric

around zero such that uj = (j � N=2)�u for j = 0; : : : ; N � 1. The range of values of u is

determined to ensure that j�kj < 10�� outside u, where the � value is guided by the targeted

precision, e.g., � = 7 corresponds to 7 decimal places of accuracy. Note that for higher � the

range of u becomes wider, thus the spacing �u becomes larger for �xed N , which is undesirable

in numerical integration. For this, � has to be chosen with care. µCerný and Kyriakou ((2010),
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Theorem 3.2) additionally derive a rule for the ranges of y and x to achieve a predetermined

pricing error caused by curtailment of the integration range in (4.11). Alternatively, one can

try several ranges arbitrarily and pick the narrowest one that guarantees a smoothly convergent

price pattern with increasing N . Furthermore, to achieve monotone convergence, it is necessary

to construct the grid y with range [L;U ] � R such that

yl = ln(��0) +
��

L� ln(��0)
�y

�
+ l

�
�y;

which allows us to place the point of nonlinearity y = ln(��0) (see equation (4.8)) upon a node

of the grid.

In the next two steps, we summarize the recursive part of the numerical scheme which is

applied n times (as many as the number of monitoring dates), starting from maturity and

moving backwards to provide the option price at inception.

1. Swapping between the state and Fourier spaces. Suppose the values approximating

pk at the kth monitoring date are given on grid y and the values of 'k are given on grid

u. We denote these by pk and 'k respectively. Using the conversion (2.23), we evaluate

the fractional DFT Pk = D(pkw;y;u;N�u�y=2�)�y as a discrete approximation of the

Fourier transform F(pk) on grid u, where w denotes some low-order Newton-Côtes inte-

gration weights, e.g., for the trapezoidal rule wl = 1� 1
2(�l+�N�1�l) where the Kronecker

delta �� takes value 1 (0) for � = 0 (� 6= 0). We then approximate the inverse Fourier trans-

form (4.13) on grid x by computing qk�1 = 1
2�D(Pk'k;�u;x;�N�u�x=2�)�u, following

the conversion (2.24).

2. From q to p. We calculate pk�1 = qk�1(hk�1(y)): we approximate qk�1 inside grid x

by �tting a cubic interpolating spline to the nodes (x;qk�1) by utilizing the MATLAB

built-in function INTERP1. Outside x, we approximate qk�1 by extrapolating linearly in

ex.

39



ARITHMETIC ASIAN OPTIONS

4.6 Numerical study

For the purposes of this study, we opt for an Asian call option (in consistency with the notation

in Table 4.1: � = 1, 
 = 1) with �xed strike price K and maturity after a year�s time, i.e.,

T = 1. Sampling frequency is n. All numerical experiments are coded in MATLAB R15 on a

Dell Latitude 620 Intel Core 2 Duo T7200 PC 2.00 GHz with 2.0 GB RAM.

4.6.1 Models

We price options numerically based on three distributions of log-returns from the Lévy class:

Gaussian, normal inverse Gaussian and tempered stable. From Section 3.2, the characteristic

function of some Lévy process Lt under the risk-neutral measure is given by

E(eiuLt) = e L(u)t;

 L(u) = i(r � �L(�i))u+ �L(u);

where t is the time horizon (in years). The functions �L for the di¤erent models are

�G(u) = ��2u2=2;

�NIG(u) = (1�
p
1� 2i��u+ ��2u2)=�; (4.14)

�CGMY(u) = C� (�Y ) ((M � iu)Y �MY + (G+ iu)Y �GY ):

The exact cumulants E(Lt), Var(Lt), c3(Lt), c4(Lt) are derived for all models by di¤erentiating

the corresponding cumulant generating functions,  L(u)t, and evaluating at zero, according to

equation (2.5).

We calibrate the three models to achieve vol := Var(L1)1=2 2 f0:1; 0:3; 0:5g and, for the

non-Gaussian distributions, further s(L1) = �0:5 and �(L1) = 0:7. These values are broadly

consistent with risk-neutral densities �tted to option price data in Madan et al. (1998). The

�tted parameters, rounded to four leading digits, are presented in Table 4.2.
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Gaussian normal inverse Gaussian tempered stable
� � � � C G M Y

0.1 0.1222 0.0879 -0.1364 0.2703 17.56 54.82 0.8
0.3 0.1222 0.2637 -0.4091 0.6509 5.853 18.27 0.8
0.5 0.1222 0.4395 -0.6819 0.9795 3.512 10.96 0.8

Table 4.2: Calibrated model parameters

4.6.2 Pricing in the Black-Scholes-Merton economy

We investigate how the results from the backward price convolution with precision �10�7

compare with the original ones from the forward density convolutions of Carverhill and Clewlow

(1990) and Benhamou (2002) for di¤erent strikes and volatilities. Table 4.3 illustrates that

Benhamou (2002) provides improvement over Carverhill and Clewlow (1990), especially for

high volatilities. Note that for � 2 f0:1; 0:3g, Carverhill and Clewlow (1990) achieve in three

cases smaller absolute % error than Benhamou (2002). In general, both density convolutions

tend to su¤er less for lower volatilities and in/at-the-money options. Comparing with the price

convolution, we observe a variable precision of 1�3 decimal places for both density convolutions.

� K Backward Benhamou % error Carverhill & % error
convolution Clewlow
prec. �10�7

80 22.7771749 22.7838 -0.029 22.78 -0.013
90 13.7337773 13.7347 -0.007 13.73 0.028

0.1 100 5.2489927 5.2438 0.099 5.25 -0.019
110 0.7238324 0.7211 0.379 0.72 0.532
120 0.0264092 0.0336 -21.401 0.02 32.046

80 23.0914378 23.0733 0.079 23.09 0.006
90 15.2207610 15.2231 -0.015 15.29 -0.453

0.3 100 9.0271888 9.0110 0.180 9.08 -0.582
110 4.8349071 4.8338 0.023 4.86 -0.516
120 2.3682854 2.3545 0.586 2.4 -1.321

80 24.8242581 24.8324 -0.033 25.01 -0.743
90 18.3316740 18.3207 0.060 18.5 -0.910

0.5 100 13.1580456 13.1811 -0.175 13.47 -2.316
110 9.2345134 9.2300 0.049 9.45 -2.280
120 6.3719536 6.3615 0.164 6.68 -4.612

Table 4.3: Fixed-strike Asian call option (� = 1, 
 = 1, T = 1, n = 50): comparison with Benhamou
(2002) and Carverhill and Clewlow (1990) for Gaussian log-returns. Error expressed as a percentage of
the backward convolution price (precision �10�7). Other parameters: r = 0:1, S0 = 100.

Following successive grid re�nements, the price convolution scheme reaches monotone con-
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vergence, permitting, as a consequence, high accuracies across strikes and volatilities. Inability

of the density convolution schemes to maintain regular convergence in the number of grid points

makes it hard to judge on the precision of their outcome. The same applies to the most re-

cent approach by Fusai and Meucci (2008), which is, though, a substantial improvement over

Carverhill and Clewlow (1990) and Benhamou (2002). Table 4.4 presents the original results

from Fusai and Meucci (2008) for 1,000, 5,000 and 10,000 quadrature points: we observe that

the absolute % error for 1,000 points is in two cases smaller than the error for 5,000 and 10,000

points, while the error for 5,000 points is smaller than the error for 10,000 points in further

four cases. It is also indicated that, for 5,000 and 10,000 points, the absolute % error reduces

as the option moves into-the-money; we then observe precision to 4 decimal places. Instead, an

implementation of Fusai and Meucci�s algorithm with 1,000 points (the least CPU-demanding

for given n) typically yields precision to 3 decimal places in 5 seconds, as opposed to 1 second

for guaranteed 5 decimal-place accuracy with our pricing procedure (see Table 4.7).3

n K Backward Fusai & Meucci % error
convolution
prec. �10�7 10,000 5,000 1,000 10,000 5,000 1,000

90 11.9049157 11.90497 11.90498 11.90428 -0.0005 -0.0006 0.0054
12 100 4.8819616 4.88210 4.88212 4.88199 -0.0028 -0.0033 -0.0006

110 1.3630380 1.36314 1.36314 1.36371 -0.0075 -0.0075 -0.0493

90 11.9329382 11.93301 11.93299 11.93339 -0.0006 -0.0004 -0.0038
50 100 4.9372028 4.93736 4.93738 4.93711 -0.0032 -0.0036 0.0019

110 1.4025155 1.40264 1.40262 1.40199 -0.0089 -0.0075 0.0375

90 11.9405632 11.94068 11.94069 11.94137 -0.0010 -0.0011 -0.0068
250 100 4.9521569 4.95233 4.95239 4.94942 -0.0035 -0.0047 0.0553

110 1.4133670 1.41351 1.41350 1.41290 -0.0101 -0.0094 0.0331

Table 4.4: Fixed-strike Asian call option (� = 1, 
 = 1, T = 1): comparison with Fusai and Meucci
(2008) for Gaussian log-returns. Error expressed as a percentage of the backward convolution price
(precision �10�7). Numbers 1,000, 5,000, 10,000 in the last six columns signify the number of grid
points used by Fusai and Meucci (2008). Other parameters: � = 0:17801, r = 0:0367, S0 = 100.

With the focus on the Black-Scholes-Merton framework, PDE methods (see Veµceµr (2002))

and partially exact and bounded (PEB) analytical approximations (see Lord (2006a)) provide

additionally e¢ cient means for valuing discretely sampled Asian options. We deal here only

3The CPU time is in our favour, since our control variate Monte Carlo executes 1,000,000 trials in 190 seconds,
whereas Fusai and Meucci�s takes 130 seconds, for n = 50.
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with the PEB method, as Veµceµr�s PDE has been studied in detail in µCerný and Kyriakou (2010).

The PEB approximation originates from the work of Curran (1994a) who decomposes the Asian

option price q0 into the parts qa;0 and qb;0, such that

q0 = e�rtn (qa;0 + qb;0) ;

qa;0 = E
�
(An �K)+ 1fGn<Kg

�
;

qb;0 = E
�
(An �K)+ 1fGn�Kg

�
;

where An = 1
n+
 (
S0 +

Pn
k=1 Sk) and Gn = (S
0

Qn
k=1 Sk)

1=(n+
). Using that An � Gn, qb;0

simpli�es to

qb;0 = E
�
(An �K) 1fGn�Kg

�
;

which is computed in closed form (see Curran (1994a), Section 2.2). This is not the case

with qa;0, since, simply knowing that Gn � K, is not enough to say whether the arithmetic

option �nishes in-the-money or not. To compute qa;0, Curran ((1994a), Section 2.3) suggests

approximating An conditional on Gn by some nonnegative random variable 	(Gn), such that

qa;0 = E
�
E
�
(An �K)+ 1fGn<KgjGn

��
=

Z K

0
E
��
	
�
K 0��K�+� dFGn(K 0); (4.15)

where FGn denotes the distribution function of Gn and the expectation inside the integral

re�ects the expression for the price of a European plain vanilla call option. In computing

(4.15), Curran (1994a) determines the distribution of 	(Gn) which satis�es

E(AnjGn = K 0) = E(	(K 0)); (4.16)

Var(AnjGn = K 0) = Var(	(K 0)) (4.17)

for K 0 = K, where the left-hand sides of (4.16-4.17) are known. Then, (4.15) is evaluated

numerically by quadrature on the grid K 0. Lord ((2006a), Theorem 5) proves that Curran�s

approximation diverges as K !1. To �x divergence for large strikes, Lord ((2006a), Theorem

4) suggests matching the conditional moments (4.16) and (4.17) at all the grid points K 0 � K.

This also guarantees that the resulting approximation q0 lies between sharp lower and upper

43



ARITHMETIC ASIAN OPTIONS

bounds (see Lord (2006a), Section 6).

From Table 4.5, Lord�s PEB approximation performs extremely well for n = 50 and � 2

f0:1; 0:3g, by exhibiting 5 decimal-place precision across strikes in 0.3 seconds, dominating our

method which requires, instead, 1 second for � = 0:1 (see Table 4.7). However, the PEB

approximation becomes less competitive for high volatility, since it only converges to the fourth

decimal place for the in-the-money option. Precision restores to 5 decimal places asK increases.

For n = 12, and � = 0:5, K = 90 (worst-case scenario for PEB), we achieve precise results at

�10�5 in 0.07 and 0.3 seconds with the price convolution scheme and the PEB approximation

respectively. Both methods agree to the same accuracy in 0.15 seconds when � reduces to 0.1.

Raising, instead, n = 250 sees the PEB approximation as the winner (in terms of speed) for

precision �10�5 for all strikes and volatility levels, still our method has an extra edge for higher

precision levels.

For a larger number of sampling dates (tending to in�nity), we expect the PDE by Veµceµr

(2002) implemented with a Crank-Nicolson scheme to be the best-performing alternative to

both methods. This is investigated in greater detail in µCerný and Kyriakou (2010).

� K CPU
90 100 110 (s)

0.1 11.58113 3.33861 0.27375 0.3
0.3 13.66981 7.69859 3.89638 0.3
0.5 17.19241 12.09154 8.31440 0.3

Table 4.5: Fixed-strike Asian call option (� = 1, 
 = 1, T = 1, n = 50) for Gaussian log-returns:
results of the PEB approximation implemented with Gn as the conditioning variable. 	(Gn) = Gn +
exp(�AjG(Gn) + �AjG(Gn)Z); Z � N (0; 1). Parameters �AjG, �AjG determined via moment-matching
(see equations (4.16), (4.17)) for each grid point Gn � K. Other parameters: r = 0:04, S0 = 100. CPU
times in seconds (s).

4.6.3 Pricing in Lévy economies

We do not detail numerical comparisons with the existing density convolutions for Lévy log-

returns, as these appear to have a detrimental e¤ect on the error convergence of the scheme.

We compare, instead, against the outcome from Monte Carlo simulation accelerated by the geo-

metric Asian control variate (CVMC), as proposed in Fusai and Meucci (2008). We simulate

NIG trajectories using standard time-change Brownian representation for the NIG process (see
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Glasserman (2004), Section 3.5.2), while for the CGMY process we employ the joint Monte

Carlo-Fourier transform scheme developed in the follow-up Chapter 7. Exact prices for geomet-

ric Asian options are obtained from the analytical formula (3.13). In implementing the control

variate technique, the control variate estimate �qaaCV for the arithmetic Asian is obtained as

�qaaCV = �qaaMC � �
�
�qgaMC � q

ga
�
;

where qga is the exact geometric Asian option price, and �qaaMC, �q
ga
MC the (crude) Monte Carlo esti-

mates of the arithmetic and geometric Asian option prices respectively. The optimal coe¢ cient

� = �� = Cov(�qaaMC; �q
ga
MC)=Var(�q

ga
MC) is chosen to minimize the variance of the estimator �q

aa
CV.

Since �� itself is unknown, we must pre-estimate and �x this by regressing m� simulations of

the arithmetic price against the respective geometric price (before applying to price estimation

using a new set of m simulations), to avoid generating an undesirable amount of bias in the

�nal �qaaCV estimate (see Glasserman (2004), p. 195-196, and Section 4.1.3).

In Table 4.6 we report standard errors and CPU timings for the control variate method

across strikes and volatilities, for each Lévy model. CVMC appears to perform best (lowest

standard error) for K = 110, vol = 0:1 for all three models. Comparing with our convolution

method, we conclude that even with a very e¤ective control variate the Monte Carlo method

is not competitive as it requires 19, 26, 95 seconds to achieve at best 4 decimal places of

accuracy (at 99% con�dence level) for the Gaussian, NIG, CGMY models respectively, whereas

our method needs 1, 3.7, 8.5 seconds to obtain 5 decimal places for the same cases (see Table

4.7).

In Table 4.7 we report prices from the backward price convolution algorithm with precision

�10�5. We can achieve higher precision (up to 10�8) by exploiting the regular second-order

convergence of our scheme in the number of grid points. Beyond 10�8 we require too many grid

points to keep the grid spacing �u su¢ ciently small and maintain smooth convergence, raising

signi�cantly the computational time (see Section 4.5.1).

Two comments are in order. Firstly, comparing Gaussian with leptokurtic prices, we �nd

out-of-the-money options to be more expensive, while in-the-money options slightly cheaper.

This pattern is attributed to a combination of negative skewness and excess kurtosis e¤ects in
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model vol K CPU
90 100 110 (s)

CVMC std CVMC std CVMC std
�10�5 �10�5 �10�5

0.1 11.58129 25 3.33880 20 0.27373 15
Gaussian 0.3 13.66806 168 7.69944 157 3.89814 146 19

0.5 17.19361 495 12.09046 474 8.31389 439

0.1 11.63998 24 3.32381 15 0.15821 11
NIG 0.3 13.70351 149 7.34122 123 3.28026 106 26

0.5 16.75916 391 11.23206 345 7.17027 323

0.1 11.63994 24 3.32448 15 0.15774 11
CGMY 0.3 13.70075 150 7.34662 119 3.28289 105 95

0.5 16.76107 384 11.23964 343 7.17578 310

Table 4.6: Fixed-strike Asian call option (� = 1, 
 = 1, T = 1, n = 50): results of control variate
Monte Carlo (CVMC) strategy with 100,000 trials and Lévy log-returns. �vol�: standard deviation of
log-returns for a one-year time horizon, �std�: standard error of CVMC estimator. Model parameters:
Table 4.2. Other parameters: r = 0:04, S0 = 100. CPU times in seconds (s) (excl. computational time
for the true geometric Asian price).

the risk-neutral distribution. Secondly, the prices generated by the two Lévy models coincide

to penny accuracy. This suggests that the skewness and excess kurtosis of the risk-neutral

distribution are the primary factors driving option prices, rather than the actual model choice

itself.

4.6.4 Standard DFT versus fractional DFT

In the numerical implementation of the algorithm in Section 4.5.1, in step 1, one may instead

consider evaluating the discrete approximations of the Fourier transforms by utilizing standard

(I)DFTs, i.e., by computing Pk = D(pkw;y;u; 1)�y and qk�1 = 1
2�D(Pk'k;�u;x;�1)�u using

the conversions (2.25) and (2.26) respectively.

As discussed in Section 2.5, to apply the (I)DFTs, it is necessary that the restriction

�u�y = �u�x =
2�

N
(4.18)
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model vol K CPU
90 100 110 (s)

0.1 11.58113 3.33861 0.27375 1.0
Gaussian 0.3 13.66981 7.69859 3.89639 0.3

0.5 17.19239 12.09153 8.31441 0.3

0.1 11.64024 3.32385 0.15835 3.7
NIG 0.3 13.70084 7.34265 3.27860 1.8

0.5 16.76306 11.23586 7.16836 1.8

0.1 11.63988 3.32458 0.15787 8.5
CGMY 0.3 13.70160 7.34742 3.28308 4.1

0.5 16.76835 11.24424 7.17624 2.1

Table 4.7: Fixed-strike Asian call option (� = 1, 
 = 1, T = 1, n = 50) for Lévy log-returns: results of
the backward price convolution, precision �10�5. �vol�: standard deviation of log-returns for a one-year
time horizon. Model parameters: Table 4.2. Other parameters: r = 0:04, S0 = 100. CPU times in
seconds (s).

is in force. Equation (4.18) allows us to state

�u =
a1p
N
; �y = �x =

a2p
N

(4.19)

with

a1a2 = 2�:

Equation (4.19) suggests that as N grows to in�nity, the grid spacings �u, �y (and �x) reduce

to zero, whereas the grid widths N�u =
p
Na1 and N�y = N�x =

p
Na2 expand notably.

Extremely wide grids result to signi�cantly small and large values of 'k and pk respectively,

causing numerical instability of the (I)FFT routines, consequently a¤ecting the smooth con-

vergence Pk ! F(pk) and qk ! qk as N ! 1. Similar phenomena are observed when we �x

one of �u, �y for all N , instead; for instance, �xing �u = b ensures that �y = �x = 2�
Nb ! 0 as

N ! 1, such that N�y = N�x = 2�
b remains �xed, whereas N�u = Nb ! 1. Alternatively,

the fractional DFT permits full control by the user over all �u, �y, �x, N , therefore allows to

re�ne grids u, y, x by increasing N , while simultaneously maintaining their widths �xed.

Figure 4-1 illustrates the error convergence for both standard and fractional DFT imple-

mentations in pricing an at-the-money Asian call (� = 1, 
 = 1, T = 1, n = 50), with r = 0:04,

S0 = 100, and Gaussian log-returns with � = 0:1. We observe that the fractional DFT con-

verges smoothly, guaranteeing high-level precision for su¢ ciently large N . For low precision
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Figure 4-1: Standard DFT versus fractional DFT implementation of the backward convolution al-
gorithm: error convergence in the number of grid points N . �Error�: consecutive price di¤erences
computed for N = N� and N = 2N�. (I)DFTs & fractional DFT: �xed y, x ranges for all N . Fractional
DFT: �xed u range for all N . (I)DFTs: �xed spacing �u = b, �y = �x = 2�

Nb via (4.18).

targets, the standard DFT is preferable for faster results (see Section 2.5).

4.7 Concluding remarks

We have presented a backward price convolution for arithmetic Asian options with discrete

sampling. Our algorithm is a major improvement over existing forward density convolutions

which exhibit non-monotone convergence when implemented numerically. With a fractional

DFT implementation of our scheme, we observe regular second-order convergence in the num-

ber of grid points for di¤erent strikes and volatilities, which therefore can be accelerated by

utilizing Richardson extrapolation. Furthermore, our numerical study has shown that even

a very e¤ective control variate Monte Carlo method is not competitive with the convolution

method. On the other hand, Lord�s PEB approximation becomes more competitive for low asset

volatility and high sampling frequencies. Still, our pricing procedure has an extra edge for high

volatility and high precision targets. Furthermore, the PEB approximation is not applicable to

non-Gaussian log-returns, as opposed to our method.
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In what follows, we investigate a �rst extension of the backward convolution method to

obtain the option price sensitivities, and a second extension to compute the option prices under

stochastic volatility.
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Chapter 5

Computation of the Asian option

price sensitivities

5.1 Introduction

Practitioners are interested in e¢ cient ways to calculate the prices of derivative contracts,

but also their sensitivities (popularly known as the �Greeks�) obtained by di¤erentiating the

contract price with respect to parameters of interest. Estimation of the price sensitivities is

important, since, apart from their use for risk management and hedging, they can also serve as

a measure of the pricing error resulting from parameter values that may be inappropriate, or

may vary during the life of the contract. Moreover, price sensitivities contribute directly to the

price quotes, since the bid-ask spread is often proportional to some Greeks.

The literature distinguishes between �nite di¤erence approximations for the sensitivities and

methods based on direct di¤erentiation of a pricing formula with respect to some parameter of

interest. The �rst approach suggests calculating a price sensitivity indirectly, by recalculating

the price at a perturbed parameter value and approximating the corresponding sensitivity using

a �nite di¤erence. Although conceptually simple and intuitive, this formulation su¤ers from

practical issues, including the lack of standard rules for choosing the optimal perturbation size

for di¤erent payo¤s and sensitivities sought and, therefore, the inability to gauge the precision

of the outcome. It also doubles the computational time by the need to calculate the price twice

(for a �rst-order sensitivity).
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To deal with these issues, two approaches based on direct di¤erentiation of the risk-neutral

valuation formula have been considered. The �rst one, employed originally by Curran (1994b),

(1998) and Broadie and Glasserman (1996) in option pricing applications, relies on the re-

lationship between the contingent claim payo¤ and the parameter of interest. In the Monte

Carlo literature, this is known as the pathwise (PW) approach. In particular, for a continuous

payo¤ as a function of the parameter of di¤erentiation, the relevant sensitivity is obtained by

di¤erentiating the payo¤ function inside the pricing expectation. However, payo¤ functions are

typically not smooth, as opposed to the probability density of the underlying asset vector as a

function of its parameters. By exploiting this very useful property of the probability density,

Broadie and Glasserman (1996) advocate to di¤erentiate the probability density, instead. In the

Monte Carlo context, this is frequently termed the likelihood ratio (LR) method. Favourably,

the latter technique provides an e¢ cient tool for computing required sensitivities for various

contracts, while suppresses the need for recalculating their prices.

So far, Monte Carlo has been the method of choice for the estimation of the Greeks using

the techniques mentioned above, mainly due to its ease of implementation and ability to adapt

�exibly to various payo¤ structures. Alternatively, sensitivities have been computed by means

of PDEs (see Norberg (2006)). More recently, recursive integration-based methods have been

replacing the PDE methods, aiming to establish procedures of comparable speed which can

�t �exibly to Lévy economies, but also the Monte Carlo methods which experience slow con-

vergence and limitation in handling early-exercise features (see Lord et al. (2008), Fang and

Oosterlee (2008b) for discretely monitored Bermudan vanilla and barrier options, and Feng and

Linetsky (2008) for barrier options).

In the Asians case, several analytical results for the Greeks have been obtained via direct

di¤erentiation of original price representations: with the focus on an arithmetic Asian option

on a lognormal underlying, we mention, from Section 4.2, Geman and Yor (1993), Ju (2002),

Lord (2006a) and Zhang (2001). For an underlying driven by an exponential Lévy model,

forward density convolution algorithms (see Carverhill and Clewlow (1990), Benhamou (2002),

Fusai and Meucci (2008)) have been employed to compute the density of the discrete arithmetic

average price. This density is then utilized to compute the pricing expectation of the Asian

option. By directly di¤erentiating inside the expectation, Fusai and Meucci (2008) obtain also
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modi�ed expectations for the Greeks. In practice, however, forward density convolutions tend

to su¤er by non-smooth convergence to the true option price (or sensitivity), as discussed in

Chapter 4. In the light of this limitation, we focus attention on the e¢ cient backward price

convolution of µCerný and Kyriakou (2010) (see also Chapter 4), which bypasses the calculation

of the density of the average price, and extend this to the computation of the Greeks.

The chapter is organized as follows: with the focus on a generic European contract, we

present in Section 5.2 the two methods for deriving price sensitivities via direct di¤erentiation

of the risk-neutral valuation formula. We further derive integral representations for the price

sensitivities which are applicable to a wide range of European payo¤s and models for the asset

log-returns from the a¢ ne class. Based on the same principles, we develop in Section 5.3

the backward convolution algorithm for the price sensitivities of discretely sampled arithmetic

Asian options. In Section 5.4 we revisit standard Monte Carlo methods for the estimation of

the Greeks and show how one of these, the likelihood ratio method, can be adapted to any Lévy

assumption for the asset log-returns. Section 5.5 presents numerical comparisons between our

convolution scheme and the Monte Carlo equipped with a geometric Asian option as control

variate. Section 5.6 concludes the chapter.

5.2 Price sensitivities via direct di¤erentiation

Consider the probability space (
, F , P). We interpret P as a risk-neutral probability measure.

Let function C = q (S) be the payo¤ of a generic contingent claim written on the asset vector

S = (S1; S2; : : : ; Sn). Consider parameter � 2 B, for some bounded interval B on the real

axis. Fix ! 2 
 and think of S = h (�; !), such that C = q (h (�; !)). For a smooth function

q (h (�; !)) on the interval B, we obtain, under appropriate regularity conditions, the (forward)

sensitivity as

@E (C)
@�

:=
@E (q (h (�; !)))

@�
= E

�
@q (h (�; !))

@�

�
=: E

�
@C

@�

�
: (5.1)

Approach (5.1) is commonly used in the Monte Carlo context to generate the so-called pathwise

(PW) estimators for the Greeks, which are unbiased.

We illustrate method (5.1) by applying on a European plain vanilla call option which expires
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at T with payo¤

C = q (ST ) = (ST �K)+ = (ST �K) 1fST>Kg;

where K > 0. For concreteness, let S be modelled as

ST = h (S0; !) = S0e
(r�$)T+LT (!)

with S0, r, $ positive constants and L a Lévy process. The delta of the option is given by the

partial derivative of its price with respect to S0. Viewed as a function of ST , C is continuous

and piecewise di¤erentiable, and has derivative @C
@ST

= 1fST>Kg, while ST is linear in S0 with

derivative @ST
@S0

= ST
S0
for �xed !. Therefore, applying the chain rule for di¤erentiation yields

@C

@S0
=

@C

@ST

@ST
@S0

= 1fST>Kg
ST
S0
: (5.2)

To obtain the (forward) delta of the option, one needs to compute

E
�
@C

@S0

�
= E

�
1fST>Kg

ST
S0

�
:

The deltas of single-asset options with continuous payo¤s, e.g., Asian, lookback options, but also

of multi-asset options, e.g., spreads and options on the minimum/maximum of several assets,

can be obtained in a similar way. Approach (5.1) fails when used to compute sensitivities for

products with discontinuous payo¤s, e.g., digital and barrier options. The same issue arises

when applying this method to payo¤s with non-smooth derivatives in order to compute higher-

order price sensitivities. This is the case, for instance, with @C
@S0

in (5.2) which presents a

discontinuity at ST = K. This prohibits the use of method (5.1) to compute the so-called

(forward) gamma; that is, the second-order sensitivity with respect to S0.

In contrast to a payo¤ function, the probability distribution of the underlying asset is

typically a smooth function of its parameters. This allows us to rephrase the problem of

calculating sensitivities by passing the dependence on parameter � from the payo¤ to the

underlying probability law. In this setting, the forward price of the contingent claim is given

by

E� (C) =
Z
Rn
q (s) g (s;�) ds;
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where g is the density of S. We call this the distribution-based approach. Furthermore, for

asset log-return Z obeying to the probability law of an a¢ ne model, we write Z = ln S
S0
where

S0 > 0. We de�ne generic parameter � > 0 related to the probability distribution of Z, e.g.,

asset volatility � in the Gaussian model, hence � 6= S0. The density of Z reads

f (z; �) := S0e
zg (S0e

z;�) ;

where � = fS0; �g.

Consider a European, path-independent contingent claim on a single asset S which expires

at T . Based on explicit integral representation for the price of this claim from Section 3.4, we

will derive integral representations for the price sensitivities in the distribution-based setting.

5.2.1 Distribution-based approach for price sensitivities in a¢ ne models

Assume ZT = ln
ST
S0
has density function f (z; �) and characteristic function

� (u; �) =

Z
R
eiuzf (z; �) : (5.3)

Recall from equation (3.11) the integral representation for the forward price of a contingent

claim with general payo¤ p (lnST )

V0 (S0; �) =
1

2�

Z iR+1

iR�1
S�iu0 � (�u; �) % (u) du; (5.4)

where % (u) =
R
R e

iuxp (x) dx.

Under appropriate regularity conditions which justify di¤erentiation under the integral sign,

we derive sensitivities by di¤erentiating with respect to parameters of interest. For example,

the (forward) delta is given by

@V0 (S0)

@S0
=
�S�10
2�

Z iR+1

iR�1
S�iu0 iu� (�u) % (u) du: (5.5)
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Given (5.3) and for f 0 (z) = @f(z)
@z , we have from Theorem 3 that

@V0 (S0)

@S0
=
�S�10
2�

Z iR+1

iR�1
S�iu0

�Z
R
e�iuzf 0 (z) dz

�
% (u) du = �S�10

Z
R
p (lnS0 + z) f

0 (z) dz;

(5.6)

where the second equality follows by changing the order of integration and applying result

(3.11). The derivation of the (forward) gamma is based on the same arguments:

@2V0 (S0)

@S20
=

1

2�

Z iR+1

iR�1
iu (iu+ 1)S�iu�20 � (�u) % (u) du

=
S�20
2�

Z iR+1

iR�1
S�iu0

�
�u2

�
� (�u) % (u) du� S�10

@V0 (S0)

@S0
; (5.7)

where the second term in (5.7) follows from (5.5). From Theorem 3 and a change in the order

of integration, we get

@2V0 (S0)

@S20
= S�20

Z
R
p (lnS0 + z) f

00
(z) dz � S�10

@V0 (S0)

@S0
; (5.8)

where f
00
(z) = @2f(z)

@z2
.

In practice, the integrals (5.6) and (5.8) can be computed by utilizing numerical techniques

discussed in Section 3.4. Apart from the delta and gamma, expressions for other sensitivities

with respect to � = � can be obtained via dependence of the characteristic function in (5.4) on

�.

Two comments are in order. Firstly, formulations (5.6) and (5.8) can be used to compute

sensitivities of certain path-dependent options, too. These include discretely sampled geometric

Asian options, whose payo¤s depend on Gn = (
Qn
k=1 Sk)

1=n where fSkgnk=1 are the values of the

underlying asset recorded at times ftkgnk=1 on the time line [0; T ]. The distribution law of Gn
is known explicitly for Gaussian asset log-returns and implicitly via its characteristic function

for log-return models from the a¢ ne class (see Section 6.6).

Secondly, we get from (5.6)

�S�10
Z
R
p (lnS0 + z) f

0 (z) dz =

Z
R
p (lnS0 + z) ` (z;S0) f (z) dz = E (p (lnS0 + ZT ) ` (ZT ;S0)) ;

(5.9)
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where

` (z;S0) =
�1
S0

f 0 (z)

f (z)
:

Broadie and Glasserman (1996) use expression (5.9) in order to compute via Monte Carlo the

so-called likelihood ratio (LR) estimate for the (forward) delta, which is unbiased. Similarly,

from (5.8), the (forward) gamma is given by

E
�
p (lnS0 + ZT ) ~̀

�
ZT ;S

2
0

��
;

where

~̀
�
z;S20

�
=
1

S20

f 0 (z) + f
00
(z)

f (z)
: (5.10)

In this section, we have derived integral representations for the price sensitivities in the

distribution-based setting. These are general in that they can be adapted to a wide range of

European payo¤s, including payo¤s which depend on the geometric average asset price, and

models for the asset log-returns from the a¢ ne class. In contrast to the geometric average, the

true distribution of the arithmetic average is not known, therefore (5.6) and (5.8) cannot be

used to calculate the indicated sensitivities for an arithmetic Asian option.

5.3 A convolution approach for the Asian option price sensitiv-

ities

In this section, we will apply direct di¤erentiation with respect to parameters of interest to

extend the backward price convolution of µCerný and Kyriakou (2010) (see also Chapter 4) for

discretely sampled arithmetic Asian options to the computation of price sensitivities.

Let n 2 N� be the number of sampling dates of the Asian option, and fZkgnk=1 a collection

of independent random variables representing the log-returns on asset S, such that

Sj = S0 exp(
Xj

k=1
Zk); j = 1; : : : ; n; S0 > 0:
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Further recall from Section 4.3 the Markov process

lnYk = ln(Yk�1 + �n+1�k) + Zn+1�k; 1 < k � n;

lnY1 = ln�n + Zn

de�ned under some risk-neutral measure P in �ltration G = fGkgnk=1 with

Gk = �fZn; Zn�1; : : : ; Zn+1�kg:

Coe¢ cients f�kgnk=0 are presented in Table 4.1 for di¤erent types of Asian options.

Set � = fS0; �g, where � > 0 is a generic parameter of the probability distribution of fZkg.

Also, � 6= S0. We de�ne delta, �, and gamma, �, of the option the �rst- and second-order price

sensitivities with respect to � = S0, respectively. We further de�ne theta, #, the �rst-order

price sensitivity with respect to � = �.1 With the focus on an Asian call option with �xed

strike price, we derive in the next theorem backward recursive convolutions for its (forward)

price sensitivities.

Theorem 18 Assume parameter � = fS0; �g, such that � 6= S0. Assume that, for all k, Zn+1�k

has density ~fk(z; �). Consider constants �k > 0, 0 < k � n, and �0 2 R. For � � f�;�; #g,

de�ne

m =

8>>><>>>:
n; � � �

n� 1; � � �

n; � � #;

1Sensitivity theta should not be confused with the sensitivity with respect to the time to maturity of the
option, which is sometimes termed this way in the literature.
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and functions �pk, for 0 < k � m, �qk, for 0 � k < m, and hk, for 1 � k < n, satisfying

�pm(y;�) =

8>>>><>>>>:

�
ey + 


n+


�
1fy>ln(��0)g; � � �

�
�



n+


��0
�2

S0�0
~fn

�
ln
�
� �0
ey+�1

�
; �
�
; � � �

0; � � #;

(5.11)

�qk�1(x;�) =

Z
R

 
�pk(x+ z;�)

~fk(z; �) + pk(x+ z; �)
@ ~fk(z; �)

@�
1f��#g

!
dz (5.12)

=
�
�pk � ~fk(�z)

�
(x;�) +

 
pk �

@ ~fk(�z)
@�

!
(x;�)1f��#g; 0 < k � m; (5.13)

hk�1(y) = ln(ey + �n+1�k); 1 < k � n;

�pk�1(y;�) = �qk�1(hk�1(y);�); 1 < k � n; (5.14)

where � in (5.13) denotes a convolution (see De�nition 4).

Then, the forward delta, gamma, and theta of the Asian call option with �xed strike price

are given by

�q0(ln�n;�);

for � � �, � � �, and � � # respectively.

Proof. From µCerný and Kyriakou ((2010), Theorem 3.1) (see also Section 4.5), the forward

price of the Asian call option with �xed strike is provided through the recursion

pn(y;�) = S0(e
y + �0)

+; (5.15)

qk�1(x;�) =

Z
R
pk(x+ z;�) ~fk(z; �)dz; 0 < k � n; (5.16)

pk�1(y;�) = qk�1(hk�1(y);�); 1 < k � n: (5.17)

The forward option price is given by q0(ln�n;�).

Assume that for all x; z 2 R, the derivative @(pk(x+ z;�) ~fk(z; �))=@� exists for all � 2 B �

R, for all k. If there exist functions Fk, for all k, such that j@(pk(x+z;�) ~fk(z; �))=@�j � Fk(x; z)

for all � 2 B with
R
R jFk(x; z) ~fk(z)jdz <1, then, by Talvila ((2001), Corollary 8), we get

@

@�

Z
R
pk(x+ z;�) ~fk(z; �)dz =

Z
R

@(pk(x+ z;�) ~fk(z; �))

@�
dz; (5.18)
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for all � 2 B. De�ne �pk(y;�) :=
@pk(y;�)

@� , �qk(x;�) :=
@qk(x;�)
@� such that

� �

8<: �; � = S0

#; � = �:

Given (5.18), di¤erentiation on both sides of (5.16) with respect to � = fS0; �g yields

�qk(x;�) =
@qk�1(x;�)

@�
=

Z
R

 
@pk(x+ z;�)

@�
~fk(z; �) + pk(x+ z; �)

@ ~fk(z; �)

@�
1f�=�g

!
dz

=

Z
R

 
�pk(x+ z;�)

~fk(z; �) + pk(x+ z; �)
@ ~fk(z; �)

@�
1f��#g

!
dz: (5.19)

Also, di¤erentiating both sides of (5.17) with respect to � yields

�pk�1(y;�) =
@pk�1(y;�)

@�
=
@qk�1(hk�1(y);�)

@�
= �qk�1(hk�1(y);�): (5.20)

Representations for �pk(y;S0) :=
@�pk(y;S0)

@S0
, �qk(x;S0) :=

@�qk(x;S0)

@S0
follow by di¤erentiating (5.19)

and (5.20), for � � �, with respect to S0. The forward option sensitivities are then given for

each � � f�;�; #g by �q0(ln�n;�).

We derive terminal (forward) sensitivity functions as follows. Set � � �. We have �0 =



n+
 �
K
S0
with derivative @�0

@S0
= K

S20
= 1

S0

�



n+
 � �0
�
. Hence, from (5.15),

�p
n(y) =

@pn
@S0

(y) =

�
ey + �0 + S0

@�0
@S0

�
1fy>ln(��0)g =

�
ey +




n+ 


�
1fy>ln(��0)g

for �0 < 0. Furthermore, from (5.12),

�q
n�1(x) =

Z
R
�p
n(x+ z)

~fn(z)dz =

Z 1

�(x;�0)

�
ex+z +




n+ 


�
~fn(z)dz;

where � (x;�0) = ln (��0)�x. Applying Leibniz�s integral rule yields the terminal function for
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� � �

�qn�1(x) =
@�q

n�1
@S0

(x) = �@� (x;�0)
@S0

~fn (� (x;�0))

�
ex+�(x;�0) +




n+ 


�

= �

�



n+
 � �0
�2

�0S0
~fn (� (x;�0)) = �

�



n+
 � �0
�2

�0S0
~fn (ln (��0)� x) :

From (5.14), we get

�pn�1(y) = �
q
n�1(ln(e

y + �1)) = �

�



n+
 � �0
�2

�0S0
~fn

�
ln

�
� �0
ey + �1

��
:

For � � #, we get from (5.15)

#pn(y) =
@pn
@�
(y) = 0;

which completes the proof.

Note from (5.11) that the delta and theta recursive algorithms start at k = n, as opposed

to the gamma which starts at k = n � 1. This applies to the gamma because of insu¢ cient

smoothness of the payo¤ function, which we can, as usual, compensate by smoothness of the

density function. This clearly shows the advantage of using the distribution-based approach for

computing sensitivities of non-smooth payo¤s.

In proving Theorem 18, we have taken for granted that equality (5.18) holds. With the

focus on the option delta, we derive in the following theorem (forward) delta bounds needed to

justify the di¤erentiation with respect to S0 under the integral sign.

Theorem 19 Set � � �. De�ne ~�k =
R
R z
~fk(z)dz. Then, there exist positive constants ak; bk,

for all k, such that

0 � �p
k(y) � ake

y + bk;

0 � �q
k(x) � ake

x + bk+1;
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for all x; y 2 R, with

an = 1; bn =



n+
 ;

ak = ak+1~�k+1;

bk = ak�n�k + bk+1:

Proof. The proof of the theorem follows that of µCerný and Kyriakou ((2010), Theorem

3.1).

From Theorem 19, function 0 � �p
k(y) is dominated by an integrable function for S0 in a

compact interval. Therefore, equality (5.18) is valid for � = S0. The derivation of integrable

bounds for the (forward) gamma and theta is nontrivial, in the �rst case, by nature of �pn�1

and, in the second case, by dependence of the density ~fk on the parameter � which gives rise

to an additional (not necessarily positive) term in (5.12). We postpone further investigation on

this to a later stage of our research.

By virtue of Theorems 5 and 7, we rephrase (5.13) as

�qk�1(x) = F
�1(F(�qk�1))(x); (5.21)

where F denotes the Fourier transform (see Section 2.2), and

F(�qk�1)(u) = F(�pk � ~fk(�z; �))(u) + F
 
pk �

@ ~fk(�z; �)
@�

!
(u)1f��#g

= F(�pk)(u)~'k(u; �) + F(pk)(u)F
 
@ ~fk(�z; �)

@�

!
(u)1f��#g: (5.22)

We denote by ~' the complex conjugate of the characteristic function ~� of Zn+1�k

~'k(u; �) =
~�k(�u; �) = E(e�iuZn+1�k) =

Z
R
e�iuz ~fk(z; �)dz:

Lemma 20 If there exist functions gk, for all k, such that j@
~fk(z;�)
@� j � gk(z) for all z 2 R and
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all � in an open neighborhood of �0 with
R
R jgk(z) ~fk(z)jdz <1, thenZ

R
e�iuz

@ ~fk(z; �)

@�
dz =

@

@�

Z
R
e�iuz ~fk(z; �)dz =

@~'k(u; �)

@�

for � = �0.

Proof. See Talvila ((2001), Corollary 8).

Providing that the assumptions of Lemma 20 are satis�ed, equation (5.22) then reads

F(�qk�1)(u) = F(�
p
k)(u)~'k(u; �) + F(pk)(u)

@~'k(u; �)

@�
(u)1f��#g:

In practice, the continuous Fourier transforms in (5.21) and (5.22) are approximated by

their discrete analogues, which are implemented as described in Section 4.5.1. Furthermore, as

indicated in (5.22), the computation of the theta (� � #) requires that we run successive sessions

for the price and the theta at each iteration, relatively doubling the total number of operations

to carry out. In practice, however, the ultimate output of the scheme comprises computed values

for both. Thus, in absolute terms, the computational e¤ort for all the sensitivities remains of

the same order as for the price.

5.4 Computation of the price sensitivities via Monte Carlo sim-

ulation

A natural way to calculate price sensitivities of contingent claims is via �nite di¤erence ap-

proximation. As mentioned earlier, this technique requires us to bump the initial value of the

parameter in question and recalculate the price of the contingent claim. The �nite di¤erence

method has been applied mainly in the past to the estimation of price sensitivities via Monte

Carlo. For smooth payo¤ functions, L�Ecuyer and Perron (1994) and Boyle et al. (1997) show

that the more positively correlated the two price estimates (obtained on common random num-

ber streams), the more e¢ cient the sensitivity estimate obtained via a central �nite di¤erence

is expected to be. Instead, lack of smoothness causes large bias and poor convergence to the

true value.
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The need for unbiased sensitivity estimators has motivated the works of Curran (1994b),

(1998) and Broadie and Glasserman (1996) and led to the derivation of unbiased estimators for

the sensitivities based on direct di¤erentiation of smooth payo¤ functions (PW technique). For

insu¢ ciently smooth payo¤s, Broadie and Glasserman (1996) suggest di¤erentiating instead

the density of the underlying asset vector which is typically smooth function of its parameters

(LR technique). To obtain estimators for second-order sensitivities, one way is to apply the

LR technique twice (e.g., see equation (5.10) for the gamma), which is, however, anticipated

to have high variance (the same observation applies to all LR estimators compared to the PW

estimators, as reported in Glasserman (2004)). To reduce the variance, it is advisable to utilize

each of the PW and LR approaches for one order of di¤erentiation to generate mixed PW-LR

or LR-PW estimators.

To overcome frequent issues related to non-di¤erentiability of the payo¤ function and lack

of explicit knowledge of the density function of the underlying, Fournié et al. (1999), (2001)

introduce a method based on the Malliavin calculus theory. This method allows us to express

the estimators for the Greeks as products of the contract payo¤ with weight functions which

are identi�ed with certain Skorokhod integrals. The Malliavin estimators are not unique and

subject to di¤erent variance, depending on the weight choice. Generating a suitable weight

function raises a nontrivial concern in this setup; Benhamou (2003) provides necessary and

su¢ cient conditions for Skorokhod-integrable functions to serve as weight function generators,

and �nds the weight function with minimal variance. It is proved that the minimal-variance

weight is the one given by the LR method, implying that the Malliavin estimators are not

superior to the ones given by the LR and PW methods. In terms of e¢ ciency, the Malliavin

method su¤ers in the simulation of Skorokhod integrals, which may become substantially time-

consuming due to the simulation of many auxiliary processes, especially for a non-lognormal

underlying. Furthermore, to maintain variance at low levels, the payo¤ must be restricted

to small values, implying greater e¢ ciency of the Malliavin formulae for put rather than call

options. Selected references include Fournié et al. (1999), (2001) and Benhamou (2000) for

results on Asians, Gobet and Kohatsu-Higa (2003) and Bernis et al. (2003) for barriers and

lookbacks, and Kohatsu-Higa and Yasuda (2009) for a general review of the method with

applications.
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Due to large variance of the LR estimators, we limit hereafter their use to mixed estimators

for the second-order sensitivities, while we utilize PW estimators for the �rst-order sensitivities.

In Tables 5.1 and 5.2, we present the (forward) delta, vega and gamma estimators for discretely

sampled arithmetic and geometric Asian options. Here, vega refers to the �rst-order price

sensitivity with respect to the asset volatility � in the Black-Scholes-Merton model, i.e., � = �.2

We do not consider the Malliavin estimators any further, whose e¢ ciency fades away as we

depart from the continuous monitoring case.

5.4.1 Likelihood ratio estimators coupled with Fourier transforms

In general, the pure LR and mixed estimators require the existence of the joint density function

of the values of the underlying asset recorded at discrete points ftkgnk=1 on the time line [0; T ].

Wherever independent increments apply, the joint density simpli�es to the product of the tran-

sition densities describing the law of successive asset movements. However, it may be the case

that these densities are not easy or fast to compute (e.g., normal inverse Gaussian, variance

gamma laws), or they are only known through their characteristic functions (e.g., tempered

stable law). To retrieve the unknown densities, one must resort to numerical inversion of the

associated characteristic functions.

Consider a discretely sampled Asian option written on asset St = S0e
Zt , S0 > 0, where Zt

follows a Lévy process. A basic application of the LR/mixed technique is on the gamma of this

option. From Table 5.2, the mixed estimator for the gamma depends on the quantity

` (z;S0) =
�1
S0

f 01 (z)

f1 (z)
; (5.23)

where f1 is the density of Z1 = ln S1
S0
and f 01 (z) =

@f1(z)
@z . Quantity (5.23) is known as the delta

score function. For a well-behaved density f1 in the sense of Theorem 7, we get

f1 = F�1(�1); (5.24)

2Vega is de�ned originally in a Gaussian economy. In practice, this terminology is used also in non-Gaussian
Lévy economies, e.g., NIG economy (see equation (4.14)), to describe sensitivities with respect to parameter
�. Note that in these cases, � does not represent the asset volatility anymore. Here, we adhere to the original
de�nition.

64



PRICE SENSITIVITIES

PW estimators for the forward price sensitivities of Asian options
�Nonzero� forward delta forward vega
condition

�(An �K) > 0 � AnS0 � 1
(n+
)�

Pn
k=1 Sk(ln

Sk
S0
� (r + �2

2 )tk)

�(Gn �K) > 0 � GnS0 � Gn� (ln
Gn
S0
� n+1

2(n+
)(r +
�2

2 )T )

Table 5.1: PW estimators for the forward delta and vega (vega: Black-Scholes-Merton model) of
discretely sampled Asian options (reference: Boyle and Potapchik (2008), Theorems 3.1-3.2). r: risk-
free interest rate. �Nonzero�condition: indicates the option payo¤ providing the condition is satis�ed,
otherwise both payo¤ and sensitivity estimators take value 0. Averages: arithmetic An = 1

n+
 (
S0 +Pn
k=1 Sk), geometric Gn = (S



0

Qn
k=1 Sk)

1=(n+
), where coe¢ cient 
 takes value 1 (0) when S0 is (is not)
included in the average, and coe¢ cient � takes value 1 (-1) for a call (put) option.

Mixed forward gamma estimators for Asian options
�Nonzero� PW-LR LR-PW
condition forward gamma forward gamma

�(An �K) > 0 � AnS0 (`(Z1;S0)�
1
S0
) � KS0 `(Z1;S0)

�(Gn �K) > 0 � GnS0 (`(Z1;S0)�
1
S0
) � KS0 `(Z1;S0)

Table 5.2: Mixed forward gamma estimators; PW-LR: PW followed by LR, LR-PW: LR followed by PW
(reference: Glasserman (2004), Section 7.3.3). `(Z1;S0) given by equation (5.23). �Nonzero�conditions,
An, Gn, � as in Table 5.1.

where �1(u) = E(eiuZ1) =
R
R e

iuzf1(z)dz. Score functions applying to other LR estimators (see

Glasserman (2004), Section 7.3.1) can be obtained using the same means.

Numerical implementation

Pre-caching the score function. To evaluate numerically the density f1 = F�1(�1), we

select uniform grids u = fu0+ j�ugN�1j=0 (symmetric about zero) and z = fz0+ l�zg
N�1
l=0 with N

grid points and spacings �u and �z. The range of values of u is chosen to ensure that j�1j < �

outside u for some tolerance level �, e.g., � = 10�15. We denote the values of �1 on the grid u

by �1, and evaluate the inverse transform (5.24) on the grid z by computing

f1 =
1

2�
D(�1;�u; z;�N�u�z=2�)�u; (5.25)
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following the conversion (2.24). We refer to Hughett ((1998), Theorem 7) for an explicit bound

to the error induced by the discrete transform approximation (5.25). For consistency, one can

then inspect on the sign of the numerically retrieved density, check that it integrates to the

unity and that the moments calculated by numerical quadrature agree with their true values.

Given the values f1, we approximate
@f1
@z on the grid z by

�f1
�z using �nite di¤erences

3.

Simulating the score. Given the pre-tabulated density function and its �rst-order derivative,

we generate score samples, for m simulation trials, as summarized next:

1. Generate a m-dimensional vector of ẑ1-draws from the distribution of Z1.

2. Approximate f1(ẑ1) and
@f1
@z (ẑ1) by �tting a cubic interpolating spline on the nodes (z; f1)

and (z; �f1�z ) respectively, using the MATLAB built-in function INTERP1.

3. From (5.23), obtain the score samples `(ẑ1;S0).

5.5 Numerical study

For the purposes of this study, we opt for an Asian call option (in consistency with the notation

in Table 4.1: � = 1, 
 = 0) with �xed strike price K, time to maturity T = 1 and sampling

frequency n = 50. To model the log-returns, we employ the calibrated parameters from Section

4.6.1 to achieve target skewness coe¢ cient -0.5 and excess kurtosis 0.7 of the (NIG and CGMY)

log-returns for each volatility level {0.1,0.3,0.5} under the risk-neutral measure. All numerical

experiments are coded in MATLAB R2009a on a Sony Vaio VGN-AR31E Intel Core 2 Duo

T5500 PC 1.66 GHz with 2.0 GB RAM.

We test our convolution method by computing the delta, gamma, and vega of arithmetic

Asian options and comparing with the corresponding Monte Carlo estimates. For the delta and

vega, we present only the PW estimates, since the corresponding LR ones have exhibited higher

variance; this is consistent with the observation of Boyle and Potapchik (2008). In the case of

3For the numerical di¤erentiation, we have implemented the central_di¤ .m routine for MATLAB which
is available to download from http://www.mathworks.com/matlabcentral/�leexchange/12-centraldi¤-m/. This
evaluates the gradient numerically by utilizing a forward di¤erence at the left end of the grid, a backward
di¤erence at the right end, and central di¤erences in the interior.
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the gamma, the PW-LR and LR-PW estimates have shown closely related variances. All the

arithmetic option estimates are obtained in combination with the corresponding estimates for

the geometric option, which are used as control variates. For the latter, we only require the

characteristic function of the log-geometric average distribution law, which has been derived

in Fusai and Meucci ((2008), Appendix A) for general Lévy log-returns. Exact geometric

Asian option delta and gamma are obtained by evaluating numerically the integrals (5.5) and

(5.7) using the Fourier-cosine series expansion (3.13), while a similar formula for the vega

is straightforward to derive. The NIG increments are simulated using standard time-change

Brownian representation for the NIG process, while for the CGMY process we utilize the joint

Monte Carlo-Fourier transform scheme developed in the follow-up Chapter 7.

5.5.1 Convolution versus Monte Carlo

Tables 5.3 and 5.4 provide speed-accuracy comparisons between the convolution and control

variate Monte Carlo (CVMC) methods in calculating the option price sensitivities. Across

strikes and asset volatilities, CVMC requires for each of the normal, NIG, and CGMY models

2.3, 7.0, and 27.6 seconds (resp. 4.9, 9.4, and 27.8 seconds) to achieve delta estimates (gamma

estimates) with best precision �10�4 and worst precision �10�3 (at 99% con�dence level).

For high volatilities (vol 2 f0:3; 0:5g), the backward convolution method appears clear winner

taking for each model at most 0.8, 2.7, and 2.7 seconds to guarantee 6 decimal-place accuracy

for the delta and gamma. For vol = 0:1, we obtain accurate results to 4 decimal places in 0.8,

5.3 and 5.3 seconds for each model. CVMC performs worst in the vega requiring 3.0 and 27.0

seconds for precision �10�2 and �10�3 respectively, whereas our method at most 5.1 seconds

for 6 decimal-place precision.

Furthermore, comparing the deltas (resp. gammas) from the convolution scheme for the

non-normal (NIG and CGMY) log-returns, we �nd that these match to at least the third (resp.

fourth) decimal place. The normal deltas and gammas match the corresponding non-normal

ones to the second and third decimal places respectively. This suggests that the negative

skewness and excess kurtosis in the risk-neutral distribution of the non-normal log-returns have

only minor impact on these sensitivities. The joint skewness-kurtosis e¤ect becomes more

important in the option prices where the normal versus non-normal gap becomes wider, as
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discussed in Section 4.6.3.

5.6 Concluding remarks

The present chapter extends the backward price convolution method of Chapter 4 to the cal-

culation of the Asian option price sensitivities. When tested on a range of strikes, log-return

models and model parameter values, the numerical scheme exhibits regular convergence in the

number of grid points ensuring high-level precision. This further allows for a cautious study

on the option delta and gamma, which makes obvious that the e¤ect of the model choice is

limited, as opposed to the more signi�cant impact this has on the option price. Furthermore,

a numerical comparison against an e¤ective control variate Monte Carlo method illustrates the

speed and accuracy of our approach.
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model vol K CPU
90 100 110 (s)

Conv. delta

0.1 0.966536 0.632629 0.105740 1.4
normal 0.3 0.770593 0.563355 0.356690 0.8

0.5 0.695404 0.563825 0.438759 0.4

0.1 0.956400 0.671022 0.080918 12.3
NIG 0.3 0.799574 0.598537 0.362400 2.7

0.5 0.731009 0.592983 0.448609 1.3

0.1 0.956498 0.670591 0.081181 12.2
CGMY 0.3 0.799228 0.598308 0.362797 2.7

0.5 0.730686 0.592920 0.448945 2.7

Conv. gamma

0.1 0.0062364 0.0622252 0.0304433 1.4
normal 0.3 0.0165627 0.0218205 0.0205350 0.8

0.5 0.0116627 0.0130656 0.0129548 0.4

0.1 0.0065512 0.0596221 0.0313875 12.3
NIG 0.3 0.0144623 0.0232580 0.0246266 2.7

0.5 0.0114808 0.0144927 0.0154340 1.3

0.1 0.0065464 0.0596070 0.0315333 12.2
CGMY 0.3 0.0144825 0.0232080 0.0245690 2.7

0.5 0.0114704 0.0144549 0.0153935 2.7

Conv. vega

0.1 2.060207 21.404443 10.847111 5.1
normal 0.3 16.373056 22.460832 21.894896 1.4

0.5 19.118652 22.302081 22.905267 1.4

Table 5.3: Fixed-strike Asian call option sensitivities (� = 1, 
 = 0, T = 1, n = 50) for Lévy log-
returns: results of the extended backward convolution scheme. �vol�: standard deviation of log-returns
for a one-year time horizon. Model parameters: Table 4.2. Other parameters: r = 0:04, S0 = 100. CPU
times in seconds (s).
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model vol K CPU
90 100 110 (s)

CVMC std CVMC std CVMC std
�10�5 �10�5 �10�5

CVMC delta

0.1 0.96651 9 0.63255 17 0.10594 22
normal 0.3 0.77060 28 0.56285 30 0.35691 34 2.3

0.5 0.69580 38 0.56379 40 0.43914 44

0.1 0.95641 11 0.67110 17 0.08091 21
NIG 0.3 0.79941 28 0.59793 29 0.36236 33 7.0

0.5 0.73059 37 0.59261 38 0.44839 40

0.1 0.95676 11 0.67071 17 0.08130 21
CGMY 0.3 0.79914 28 0.59775 29 0.36309 33 27.6

0.5 0.73050 37 0.59290 38 0.44853 40

CVMC gamma

0.1 0.00625 6 0.06226 13 0.03043 15
normal 0.3 0.01651 6.5 0.02199 7.5 0.02051 8 4.9

0.5 0.01161 5.3 0.01297 5.8 0.01293 6

0.1 0.00659 15 0.05947 25 0.03135 33
NIG 0.3 0.01432 14 0.02319 16 0.02482 17 9.4

0.5 0.01166 12 0.01460 12 0.01553 13

0.1 0.00669 15 0.05953 27 0.03168 34
CGMY 0.3 0.01437 15 0.02321 16 0.02467 18 27.8

0.5 0.01150 12 0.01465 13 0.01548 13

CVMC vega

0.1 2.068 1200 21.410 530 10.864 1700
normal 0.3 16.387 1900 22.475 1200 21.903 1200 3.0

0.5 19.091 2800 22.266 2300 22.914 2100

Table 5.4: Fixed-strike Asian call option sensitivities (� = 1, 
 = 0, T = 1, n = 50): results of
control variate Monte Carlo (CVMC) strategy with 100,000 trials and Lévy log-returns. �vol�: standard
deviation of log-returns for a one-year time horizon, �std�: standard error of CVMC estimator. Model
parameters: Table 4.2. Other parameters: r = 0:04, S0 = 100. CPU times in seconds (s) (excl.
computational time for the true geometric Asian option sensitivities).
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Chapter 6

Pricing Asian options under

stochastic volatility

6.1 Introduction

Empirical studies of the time series of asset returns and derivatives prices conclude that there

are at least three systematic departures from the benchmark lognormal process which describe

the asset price dynamics under both the historical and risk-neutral measures. First, asset

prices jump, leading to non-Gaussian return innovations. Second, the amplitude of returns is

positively autocorrelated in time (volatility clustering). Third, returns and their volatilities are

correlated, often negatively for the equity markets (leverage e¤ect). Exponential Lévy models

account only for the �rst stylized feature, and further perform poorly in generating implied

volatility patterns across di¤erent time scales.

Stochastic volatility models tackle these di¢ culties at the cost of introducing a second

random process, interpreted as the instantaneous volatility of the underlying. In this case, the

asset price is no longer a Markov process; to regain a Markov process, one must consider the

joint asset-volatility process. This dimensionality increase inevitably a¤ects the computational

complexity of various pricing procedures and becomes particularly pronounced for early-exercise

and path-dependent derivatives. We consider here the case of Asian options.

In the context of a¢ ne jump di¤usions with stochastic volatility, Du¢ e et al. (2000) are the

�rst to deduce an integral representation for arithmetic Asians with continuous sampling of the
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underlying price. In fact, their work complements the work of Bakshi and Madan (2000) on the

pricing of average-rate interest rate options where the state vector follows a square-root model.

Thereafter, a number of approximate PDEs for the option price and Monte Carlo strategies

(for continuously sampled Asians) appear primarily in the literature. As we describe in greater

detail in Section 6.2, both approaches assume a stochastic volatility di¤usion and strongly rely

on fast mean-reversion to ensure convergence.

Our contribution to the current state of the literature on Asians is twofold. Firstly, we

expand here the original convolution method of µCerný and Kyriakou (2010) (see also Chapter

4) based on Lévy log-returns to two dimensions to accommodate non-Lévy log-returns with

stochastic volatility, developing on an idea from the presentation of Fang and Oosterlee (2009)

applied on barrier and Bermudan vanilla options. The outcome of the algorithm then consists of

the option values on a grid of initial variance values. Secondly, we derive the exact distribution

law of the log-geometric average of the discrete asset values, and subsequently obtain the price

of a geometric Asian in terms of a Fourier transform which we evaluate at high accuracy. Given

this, we construct a control variate Monte Carlo strategy which we implement for e¢ ciency

testing against the convolution method. In particular, we apply in pricing an Asian put option

with �oating strike under the Heston (1993) and Bates (1996) stochastic volatility models with

parameter values relevant to the equity option markets.

The rest of the chapter is organized as follows. In Section 6.2, we review previous ap-

proaches to pricing Asian options under stochastic volatility. In Section 6.3, we present the

class of stochastic volatility models and their laws. In Section 6.4, we reconsider the Carverhill-

Clewlow-Hodges factorization and incorporate stochastic volatility. In Section 6.5, we develop

the main theoretical results for the price convolution scheme, and, in Section 6.5.1, detail its

implementation via discrete Fourier transform combined with quadrature. In Section 6.6, we

obtain the price of the geometric Asian option, as part of our control variate Monte Carlo

strategy for the arithmetic Asian option. Section 6.7 presents our numerical study and reports

our results, and Section 6.8 concludes the chapter.
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6.2 Pricing approaches to Asian options under stochastic volatil-

ity

In what follows, we review existing approaches to the computation of Asian option prices when

the asset returns are driven by stochastic volatility di¤usion models.

Part of the relevant literature is PDE-based and dominated by the work of Fouque and

Han on the derivation and approximation of pricing PDEs. Recognizing that the underlying

asset, the running arithmetic (continuous) sum of the asset values and the volatility form a

joint Markov process, Fouque et al. (2000) originally derive a 3-D (in space) pricing PDE. By

applying a singular perturbation asymptotic analysis for fast mean-reverting volatility, they

show that the solution of the PDE can be approximated by the sum of two terms which satisfy

themselves a pair of 2-D PDEs. Fouque and Han (2003), and later Fouque and Han (2004a) with

a two-factor stochastic volatility, further adhere to the state-space reduction employed in Veµceµr

(2002) to reduce the original PDE dimension. Their approximate solution shows independence

from the volatility and, in fact, consists of two terms which satisfy a pair of 1-D PDEs that

are easier to solve. They conclude that the accuracy of their approximation is O(1/�), where

� > 0 is the mean-reversion rate of the volatility process.

As an alternative to the PDE method, Monte Carlo is often used due to its ability to

handle path-dependence with relative �exibility. To reduce the standard error of the Monte

Carlo estimator for the price of an arithmetic Asian option, Wong and Cheung (2004) extend

the approach of Fouque et al. (2000) to derive a �rst-order price approximation based on

asymptotic analysis in a one-factor Gaussian-OU volatility setup for a continuously sampled

geometric Asian for use as control variate. Fouque and Han (2004b) generalize to two-factor

volatility and propose a two-step variance reduction combining control variate and importance

sampling. Apart from the approximation error in the asymptotic analysis for the non-Monte

Carlo price of the geometric Asian option, further issues relate to the simulation of the sample

trajectories which are left unexplored in these two works; in general, stochastic volatility models

have proved di¢ cult to simulate exactly. Euler discretization (see Schoutens (2003), Section

8.4) has been traditionally employed, subject, however, to a bias that needs to be estimated

and also a time grid which is usually much �ner, than is strictly necessary for the contract in
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question, to keep the bias low. For our purposes here, we refer the reader to Section 6.6.2 for

more on the recent advances on the simulation of the Heston model. Moreover, simulating the

payo¤ of a continuously sampled Asian option on a �nite set of dates further contributes to the

overall magnitude of the bias.

With the focus on discrete monitoring, Albrecher and Schoutens (2005) use comonotonic

theory (see Kaas et al. (2000), Dhaene et al. (2002)) to derive a static super-hedge for an

arithmetic Asian option with �xed strike in terms of a portfolio of European plain vanilla

options maturing at the monitoring dates of the Asian option. The performance of their hedging

strategy appears highly dependent on the moneyness of the option, e.g., for out-of-the-money

options the gap between their Monte Carlo price estimate and the comonotonic hedge exceeds

60% in the case of the Heston model.

To skip any form of bias, e.g., by discretization of the continuous-time variance process, as-

ymptotic analysis for fast mean-reverting volatility, and comonotonicity, we suggest an accurate

recursive pricing algorithm for discretely sampled Asian options based on numerical integration.

First, we present popular stochastic volatility models.

6.3 Market models

Fix constant S0 > 0, and de�ne under the risk-neutral measure P the price process of a risky

asset S = eX . Assume constant, continuously compounded interest rate r > 0. Moreover,

introduce stochastic variance � in the asset dynamics such that (�;X) are modelled by a

bivariate a¢ ne process. Several stochastic volatility paradigms have been proposed in the

option pricing literature: popular is the stochastic volatility Lévy framework developed by

Carr et al. (2003). This comprises square-root time-change models of the form

Xt = X0 + (r +$) t+ LR t
0 �sds

+ % (�t � �0) ; (6.1)

d�t = � (� � �t) dt+ �
p
�tdWt; (6.2)
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where the parameters �, �, �, $, % are constant, L is a Lévy process and W an independent

standard Brownian motion, as well as Lévy-driven OU time-change models of the form

Xt = X0 + (r +$) t+ LR t
0 �s�ds

+ ~Lzt ; (6.3)

d�t = �
�
� � �t�

�
dt+ dzt; (6.4)

where �, �, $ are constant parameters and L, ~L and z independent Lévy processes; z is chosen

to be a subordinator without drift. Typically, � in (6.4) is driven by an OU process with

gamma stationary distribution (�-OU) or inverse Gaussian stationary distribution (IG-OU).

The mean-adjusting parameter $ is chosen to ensure that the martingale condition under P,

E (St) = S0e
rt, (6.5)

is satis�ed1.

Special cases of (6.1-6.2) and (6.3-6.4) are respectively the Heston (1993) model with Lt =

�t + Bt, � 2 R, and standard Brownian motion B, and the Barndor¤-Nielsen and Shephard

(2001) model with Lt = �t + Bt, deterministic process ~Lt = �t, � � 0, and long-term mean

variance � = 0.2 Although the Heston model is able to generate su¢ cient leverage e¤ect,

so as to obtain a skew at long time scales, it cannot give rise to realistic short-term implied

volatility patterns. The Barndor¤-Nielsen and Shephard model also restricts the skewness of

the implied volatility patterns for short and long maturities by letting the same parameter � to

control both the impact of jumps in the asset returns and the leverage e¤ect. Favourably, Bates

(1996) adds Poisson jumps in the asset price process of the original Heston. The existence of

jumps which are kept separate from the leverage e¤ect, allows to reproduce strong skews at

short maturities. Skews for longer maturities result separately by �Heston�s leverage� e¤ect.

1The martingale architecture (6.5) is consistent with taking the risk-neutral asset price process by mean-
correcting the ordinary exponential of the time-changed Lévy process. Carr et al. (2003) propose also an
alternative approach where the martingale model for the discounted asset price is obtained using a stochastic
exponential, resulting into a model which is martingale in the joint �ltration of the asset price and the stochastic
time change. As a result of their survey based on S&P 500 options, the exponential models proved to provide
better �t to the actual prices than the stochastic exponential models when the square-root stochastic variance
was assumed. For this, we adhere to the ordinary exponential.

2The general model structures (6.1-6.2) and (6.3-6.4) presented here are common in the research papers of
Jan Kallsen, e.g., Kallsen and Pauwels (2009).
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Du¢ e et al. (2000) further assume concurrent arrival of jumps in the asset price and variance

processes with crosscorrelated sizes.

6.3.1 Laws of a¢ ne stochastic volatility models

Du¢ e et al. (2003) characterize the laws of a¢ ne-structure models. For the bivariate a¢ ne

setup (�;X), the characteristic function is of the form

E
�
eiu1�t+iu2Xt

�
= e	0(u1;u2;t)+	1(u1;u2;t)�0+iu2X0 ; t > 0; (6.6)

where 	0;	1 : (C� � R) � R+ ! C (with C� = fu 2 C : Re iu � 0g) are determined for

each individual model as solutions to a system of generalized Riccati di¤erential equations (see

Section 3.3 for more). It is possible that 	0, 	1 admit closed-form expressions for certain

models, including the Heston model from the square-root time-change class (e.g., Filipovíc and

Mayerhofer (2009)) and the �-OU framework (see Kallsen et al. (2009), Example 4.2).

For our purposes here, we state explicitly the functions 	0, 	1 relevant to the Heston model

	0 (u1; u2; t) = iu2

�
r � �

�
��

�
t+

��

�2

�
(�� !2) t� 2 ln

�
!1e

�!2t � 1
!1 � 1

��
;

where restricting the complex logarithm to its principal branch ensures that the characteristic

function remains continuous (see Lord and Kahl (2008), Theorem 3), and

	1 (u1; u2; t) =
(�� iu2�� � !2)� !1e�!2t (�� iu2�� + !2)

(1� !1e�!2t) �2
;

!1 (u1; u2) =
�� iu2�� � !2 � iu1�2
�� iu2�� + !2 � iu1�2

;

!2 (u1; u2) =
q
(�� iu2��)2 +

�
u22 + iu2

�
�2;

where the square root in the last equation is operated on the common convention that its

real part is nonnegative, with coe¢ cient � representing the instantaneous correlation between

the variance and asset price processes. As a by-product, in the Bates framework with extra
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independent Poisson jumps in the asset price, 	0 modi�es to

	0 (u1; u2; t) = iu2

�
r � �

�
�� � �J

�
e�J+

1
2
�2J � 1

��
t

+
��

�2

�
(�� !2) t� 2 ln

�
!1e

�!2t � 1
!1 � 1

��
+ �J

�
eiu2�J�

1
2
�2Ju

2
2 � 1

�
t;

with jump intensity �J > 0 of the time-homogeneous Poisson process and jump size J �

N
�
�J ; �

2
J

�
.

6.4 Modelling on reduced state space with stochastic volatility

Consider the set of monitoring dates T = ftkgnk=0, n 2 N�. Assume these dates are equidistantly

spaced, so that tk � tk�1 = �t for 0 < k � n, with t0 = 0, tn = T > 0. Let fZkgnk=1 be the

collection of log-asset increments on the complete �ltered probability space (
, F , F, P), where

F = fFkgnk=1, with F0 trivial, is the information �ltration generated by fZkg, such that

Sj = S0 exp(
Xj

k=1
Zk); j = 1; : : : ; n; S0 > 0:

The increments fZkg are identi�ed later with speci�c non-Lévy increments within the class of

stochastic volatility models of Section 6.3.

We recall from Chapter 4 that the pricing of arithmetic Asian options with discrete moni-

toring amounts to calculating

E(e�rtn�+n ); (6.7)

where �k =
Pk

j=0 �jSj for some deterministic process � (see Table 4.1). Upon assuming sto-

chastic variance �, the expectation (6.7) can be computed recursively on the three-dimensional

(excluding time) grid (�; S;�). To reduce dimensionality, we adopt from Section 4.3 the process

�Yk = �Xk � �k in �ltration F

ln �Yk = ln( �Yk�1 + �k�1) + Z
�
k ; 1 < k � n; (6.8)

ln �Y1 = ln�0 + Z
�
1 ; (6.9)
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where Z� = �Z and �k > 0 for k = 0; : : : ; n� 1. This allows us to express the option price as

E(e�rtn�+n ) = E(e�rtn(Sn �Yn + Sn�n)+) = S0�E(( �Yn + �n)+); (6.10)

where the �rst equality follows from (6.8) by recursive substitution, and the second by ho-

mogeneity of the payo¤ function of degree 1 and a change to the equivalent spot measure �P

induced by taking the asset price as the numéraire (see Appendix 6.B). (�; �Y ) form a joint

Markov process in �ltration F, so that (6.10) can be evaluated recursively under �P on the

two-dimensional grid (�; �Y ).

6.5 The backward price convolution algorithm

Expectation �E(( �Yn + �n)+) can be expressed iteratively in �ltration F as

�E
�
�E
�
� � � �E

��
�Yn + �n

�+���Fn�1� � � � ���F1����F0� (6.11)

by virtue of the law of iterated expectations. Let �k be the level of stochastic variance at tk.

Assume densities f �fkgnk=1 characterizing the �P-law of fZ�kgnk=1 conditional on the variance levels
�k, �k�1, and f �f�k�1;kgnk=1 the transition law of the variance �. We take (�; ln �Y ) as the state
variables, and express (6.11) in terms of the following recursion for 1 < k � n,

�pn(ln �Yn; �n) = (eln
�Yn + �n)

+ for �n 2 R+; (6.12)

�hk�1(ln �Yk�1) = ln(eln
�Yk�1 + �k�1);

�qk�1(�hk�1(ln �Yk�1); �k�1) = �E( �pk(ln �Yk; �k)
��Fk�1)

= �E( �pk(�hk�1(ln �Yk�1) + Z�k ; �k)
��Fk�1)

=

Z
R+

Z
R
�pk(�hk�1(ln �Yk�1) + z

�; y�) �fk(z
�j y�; �k�1) �f�k�1;k(y�j �k�1)d(z�; y�);

�pk�1(ln �Yk�1; �k�1) = �qk�1(�hk�1(ln �Yk�1); �k�1):

The price of the option is given by

S0�q0(ln�0; �0) (6.13)

by virtue of (6.9). The proof of statement (6.13) follows that of µCerný and Kyriakou ((2010),

Theorem 3.1), hence we omit it here. In this chapter, we apply to the case of a �oating-strike
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Asian put with coe¢ cients �0 = : : : = �n�1 =
1

n+1 > 0 (see Table 4.1).

For the purposes of the numerical implementation (see Section 6.5.1), we further de�ne the

convolution (see Section 2.2.2)

�Qk�1(�hk�1(ln �Yk�1); �k; �k�1) =

Z
R
�pk(�hk�1(ln �Yk�1) + z

�; �k) �fk(z
�j �k; �k�1)dz�

= (�pk � �fk(�z�))(�hk�1(ln �Yk�1); �k; �k�1)

for �k; �k�1 2 R+, such that

�qk�1
�
�hk�1(ln �Yk�1); �k�1

�
=

Z
R+

�Qk�1
�
�hk�1(ln �Yk�1); y�; �k�1

�
�f�k�1;k (y�j �k�1) dy�: (6.14)

We then obtain from Theorem 5 that

F(�pk � �fk(�z�)) = F(�pk)F( �fk(�z�)) = F(�pk)�'k; (6.15)

where

F(�pk) (u; �k) =
Z
R
eiuy �pk (y; �k) dy

with �k held �xed, and �'k is the complex conjugate of the characteristic function ��k of Z
�
k

conditional on the variance levels �k; �k�1 at the endpoints tk, tk�1

��k (u; �k; �k�1) = �E
�
eiuZ

�
k

��� �k; �k�1� = Z
R
eiuz

� �fk (z
�j �k; �k�1) dz�:

�'k is derived in Appendix 6.C for the Heston and Bates models. From (6.15), we recover �Qk�1

via

�Qk�1
�
�hk�1(ln �Yk�1); �k; �k�1

�
= F�1(F(�pk)�'k)

�
�hk�1(ln �Yk�1); �k; �k�1

�
(6.16)

given the values of �k, �k�1.

6.5.1 Numerical implementation

Preliminaries. To evaluate numerically �pk, �Qk and �qk, we select uniform grids y = fy0 +

l�ygN�1l=0 , x = fx0 +m�xgN�1m=0 with N points and spacings �y = �x, and uniform grids y� =
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fy�;0 + l��y�gN��1l�=0
, x� = fx�;0 + m��x�gN��1m�=0

with N� points and spacings �y� = �x�. To

account for the nonlinearity at y = ln(��n) (see equation (6.12)), grid y is constructed as

explained previously in Section 4.5.1.

Moreover, we determine a uniform, symmetric about zero, grid u with N points and spacing

�u, such that uj = (j � N=2)�u for j = 0; : : : ; N � 1, and evaluate �'k at u for each of

the points fy�;l�gN��1l�=0
, fx�;m�gN��1m�=0

. We denote the values of �'k on the grid (u;y�;x�) by

�' = f�'j;l� ;m�
gN�N��N� . These values are calculated once and pre-stored for later use in the

recursive procedure. To speed up the calculation, the components of �'k, i.e., �0, �1, �2, �3,

�4 and ~�J (see equations (6.39), (6.40)) which are independent of the variance level, can be

pre-computed separately. The characteristic functions (6.39), (6.40) also involve two modi�ed

Bessel functions of the �rst kind I�(z). To calculate these, we use the MATLAB function

besseli(�; z) for real order � and complex argument z. To �x potential over�ow problem due to

small argument z, it is advisable to compute �rst the scaled version e�jRe zjI�(z) available as

besseli(�; z; 1) and rescale this to retrieve I�(z).

We pre-store the variance density for all possible transitions fx�;m�gN��1m�=0
to fy�;l�gN��1l�=0

:

for the square-root variance process, this amounts to calculating the transition density

�f�k�1;k(y�jx�) = �2df (�5y�; �NC)

with auxiliary parameters �5 = 4���2(1 � e���t)�1, �NC = �5e���tx�, df = 4����2, where

�2df (�; �NC) is the noncentral chi-square density of the variable � with df degrees of freedom

and non-centrality parameter �NC . We denote the function values on the grid (y�;x�) by

�f� = f�f�l� ;m�
gN��N� .

Given the above preliminaries, we summarize next in three steps the recursive part of the

numerical scheme which is applied n times (equal to the number of monitoring dates), starting

from maturity and moving backwards to provide the option price at inception.

1. Swapping between the state and Fourier spaces. Assume the values approximating

�pk at the kth monitoring date are given on the grid (y;y�), and denote these by �pk =
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f�pl;l�gN�N� . Evaluate �Pk = f�Pj;l�gN�N� , where

�P�;l� = D(�p�;l�|;y;u; 1)�y

computed for each l� = 0; : : : ; N� � 1 are the discrete approximations to the transforms

F(�pk) (u; y�) for each y�. The discrete Fourier transforms are implemented as standard

DFTs using the conversion (2.25). We then approximate the inverse Fourier transform

(6.16) by computing �Qk�1 = f�Qm;l� ;m�gN�N��N� as

�Q�;l� ;m� =
1

2�
D(�P�;l� �'�;l� ;m�

;�u;x;�1)�u

for each l� = 0; : : : ; N� � 1 and m� = 0; : : : ; N� � 1 using the conversion (2.26).

2. From �Q to �q. We calculate �qk�1 in (6.14) by means of the trapezoidal sums �qk�1 =

f�qm;m�gN�N� . For this, we utilize the MATLAB routine TRAPZ

�qm;m� = trapz(�Qm;�;m�
�f��;m�

|)�y�

for each m = 0; : : : ; N � 1 and m� = 0; : : : ; N� � 1.

3. From �q to �p. In calculating �pk�1 = �qk�1(�hk�1(y);y�), we approximate �qk�1 inside grid

x by �tting a cubic interpolating spline to the nodes (x; �q�;m�
) for each m� = 0; : : : ; N� �

1 by utilizing the MATLAB built-in function INTERP1. Outside the range of x, we

approximate �qk�1 by extrapolating linearly in ex.

The overall computational complexity of the scheme is O(nN2
�N log2N), as opposed to

O(nN2
�N

2) for a full implementation with quadrature. It also provides us with the option

values on a grid of N� initial variance values �0. For greater �exibility on the construction of

the grids and higher accuracies for large grid sizes (see Section 4.6.4), one may replace standard

(I)DFTs with fractional DFTs as in Section 4.5.1, at the cost, however, of increased CPU

demands.
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6.6 Asian option pricing via Monte Carlo simulation

In general, Monte Carlo is slow to compete with grid-based methods in a one-dimensional setup.

However, in the Asian case this is not a foregone conclusion because geometric Asian options

provide a control variate which has proved powerful in reducing the variance of the Monte

Carlo estimators of their arithmetic counterparts (see Kemna and Vorst (1990)). Building on the

previous results of Fusai and Meucci (2008) for an exponential Lévy underlying and the insights

from the presentation of Lord (2006b), we derive accurate formulae for the prices of discretely

sampled geometric Asian options when the assumption of independent and stationary log-

increments for the underlying is relaxed. In particular, we consider pricing under the stochastic

volatility model assumptions exhibited in Section 6.3, though the results can be extended to

other members of the a¢ ne class with stochastic interest rates.

6.6.1 Geometric Asian options

The payo¤ of a geometric Asian option depends on the average underlying value

Gn = (S


0

Yn

k=1
Sk)

1=(n+
) = exp

�

 lnS0 +

Pn
k=1 lnSk

n+ 


�
; (6.17)

where 
 takes value 1 (0) when S0 is (is not) included in the average. Further to (6.17), Fusai

and Meucci ((2008), Appendix A) show that

lnGn = lnS0 +
Xn

k=1

n+ 1� k
n+ 


Zk (6.18)

for log-returns fZkg from the class of a¢ ne models. The price of a geometric Asian with �xed

strike K then reads

E(e�rT (�(elnGn �K))+); (6.19)

where � takes value 1 (-1) for a call (put) option, whereas the price of a �oating-strike Asian

with coe¢ cient of partiality �� > 0 reads

E(e�rT (�(Sn � ��elnGn))+) = ��S0�E((�(1=�� � eln
Gn
Sn ))+); (6.20)
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where the last equality follows from a change to the equivalent spot measure �P. Knowledge of

the distribution laws of lnGn and ln Gn
Sn
under measures P and �P respectively is necessary for

the computation of (6.19) and (6.20).

Proposition 21 Consider the log-average asset value lnGn given by (6.18). For the Markov

system (�;X) whose distribution law obeys to (6.6), we have that the characteristic function of

lnGn under measure P is given by

�lnGn(u; �0; lnS0) = e
Pn
k=1	0(�k;

n+1�k
n+


u;�t)+	1(�1;
n

n+

u;�t)�0+iu lnS0 ; (6.21)

�n = 0; (6.22)

�k�1 = �i	1
�
�k;

n+ 1� k
n+ 


u; �t

�
; 1 < k � n: (6.23)

Similarly, the characteristic function of ln Gn
Sn
is given under measure �P by

��ln Gn
Sn

(u; �0) = e
�rn�t+

Pn
k=1	0(��k;�

k�1+

n+


u�i;�t)+	1(��1;� 

n+


u�i;�t)�0 ; (6.24)

��n = 0; (6.25)

��k�1 = �i	1
�
��k;�

k � 1 + 

n+ 


u� i; �t
�
; 1 < k � n: (6.26)

Proof. By induction on j we will prove that

E
�
e
iu
Pn
k=1

n+1�k
n+


Zk
���Fj�1� = e

Pn
k=j 	0(�k;

n+1�k
n+


u;�t)+	1(�j ;
n+1�j
n+


u;�t)�j�1+iu
Pj�1
k=1

n+1�k
n+


Zk1fj�1>0g

(6.27)

for j = 1; : : : ; n. The statement holds for j = n by Fn�1-measurability of the partial sumPn�1
k=1

n+1�k
n+
 Zk and expressions (6.6) and (6.22). Assume therefore that

E
�
e
iu
Pn
k=1

n+1�k
n+


Zk
���Fj� = e

Pn
k=j+1	0(�k;

n+1�k
n+


u;�t)+	1(�j+1;
n�j
n+


u;�t)�j+iu
Pj
k=1

n+1�k
n+


Zk1fj>0g
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holds for arbitrary 1 < j < n� 1. By the law of iterated expectations

E
�
e
iu
Pn
k=1

n+1�k
n+


Zk
���Fj�1� = E

�
E
�
e
iu
Pn
k=1

n+1�k
n+


Zk
���Fj����Fj�1�

= E
�
e
Pn
k=j+1	0(�k;

n+1�k
n+


u;�t)+	1(�j+1;
n�j
n+


u;�t)�j

�eiu
Pj
k=1

n+1�k
n+


Zk
���Fj�1�

Fj�1-meas.
= e

Pn
k=j+1	0(�k;

n+1�k
n+


u;�t)+iu
Pj�1
k=1

n+1�k
n+


Zk

�E
�
e
	1(�j+1;

n�j
n+


u;�t)�j+iu
n+1�j
n+


Zj
���Fj�1�

= e
Pn
k=j 	0(�k;

n+1�k
n+


u;�t)+	1(�j ;
n+1�j
n+


u;�t)�j�1+iu
Pj�1
k=1

n+1�k
n+


Zk ;

where the last equality follows from (6.6) and (6.23). By induction, we deduce from (6.27) that

for j = 1

E(eiu
Pn
k=1

n+1�k
n+


Zk) = e
Pn
k=1	0(�k;

n+1�k
n+


u;�t)+	1(�1;
n

n+

u;�t)�0 ;

which completes the proof of (6.21) by virtue of (6.18).

Next, for the derivation of the characteristic function of ln Gn
Sn
under measure �P, we recognize

from Propositions 22-23 and result (6.6) that

�E(eiu1�k+iu2Zk jFk�1) = E(eiu1�k�r�t+i(u2�i)Zk jFk�1) = e�r�t+	0(u1;u2�i;�t)+	1(u1;u2�i;�t)�k�1 :

(6.28)

Substituting (6.18) for lnGn and lnSn = lnS0 +
Pn

k=1 Zk into lnGn � lnSn yields

�E(eiu ln
Gn
Sn ) = �E(e�iu

Pn
k=1

k�1+

n+


Zk):

Using (6.28) in addition to the arguments for the proof of (6.21), one can show that

�E(e�iu
Pn
k=1

k�1+

n+


Zk) = e
�rn�t+

Pn
k=1	0(��k;�

k�1+

n+


u�i;�t)+	1(��1;� 

n+


u�i;�t)�0 ;

where the sequence ��k obeys to (6.25-6.26). This completes the proof.

Given the characteristic functions (6.21) and (6.24), the option prices (6.19) and (6.20) can

be provided analytically in terms of Fang and Oosterlee�s Fourier-cosine series expansions for
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European-type contracts (see equation (3.13)).3

Note that, although results (6.21) and (6.24) have been derived on the assumption of a

bivariate a¢ ne setup, an extension to multivariate structures is straightforward. This is the

case, for example, with the trivariate a¢ ne Gaussian-OU stochastic volatility model in Stein

and Stein (1991) and Schöbel and Zhu (1999), but also the jump di¤usion with Va�íµcek interest

rates hybrid setup illustrated later in Chapter 8, and the extended Schöbel-Zhu model to include

Hull and White stochastic interest rates in van Haastrecht et al. (2009a).4

For the purposes of our study, we focus on the Heston and Bates models. Before moving

to option pricing via Monte Carlo, it is essential that we do a critical review of the available

schemes for the simulation of the Heston model (the Bates model follows as a straightforward

extension), and opt for the one that �ts best to the pricing of an Asian option.

6.6.2 Simulation of the Heston model

So far, standard approach to pricing exotic contracts, e.g., path-dependent contracts including

barrier, Asian and lookback options, is based on Monte Carlo simulation. Nevertheless, until

recently, di¢ culties with the exact simulation of the Heston model have been encountered due

to the lack of explicit knowledge about the distribution law of the time integral of the variance,R
�sds. For this, Euler discretization has been traditionally employed subject, however, to a

bias that has to be estimated, and a time grid which is usually much �ner, than is strictly

necessary for the contract in question, to minimize the bias. For the Heston model

dXt = (r � �t=2)dt+
p
�t(�dWt +

p
1� �2dBt); (6.29)

d�t = �(� � �t)dt+ �
p
�tdWt (6.30)

3Heuristically one can easily show that the price of the discrete geometric Asian option converges at O(n) to
the price of its continuously sampled counterpart. This can then serve as �biased�control variate in simulating
a continuous arithmetic Asian in the spirit of Fu et al. (1999), who reach that the bias introduced by the use of
the continuous geometric Asian control variate o¤sets the inherent bias due to sampling on a �nite set of dates.

4For the e¢ cient simulation of the original Schöbel-Zhu model and its extension to include stochastic interest
rates, see the recent work of van Haastrecht et al. (2009b).
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with independent Brownian motions W , B, the basic Euler scheme takes the form

X̂t+�t = X̂t + (r � �̂t=2)�t+
p
�̂t(�(Wt+�t �Wt) +

p
1� �2(Bt+�t �Bt)); (6.31)

�̂t+�t = �̂t + �(� � �̂t)�t+ �
p
�̂t(Wt+�t �Wt); (6.32)

where X̂, �̂ denote the approximate (by discretization of the SDEs (6.29-6.30)) realizations

of X, �. An obvious limitation of the scheme (6.31-6.32) is that the discretized process �̂

may become negative with nonzero probability, regardless of the time step size, rendering the

computation of
p
�̂ impossible. Various ��xes� to this behaviour have been proposed in the

literature; Lord et al. (2010) summarize these ��xes�in the general framework

X̂t+�t = X̂t + (r � �2 (�̂t) =2)�t+
p
�2 (�̂t)(�(Wt+�t �Wt) +

p
1� �2(Bt+�t �Bt));

�̂t+�t = �0 (�̂t) + �(� � �1 (�̂t))�t+ �
p
�2 (�̂t)(Wt+�t �Wt): (6.33)

In particular, Higham and Mao (2005) opt for �0 (x) = �1 (x) = x, �2 (x) = jxj, allowing

therefore for negative variance samples which help to keep the bias low. However, at the

same time re�ecting large negative variance values at the origin (via �2), causes larger than

intended moves in the asset price process. Deelstra and Delbaen (1998) �x the e¤ect from

variance re�ection by absorbing the variance instead, using �2 (x) = x+. This is a �partial

truncation�scheme in the sense that only the di¤usion coe¢ cient of (6.33) is truncated at zero.

With a view to lowering the bias further, Lord et al. (2010) introduce the �full truncation�

scheme where the drift of (6.33) is truncated as well, by setting �1 (x) = x+. With this

modi�cation, they manage to keep the variance samples negative for longer periods of time,

e¤ectively lowering the volatility of the underlying which in turn helps in reducing the bias.

The �full truncation�scheme has shown to minimize the positive bias amongst the other ��xes�

when pricing European and path-dependent options5. While the previous schemes aim at

controlling the bias from the discretization of the Heston model with the use of appropriate

��xes�, Andersen (2008) proposes a �quadratic-exponential�approximation scheme to simulate

the transition of the variance to the next time step given its current position, skipping the use

5Absorption and re�ection schemes with ��xes��0(x) = �1(x) = �2(x) = x
+ and �0(x) = �1(x) = �2(x) = jxj

respectively, are susceptible to higher bias (see Lord et al. (2010)).
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of any ��xes�. In fact, Andersen (2008) demonstrates that his method works e¢ ciently with a

smaller number of time steps compared to the �full truncation�technique of Lord et al. (2010).

The �quadratic-exponential�technique will be revisited in Section 6.7.3.

Broadie and Kaya (2006) are the �rst to generate exact sample trajectories for the Heston

model without inducing discretization bias. Exact simulation methods preclude the need to use

an unnecessarily dense time grid. Key to their method is the sampling from the distribution of

the time integral of the variance process conditional on its endpoint values. This distribution

law is only known through its characteristic function which they derive and numerically invert

to generate samples. In principle, the transform inversion is the most time-consuming part of

their method since the characteristic function depends on values of the variance process; thus,

transform inversion needs to be repeated for each time step and simulation run. In addressing

this issue, Glasserman and Kim (2008a) show that the law of the conditional integrated variance

can be analyzed into three di¤erent special classes of in�nitely divisible distributions. A route

towards evaluating these distributions is via inversion of their characteristic functions, two of

which are independent of the endpoint variance values so that the associated distributions can

be pre-tabulated for fast simulation. Another way is to draw samples from these distributions

via truncated gamma series expansions which Glasserman and Kim (2008a) have also developed.

Although faster, the second method generates certain amount of bias as a consequence of the

series truncation. Finally, summing the three samples obtained either way yields a sample from

the conditional integrated variance distribution. Glasserman and Kim (2008a) illustrate that

their method reduces substantially the computational burden of Broadie and Kaya (2006) when

pricing path-independent plain vanilla options with a single time step to maturity. Building

further on their original work, Glasserman and Kim (2008b) exploit the in�nite divisibility with

respect to ~� � �t + �t+�t of the third-type distribution, to use bridge sampling and produce

a beta approximation for this. With this in hand, Glasserman and Kim (2008b) are able to

pre-store all the distributions composing the distribution of the conditional integrated variance.

In addition to the Heston model, in order to simulate the Bates model, one additionally

needs to generate independent Poisson jump times within the time horizon and jump sizes, and

add these to the log-asset di¤usion.
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6.7 Numerical study

For the purposes of this study, we opt for an Asian put option with �oating strike which matures

at a year�s time and is subject to monthly observation. The parameters relevant to the contract

are � = �1, 
 = 1, �� = 1 (see Table 4.1), T = 1, n = 12, interest rate r = 0:04 and S0 = 100.

All numerical experiments are coded in MATLAB R2008b on a Dell Optiplex 755 Intel Core 2

Duo PC 2.66 GHz with 2.0 GB RAM.

6.7.1 Models

We evaluate option prices numerically based on three distributions of log-returns from the Lévy

class: Gaussian, normal inverse Gaussian and tempered stable, and two distributions from the

non-Lévy class with stochastic volatility: Heston and Bates.

We use the three parameter sets in Table 6.1: model parameterizations I (Heston) and

III (Bates) are adopted from Du¢ e et al. (2000) and represent �tted parameters for market

option prices for the S&P 500 index on a particular date. Parameter set II (Heston) is taken

from Andersen (2008) and is relevant for equity option markets. All three sets have been

utilized previously by Broadie and Kaya (2006), Andersen (2008) and Glasserman and Kim

(2008a) in the simulation of European vanilla options. Furthermore, we calibrate the three

Lévy models for a year�s time horizon to achieve volatility vol 2 f0:1364; 0:1336g, and for

the non-Gaussian distributions, skewness coe¢ cient s 2 f�1:326;�1:235g and excess kurtosis

� 2 f3:483; 2:681g in consistency with the model speci�cations I and III.6 The �tted Lévy

parameters are summarized in Table 6.2.

6.7.2 Pricing via convolution

The convolution algorithm we propose in Section 6.5 is free of any approximation bias either

due to discretization of the continuous-time variance process (see Monte Carlo methods) or

insu¢ ciently large mean-reversion rate (see PDE methods and control variate Monte Carlo

strategies in Section 6.2). It is also relevant to pricing Asian options with discrete observation.

6Exact cumulants are derived for all models by di¤erentiating the corresponding cumulant generating functions
and evaluating at zero, as indicated by equation (2.5).
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set I (Heston) set II (Heston) set III (Bates)

� 6.21 1.0 3.99
� 0.019 0.09 0.014
� 0.61 1.0 0.27
� -0.7 -0.3 -0.79
�J n.a. n.a. 0.11
�J n.a. n.a. -0.1391
�J n.a. n.a. 0.15
�0 0.010201 0.09 0.008836

Table 6.1: Stochastic volatility model parameters

set Gaussian normal inverse Gaussian tempered stable
� � � � C G M Y

I 0.1364 0.3786 0.0949 -0.1594 0.1697 6.187 60.86 0.8
III 0.1336 0.2155 0.0617 -0.2552 0.3802 8.291 127.12 0.6

Table 6.2: Lévy model parameters �tted to the models I & III (Table 6.1)

In Table 6.3 we present our results for the Asian option de�ned above. For �xed x�-grid, we

observe that the results become more accurate with higher number of x-grid points N , while

the CPU time grows almost linearly. Soon we manage to restore monotone second-order error

convergence, which permits a user to gauge the precision of the scheme. This agrees with our

conclusion for the original scheme built on the assumption of Lévy log-returns in Chapter 4.

High-level accuracy requires that we utilize too many grid points to manage the computations

in reasonable time. For this, we exploit the regular quadratic convergence in N to produce

prices at high precision using Richardson extrapolation.

Comparing the option prices obtained under Gaussian and non-Gaussian log-returns, we

�nd that the Gaussian option prices are higher as illustrated in Table 6.4. This behaviour

stems from the combination of the negative skewness and excess kurtosis e¤ects existing in

the non-Gaussian risk-neutral distributions, as opposed to the Gaussian distribution. Also,

as deduced in Chapter 4, the prices from the two non-Gaussian Lévy models agree to the

penny, suggesting that the skewness and excess kurtosis e¤ects, rather than the Lévy model

per se, determine the option price levels. After introducing dependence in the log-returns, the

proportional relationship of the skewness coe¢ cient to t�1=2 and excess kurtosis to t�1 (t: time)
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N set I (Heston) set II (Heston) set III (Bates) CPU
error RE error error RE error error RE error (s)

28 -4.8E-1 n.a. -3.0E-2 n.a. -4.8E-1 n.a. 126.7
29 2.8E-2 n.a. -7.4E-3 2.7E-4 -1.0E-2 n.a. 246.9
210 -1.9E-3 n.a. -1.8E-3 8.2E-5 -1.9E-3 9.0E-4 469.0
211 -4.8E-4 -1.3E-5 -4.4E-4 6.2E-6 -4.8E-4 2.1E-6 1029.5

Table 6.3: Floating-strike Asian put option (� = �1, 
 = 1, �� = 1, T = 1, n = 12): precision of the
convolution method with increasing x-grid points N . Fixed x�-grid points N� = 28. Model parameters:
Table 6.1. Other parameters: r = 0:04, S0 = 100. �Error�(or �RE error�) computed as the di¤erence
between the prices for given N (or Richardson extrapolation prices) and the reference values. Empty
cells under the �RE error�headings imply non-smooth convergence. Reference values obtained with the
convolution method (precision �10�7): 2.0706445 (I), 4.0775434 (II), 2.03099732 (III). CPU times in
seconds (s).

set Heston Bates Gaussian NIG tempered stable

I 2.07064 2.15309 1.98414 1.99588
III 2.03099 2.09288 1.98772 1.98953

Table 6.4: Lévy versus non-Lévy with stochastic volatility log-returns: comparison of �oating-strike
Asian put option prices across models (� = �1, 
 = 1, �� = 1, T = 1, n = 12). Model parameters from
Tables 6.1 & 6.2. Other parameters: r = 0:04, S0 = 100. Lévy prices computed using the convolution
algorithm in Chapter 4. Stochastic volatility prices computed using the extended algorithm in Section
6.5.

for a Lévy model is no longer valid, but instead di¤erent types of time-dependence apply for

di¤erent log-return models with stochastic volatility; this e¤ect causes slight departures from

the Lévy prices.

6.7.3 Monte Carlo pricing

We test the performance of the convolution method by comparing with the outcome from

the QE method (with ~n time steps) of Andersen (2008).7 A thorough description of this can

be found in Appendix 6.A. This scheme has shown to produce the least bias compared to

the alternative biased methods delineated in Section 6.6.2, and be a nontrivial competitor to

the exact schemes of Broadie and Kaya (2006) and Glasserman and Kim (2008a) in pricing

path-independent European vanilla contracts. For this type of contract, the gamma expansion

7As we discuss next, due to time discretization of the variance process in the QE scheme, it may be necessary
to use a larger number of time steps ~n than the actual monitoring points n of the option. In this case, we employ
~n as integer multiple of n.

90



ASIAN OPTIONS UNDER STOCHASTIC VOLATILITY

~n set I set II set III
bias std error bias std error bias std error

12 0.0117 0.00002 0.0062 0.00011 0.0015 0.000021
24 0.0027 0.00002 0.0023 0.00011 0.0014 0.000021
48 0.0011 0.00002 0.0009 0.00011 0.0006 0.000021

Table 6.5: Floating-strike Asian put option (� = �1, 
 = 1, �� = 1, T = 1, n = 12): estimated biases
(with standard errors) of the QE method for number of time steps ~n for each parameter set in Table 6.1.
Other parameters: r = 0:04, S0 = 100. True option prices: 2.0706445 (I), 4.0775434 (II), 2.03099732
(III).

method with a single time step (n = 1) outperforms the QE method with, e.g., ~n = 48, time

steps by a factor of 3�4.5. This however suggests that generating n = 12 intermediate samples

for the underlying when pricing the Asian option would take at least 3 times as long using the

gamma expansion. From a practical point of view, we therefore conclude that QE is the most

suitable and fairest speed-accuracy competitor to the convolution method. In the attempt

to ameliorate the convergence of the simulation error, we further apply the control variate

technique where as control for the price of the arithmetic Asian option we employ its geometric

counterpart with price computed as explained in Section 6.6.1.

In our implementation of the QE approximation, we set the parameters �1 = �2 = 0:5

and  c = 1:5 (see Appendix 6.A), following Andersen (2008). The theoretical convergence

rate of the QE method is not known, still we can estimate the order of the bias due to time

discretization, O(~n�"). If �0 is the true option price, we de�ne the bias of the Monte Carlo price

estimate �̂0 generated by the approximate QE method as bias = E(�̂0 � �0), and its variance

E((�̂0�E(�̂0))2). The root mean square error is then de�ned as RMSE = (bias2+ variance)1=2.

To obtain an accurate estimate for the bias we utilize 50 million sample trajectories for each

~n 2 f12; 24; 48g, together with the geometric Asian control variate to speed up convergence8.

The true price required for the estimation of the bias is deduced at high precision via the

convolution method of Section 6.5. The results are summarized in Table 6.5. The ordinary least-

squares estimates " are then 1.7, 1.37 and 0.66 for the parameter sets I, II and III respectively.

Furthermore, Du¢ e and Glynn (1995) show that, for �rst-order time-discretization schemes,

8Note that variance reduction techniques reduce the standard error of the Monte Carlo estimates, but do not
�x the discretization bias.
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i.e., O(~n�1), it is optimal to vary ~n proportional to the square root of the number of simulation

trials m. Then, the RMSE of the Monte Carlo estimator converges at O(w�
"

1+2" ), where the

total workload w encompasses both ~n and m. Following this rule, the " estimates for the sets

I-III yield estimates for the optimal convergence rates 0.38, 0.37 and 0.29 respectively9.

Figure 6-1 plots the RMSE versus CPU time (on a log-log scale) tradeo¤ of the QE scheme

with ~n 2 f12; 24; 48g in pricing an Asian put option with n = 12 for the three model speci�-

cations in Table 6.1. Overall, for low accuracies, the crude (without control variate) QE with

~n = 12 produces faster results than the QE with ~n 2 f24; 48g. However, as the number of sim-

ulation trials (also the CPU time) increases, the bias eventually dominates the RMSE slowing

down its rate of decrease. Raising ~n reduces the bias and increases the accuracy range, but also

the CPU e¤ort. The QE method with ~n = 48 achieves a steeper constant slope close to the

optimum -0.5 of an unbiased scheme, raising the potential for high-level precision; this is more

obvious for models II and III which induce smaller biases than I. Additionally, supplying the

arithmetic Asian option simulation with the geometric Asian control variate leads to nontrivial

standard error reductions (up to 30 times), speeding up the decay of the RMSE to the bias

level for each ~n. The simulation results are summarized in Table 6.6.

We compare the results reported in Tables 6.3 and 6.6 in terms of accuracy and CPU time

demands. Over all the three parameter sets, the control variate QE (CVQE) strategy with

~n = 48 achieves highest RMSE 7.8E-3 (set II) within 5 seconds of CPU time, which is less than

the highest absolute error reported for the convolution method . Nevertheless, the convolution

method converges at a higher rate with the potential of signi�cant improvement in precision,

in contrast to the CVQE whose rate of convergence is damped by the existence of bias. In

particular, for cases I and II the CVQE reaches RMSE level 1E-3 in excess of 800 seconds,

while the convolution scheme achieves absolute error of the same magnitude in not more than

700 seconds for case I and 250 seconds for case II. In case III, the CVQE requires more than

1000 seconds to attain RMSE 6E-4, whereas the convolution scheme slightly more than 1000

seconds for absolute error 2E-6.

9Note that a standard Euler scheme converges at O(w�
1
3 ) (for smooth payo¤s and Lipschitzian asset dynamics

�not the case for the Heston model), whereas an unbiased crude (without variance reduction) scheme achieves
O(w�

1
2 ).
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set m�103 ~n crude QE CPU crude QE ~n CVQE CPU CVQE
std error (s) RMSE std error (s) RMSE

10 12 0.04346 1.85 0.04501 48 0.00144 3.42 0.00181
40 12 0.02197 5.03 0.02490 48 0.00083 12.94 0.00138

I 160 24 0.01104 29.67 0.01137 48 0.00040 52.28 0.00117
640 24 0.00552 118.73 0.00615 48 0.00020 207.45 0.00112

2,560 48 0.00276 834.89 0.00297 48 0.000099 834.89 0.00110
10,240 48 0.00138 3315.89 0.00176 48 0.000049 3315.89 0.00110

10 12 0.08742 1.70 0.08762 48 0.00773 3.55 0.00778
40 12 0.04283 4.83 0.04325 48 0.00403 13.94 0.00413

II 160 12 0.02120 17.28 0.02203 48 0.00199 55.52 0.00218
640 24 0.01062 116.13 0.01080 48 0.00099 221.92 0.00134

2,560 48 0.00531 887.67 0.00538 48 0.00049 887.67 0.00103
10,240 48 0.00265 3293.65 0.00280 48 0.00025 3293.65 0.00093

10 12 0.04263 2.27 0.04265 48 0.00165 4.80 0.00176
40 12 0.02134 6.65 0.02139 48 0.00078 18.91 0.00098

III 160 12 0.01072 24.20 0.01083 48 0.00038 75.43 0.00071
640 24 0.00539 144.67 0.00548 48 0.00019 301.20 0.00063

2,560 48 0.00268 1205.09 0.00275 48 0.000094 1205.09 0.00061
10,240 48 0.00134 4779.58 0.00147 48 0.000047 4779.58 0.00060

Table 6.6: Floating-strike Asian put option (� = �1, 
 = 1, �� = 1, T = 1, n = 12): QE simulation
results for parameter sets I-III. Columns 3-6 (columns 7-10): crude QE (CVQE: QE with geometric
Asian control variate) output. Geometric Asian ref. prices: 1.9929986 (I), 3.6981218 (II), 1.9569746
(III). RMSEs based on biases for each set of parameters and number of time steps ~n in Table 6.5 and
the standard errors corresponding to m simulation trials. CPU times in seconds (s).
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Figure 6-1: Floating-strike Asian put option (� = �1, 
 = 1, �� = 1, T = 1, n = 12): accuracy versus
speed comparisons for the crude QE method and the QE method equipped with geometric Asian control
variate for ~n 2 f12; 24; 48g.
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6.8 Concluding remarks

In this chapter, we have presented the backward convolution method for pricing discretely

sampled arithmetic Asian options under the Heston and Bates stochastic volatility models.

The same approach can be applied to other stochastic volatility models within the bivariate

a¢ ne class, providing that the variance transition law and the variance-conditional log-return

distribution (see Appendix 6.C) are known.

Furthermore, building on the original Fusai and Meucci (2008) for Lévy log-returns, we

extend their approach to derive exact prices for geometric Asians under non-Lévy log-returns

by means of Fourier transforms, for use as control variates in the simulation of arithmetic

Asians. Utilizing the geometric Asian as a control for the price of the arithmetic Asian option

in the stochastic volatility market setup, results in substantial variance reduction.

Numerical examples run using both the convolution and control variate Monte Carlo schemes

illustrate that, by regular second-order convergence in the number of grid points, the convolution

method performs better at high levels of precision. Control variate Monte Carlo is faster for

smaller accuracies, still it requires that we pre-estimate the inherent bias of common biased

simulation schemes in the literature; a usually time-consuming procedure. For measuring the

bias, it is necessary to know in advance the option price with su¢ cient accuracy which is possible

by virtue of the convolution method10. Moreover, implementing the convolution algorithm by

utilizing FFT routines provides us with the option prices on a grid of initial variances in a single

run. In the spirit of Chapter 5, an extension to obtain the price sensitivities is straightforward.

10Using instead unbiased simulation schemes (see Section 6.6.2) to price a path-dependent option, e.g., an
Asian option, would impact substantially the computing time.
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Appendix 6.A�The truncated Gaussian and quadratic-exponential

schemes

It is known that the true �t+�t is proportional to a noncentral chi-square distribution with

df = 4���
�2 degrees of freedom and non-centrality parameter �NC = �t

4�e���t

�2(1�e���t)
(e.g., Cox

et al. (1985)). Also, the noncentral chi-square distribution converges asymptotically to a normal

distribution as �NC increases to in�nity, while this becomes asymptotically proportional to a

(central) chi-square distribution with df degrees of freedom as �NC approaches zero. Thus,

for su¢ ciently large �t a Gaussian random variable serves as a reasonable proxy for �t+�t. On

the other hand, for small �t, it is necessary to provide an approximation for the distribution of

�t+�t that mimics the features of the chi-square density; that is, concentration of the probability

mass at the origin combined with an upper density tail. To adapt to these properties for

su¢ ciently small/large �t, Andersen (2008) provides the so-called �truncated Gaussian�(TG)

approximation

�̂t+�t = (�TG + �TGZ
�)+ ;

where Z� � N (0; 1) and the constants �TG, �TG are determined by matching the �rst two

moments of �̂t+�t to the true moments of �t+�t conditional on �t = �̂t (see Andersen (2008),

Proposition 4). It is observed however that the tail of the TG distribution goes to zero much

faster than the chi-square distribution implies.

To address the tail issue related to the TG random variable, Andersen (2008) alternatively

introduces a �quadratic-exponential�(QE) approximation: the noncentral chi-square distribu-

tion with moderate/high �NC is represented by a power function applied to a normal random

variable, e.g.,

�̂t+�t = (aQE + bQEZ
�)2 ; (6.34)

where the constants aQE , bQE are determined by moment matching as with the TG scheme. In

fact, from Andersen ((2008), Proposition 5) for m = E(�t+�tj �t = �̂t), s2 = Var(�t+�tj �t = �̂t)
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and  = s2m�2 � 2

b2QE = 2 �1 � 1 +
q
2 �1

q
2 �1 � 1 � 0;

aQE =
m

1 + b2QE
;

such that �̂t+�t in (6.34) satis�es E (�̂t+�t) = m and Var (�̂t+�t) = s2. On the other hand, for

small �NC the density of �̂t+�t is approximated explicitly by

pQE� (0) + �QE(1� pQEe��QE �̂t+�t); (6.35)

where � is the Dirac delta, and pQE , �QE are nonnegative constants to be determined. Density

(6.35) permits one to specify explicitly the probability mass pQE at the origin, as opposed to

the TG case. Furthermore, the mass at the origin is supplemented with an exponential tail

which re�ects the chi-square distribution. From (6.35) we derive the cumulative distribution

function and subsequently invert this to yield

�̂t+�t =

8<: 0; 0 � u � pQE

��1QE ln(
1�pQE
1�u ); pQE < u � 1:

(6.36)

We use (6.36) to produce samples from the distribution of �̂t+�t. Regarding the choice on pQE

and �QE , we have from Andersen ((2008), Proposition 6) for  � 1 that

pQE =
 � 1
 + 1

2 [0; 1] ;

�QE =
2

m ( + 1)
� 0;

such that �̂t+�t in (6.36) satis�es E (�̂t+�t) = m and Var (�̂t+�t) = s2.

Note that the �quadratic�part (6.34) can be moment-matched for  � 2, whilst the �ex-

ponential�part (6.36) for  � 1. To deal with the applicability overlap for  2 [1; 2], Andersen

(2008) suggests  c = 1:5 as the switching rule between the two sampling schemes, though a

di¤erent choice  c 2 [1; 2] appears to have a minor e¤ect on the performance of the algorithm

during simulation.
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Finally, combining (6.30) to (6.29) and integrating over [t; t+ �t] yields

Xt+�t = Xt + (r � �����1)�t+ (����1 � 1=2)
Z t+�t

t
�sds+ ��

�1(�t+�t � �t)

+
p
1� �2

Z t+�t

t

p
�sdBs; (6.37)

which, by approximation of the time integral of the variance using a linear combination of its

realizations at t and t+ �t, i.e.,

�Z t+�t

t
�sds

���� �t = �̂t; �t+�t = �̂t+�t

�
d� (�1�̂t + �2�̂t+�t)�t;

generates the following approximate realization for the log-underlying at time t+ �t

X̂t+�t = X̂t + (r � �����1)�t+ (�1�t(����1 � 1=2)� ���1)�̂t

+(���1 + �2�t(���
�1 � 1=2))�̂t+�t +

p
�1�t(1� �2)�̂t + �2�t(1� �2)�̂t+�tZX ;

where ZX � N (0; 1) is independent of �̂. Also, the use of a central discretization for the

integrated variance, i.e., �1 = �2 = 0:5, in the numerical tests of Andersen (2008) su¢ ces to

induce a fairly small amount of bias for a small number of time steps, in other words, relatively

large step size �t.
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Appendix 6.B�Spot measure change for Lévy and time-changed

Lévy processes

Recall from Section 3.2 that the characteristic function of a Lévy process Lt with characteristics

(�, �2, �) under some probability measure P has form

E
�
eiuLt

�
= e L(u)t; (6.38)

where the Lévy exponent  L admits representation

 L (u) = iu�� 1
2
�2u2 +

Z
Rnf0g

(eiul � 1� iul1fjlj�1g)� (dl)

with drift parameter � 2 R, di¤usion parameter � > 0 and Lévy density � on R satisfying

standard hypotheses.

Proposition 22 Assume asset price process St = S0e
rt+Lt with � = �1

2�
2 �

R
Rnf0g(e

l � 1 �

l1fjlj�1g)� (dl) such that  L (�i) = 0, hence E (St) = S0e
rt under the risk-neutral measure P.

Then, there exists an equivalent probability measure �P de�ned by its Radon-Nikodým derivative

with respect to P,

�
t :=
d�P
dP

����
Ft
= eLt :

The characteristic function of Zt = ln St
S0
under �P is given as

�E(eiuZt) = e�rtE(ei(u�i)Zt):

Proof. From Geman et al. ((1995), De�nition 2), the asset price St satis�es the de�nition

of a numéraire. Following Geman et al. ((1995), Theorem 1), we construct the Radon-Nikodým

derivative of the equivalent measure �P with respect to P as

�
t =
d�P
dP

����
Ft
=

St
S0ert

=
eZt

ert
:

Substituting Zt = rt+ Lt yields

�
t = eLt ;
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such that the process �
t is a P-martingale and has P-expectation equal to 1. From Bayes�

change-of-law rule

�E(eiuZt) = E(�
teiuZt) = E(eZt�rteiuZt) = e�rtE(ei(u�i)Zt);

where the last equality follows from (6.38).

Proposition 23 De�ne �t =
R t
0 �s�ds for activity process �. Suppose �t is L-continuous, i.e.,

L is constant on all intervals
�
�t� ;�t

�
, t > 0.

We identify the local characteristics of the subordinated process L�t under �P in terms of the

Lévy characteristics (�, �2, �) of Lt under P as  
�+ �2 �

Z
fjlj�1gnf0g

l(1� el)� (dl)
!
�t� ; �

2�t� ; e
l�(dl) d�t�

!
:

Proof. The proof follows from Küchler and Sørensen ((1997), p. 230) (see also Carr and

Wu (2004), Proposition A.1).

Proposition 23 implies that the local characteristics of the subordinated process L�t under

�P are found from those of Lt by applying the random time transformation �t� in place of the

deterministic time t.

100



ASIAN OPTIONS UNDER STOCHASTIC VOLATILITY

Appendix 6.C�Characterization of the log-return distribution

conditional on the variance at the endpoints of a time interval

Consider the log-return process given by (6.37), and de�ne Zt+�t = Xt+�t �Xt. Propositions

22-23 (with the Heston asset price process viewed as a subordinated Brownian motion) permit

�E
�
eiuZt+�t

�� �t; �t+�t� = e�r�tE
�
ei(u�i)Zt+�t

��� �t; �t+�t� :
By virtue of the tower property of expectations we have

E
�
ei(u�i)Zt+�t

��� �t; �t+�t�
= E

�
E
�
ei(u�i)Zt+�t

��� Z t+�t

t
�sds

����� �t; �t+�t�
= ei(u�i)((r�����

�1)�t+���1(�t+�t��t))E
�
exp

�
i(u� i)(����1 � 1=2)

Z t+�t

t
�sds

�
�E

�
exp

�
i(u� i)

p
1� �2

Z t+�t

t

p
�sdBs

����� Z t+�t

t
�sds

����� �t; �t+�t�
= ei(u�i)((r�����

�1)�t+���1(�t+�t��t))

�E
�
exp

�
i(u� i)

�
����1 � 1=2 + i(u� i)(1� �2)=2

� Z t+�t

t
�sds

����� �t; �t+�t�

Broadie and Kaya ((2006), Appendix) derive the characteristic function of
�R t+�t

t �sds
��� �t; �t+�t�

E
�
eiu

R t+�t
t �sds

��� �t; �t+�t� =: � (u; �t; �t+�t) ;
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where

� (u; �t; �t+�t) = �1 (u) e
(�t+�t+�t)�2(u)

I2����2�1
�
�3 (u)

p
�t�t+�t

�
I2����2�1

�
�4
p
�t�t+�t

� ;

�0 (u) =
p
�2 � 2iu�2;

�1 (u) = �0 (u)
e�

1
2
(�0(u)��)�t

1� e��0(u)�t
1� e���t

�
;

�2 (u) =
1

�2

 
�
�
1 + e���t

�
1� e���t �

�0 (u)
�
1 + e��0(u)�t

�
1� e��0(u)�t

!
;

�3 (u) =
2�0 (u)

�2 sinh
�
1
2�0 (u) �t

� ;
�4 =

2�

�2 sinh
�
1
2��t

� ;
and I� (�) denotes the �th-order modi�ed Bessel function of the �rst kind. Conditions to ensure

continuity of the characteristic function � have been derived in Lord and Kahl ((2008), Theorem

6).

Hence, we obtain

�E
�
eiuZt+�t

�� �t; �t+�t� = e(iu(r�����
�1)������1)�t+i(u�i)���1(�t+�t��t)

��
�
(u� i)

�
����1 � 1=2 + i (u� i) (1� �2)=2

�
; �t; �t+�t

�
:(6.39)

In addition to the Heston model, we obtain for the Bates model

�E
�
eiuZt+�t

�� �t; �t+�t� = e(iu(r�����
�1��J ~�J (�i))������1��J ~�J (�i))�t+i(u�i)���1(�t+�t��t)

��
�
(u� i)

�
����1 � 1=2 + i (u� i) (1� �2)=2

�
; �t; �t+�t

�
e�J ~�J (u�i)�t;

~�J(u) = eiu�J�
1
2
�2Ju

2 � 1: (6.40)
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Chapter 7

Monte Carlo option pricing coupled

with Fourier transformation

7.1 Introduction

Within stock option pricing applications, we have seen that it is common to model the stock

log-returns by Lévy models. Popular are the variance gamma process of �nite variation with

in�nite activity of jumps, the normal inverse Gaussian and the generalized hyperbolic processes

of in�nite variation. For greater �exibility, the family of tempered stable models has been

introduced with a Lévy measure that allows for processes with �nite activity, in�nite activity and

�nite variation, and in�nite variation. A 5-parameter version (also known as KoBoL) originates

from Koponen (1995), and has been considered in �nancial applications in Boyarchenko and

Levendorski¼¬ (2002). Carr et al. (2002) study a 4-parameter subclass known as the CGMY

model, which itself generalizes the original VG framework.

With a view to enhancing the applicability of the CGMY model in asset modelling, Madan

and Yor (2008) develop the representation of this model as a time-changed Brownian motion

with drift. Their construction re�ects a time change which is absolutely continuous with respect

to a one-sided stable subordinator. Given this, they propose to simulate the increments of

the time-change process by simulating the big jumps and replacing the small ones with their

expectation. This approach yields a compound Poisson approximation to the distribution of the

random time increments, where the jump-size random variables are sampled using the rejection
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method by Rosiński (2001) (see also Cont and Tankov (2004a)), leading to biased simulation of

the CGMY trajectories. To skip any approximation error, Poirot and Tankov (2006) construct

a new probability measure under which the original tempered stable process reduces to a stable

process whose exact simulation is well-established. Although faster in execution, the Poirot-

Tankov method does not provide access to the entire trajectory of the process, prohibiting the

pricing of path-dependent products.

Motivated by the previous concerns, we set up a general, e¢ cient Monte Carlo simulation

scheme coupled with Fourier transformation which is simple and fast to implement. Its e¢ -

ciency and generality are attributed to its ability to generate unbiased sample trajectories for

any stochastic process which admits a closed-form characteristic function. This encompasses

mainly Lévy models, but also the Heston stochastic volatility model whose unbiased simulation

coupled with Fourier transforms has been the area of concern for Broadie and Kaya (2006)

and Glasserman and Kim (2008a). Alternatively, the VG and NIG frameworks allow for well-

structured time-change representations which render their exact simulation (see Glasserman

(2004), Section 3.5.2) straightforward and faster. This opposes the tempered stable process

whose de�cient simulation so far allows for a good reason to pay particular attention to it.

After we develop the theoretical framework for the joint Monte Carlo-Fourier transform

scheme in Section 7.2, we lead through its e¢ cient numerical implementation. In Section 7.3

we present the market model and the pricing of contingent claims via Monte Carlo, while in

Section 7.4 we focus on the CGMY model. In Section 7.5 we price European plain vanilla and

discretely sampled Asian options under the CGMY assumption, by applying the simulation

algorithm of Section 7.2.1 directly on the increments of the CGMY process and, alternatively,

on the random time increments in the Madan-Yor time-change representation of the CGMY

process. We then compare them with the results from the Poirot-Tankov and Madan-Yor

methods. Section 7.6 concludes the chapter.

7.2 Monte Carlo simulation coupled with Fourier transform

Denote by FX the cumulative distribution function of some random variable X. A random

sample from the distribution of X can be drawn via the inverse distribution function F�1X (U),
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where U �Unif[0; 1]. In general, standard Lévy distribution laws do not admit a distribution

function in closed form, still one can resort to numerical inversion techniques to retrieve this

via the characteristic function. This is not a trivial task since FX (x) does not decay to zero as

x!1, hence does not satisfy su¢ cient integrability condition for the existence of its Fourier

transform (see De�nition 1). To solve this issue, one can make use of the auxiliary function

~FX (x) proposed by Hughett ((1998), Lemma 9),

~FX (x) = FX (x)�
1

2
FX (x� �)�

1

2
FX (x+ �) ; � > 0;

which is well-behaved in the sense that both itself and its Fourier transform F( ~FX) decay

rapidly to zero. Given the analytical expression (2.8) for F( ~FX), we can recover ~FX via

~FX = F�1(F( ~FX)) (7.1)

by virtue of Theorem 7. For su¢ ciently large � > 0,

FX (x) � ~FX (x) +
1

2
(7.2)

for jxj � 1
2�. Approximating FX through ~FX which satis�es certain regularity conditions, i.e.,

fast decay to zero for both ~FX and F( ~FX), generates the so-called regularization error. We

observe that as � increases, the regularization error decreases.

Next, we lead through the e¢ cient implementation of the simulation scheme equipped by

Fourier transform presented above.

7.2.1 Numerical implementation

Computation of the distribution function via Fourier transform inversion

To evaluate numerically ~FX = F�1(F( ~FX)), we select evenly spaced, symmetric about zero,

grids u = fu0 + j�ugN�1j=0 and x = fx0 + l�xgN�1l=0 with N grid points and spacings �u and

�x = �=N . The range of values of u is determined to ensure that jF( ~FX)j < �0 outside u for

some tolerance level �0, e.g., �0 = 10�15. We denote the function values F( ~FX) on grid u by
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~DX , and evaluate the inverse Fourier transform (7.1) on the grid x by computing

~FX =
1

2�
D( ~DX ;�u;x;�N�u�x=2�)�u (7.3)

using the conversion (2.24). Then, from (7.2), we obtain

FX � ~FX +
1

2
:

The �nite Fourier series1 (7.3) that approximates the auxiliary distribution function gener-

ates two sources of error (excluding any round-o¤ error): the discretization error induced from

the evaluation of the integrand at speci�c points only, and the truncation error by truncating

the Fourier series above and below. The truncation error is controlled by the (�nite) number

of points taken, whereas the discretization error by the interval between successive points. To

determine N and � such that the overall approximation error (including the error from regu-

larizing FX) is below a pre-speci�ed level �, one may consider the error bound developed in

Hughett ((1998), Theorem 10) for continuous distributions with �nite variance, based solely on

knowledge of the associated characteristic function.

Standard consistency checks on the computed distribution include inspections on the mini-

mum and maximum values, which should lie within � of 0 and 1 respectively, and the interme-

diate pattern, which should be nonnegative and monotonically increasing. Comparison of the

numerically computed moments (using the approximated distribution) against the true ones

indicates the existence of any approximation error (see Section 7.5.1).

Simulation procedure

As explained earlier, key to the method presented here is to generate a uniform random variable

U �Unif[0; 1], and �nd x such that FX (x) = U ; the x = F�1X (U) value returned is a sample

from FX . We identify X with a Lévy increment L�t over interval �t. For time horizon T divided

1 Implementing the discrete Fourier transform via FFT-based routines allows us to pre-evaluate the distribution
function fast on a grid with a single inversion, and store this for later use in the simulation. This is a substantial
CPU power saving over the popular inversion formula (and variations of it) of Abate and Whitt (1992), but also
the recent Fourier-cosine expansion method of Fang and Oosterlee (2008a), which evaluate the distribution at a
single point per transform inversion.
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into n > 0 equidistant time steps of length �t = T=n, we sample n Lévy increments L�t per

simulation trial (in total m > 0 trials) as follows2:

1. Generate a n�m matrix U of uniform random variables using the MATLAB pseudoran-

dom number generator RAND.

2. Given the pre-tabulated distribution FL�t evaluated on the uniform grid x, we need to

�nd the grid values fFL�t;lg
N�1
l=0 where the elements of U lie in-between, for the purpose

of approximating the corresponding x̂-samples in the next step. To speed up the search

through the tabulated fFL�t;lg
N�1
l=0 values, we employ the cutpoint method (e.g., Fishman

(1996), Section 3.3).

3. We obtain the x̂-samples, such that FL�t (x̂) = U, by interpolating linearly on the nodes

(FL�t ;x) using the MATLAB function INTERP1. For greater accuracy, though at higher

computational cost, one may consider �tting a cubic interpolating spline instead (see

Section 7.5.1).

In the next section, we de�ne the problem of contingent claims pricing in the Monte Carlo

context.

7.3 Market model setup and option pricing

Fix a terminal time T > 0. Assume constant continuously compounded interest rate r > 0. Fix

constant S0 > 0 and de�ne the price process of a risky asset as

St = S0e
(r+$)t+Lt ; 0 < t � T;

where L is a Lévy process. The mean-adjusting parameter $ is chosen such that the martingale

condition E (St) = S0e
rt applies under a risk-neutral measure P.

2Since we are sampling independent and stationary Lévy increments, we compute (7.3) once, and pre-cache
the distribution for use in all simulation trials and all time steps (for an equidistant time grid). This opposes to
Broadie and Kaya�s exact simulation scheme for the (non-Lévy) Heston model, which requires repeated transform
inversion, depending on the number of time steps employed, signi�cantly raising the CPU timing.
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Consider the problem of pricing a contingent claim maturing at T with terminal payo¤ given

by �T = p (fSt; 0 � t � Tg). By the fundamental theorem of asset pricing, the arbitrage-free

price of the contract at inception is given by

�0 = E
�
e�rT�T

�
:

For a discretely monitored path-dependent contract, e.g., Asian, barrier, lookback, the process

S is observed at �xed discrete points in time (assumed equidistant, though this is not a require-

ment) 0 = t0 < t1 < � � � < tn = T . To estimate �0, it is necessary that we sample the process

S at the monitoring dates ftkgnk=1, n 2 N�, using Monte Carlo. This generates a collection of

samples f�̂jT gmj=1, for m simulation runs. The Monte Carlo estimate of the contract price, �̂0,

is obtained as

�̂0 = e�rT
Pm

j=1 �̂
j
T

m
:

7.4 The tempered stable framework

Before applying the joint Monte Carlo-Fourier transform method in option pricing, let us �rst

brie�y review the properties and important results about the class of tempered stable processes,

with particular focus on the CGMY subclass (see Carr et al. (2002)), that we make critical use

of in our numerical study in Section 7.5.

7.4.1 Properties

The one-dimensional tempered stable process is constructed by taking a one-dimensional stable

process and multiplying the Lévy measure by exponentially decaying factors on each half of

the real axis. Thus, we obtain a Lévy measure associated to the tempered stable process of the

form

�(x) = c+
e��+jxj

jxj1+�
1fx>0g + c�

e���jxj

jxj1+�
1fx<0g; (7.4)

with parameters c+ > 0, c� > 0, �+ � 0, �� � 0, and � < 2. For greater �exibility, the

5-parameter version (7.4) can be extended to allow for di¤erent values of � on the two sides

of the real axis. This yields the generalized 6-parameter tempered stable model with Lévy
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measure

�(x) = c+
e��+jxj

jxj1+�+
1fx>0g + c�

e���jxj

jxj1+��
1fx<0g; (7.5)

with �+ < 2 and �� < 2. Parameters �� determine the tail behaviour of the Lévy measure,

i.e., how far the process may jump, c� tell us about the arrival rate of jumps of given size, while

�� determine the local behaviour of the process between big jumps. When �+ � 1 and/or

�� � 1, the process exhibits in�nite variation (many small oscillations observed between big

jumps), whilst if �+ < 1, �� < 1 and �+ � 0 and/or �� � 0, the process has trajectories of

in�nite activity and �nite variation (relative calmness observed between big jumps) (see Cont

and Tankov (2004a), Section 4.5). Common in the option pricing literature is the 4-parameter

CGMY process, where c+ = c� and �+ = �� apply such that

�(x) = C
e�M jxj

jxj1+Y
1fx>0g + C

e�Gjxj

jxj1+Y
1fx<0g:

Explicit knowledge of the Lévy measure allows one to derive the characteristic function

describing the law of the tempered stable distribution via the Lévy-Khintchine formula. In

particular, the characteristic function of the CGMY process LCGMYt is

E
�
eiuL

CGMY
t

�
= exp(tC� (�Y ) ((M � iu)Y �MY + (G+ iu)Y �GY ))

(see Carr et al. (2002), Theorem 1). For a derivation of the characteristic function applying

in the generalized tempered stable case, the reader is referred to Poirot and Tankov ((2006),

Section 2.5).

7.4.2 CGMY as time-changed Brownian motion

Madan and Yor (2008) construct the CGMY process by randomly changing the time in a

Brownian motion with drift, i.e.,

LCGMYt = �1Zt +WZt ; (7.6)
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for Y 2 (0; 2), �1 = G�M
2 and an increasing zero-drift time-change process Z independent of

the Brownian motion W . The process Z has Lévy measure

� (�) = � (�) v (�) ;

where

� (�) =
2
Y
2 �
�
Y
2 +

1
2

�
e�

�21
2
�� �

2
2
4

p
�

D�Y
�
�2
p
�
�

=
�
�
Y
2 +

1
2

�
e�

�21
2
�� �

2
2
2

p
�

U

�
Y

2
;
1

2
; �
�22
2

�
� 1;

�2 =
G+M
2 , D�(�) denotes Whittaker�s parabolic cylinder function, U(�; �; �) the con�uent hyper-

geometric function of the second kind (see Abramowitz and Stegun (1968)), and

v (�) =
�

�
Y
2
+1
1f�>0g; � =

2�
Y
2
p
�

�
�
Y
2 +

1
2

�C
is the Lévy density of the one-sided Y

2 -stable subordinator.

By exploiting the absolute continuity of Z to the Y=2-stable subordinator, Madan and Yor

(2008) suggest approximating Z with a drifted compound Poisson subordinator where small

jumps (of size smaller than ") are replaced by their expected value. Z is then approximated

using the rejection method by Rosiński (2001), which amounts to accepting every jump of the

compound Poisson subordinator with size � i for which � (� i) is greater than an independent

random variable Ui �Unif[0; 1]. This yields

Zt � Z"t = b"t+
P

i � i1f	i�tg1f�(� i)>Uig; (7.7)

where b" = �"1�Y=2

1�Y=2 . f	ig denote the jump times of a compound Poisson process with intensity

�" =
�"�Y=2

Y=2 , and independent jump sizes f� ig with cumulative distribution function G (� ; ") =

1 � (�=")�Y=2. In Section 7.5, we examine the impact of generating CGMY random variates

using the construction (7.6-7.7).

Moreover, Madan and Yor (2008) provide us with the Laplace transform of the subordinator
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Z

E
�
e��Zt

�
= exp(tC� (�Y ) (2 (2� +GM)

Y
2 cos (l (�)Y )�MY �GY )); (7.8)

l (�) = arctan

0B@
�
2� �

�
G�M
2

�2� 12
G+M
2

1CA :

Result (7.8) is considered in our practical application of the joint Monte Carlo-Fourier transform

scheme in the next section.

7.5 Numerical study

In order to illustrate the performance of the joint Monte Carlo-Fourier transform method in op-

tion pricing, we assume an underlying driven by an exponential CGMY model whose simulation

so far has proved di¢ cult. For comparison, we consider two separate implementations: in the

�rst case, we directly simulate the increments of the CGMY process (implem. I), whereas in the

second we exploit the Madan-Yor time-change representation (7.6), and simulate separately the

stochastic time increments described by (7.8) and the arithmetic Brownian motion subject to a

time change (see Glasserman (2004), Section 3.5.2, for the simulation of subordinated Brownian

motions) (implem. II). We apply to pricing a (path-independent) plain vanilla put option with

terminal payo¤

�T = (K � ST )+ ;

where K is the strike price, and a discretely monitored (path-dependent) �xed-strike Asian call

option with payo¤

�T =

�
1

n+ 


�

S0 +

Xn

k=1
Stk

�
�K

�+
; (7.9)

where n denotes the number of monitoring dates and coe¢ cient 
 takes value 1 (0) when S0

is (is not) included in the average. The two options can be priced numerically (without Monte

Carlo) at high precision using the Fourier-cosine algorithm of Fang and Oosterlee (2008a) and

the convolution algorithm of Chapter 4 respectively, and therefore can serve as benchmarks to

the Monte Carlo estimates.

In this exercise, we test the exact scheme in Section 7.2.1 by comparing with the results from
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set C G M Y

I 0.5 2.0 3.5 0.5
II 0.1 2.0 3.5 1.5

Table 7.1: Model parameters

the Poirot-Tankov (PT) exact scheme for path-independent contracts, and the approximate

Madan-Yor (MY) method. Descriptions of both schemes can be found in Appendix 7 and

Section 7.4.2. All pricing comparisons are run in MATLAB R2008b on a Dell Optiplex 755

Intel Core 2 Duo PC 2.66GHz with 2.0GB RAM.

The reference parameter sets in Table 7.1 are from Poirot and Tankov (2006). Set I corre-

sponds to a model of �nite variation and in�nite activity, while for set II the CGMY process

exhibits in�nite variation. The reason for two parameterizations is to illustrate the e¤ect of a

change from a �nite to an in�nite variation model on the bias and computational complexity

of the MY scheme (for details, see Section 7.5.2).

7.5.1 Distribution function tests

Given that the distribution function is computed numerically as illustrated in Section 7.2.1,

we need a way of assessing its accuracy. This is a nontrivial task, since both the cumulative

distribution and density functions of the CGMY model are not available in closed form. For

this, as an indication of the quality of the distribution function approximation, we choose

to compute numerically the �rst four moments and compare with their true values for �t =

T=n (T : time to maturity, n: number of sampling points). For example, in the implem.

I (direct simulation of the CGMY increments) for the parameter set I and �t = 1=4, the

numerical mean, variance, skewness coe¢ cient, and excess kurtosis agree with the true values

at -0.03823712808, 0.056084217, -1.6657160, and 13.319987 respectively, while for �t = 1=12

they agree at -0.012745737603, 0.018694739, -2.8851047, and 39.959960. The same accuracy

level is also reached with the parameter set II.

Moreover, relative to the third step of the simulation procedure in Section 7.2.1, our study

on the tabulated distribution FLCGMY�t
evaluated on the symmetric uniform grid x with � = 24,

N = 219 and �x = 0:000045 has shown that the use of linear interpolation yields error of the
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order 10�9 and takes 0.49 seconds of CPU time for 106 trials. Instead, �tting a cubic spline

reduces the order of the error to 10�15, while signi�cantly raises the CPU timing to 1.4-1.5

seconds for 106 trials. To avoid raising unnecessarily the computational burden, we adhere to

linear interpolation.

7.5.2 Simulation tests

We �rst compare the results from the two suggested implementations (implem. I & II) of the

exact scheme in Section 7.2.1 with the ones from the exact PT scheme in pricing European plain

vanilla put options. Table 7.2 illustrates the Monte Carlo price estimates for a range of strikes

when the parameter set I applies. In general, we observe that the more in-the-money the put

option is, the higher the simulation error generated. However, implem. I produces estimators

with smaller standard error than the PT estimators and, for deep in-the-money options, the

error reduces to almost half levels. We observe similarly for the second parameterization.

Implem. II achieves same standard errors as implem. I, nevertheless for 106 trials it requires

higher CPU time (implem. II: 9.5 seconds versus implem. I: 1.3 seconds). This is due to the

oscillatory decay of the characteristic function of the random time increment Z (see equation

(7.8)) which a¤ects the convergence of the Fourier series expansion (7.3) of the distribution

function FZ . The order of convergence is exacerbated further for small time intervals �t. To

ensure accurate evaluation of the distribution, it is essential that we employ a wide and �nely

re�ned Fourier grid u at the cost of increased computational e¤ort.

Due to higher CPU requirements of implem. II, we focus solely on implem. I and compare

against the PT method in terms of e¢ ciency: we de�ne the e¢ ciency ratio

EAjB :=
tB�

2
B

tA�2A
;

where �2 = E((�̂0 � E(�̂0))2) is the variance of the �̂0 estimator obtained in t seconds via the

indicated method. When EAjB > 1 we say that method A is more e¢ cient than method B, and

vice versa if EAjB < 1; for more on the study of e¢ ciency we refer to Glynn and Whitt (1992).

We investigate for T = �t 2 f0:25; 1:0g, K 2 f80; 100; 120g, Y 2 f0:5; 1:5g, as shown in Table

7.3. Given T , the e¢ ciency gains of the joint Monte Carlo-Fourier transform method become
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K ref. prices implem. I std implem. II std PT std
(106 trials) error (106 trials) error (106 trials) error

80 1.7444 1.748 0.006 1.743 0.006 1.751 0.005
85 2.3926 2.396 0.007 2.391 0.007 2.403 0.006
90 3.2835 3.288 0.008 3.280 0.008 3.299 0.008
95 4.5366 4.532 0.010 4.544 0.010 4.560 0.010
100 6.3711 6.373 0.011 6.360 0.011 6.397 0.012
105 9.1430 9.142 0.012 9.135 0.012 9.168 0.015
110 12.7631 12.767 0.013 12.764 0.013 12.789 0.019
115 16.8429 16.847 0.014 16.838 0.014 16.867 0.023
120 21.1855 21.180 0.015 21.183 0.015 21.207 0.028

Table 7.2: European plain vanilla put price estimates (with standard errors) computed for the parameter
set I (see Table 7.1) using the joint Monte Carlo-Fourier transform method (implem. I & II) and the PT
method. Reference prices computed via the Fourier-cosine series expansion (3.13). Fixed parameters:
S0 = 100, r = 0:04, T = 0:25.

T K param. I param. II

80 0.2 0.7
0.25 100 0.4 1.1

120 1.2 1.7

80 4.0 4.9
1.0 100 8.3 6.7

120 14.7 8.6

Table 7.3: E¢ ciency gains for European plain vanilla put options. E¢ ciency ratios computed as
Eimplem:IjPT: CPU timings and variances used are for 106 trials. Model parameters: Table 7.1. Fixed
parameters: S0 = 100, r = 0:04.

existent following increases in the moneyness of the option and the Y parameter value. The

e¢ ciency gains are more signi�cant for higher T . The improvement in e¢ ciency across strikes

and times to maturity are attributed to increases in the variance of the PT estimator, while

across Y to increases in the CPU timing of the stable random number generator (see Appendix

7). The CPU timings of the joint Monte Carlo-Fourier transform technique remain una¤ected

by changes in T , K and Y .

A remarkable advantage of the joint Monte Carlo-Fourier transform scheme is in pricing

path-dependent options for which the intermediate values of the underlying are needed but

cannot be accessed through the PT method. Table 7.4 illustrates the performance of the

114



JOINT MONTE CARLO�FOURIER TRANSFORM

simulation scheme in pricing Asian call options with payo¤ (7.9), subject to quarterly and

monthly monitoring over a year�s time to maturity. We consider only the case where we simulate

directly the CGMY increments as this has shown to be faster. With 107 sample trajectories

and quarterly observation, implem. I takes 127 seconds to produce price estimates with penny

accuracy (at 99% con�dence level). With monthly monitoring, the CPU timing per price triples

while the increase in the standard error is slight. With 106 trials the running time reduces by

a factor of 10, nevertheless only 1 decimal place of accuracy is then guaranteed, demonstrating

the deteriorating e¤ect of path-dependence (frequent sampling) on the quality of the simulation

outcome compared to the path-independent case (sampling only at maturity) (see fourth column

of Table 7.2). Moreover, as with the plain vanilla option, the standard error increases as the

Asian call moves deeper into the money, whilst it remains almost una¤ected by the model

parameters choice.

The other candidate for the simulation of the CGMY trajectories is the biased MY method3.

From Section 7.4.2, " is the threshold below which we approximate the jumps of the subordinator

Z in the CGMY representation (7.6) by their expected value. An approximation bias is then

induced, which depends on " and the model parameter Y . In general, if �̂0 is the Monte Carlo

estimator for the derivative�s price today and �0 the true price, then the bias of the estimator

for given " and Y is computed as bias = E(�̂0 � �0). The root mean square error (RMSE) of

the estimator �̂0 with variance �2 is given by

RMSE = (bias2 + �2)1=2: (7.10)

Following Poirot and Tankov (2006), we use 107 trials to estimate the bias resulting from

di¤erent " and Y . The results are presented in Table 7.5 for at-the-money options. We observe

that the bias decreases as " ! 0, while the computational burden is approximately inversely

proportional to "Y=2. In particular, for set I (Y = 0:5), the bias reduces roughly by factors in

the range 3�20 (plain vanilla put) and 2�14 (Asian call) following successive reductions of " by

factors of 10, while the CPU timing increases roughly by a factor of 101=4 � 1:77 per " reduction

by 10. The approximation is exacerbated in the in�nite variation model (set II, Y = 1:5) where

3For the construction of the MY scheme in MATLAB, we have used as our basis the C++ code of Peter
Tankov which is downloadable from http://people.math.jussieu.fr/~tankov/.
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param. n K ref. prices implem. I std error implem. I std error
(107 trials) (106 trials)

80 22.8629 22.8704 0.0073 22.869 0.023
90 15.3053 15.2950 0.0068 15.256 0.021

4 100 9.4395 9.4339 0.0061 9.425 0.019
110 5.6734 5.6774 0.0053 5.681 0.017
120 3.5537 3.5537 0.0046 3.555 0.014

I
80 23.0533 23.0410 0.0074 22.986 0.023
90 15.5249 15.5190 0.0069 15.530 0.022

12 100 9.6433 9.6413 0.0062 9.610 0.019
110 5.8405 5.8409 0.0055 5.844 0.017
120 3.6888 3.6961 0.0048 3.681 0.016

80 22.9249 22.9275 0.0075 22.967 0.024
90 15.9385 15.9374 0.0068 15.947 0.022

4 100 10.6216 10.6103 0.0060 10.638 0.019
110 6.8788 6.8705 0.0051 6.898 0.016
120 4.3898 4.3833 0.0042 4.417 0.013

II
80 23.1589 23.1556 0.0077 23.176 0.024
90 16.2348 16.2337 0.0070 16.255 0.022

12 100 10.9196 10.9179 0.0061 10.910 0.019
110 7.1342 7.1312 0.0052 7.136 0.016
120 4.5865 4.5836 0.0044 4.583 0.014

Table 7.4: Fixed-strike Asian call price estimates (with standard errors) computed using the joint Monte
Carlo-Fourier transform method (implem. I). Reference prices computed via the convolution algorithm
of Chapter 4. Model parameters: Table 7.1. Fixed parameters: S0 = 100, r = 0:04, T = 1:0, 
 = 1.
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option parameterization I parameterization II
" bias std error CPU (s) " bias std error CPU (s)

vanilla 10�1 2.0915 0.0040 508 10�1 0.1612 0.0041 106
put 10�2 0.2104 0.0038 863 10�2 0.3778 0.0038 541

10�3 0.0105 0.0038 1676 10�3 0.0673 0.0037 2942
10�4 -0.0013 0.0038 2938 10�4 0.0155 0.0037 16441

Asian 10�1 1.0868 0.0066 1994 10�1 1.0369 0.0069 575
call 10�2 0.0774 0.0061 3291 10�2 0.2222 0.0062 2333
(n=4) 10�3 -0.0019 0.0060 5583 10�3 0.0305 0.0060 12095

10�4 -0.0088 0.0060 9661 10�4 0.0178 0.0060 66825

Asian 10�1 1.1797 0.0066 2520 10�1 1.1076 0.0070 597
call 10�2 0.0797 0.0062 4151 10�2 0.2413 0.0063 2340

(n=12) 10�3 0.0083 0.0062 7038 10�3 0.0341 0.0062 12017
10�4 -0.0043 0.0062 12144 10�4 0.0092 0.0061 66141

Table 7.5: Estimated biases (with standard errors) of the Madan-Yor approximation for di¤erent
threshold " and parameter Y based on 107 trials. Model parameters: Table 7.1. Fixed parameters:
S0 = K = 100, r = 0:04. Left-Top (Right-Top) panel: European put option; additional parameters:
T = 0:25; ref. price 6.3711 (8.3014) computed via the Fourier-cosine series expansion (3.13). Left-Mid
(Right-Mid) panel: Asian call option; additional parameters: T = 1:0, n = 4, 
 = 1; ref. price 9.4395
(10.6216) computed via the convolution algorithm of Chapter 4. Left-Bottom (Right-Bottom) panel:
Asian call option; additional parameters: T = 1:0, n = 12, 
 = 1; ref. price 9.6433 (10.9196). CPU
timings computed in seconds (s).

the bias reduces by factors of 4�5 (plain vanilla put) and 2�7 (Asian call), while the CPU timing

increases roughly by a factor of 103=4 � 5:62 as " becomes smaller. Moreover, while the MY

method exhibits smaller (absolute) bias in the case of the Asian option with quarterly sampling

when " 2 f10�1; 10�2; 10�3g, this changes abruptly in favour of the monthly sampling when

" = 10�4. This con�rms that the approximation bias is indeed hard to quantify.

Table 7.6 focuses on the outcome from the biased MY method with 107 simulation trials

when applied to the at-the-money Asian call option. The RMSE measure (7.10) re�ects both

bias and variance. Based on the bias estimates in Table 7.5, we see in Table 7.6 that for

" > 10�4 the bias dominates the standard error in the RMSE. This phenomenon becomes even

more pronounced in the in�nite variation model. We observe that under parameterization II the

smallest RMSE achieved is closely comparable to the standard error of the corresponding exact

price estimates (K = 100) in Table 7.4 obtained using only 106 trials. In the �nite variation

with in�nite activity model the overall performance improves and we can attain similar accuracy
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n parameterization I parameterization II
" MY std error RMSE " MY std error RMSE

10�1 10.5 0.0066 1.087 10�1 11.6 0.0069 1.037
4 10�2 9.517 0.0061 0.078 10�2 10.84 0.0062 0.22

10�3 9.437 0.0060 0.0063 10�3 10.652 0.0060 0.031
10�4 9.431 0.0060 0.011 10�4 10.639 0.0060 0.019

10�1 10.8 0.0066 1.180 10�1 12.0 0.0070 1.108
12 10�2 9.723 0.0062 0.080 10�2 11.16 0.0063 0.24

10�3 9.651 0.0062 0.010 10�3 10.953 0.0062 0.035
10�4 9.639 0.0062 0.0076 10�4 10.928 0.0061 0.011

Table 7.6: Fixed-strike Asian call price estimates (with standard errors and RMSEs) computed using
the biased Madan-Yor scheme for 107 trials. RMSEs computed as in (7.10) based on reported standard
errors and corresponding bias estimates from Table 7.5. Model parameters: Table 7.1. Fixed parameters:
S0 = K = 100, r = 0:04, T = 1:0, 
 = 1. Left-Top (Right-Top) panel: ref. price 9.4395 (10.6216)
computed with the convolution algorithm of Chapter 4. Left-Bottom (Right-Bottom) panel: ref. price
9.6433 (10.9196).

levels (depending on ") for the same number of trials, though the bias is not easy to control

and the CPU demands grow signi�cantly (see Table 7.5).

7.6 Concluding remarks

We have presented a Monte Carlo simulation scheme coupled with Fourier transform which is

simple and fast to implement. A key feature is its ability to generate exact sample trajectories for

stochastic models which admit closed-form characteristic functions. In �nancial applications,

this leads to unbiased price estimators. We have focused on the tempered stable process,

in particular the CGMY subclass, which has hitherto shown hard to simulate. Numerical

examples on plain vanilla and Asian options for two model parameterizations illustrate the

speed-accuracy merits of the proposed technique against existing methods in the literature.

More speci�cally, the e¢ ciency gains of the joint Monte Carlo-Fourier transform over the exact

method of Poirot and Tankov (2006) in pricing applications become existent for CGMY models

of in�nite variation for the log-returns and in-the-money path-independent options with long

time to maturity (e.g., in excess of one year). Our scheme also deals with the limitations of the

methods by Poirot and Tankov (2006) and Madan and Yor (2008), i.e., can be used to price
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path-dependent contracts and does not involve any approximation bias.
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Appendix 7�Simulation of the CGMY process using change of

measure

Assume payo¤ function

�T = p(ST ) = p(S0e
(r+$)T+LT );

where LT is a tempered stable random variable, r > 0 is the (constant) continuously com-

pounded interest rate, and parameter $ is chosen such that the martingale condition E (ST ) =

S0e
rT is satis�ed under a risk-neutral measure P. From Poirot and Tankov ((2006), Theorem

3.1), there exists an equivalent probability measure Q such that

E (�T ) = E
�
p(S0e

(r+$)T+LT )
�

= EQ
�
p(S0e

rT+~L1;T+~L2;T )e��+
~L1;T+�� ~L2;T�~cT

�
; (7.11)

where constant

~c = �+c+� (��+) ((�+ � 1)�+ � ��++ ) + �
�+
+ c+� (��+)

���c�� (���) ((�� + 1)�� � ���� ) + �
��
� c�� (���)

for 0 < �� < 1 or 1 < �� < 2. The random variables ~L1;T , ~L2;T follow the �+-stable distribu-

tion S�+(�+; 1; �+) and ��-stable distribution S��(��;�1; ��) respectively, with parameters

�� = (�c�� (���) cos(���=2)T )�
�1
� ;

�� = �c�� (���) ((�� � 1)�� � ���� )T:

The equivalence result (7.11) enables us to transform the tempered stable variable to a sum

of two stable variables whose simulation is straightforward (see Chambers et al. (1976) and

Weron (1996)).
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Chapter 8

A backward convolution algorithm

for convertible bonds in a jump

di¤usion setting with stochastic

interest rates

8.1 Introduction

The aim of this chapter is to introduce a Fourier transform approach for the pricing of con-

vertible bonds (CBs) under a jump di¤usion market model with correlated stochastic interest

rates. In contrast with the previous literature, the proposed numerical pricing technique can

accommodate a number of risk factors and contract-design features, and is shown to be e¢ cient

and accurate.

CBs are hybrid instruments which represent a pricing challenge because of their complex

design. Firstly, they depend on variables related to the underlying �rm value (or stock), the

�xed income part, which includes both interest rates and default risk, and the interaction

between these components. Secondly, CBs usually carry call options giving the issuer the right

to demand premature redemption in exchange for the current call price. Put option features,

which allow the investor to force the issuing �rm to prematurely repurchase the CB for a
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pre-speci�ed price, are also sometimes met.

The early-exercise features that CBs present imply that the pricing problem of these con-

tracts shares strong analogies with the one of American/Bermudan options. Closed-form so-

lutions for the price of the CB in a Black-Scholes-Merton economy have been obtained by

Ingersoll (1977a) for the case of non-callable/callable products; however, the introduction in

the valuation model of a more realistic speci�cation including, for instance, discretely payable

coupons, dividends on the underlying stock, soft call provisions (which preclude the issuer from

calling the CB until the �rm value rises above a speci�ed level), and a call notice period pre-

vent the derivation of explicit pricing formulae. For these reasons, various numerical techniques

have been employed in order to evaluate CBs. The literature mainly distinguishes among three

types of approach: (i) numerical schemes for partial di¤erential equations/inequalities (PDE/Is)

(see Brennan and Schwartz (1977), (1980), Carayannopoulos (1996), Tsiveriotis and Fernan-

des (1998), Zvan et al. (1998), (2001), Takahashi et al. (2001), Barone-Adesi et al. (2003),

Bermúdez and Webber (2004)), (ii) lattice methods (see Goldman Sachs (1994), Ho and Pfe¤er

(1996), Takahashi et al. (2001), Davis and Lischka (2002)) and (iii) Monte Carlo simulation

(see Lvov et al. (2004), for an approach based on the joint simulation-regression technique

by Longsta¤ and Schwartz (2001), and Ammann et al. (2008), for an approach based on the

optimization method by García (2003)).

Contributions using the PDE/I approach rely on the �nite di¤erence (Brennan and Schwartz

(1977), (1980)) and �nite volume (Zvan et al. (2001)) schemes; a more recent development is the

so-called joint characteristics-�nite elements method suggested by Barone-Adesi et al. (2003),

which aims at overcoming previously reported challenges originated by complex boundary con-

ditions, the existence of spurious oscillations due to convection dominance, and the slow conver-

gence. On the contrary, the popularity of lattices is frequently attributed to their intuitiveness

and simplicity; lattice methods su¤er, though, from an increasing number of spatial nodes at

each time step, especially for long maturities. This issue becomes even more noticeable in the

case of stochastic interest rates, as this requires the generation of a 2-D lattice. Furthermore,

Geske and Shastri (1985) demonstrate that lattices tend to lose e¢ ciency when dealing with

discrete payments and early-exercise options.

One signi�cant problem with the traditional PDE/I and lattice methods is the so-called
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curse of dimensionality. This is about the limited number of dimensions their grids can hold

e¤ectively, and therefore the number of risk factors that the pricing model can actually include.

For example, in the attempt to provide a more realistic representation of the �rm�s value

behaviour in the CB context, Bermúdez and Webber (2004) adopt a �rm value approach in

which they assume the arrival of a single jump with �xed (non-random) jump size; thereafter

the �rm value is assumed to evolve as a pure di¤usion. Although this assumption facilitates

the implementation of the numerical scheme, it still remains simplistic and inadequate to the

e¤ective modelling of credit risk, as we discuss in Section 8.2.2. In this respect, Monte Carlo

simulation turns out to be the preferred alternative when multiple state variables (especially

more than two) and Bermudan features are considered. For example, the adaptation of Monte

Carlo methods by Longsta¤ and Schwartz (2001) to accommodate early-exercise features is

based on the approximation of the continuation value by a linear combination of suitably chosen

basis functions, and the estimation of the corresponding coe¢ cients by regression. Nevertheless,

Broadie and Detemple (2004) argue that results converge slowly, demanding an increasing

number of basis functions and simulation runs. In the case of CBs, additional care is required

on splitting the spatial domain beforehand into regions where the CB behaves di¤erently (likely

to be called/put/continue existing), otherwise unnecessary approximation of the continuation

value over the uni�ed domain is anticipated to be poor (see Lvov et al. (2004) for a more

detailed discussion of this point). Finally, Monte Carlo methods su¤er a slow and non-monotone

convergence, preventing the application of convergence-accelerating techniques like Richardson

extrapolation.

In the light of the previous discussion, our contribution to the current state of the litera-

ture on CBs is threefold. Firstly, we propose a Fourier transform pricing technique built on

martingale theory, which aims at handling e¤ectively any real-world CB speci�cation, including

discrete cash �ows, and conversion which is either forced by a call on notice from the issuer, or

takes place voluntarily at the holders�choice before a dividend payment. The method belongs

to the class of backward price convolutions, similar in spirit to Lord et al. (2008) described

in Section 3.4; in general terms, the approach we suggest works by evaluating the convertible

bond going backwards from maturity, while allowing for the early-exercise features and discrete

payments at relevant time points. Secondly, we use a market model which comprises four risk
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factors: an underlying evolving as a di¤usion augmented by jumps, subject to random arrival

and size, and stochastic interest rates. We consider both the cases of the Merton jump di¤u-

sion and the double exponential (Kou) jump di¤usion for the log-increments of the underlying;

these re�ect the a¢ ne di¤usion model (3.6-3.7) presented in Section 3.3 additionally equipped

with independent random jumps. To the best of our knowledge, such a setup has not been

implemented earlier in the convertible bonds�literature due to dimensionality issues. The pro-

posed numerical pricing scheme is shown to be �exible enough to handle the dimensionality

imposed by the abovementioned market model, while remaining smoothly convergent and pre-

cise. Thirdly, we show that the bivariate log-�rm value�interest rate process falls within the

class of a¢ ne models in the spirit of Du¢ e et al. (2000) and Du¢ e et al. (2003) (see Section

3.3) and, using the results on numéraire pair changes from Geman et al. (1995), we derive its

characteristic function in closed form. Characterizing the law of the underlying model is pivotal

for the implementation of the convolution algorithm.

The suggested pricing methodology is then tested using di¤erent parameterization of the

adopted market framework. In particular, we examine the discrepancy between the prices

generated by the two jump di¤usion models under consideration as a function of the model

parameter values and the moneyness (measure of the likelihood of conversion) of the convertible

bond. We explore the e¤ects of coupons payable to the CB holders and dividends distributed to

the current stock holders, as well as the impact of varying call policy on the computed prices.

The remainder of this chapter is organized as follows. In Section 8.2 we introduce the basic

notation and our assumptions for the �rm value and interest rate processes. We then justify

our choice based on the empirical evidence available on the credit-spread term structure, and

provide intuition on how to overcome signi�cant impracticalities related to the calibration of the

�rm value model. In Section 8.3 we describe the CB design under consideration, with particular

emphasis on the optimal call strategy assumed for the issuing �rm; we also derive the payo¤ to

the CB holders after a with-notice call by the �rm. In Section 8.4 we develop the theoretical

ground for the Fourier transform-based backward price convolution scheme and discuss its im-

plementation via discrete Fourier transform. Section 8.5 demonstrates the proposed numerical

scheme in practice. Section 8.6 concludes the chapter.
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8.2 Market model

From a valuation perspective, a pricing model for CBs requires assumptions on the term struc-

ture of interest rates, the dynamic followed by the asset underlying the conversion option, and

the �rm�s default-driving mechanism. We adopt here a structural approach to model the un-

derlying of the contract and the default-triggering event; in particular, we assume that the

dynamic of the �rm value is driven by a jump di¤usion. The detailed assumptions of our model

are presented in the following sections, together with the rationale of our choice. Finally, we

use the Va�íµcek (1977) model for the term structure of interest rates.

8.2.1 The �rm value-interest rate setup

Let (
, F , F = (Ft)t>0, P) be a complete �ltered probability space, where P is some risk-neutral

probability measure. We assume that the �rm value V is given by

Vt = eYt ;

where Y follows the a¢ ne di¤usion model (3.6-3.7) augmented by jumps, to yield the jump

di¤usion process

Yt = Y0 +

Z t

0

�
rs � �2=2� � (�L (�i)� 1)

�
ds+ �Wt +

Z
R
lNt (dl) ; (8.1)

with Y0 = lnV0,W a F-adapted standard Brownian motion in R, N a time-homogeneous Poisson

process with constant intensity � and L the random jump size; L is modelled by a sequence of

independent and identically distributed random variables with E (L) = �L, Var (L) = �2L and

characteristic function �L, while W , N and L are assumed to be mutually independent. As far

as the distribution governing L is concerned, two popular choices in the literature are the double

exponential distribution (Kou (2002)) and the normal distribution (Merton (1976)). Speci�cally,

in the case of the double exponential jump di¤usion process (DEJD), L has characteristic

function

�L (u) =
p�

1

�
1
� iu +

q�
2

�
2
+ iu

; (8.2)
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where p; q � 0, �1 > 1, �2 > 0, and p+q = 1 as they represent the (risk-neutral) probabilities of

an upward and a downward jump respectively. In the case of the Merton jump di¤usion model

(MJD), instead, we assume that L follows a normal distribution; therefore, the characteristic

function is

�L (u) = ei�Lu��
2
Lu

2=2: (8.3)

The short rate process r is assumed to evolve according to the Va�íµcek (1977) model; hence,

the log-price lnPt (v) at t > 0 of a pure-discount bond maturing at v � t satis�es

lnPt (v) = lnP0 (v) +

Z t

0

�
rs �m2

s (v) =2
�
ds+

Z t

0
ms (v) dWr;s; (8.4)

jmt (v)j =
�r
�
(1� e��(v�t)); �; �r > 0; (8.5)

where Wr is a standard Brownian motion, such that W and Wr have constant correlation �,

whereas Wr is independent of both N and L. Alternatively,

lnPt (v) = At (v)�Bt (v) rt; (8.6)

At (v) =
1

�2
(Bt (v)� v + t)

�
�r�

2 � �2r=2
�
� �2rB

2
t (v)

4�
; �r > 0; (8.7)

Bt (v) =
1

�
(1� e��(v�t)): (8.8)

The results (8.4-8.8) can be found, for example, in Hull (2003) and Va�íµcek (1977).

8.2.2 Stock versus �rm value and real-world considerations

Generally speaking, the available approaches to model credit risk can be classi�ed in two main

categories: the structural and intensity-based (reduced-form) models1.

The main feature of the structural methods is the fact that the credit events are triggered

by movements of the �rm value below some boundary. Thus, a key aspect of this framework is

the modelling of the �rm value process. Structural default has been �rst introduced by Merton

(1974), who considers the possibility of bankruptcy of a risky bond only at maturity. Various

modi�ed versions of the original Merton (1974) model have been proposed, including Black

1Apart from the purely structural and intensity-based models, hybrid approaches combining elements from
both techniques also exist. More about these can be found in Bielecki and Rutkowski (2002).
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and Cox (1976), Longsta¤ and Schwartz (1995) (with stochastic interest rate), Leland (1994)

and Leland and Toft (1996), amongst others. The main di¤erence between these methods and

Merton (1974) is the inclusion of a stopping time, which signi�es the default time upon the

breaching of the benchmark level by the �rm value trajectory at any time over the term of the

contract. In the CB context, Ingersoll (1977a), (1977b) follows Merton (1974), while Brennan

and Schwartz (1977), (1980) proceed one step further by additionally allowing for default prior

to maturity.

All the abovementioned contributions use a drifted Brownian motion to describe the dy-

namic of the log-�rm value, in the spirit of Black and Scholes (1973) and Merton (1973).

Nevertheless, by nature of the di¤usion process, this particular assumption precludes a sudden,

unexpected drop of the �rm value process below the default-triggering threshold level. Conse-

quently, the �rm can go bankrupt only when its value reaches exactly that level after a smooth

decline. According to Zhou (1997), for a �rm which is subject to such a �predictable�default

and is not in �nancial distress, the probability of default in the short-run is negligible, although

the credit risk becomes more signi�cant for longer maturities. Therefore, these models imply a

�at term structure of credit spread at zero level for short maturities with an increasing slope at

longer maturities. Unfortunately, such a shape for the credit-spread curve is inconsistent with

the empirical results of Fons (1994) and others. According to these contributions, the curve for

certain corporate bonds may be observed to be not only upwards-sloping, but also �at or even

downwards-sloping. A possible route to face this matter of �predictability�is to include unfore-

seeable jumps into the dynamics of the �rm value evolution, using for example Poisson jumps,

as in Zhou (1997), Hilberink and Rogers (2002), Chen and Kou (2009) and Dao and Jeanblanc

(2006), or by completely discarding the di¤usion component and replacing it with pure jumps,

as in Madan (2000). In both cases, bankruptcy takes place in the form of a jump, i.e., by cross-

ing the critical default boundary without exactly touching it. As Zhou (1997) points out, in a

jump di¤usion structural approach, the di¤usion component generates conceptual insights on

default behaviour, since the default events can be associated to the smooth decline of the �rm�s

capital structure, whilst the additional existence of jumps allows for likely external impacts and

enables a more �exible �tting to the observed credit spreads. Another way to produce high

short-term spreads is by incorporating a stochastic barrier level, as in the CreditGrades (2002)
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technical document; this feature proves to raise the likelihood for the �rm�s assets being at a

level which is closer to the bankruptcy point than otherwise believed. In the CB context, we

note that Bermúdez and Webber (2004) resort to the �rm value technique by implementing

a jump-augmented geometric Brownian motion, where the exogenous default event coincides

with the jump time of a time-inhomogeneous Poisson counter with �semi-stochastic�intensity

(see Lando (1998)).

The alternative approach to modelling default is known as the intensity-based technique.

The distinguishing feature of this framework is the unpredictability of the default time, which

is totally inaccessible (i.e., it comes as a �surprise�). Such a default is said to be exoge-

nous, exactly because it occurs in a sudden manner and is related to an external cause. The

concept behind intensity-based default is simple: the instantaneous probability of default is

exogenously speci�ed by means of some intensity (hazard rate), which may be treated either

�semi-stochastically�, as a function of the underlying stock, or directly stochastically. In the CB

context, the reduced-form technique of Du¢ e and Singleton (1999) is mostly popular (see Taka-

hashi et al. (2001), Davis and Lischka (2002), Andersen and Bu¤um (2003), Carayannopoulos

and Kalimipalli (2003)). According to this speci�cation, pre-default prices can be reasonably

assumed to be driven by a di¤usion process. It can be argued though that these (semi-) sto-

chastic intensity-based models unnecessarily penalize the default-free equity component of the

convertible bond, as the default intensity appears in the drift part of the stock process. In

general, a company�s ability to issue stock is not strongly in�uenced by its credit rating and it

can always deliver that stock. On the contrary, coupon and principal payments depend on the

issuer�s timely access to the required amounts. Inability to access these payments at the right

time induces credit risk. On the same grounds, Tsiveriotis and Fernandes (1998) choose to split

the CB into arti�cial debt-only and equity-only elements. The debt-only part is discounted at a

higher rate, subject to a constant spread over the short rate, to re�ect the default risk associated

to it. Then, the two components are added to provide the overall CB price2. On the other hand,

Takahashi et al. (2001) claim that the assumption of the stock not being subject to default

risk is likely to result into model inconsistency with the market. Furthermore, Takahashi et al.

2The early works of McConnell and Schwartz (1986), Cheung and Nelken (1994), and Ho and Pfe¤er (1996)
also consider a constant credit spread-adjusted discount rate, which is applicable, however, to the entire CB.
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(2001), Davis and Lischka (2002) and Carayannopoulos and Kalimipalli (2003) presume that,

upon default, the stock instantaneously jumps to zero. Based on empirical results, Ayache et

al. (2003) consider this assumption as extreme and controversial. For this reason, they apply a

proportional reduction to the pre-default stock price at the time of default; the optimal choice

of this reduction adds to the limitations of the stock-based models.

In the light of the previous discussion, in this note we follow Bermúdez and Webber (2004)

and adopt a �rm value approach to credit risk in order to avoid a disputable treatment of equity.

Nevertheless, we emphasize on the simple assumption of their approach that default occurs only

once; thereafter the �rm value is assumed to evolve as a pure di¤usion, hence any possibility

of future exogenous default events to occur is eliminated. This compromise is necessary by

limitations of the PDI numerical scheme they employ. Here, however, we manage to overcome

this modelling weakness and adopt an exponential jump di¤usion �rm value approach, as in

Merton (1976) and Kou (2002), so that default can be reached following a number of consecutive

shocks in the value of the �rm. To the best of our knowledge, this is the �rst time that these

two jump di¤usion processes are utilized in the context of CBs valuation.

8.2.3 Calibration issues

Despite its appealing implications in the credit risk context, a model based on the value of the

�rm, which is not directly market-observable, traditionally su¤ers in calibration. The lack of

this information poses crucial impracticalities especially in an incomplete market, such as the

one proposed here, which we need to handle as e¢ ciently as possible. As King (1986) explains,

many of the �rm�s liabilities are not traded in organized exchanges or have limited trading

activity, as opposed to the highly liquid stock, prohibiting their synchronous observation in

many instances and, hence, their simultaneous estimation. The �rst contributions o¤ering a

solution to the estimation problem include Carayannopoulos (1996), who suggests the volatility

of the common stock (obtained from the market) as proxy for the volatility of the �rm value (the

former actually forms an upper bound to the latter) and King (1986), who proposes a leverage-

adjusted stock volatility for the �rm value. As a consequence, in the case of Carayannopoulos

(1996), some overpricing e¤ects have been reported, especially for deep in-the-money CBs, due

to the overstated �rm value volatility, while King�s version appears to work even less e¢ ciently.
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A more recent candidate for the �rm�s assets volatility is the one which recovers, as consistently

as possible, the market CDS (Credit Default Swap) spread on that �rm (e.g., CreditGrades

(2002)).

Although our intention here is not to actually calibrate the �rm value and interest rate

processes, we brief on alternative promising calibration routes, whose application is postponed

to a future stage of our research.

Starting with the short rate, calibration can be operated for the Hull and White interest rate

model (which generalizes the original Va�íµcek model): following Barone-Adesi et al. (2003), the

asymptotic mean interest rate level, �r, can be inferred from the market prices of zero-coupon

bonds, as at a given reference date, while the remaining parameters, � and �r, are obtained from

the minimization of the root mean square error between the theoretical (closed-form formula)

and market prices of actively traded interest rate options, e.g., caps, as at the reference date.

As far as the �rm value is concerned, the nonparametric calibration methodology by Cont

and Tankov (2004b) for Lévy processes guarantees consistency with the observed market prices

via minimization of a well-de�ned model-market prices distance functional. Further, it allows

for dependence on the information gained since the previous calibration, via an entropic mea-

sure of the closeness between the current market martingale measure and the prior measure

(the outcome from the previous calibration). Cont and Tankov (2004b) test successfully the

performance of their algorithm on European plain vanilla options on stocks in a DEJD setup.

An extensive discussion on this procedure and the associated technicalities can be found in Cont

and Tankov (2004a), (2004b). Therefore, instead of seeking to infer the unknown �rm parameter

values from stock data, we may use the information contained in the historical prices of ordi-

nary and convertible bonds from the same issuer. However, because of our model�s structural

nature, a complication arises due to the need to infer simultaneously all claims. To eliminate

this complication, we should ideally restrict our sample to �rms with simple capital structures

consisting only of common stock, senior debt and subordinated convertible debt. Then, based

on the derived guesses for the parameters, we could test the out-of-sample forecasting power

of our CB model. Zabolotnyuk et al. (2009) have set up the structural model of Brennan and

Schwartz (1977), (1980), where riskless senior debt has been easily incorporated to be deduced

as part of the calibration procedure. In this way, they have managed to calibrate e¤ectively

130



VALUATION OF CONVERTIBLE BONDS

and produce price forecasts, which are comparable to the Tsiveriotis and Fernandes (1998)

stock-based model predictions for the same sample of �rms.

8.3 Convertible bonds: contract features

A convertible bond is an ordinary bond which additionally o¤ers the investors the option to

exchange it for a predetermined number of shares at certain points in time. In this respect,

the conversion rights originate a Bermudan option. In the case of conversion, each investor

receives the conversion value 
Vt, where 
 2 (0; 1) denotes the dilution factor, i.e., the fraction

of common stock possessed by each CB holder post-conversion. The CB issue usually o¤ers

regular aggregate coupon payments Ctj at time tj 2 [0; T ] and, for m outstanding CBs, this

corresponds to ctj = Ctj=m payment per bond. In the case the issue is kept alive to its expiration

at time T , it is redeemed for a total face value mF . The �rm�s stock holders receive, instead,

a discrete aggregate dividend Dti at the dividend date ti 2 [0; T ], such that tj 6= ti.

Furthermore, CBs contain a call option allowing the issuer to redeem it prematurely in

exchange for the current call price; the issuer is in general obliged to announce his/her decision

to call the bond a certain period in advance (call notice period). Once the CB is called, the

investor needs to consider if it is the case to exercise the conversion option at the end of the

call notice period, in order to convert instead of receiving the call price. Put option provisions

entitling the investor to force a premature repurchase of the CBs by the issuing �rm, are another

feature which is sometimes met. We currently ignore the putability provision, as it has been

shown to cause minor e¤ects on the CB price (see Bermúdez and Webber (2004)).

The existence of a callability provision implies that the CB payo¤ depends on the optimal

exercise strategy adopted by the issuer. This is discussed in the next section.

8.3.1 The optimal call strategy

Under the assumption of a market not subject to any imperfections, in which the Modigliani-

Miller theorem holds and no call notice applies, Ingersoll (1977a) proves that the optimal call

policy for a callable convertible issue is to call as soon as the �rm value Vt reaches the critical

level Kt=
, for a deterministic call price Kt which usually is either �xed by the �rm at the
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issue of the contract, or a piecewise constant function (see Ammann et al. (2008)). This

feature endows the CB with path-dependence and, consequently, implies the need for frequent

monitoring. Despite his original result, Ingersoll (1977b) observes empirically that �rms tend

to follow di¤erent call strategies; they choose, in fact, to call when the conversion value is in

excess of the call price. Forcing conversion by a call at the earliest opportunity, instead, leads to

undervalued CBs, as shown in Carayannopoulos (1996) and Carayannopoulos and Kalimipalli

(2003).

The extensive empirical analysis carried out by Asquith and Mullins (1991) and Asquith

(1995) shows that the observed call delays can be attributed mainly to three factors: a call

notice period, the existence of signi�cant cash �ows advantages, and a safety premium on the

given call price. In details, the call notice period, which prohibits the CB to be called for as

long as this period is active, in fact proves to be the main reason for the delayed calls; for those

CBs that are not called at the end of this period, the �rm might be saving cash by delaying

the call if, for example, the after-corporate tax coupons on the CB are less than the dividends

payable post-conversion. Another important reason for delaying is linked to the existence of a

safety premium imposed by the issuing �rm prior to the call announcement, in the attempt to

guarantee that the conversion value will still exceed the call price at the end of the call notice

period and, hence, avoid the bond redemption in cash.

In this work, we build on these �ndings and formulate the optimal call policy for the CB

as follows. Let # 2 (0; 1) denote the safety premium mentioned above; then, the �rm�s optimal

call announcement is given by the stopping time

� c := inf

�
t : Vt �

(1 + #)Kt




�
:

Assume the call notice period is sc and de�ne the accrued interest AccIR =
�c+sc�tj
tj+1�tj ctj+1 ,

tj � � c + sc < tj+1, such that the call price at the end of this period is K�c+sc = K�c +

AccIR. Then, the investor�s payo¤ upon the call of the CB by the issuer is �K�c+sc (V�c+sc) =

max (
V�c+sc ;K�c+sc), and its no-arbitrage price at the time of the call is

~K�c (V�c ; r�c) = E
�
e�

R �c+sc
�c rsds �K�c+sc (V�c+sc)

���F�c� : (8.9)
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8.3.2 The payo¤ function and pricing considerations

Because of the early-exercise rights embedded in the CB, we de�ne the contract payo¤ (per

bond) function ~Ht at any possible decision time t 2 (0; T ] as follows.

At maturity T , the investors can choose between converting to common stock (see Brennan

and Schwartz (1977), Lemma 1) and receiving the face value and the last coupon, providing

that the �rm can a¤ord the total of this payment. Otherwise, they recover the outstanding

�rm value at that time. Hence,

~HT (VT ; rT ) =

8>>><>>>:

VT ; VT � (F + cT ) =


F + cT ; mF + CT � VT < (F + cT ) =


VT =m; VT < mF + CT :

(8.10)

At a date where neither coupon nor dividend payments are due, the CB may be forced by

a call to conversion, or continue to exist at least until the next monitoring point, i.e.,

~Ht (Vt; rt) =

8<: ~Kt (Vt; rt) ; Vt � (1+#)Kt


 ; 0 < t < T; t 6= ti; tj

Ht (Vt; rt) ; Vt <
(1+#)Kt


 ; 0 < t < T; t 6= ti; tj ;
(8.11)

where Ht denotes the no-arbitrage (continuation) value of the CB, and ~Kt is given by equation

(8.9).

At a coupon date, tj , the payo¤ of the CB depends on whether the �rm has enough funding

to meet the claim. If Vtj� � Ctj , the CB defaults, its value is Htj = 0, since 0 � Htj � Vtj

by limited liability and the Modigliani-Miller theorem, and Ctj = Vtj� , i.e., the investor sizes

the available assets. If, instead, Vtj� > Ctj and for as long as the CB is uncalled, the contract

remains in force and the coupon is paid in full. On the other hand, if the CB is called, its

holders receive both the call payo¤ and the coupon. Hence,

~Ht�

�
Vt� ; rt

�
=

8>>><>>>:
Vt�=m; Vt� � Ct; 0 < t < T; t = tj

Ht (Vt; rt) + ct; Ct < Vt� <
(1+#)Kt


 ; 0 < t < T; t = tj

~Kt (Vt; rt) + ct; Vt� �
(1+#)Kt


 ; 0 < t < T; t = tj :

(8.12)

Finally, at a dividend date, ti, the investors may �nd optimal to convert prior to the dividend
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payment3 (voluntary conversion). The following condition, which is proved in Brennan and

Schwartz ((1977), Lemma 1), applies

~Ht�

�
Vt� ; rt

�
= max

�
Ht (Vt; rt) ; 
Vt�

�
; 0 < t < T; t = ti : (8.13)

The payo¤ function de�ned by equations (8.10-8.13) highlights the Bermudan style and high

path-dependency of the CB; these features imply that the no-arbitrage price of the CB, H0,

can only be recovered by numerical approximation.

8.4 The backward price convolution algorithm

Lord et al. (2008) utilize a backward recursive integration scheme to produce accurate prices

for Bermudan vanilla options. Their method relies on the property of independent increments

shown by the log-returns in their market model. We adapt this approach to the pricing of CBs;

however, the straightforward extension of the method is not possible due to the fact that in our

model the increments of the log-�rm value are not independent (see equation (8.1)). Moreover,

the contract under consideration presents a higher degree of complexity due to the presence

of intermediate discrete payments, exotic features, like call provision with attached call notice,

and additional risk factors, such as stochastic interest rates.

We consider the partition T = ftkgnk=0, n 2 N�, of the contract�s term [0; T ] signifying the

set of the decision dates. For ease of exposition we assume that these dates are equally spaced

so that tk � tk�1 = �t for 0 < k � n, with t0 = 0, tn = T . With these assumptions in mind, the

price of the CB is the solution to the dynamic programming problem described next.

3At a dividend date, the existing stock holders are entitled to receive dividends for as long as the �rm can
a¤ord their payment, providing that it has already met all the other claims ranking above them.
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We de�ne functions g, gr as follows

gk�1� (y; yr) =

8>>>>>>>>><>>>>>>>>>:

ln(ey �Dtk�1)�Atk�1 (tk) +Btk�1 (tk) yr;
1 � k � n; k � 1 = i

y > lnDtk�1

ln(ey � Ctk�1)�Atk�1 (tk) +Btk�1 (tk) yr;
1 � k � n; k � 1 = j

y > lnCtk�1

y �Atk�1 (tk) +Btk�1 (tk) yr; 1 � k � n; k � 1 6= i; j;

gr;k�1 (yr) = yre
��(tk�tk�1); 1 � k � n;

where Atk�1 (tk) and Btk�1 (tk) are given by equations (8.7) and (8.8) respectively. We further

de�ne the pairs

(Z
k
; Zr;k) = (Ytk� � gk�1�(Ytk�1� ; rtk�1); rtk � gr;k�1(rtk�1)); 1 � k � n; (8.14)

and denote by f� their joint P�-density function for all k.4

Based on the fundamental theorem of asset pricing, we write in �ltration F for 1 � k � n

the iteration

Hk�1�(Ytk�1� ; rtk�1) = E
�
e
�
R tk
tk�1

rsds ~Hk�(Ytk� ; rtk)

����Ftk�1�� = Ptk�1(tk)E
�
�
~Hk�(Ytk� ; rtk)

���Ftk�1�� ;
(8.15)

where the second equality follows by a change to the tk-forward measure P�, induced by taking
as numéraire the price P� (tk) = exp(A� (tk)�B� (tk) r� ) (see equation (8.6)) of a pure-discount
bond maturing at tk as at time tk�1 � � � tk (see Appendix 8.A).5 From (8.14),

E�
�
~Hk�(Ytk� ; rtk)

���Ftk�1�� = E�
�
~Hk�(gk�1�(Ytk�1� ; rtk�1) + Z; gr;k�1(rtk�1) + Zr)

���Ftk�1��
=

Z
R�R

~Hk�(gk�1�(Ytk�1� ; rtk�1) + z; gr;k�1(rtk�1) + zr)f
�(z; zr)d(z; zr):

4As shown in Appendix 8.B, equation (8.32), the pair (Z;Zr) forms a sequence of identically distributed
random variables; hence, we may drop the time-subscripts from (Zk� ; Zr;k�).

5For completeness, impose time-subscripts t0� = t0, tn� = tn.

135



VALUATION OF CONVERTIBLE BONDS

We de�ne

Ĥk�1�(gk�1�(Ytk�1� ; rtk�1); gr;k�1(rtk�1))

=

Z
R�R

~Hk�(gk�1�(Ytk�1� ; rtk�1) + z; gr;k�1(rtk�1) + zr)f
�(z; zr)d(z; zr); (8.16)

such that, from (8.15), the no-arbitrage price of the CB at tk�1 is

Hk�1�(Ytk�1� ; rtk�1) = Ptk�1 (tk) Ĥk�1�(gk�1�(Ytk�1� ; rtk�1); gr;k�1(rtk�1)): (8.17)

Result (8.17) is then used to compute the new payo¤ ~Hk�1�(Ytk�1� ; rtk�1), in accordance with

(8.10-8.13), to be applied in the subsequent iteration. Ultimately, the price of the CB at

inception is H0(Yt0 ; rt0).

Moreover, since (8.16) forms a convolution, we can express the Fourier transform of Ĥk�1�

as

F(Ĥk�1�) = F( ~Hk� � f�(�z;�zr)) = F( ~Hk�)F(f�(�z;�zr)) = F( ~Hk�)'
�;

where F denotes the Fourier transform (see equation (2.3)), and '� is the complex conjugate

of the characteristic function �� of the pair (Z;Zr)

'�(u; ur) = ��(�u;�ur) = E�(e�iuZ�iurZr) =
Z
R�R

e�iuz�iurzrf�(z; zr)d(z; zr): (8.18)

�� is given by the closed analytical form (8.32) derived in Appendix 8.B. By Fourier inversion,

we recover

Ĥk�1� = F�1(F(Ĥk�1�)) = F�1(F( ~Hk�)'
�):

8.4.1 The call payo¤

Upon a call of the CB by the issuing �rm, it is required that we compute the payo¤ to the CB

holders (see equations (8.11), (8.12)). From (8.9), the call payo¤ as at the call announcement

date is given by

~K�c (Y�c ; r�c) = E
�
e�

R �c+sc
�c rsds �K�c+sc (Y�c+sc)

���F�c� = P�c (�
c + sc)E�

�
�K�c+sc (Y�c+sc)

��F�c� ;
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following a change to the P� measure.

We de�ne the function

h�c (y; yr) =

8<: y �A�c (� c + sc) +B�c (� c + sc) yr; � c 6= tj

ln (ey � C�c)�A�c (� c + sc) +B�c (� c + sc) yr; � c = tj� ;

and the random variable

Z�c+sc = Y�c+sc � h�c (Y�c ; r�c) (8.19)

for which we assume marginal P�-density function f�Z .6 Then, from (8.19),

E�
�
�K�c+sc (Y�c+sc)

��F�c� = E�
�
�K�c+sc (h�c (Y�c ; r�c) + Z�c+sc)

��F�c�
=

Z
R
�K�c+sc (h�c (Y�c ; r�c) + z) f

�
Z (z) dz = K̂�c (h�c (Y�c ; r�c)) :

Based on Theorem 5, we write

F(K̂�c) = F( �K�c+sc � f�Z (�z)) = F( �K�c+sc)F(f�Z (�z)) = F( �K�c+sc)'
�
Z ;

where '�Z = E�(e�iuZ) = '� (u; 0) (see equation (8.18)). Subsequently, we recover

K̂�c = F�1(F(K̂�c)) = F�1(F( �K�c+sc)'
�
Z); (8.20)

and compute

~K�c = P�c (�
c + sc) K̂�c : (8.21)

8.4.2 Numerical implementation

Preliminaries. To evaluate numerically the price functions ~Hk� and Ĥk�1� we select uniform

grids y, x with N grid points and spacings �y = �x (log-�rm value dimension), and yr, xr

with Nr grid points and spacings �yr = �xr (short rate dimension). Moreover, we determine

uniform, symmetric about zero, grids u, ur with N and Nr grid points and spacings �u and

�ur respectively. We evaluate the joint characteristic function '� on u�=(u;ur) and denote the

6The density f�Z is function only of the time length s
c, and not the actual call announcement time � c (see

equation (8.32), Appendix 8.B); hence, any time index can be removed.
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grid function values by '�. Since '� does not depend on the state variable values, it can be

calculated and stored outside the recursive part of the algorithm for later use.

Recursive part. Starting from the contract maturity time and moving backwards along

the time axis split into n subintervals, we summarize next the three repeating steps which

characterize the operations undertaken in each subinterval.

1. Swapping between the state and Fourier spaces. Assume the values approximating

~Hk� at the k
th decision date are given on the grid y� = (y;yr), and denote these by ~Hk� .

Evaluate then the discrete approximation to the Fourier transform F( ~Hk�) on u
� as

D(~Hk� �w;y�;u�)�y�yr;

using the conversion (2.27). We denote by � the element-wise matrix multiplication. De�ne

the trapezoidal weights

wl;lr = 1� (�l + �lr + �N�1�l + �Nr�1�lr)=2 + (�l�lr + �l�Nr�1�lr

�N�1�l�lr + �N�1�l�Nr�1�lr)=4;

where l = 0; : : : ; N � 1, lr = 0; : : : ; Nr � 1 and the Kronecker delta �� takes value 1 (0)

for � = 0 (� 6= 0). The inverse transform Ĥk�1� = F�1(F( ~Hk�)'
�) is provided in terms

of the discrete approximation

Ĥk�1� =
1

(2�)2
D(D(~Hk� �w;y�;u�)�y�yr �'�;�u�;x�)�u�ur

on the grid x� = (x;xr), where the outer IDFT is operated according to the conversion

(2.28).

2. From Ĥk�1� to Hk�1� . Calculate

Hk�1� = exp(Atk�1 (tk)�Btk�1 (tk)Yr) � Ĥk�1�(gk�1�(y
�); gr;k�1(yr));

where Yr has lth row Yrl;� = yr for l = 0; : : : ; N � 1. We approximate Ĥk�1� at

gk�1� (y
�) � x, gr;k�1 (yr) � xr by �tting a surface to the nodes (x�; Ĥk�1�) using
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cubic interpolation, whereas for gk�1� (y
�) * x we extrapolate linearly in ex.

3. From Hk�1� to ~Hk�1� . Given Hk�1� , we determine ~Hk�1� according to the applicable

payo¤ function (8.10-8.13) at the decision date tk�1.

The call payo¤. Upon the call announcement date, the approximate values for ~K�c , as by

(8.20-8.21), are obtained via implementation of the steps 1-3, by making, instead, use of one-

dimensional transforms. Furthermore, in step 3, K̂�c is computed at h�c (y�) only twice (for

� c 6= tj� and �
c = tj�) for any number of time steps, and stored for later use in the recursive

part of the scheme.

Ultimately, the numerical procedure outlined above provides us with the CB values at the

inception of the contract on the N �Nr grid of initial �rm values and short rate values.

8.5 Numerical study

8.5.1 Black-Scholes-Merton model

In order to illustrate the performance of our algorithm, we choose as our benchmark the prices

obtained from the exact analytical formula of Ingersoll (1977a) for continuously callable CBs in

the Black-Scholes-Merton economy under the assumption of constant interest rates. For testing

purposes, we focus on CBs which mature in 5 years (typical) and 2 years. In Table 8.1, we

present our results for �nite and in�nite (continuous) observation, alongside the prices obtained

from the closed-form solution. Table 8.1 reports both the cases of constant and time-dependent

call prices.

Under constant interest rates, we can achieve results, subject to �nite monitoring, which

are precise to 7 decimal places. Furthermore, precision to 4 decimal places is attainable in 1.1

seconds when T = 2, n = 500 (i.e., daily sampling), and in 2.2 seconds when T = 5, n = 1250.7

By regular convergence of our scheme, we can additionally extrapolate the discretely monitored

CB prices to approximate the price of an otherwise equivalent, continuously monitored CB

(in�nite sampling). We then generate results subject to less than 0.0005% error. For given

7Hereafter, all CPU times reported are for MATLAB R2007b on an Intel Core 2 Duo processor T5500 1.66GHz
with 2.0GB of RAM.
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Kt T n Backward convolution: Ingersoll: % error
constant interest rates constant interest rates

40 2 250 36.9477708
500 36.9490640
1 36.95217 36.9522338 0.00017

5 500 33.1045746
1250 33.1191553
1 33.14434 33.1444004 0.00018

40e�0:02(T�t) 2 250 36.9306700
500 36.9313884
1 36.93311 36.9331542 0.00012

5 500 32.8570091
1250 32.8659022
1 32.88121 32.8813609 0.00046

Table 8.1: Callable CB prices in the Black-Scholes-Merton model. Callable CB speci�cation: F = 40,
C = D = 0, m = 1, 
 = 0:2, # = 0, sc = 0. Firm value parameters: V0 = 100, � = 0:25. Constant
interest rate: r = 0:04. Error expressed as a percentage of the exact price obtained using the result by
Ingersoll (1977a).

time to maturity, this precision can be improved if we raise the sampling frequency. We reach

the same conclusions on the assumptions of constant call price and call price as a function of

time. The case with stochastic interest rates is investigated in Section 8.5.3.

Here, our recursion proves competitive with standard numerical techniques, given also the

number of risk factors they can �exibly accommodate. In particular, Ammann et al. (2008)

simulate callable CB prices (T = 2, daily sampling) in a two-factor setting with stochastic

interest rates. Monte Carlo price estimates are reported up to the second decimal place, subject

to standard error of order 10�1 (stochastic interest rates) and 10�2 (constant interest rates).

Standard errors of variable order 10�1-10�2 are also common in the two-factor joint simulation-

regression application in Lvov et al. (2004) (subject to 16 exercise times per year). In the PDE/I

context with two-factors, Zvan et al. (2001) obtain monotone convergence in the number of

grid and time points, which they attribute, nevertheless, to the conversion and call boundary

conditions forcing the solution to be closely linear over large parts of the spatial domain. They

report callable CB prices (T = 10, n = 320) with precision up to three decimal places. Barone-

Adesi et al. (2003) and Bermúdez and Webber (2004) employ a joint characteristics-�nite

elements scheme to price callable CBs (T = 5, n = 400), which converges at �rst order in the
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number of grid and time steps. Although they report accuracy up to 3 decimal places, their

PDI method su¤ers from increasing dimensionality when random jumps are included into the

�rm value dynamics. To maintain the 2-D structure of their PDI, they resort to the simplifying

assumption of a single jump of �xed size.

8.5.2 Jump di¤usion setup

In this section, we examine the impact of including jumps in the original Gaussian log-return

di¤usion and how variations of the jump intensity �, mean �L and variance �L of the jump

size a¤ect the callable CB prices. To this end, we ignore for convenience and without loss

of generality the case of stochastic interest rates, due to their independence from the jump

component, and calibrate the DEJD and MJD risk-neutral models to match mean and variance

of the log-return distribution as well as �, �L and �L. The base values for these quantities

are consistent with the assumptions of Dao and Jeanblanc (2006). The exact moments of the

log-return distribution It = ln (Vt=V0) are derived by di¤erentiating the cumulant generating

function and evaluating at zero, as indicated by equation (2.5). On the assumption of constant

interest rates, the risk-neutral cumulant generating function of It is

 I (u) t = (i(r � �I (�i))u+ �I (u))t

with �I (u) = ��2u2=2 + �(�L (u) � 1) and �L (u) given by (8.2) and (8.3) for the DEJD and

MJD models respectively. The �tted parameters and moments, including the resulting skewness

coe¢ cient and excess kurtosis, are summarized in Table 8.2.

The accuracy of the convolution algorithm has already been explored in the Lévy and non-

Lévy with stochastic volatility context in Chapters 4 and 6, in pricing discretely sampled Asian

options. For the MJD and DEJD setups considered here, the numerical method shows similar

robustness across di¤erent levels of moneyness of the convertible bond and model parameter

values.

In Table 8.3, we study the average price deviation between the two paradigms, as a function

of the parameter values �, �L, �L and the moneyness of the CB. Moneyness is calculated

as the ratio between the conversion and investment values, where the latter is de�ned as the
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case MJD & DEJD MJD DEJD

� �L �L E (I1) Var (I1) s (I1) � (I1) �1 �2 p s (I1) � (I1)

base 3 -0.0150 0.0357 0.0178 0.2110 -0.0194 0.0101 50 33.3333 0.3 -0.0316 0.0224

�I 5 -0.0150 0.0357 0.0163 0.2179 -0.0293 0.0147 50 33.3333 0.3 -0.0478 0.0327

�II 1 -0.0150 0.0357 0.0193 0.2037 -0.0072 0.0039 50 33.3333 0.3 -0.0117 0.0086

�L;I 3 -0.0300 0.0357 0.0168 0.2157 -0.0424 0.0174 13.4374 31.4533 0.0169 -0.0442 0.0507

�L;II 3 -0.0075 0.0357 0.0180 0.2097 -0.0095 0.0082 38.8943 38.6981 0.3558 -0.0099 0.0165

�L;I 3 -0.0150 0.0714 0.0121 0.2366 -0.0527 0.0813 19.6218 19.2543 0.3590 -0.0575 0.1629

�L;II 3 -0.0150 0.0179 0.0192 0.2041 -0.0063 0.0014 26.0657 62.9170 0.0165 -0.0064 0.0041

Table 8.2: Calibrated model parameters. Parameters r = 0:04, � = 0:2 remain �xed in all cases.
Assume process It = ln (Vt=V0) with mean E (It), variance Var (It), skewness coe¢ cient s (It), and
excess kurtosis � (It). These quantities are calculated via di¤erentiation of the cumulant generating
functions, as explained in the text.

hypothetical bond value in the absence of the conversion option and the credit risk.

Several comments are in order. In all cases, the MJD model prices are in excess of the prices

generated by the DEJD model. This is due to the constantly stronger negative skewness and

leptokurtosis of the DEJD distribution, which together guarantee higher and lower likelihoods

of default and call respectively. The reduction in the value caused by the default e¤ect is

strong enough to overshadow the raise in the CB value caused by the call e¤ect. The marked

asymmetry of the DEJD distribution and the corresponding excess kurtosis are due to the fact

that the event of a downward jump is more likely under every parameter combination considered

here. In fact, as a result of imposing the same rate of arrival �, the same mean and variance

for both the jump size L and the log-return I across the two models, the parameter p, i.e., the

probability assigned to an upward jump, is always less than 0.5 regardless of the mean size of

the up/downward jump (controlled by �1, �2 respectively). The observed skewness and excess

kurtosis also explain the higher prices generated by the Gaussian model, as this underestimates

the probability of default.

Further, Table 8.2 shows that, in the �II, �L;II, �L;II cases, the e¤ect of the jump component

is negligible; Table 8.3 con�rms in fact that the prices originated by the two jump di¤usion

processes and the Gaussian model coincide to penny accuracy. On the contrary, in the �I, �L;I,

�L;I cases, when the presence of the jump part is more signi�cant, the MJD versus the DEJD

price deviation reaches up to �ve pence, whilst the non-leptokurtic versus leptokurtic deviation
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case MJD �DEJD non-leptokurtic �leptokurtic
moneyness moneyness

0.6-1 1-1.2 1.2-1.4 0.6-1 1-1.2 1.2-1.4

base 0.006 0.004 0.001 0.016 0.012 0.006
�I 0.009 0.006 0.002 0.025 0.017 0.007
�II 0.002 0.001 0.001 0.006 0.006 0.004
�L;I 0.010 0.021 0.012 0.028 0.023 0.020
�L;II 0.003 0.006 0.008 0.010 0.016 0.019
�L;I 0.023 0.050 0.026 0.101 0.150 0.090
�L;II 0.001 0.003 0.004 0.005 0.005 0.004

Table 8.3: MJD versus DEJD, non-leptokurtic (Gaussian) versus leptokurtic distribution. Estimated
average price di¤erence as function of �, �L, �L and CB moneyness. Benchmark for the leptokurtic
case: DEJD model with stronger departure from the Gaussian case. Callable CB speci�cation: T = 5,
n = 1250, F = 40, K = 50, C = D = 0, m = 1, 
 = 0:2, # = 0, sc = 0. Prices (accurate to 5 decimal
places) computed for 17,150 equidistant values lnV0 in [ln 100, ln (K=
)]. Moneyness ranges from 0.6
to 1.5. Price di¤erences obtained and averaged piecewise for moneyness regions [0:6, 1), [1, 1:2), [1:2,
1:4), [1:4, 1:5]. For deep in-the-money CBs (top moneyness slice), the average price di¤erence tends
practically to zero level due to the �rm�s highly likely call (excluded from the table).

can be up to 15 pence. Changes in �L appear to have the most noticeable impact on the price

discrepancy among the three parameter-type modi�cations we consider here, due to the higher

impact that this parameter has on the overall skewness and excess kurtosis of the log-returns.

Moreover, in all cases, for deep in-the-money CBs, all the models�prices converge to the

call price since the CB is then forced-by-call converted. For �L which is well below zero, the

MJD versus DEJD price di¤erence is observed to peak from an early stage, when the CB is

close to the money, while for �L closer to zero, the peak delays until the CB is in the money.

This behaviour is attributed to the di¤erent level of skewness and excess kurtosis originated by

the two di¤erent combinations of parameters associated to �L;I and �L;II, and, therefore, the

di¤erent impact of the default and call e¤ects, as previously discussed. Similar pattern, with

higher-level peak though, is spotted for the two cases of �L considered here.

8.5.3 E¤ects of discrete coupon and dividend payments

We explore the consequences of adding discrete coupons and dividends into the valuation frame-

work. In Tables 8.4 and 8.5, we report prices for 5-year callable CBs on a daily sampling basis

(n = 1250), subject to both constant and stochastic interest rates. In the case of stochastic
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interest rate, we select r0 = �r = 0:04, � = 0:2 and � = 0:858, �r = 0:047, as estimated

by Aït-Sahalia (1996) for the Va�íµcek model, whereas we set r = r0 for the constant interest

rates assumption. We employ the base parameter set as in Table 8.2, and, additionally, assume

V0 = 100, F = 40, K = 50, C = 1 (payable at the middle and end of the year), D = 2 (payable

at the �rst and third quarters of the year), m = 1, 
 = 0:2, sc = 0, # = 0. We adopt here the

scaled constant F , C and D values, as in the example of Brennan and Schwartz ((1977), Section

V). Under stochastic interest rates, the precision of the reported numbers is up to the third

decimal place. When the interest rate is constant, we acquire higher CPU power and produce

results precise to the �fth decimal place. Higher accuracies (up to 7 decimal places) are possible

via Richardson extrapolation, due to the smooth linear convergence of the numerical scheme in

the number of grid points. As it becomes obvious from Tables 8.4 and 8.5, the CPU timings

rise from the constant to the stochastic interest rates setup, and from the simply callable CB to

the coupon-bearing one and to another CB with associated dividend-paying stock. In fact, the

increase originated by the introduction of stochastic interest rates is due to the change from 1-D

to 2-D Fourier transforms, whereas the additional computational times required by a callable

CB with coupons, and with both coupons and dividends, are due to the need to approximate

the CB values at the relevant time points on three di¤erent costly 2-D grids (see step 2 of the

numerical implementation). In any case, we do not exceed the typical 6700 seconds Fortran

execution time, independent of the contract speci�cation, of the PDI implementation reported

in Bermúdez and Webber (2004).

Few comments are in order. Adding coupons in the bond indenture raises substantially the

payo¤ to the investors and, consequently, the CB value. At the same time, the �rm value and,

consequently, the chances for a call reduce, increasing in this way the value of the CB, whilst the

default event becomes more likely, negatively a¤ecting the CB value. Nevertheless, the �rst two

e¤ects beat the third one, justifying the overall increase in the CB value observed. Moreover,

for a dividend-paying common stock, a decline in the contract�s price is noticed. This occurs

because the dividends are not payable to the CB holders pre-conversion and, at the same time,

they a¤ect the rate at which the �rm value appreciates, boosting, in this way, the chances of

future default.

Furthermore, the discrepancy between the MJD and the DEJDmodel prices remains positive
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CB model price di¤erences CPU (s)
speci�cation MJD DEJD �10�4 prec �10�5 prec �10�4 prec �10�3

call 33.40333 33.39807 53 220 2.2 1.1
call, coupons 41.91545 41.91100 45 250 2.4 1.2
call, coupons,
dividends 40.76062 40.75578 48 265 4.8 2.5

Table 8.4: Constant interest rates: comparison between MJD and DEJD prices for di¤erent CB speci-
�cations. CPU timings (in seconds (s)) correspond to accuracy up to 5, 4, 3 decimal places.

CB model price di¤erences CPU (s)
speci�cation MJD DEJD �10�4 prec �10�3 prec �10�2

call 33.655 33.650 50 1520 410
call, coupons 42.089 42.085 40 3530 680
call, coupons,
dividends 40.702 40.697 50 5740 930

Table 8.5: Stochastic interest rates: comparison between MJD and DEJD prices for di¤erent CB
speci�cations. CPU timings (in seconds (s)) correspond to accuracy up to 3, 2 decimal places.

and smaller than the average computed for the out-of-the-money CBs, reported in Table 8.3

for the base case parameters. This price di¤erence reduces in the case of a coupon-bearing CB,

since the coupons have a primary positive upshot on the value of the bond, reducing the impact

of the stronger negative skewness and fatter tails of the DEJD, as compared to the MJD.

8.5.4 E¤ects of call policy

In order to investigate the consequences of the adopted call strategy, we assume a typical call

notice period of a month (sc = 1=12) and safety premium # = 0:2, and examine how deviations

from these initial values a¤ect the model prices produced under the base case and the �L;I

parameter set in Table 8.2. We generate prices for callable CBs with 5 years to maturity

subject to daily sampling (T = 5; n = 1250), V0 = 100, F = 40, K = 50, m = 1, 
 = 0:2. We

ignore discrete coupons and dividends in this section. For the interest rates model we assume

the same parameters as in Section 8.5.3. The precision of the reported numbers is 5 decimal

places (achieved in 270 seconds) and 3 decimal places (achieved in 1570 seconds) for constant

and stochastic interest respectively.

In general, increasing # and/or sc raises the chances for a successful forced-by-call conversion
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(sc; #) model sc= 1=12 vs 1=24 # = 0:20 vs 0:25
MJD DEJD MJD DEJD MJD DEJD

(1=12; 0:20) 33.20939 33.20351
(1=12; 0:25) 33.14899 33.14321 0.06040 0.06030
(1=24; 0:20) 33.20935 33.20345 0.00004 0.00006
(1=24; 0:25) 33.14899 33.14319 < 10�5 0.00002 0.06036 0.06026

Table 8.6: Base parameter set, constant interest rates: callable CB prices for varying call speci�cation
(sc, #). Precision up to 5 decimal places.

(sc; #) model sc= 1=12 vs 1=24 # = 0:20 vs 0:25
MJD DEJD MJD DEJD MJD DEJD

(1=12; 0:20) 33.40978 33.40891
(1=12; 0:25) 33.33957 33.33896 0.07021 0.06995
(1=24; 0:20) 33.40940 33.40846 0.00038 0.00045
(1=24; 0:25) 33.33946 33.33877 0.00011 0.00019 0.06994 0.06969

Table 8.7: �L;I parameter set, constant interest rates: callable CB prices for varying call speci�cation
(sc, #). Precision up to 5 decimal places.

at the end of the call notice period and, hence, reduces the CB value. According to the

indications in Tables 8.6-8.8, the call notice has a minor e¤ect on the CB values. This is

because of the short call notice lengths (30 days, and 15 days) as compared to the longer time

to maturity of the CB issue (5 years).8 Furthermore, when we change from the base case to the

�L;I parameter set, which originates strongest variance, skewness and excess kurtosis features

(see Table 8.2), we observe at best an increase in the MJD and DEJD di¤erences across the

two sc choices by a factor of 10, although the actual deviation does not exceed 5� 10�4.

On the contrary, the choice of the safety premium, which relates to the �rm�s decision on

the date of the call announcement, appears to be a primary factor driving the CB values. The

MJD and DEJD di¤erences across the two # values under consideration are about 6 � 10�2

and 6:5� 10�2 for the base parameter set, and 7� 10�2 and 7:3� 10�2 for the �L;I parameter

set, in the case of constant and stochastic interest rates respectively. The e¤ect caused by # is

more pronounced when the jump sizes are more volatile, due to the increase in the skewness

and excess kurtosis, similarly to what observed in Section 8.5.2.

8We have reached the same conclusion for T = 2.
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(sc; #) model # = 0:20 vs 0:25
MJD DEJD MJD DEJD

(1=12; 0:20) 33.451 33.445
(1=12; 0:25) 33.385 33.380 0.066 0.065
(1=24; 0:20) 33.451 33.445
(1=24; 0:25) 33.385 33.380 0.066 0.065

(sc; #) model # = 0:20 vs 0:25
MJD DEJD MJD DEJD

(1=12; 0:20) 33.633 33.634
(1=12; 0:25) 33.560 33.561 0.073 0.073
(1=24; 0:20) 33.633 33.634
(1=24; 0:25) 33.560 33.561 0.073 0.073

Table 8.8: Left panel: base parameter set; right panel: �L;I parameter set, stochastic interest rates:
callable CB prices for varying call speci�cation (sc, #). Precision up to 3 decimal places.

8.6 Concluding remarks

We have developed and implemented a backward price convolution scheme for convertible bonds.

Supported by Fourier transforms techniques, the proposed method is shown to be e¢ cient and

accurate, and to �exibly accommodate a number of contract-design features such as callability

provisions, dividends and coupon payments. The procedure has also been shown capable of

coping with up to four risk factors, allowing a market setup based on a jump di¤usion-driven

underlying asset for the CB, and stochastic interest rates.

The proposed pricing methodology has been tested using several parameter sets of the mar-

ket model. As a benchmark to the Fourier transform algorithm, we have used the closed-form

solution obtained by Ingersoll (1977a) for the case of a continuously callable CB in the Black-

Scholes-Merton framework with constant interest rate. The numerical results have indicated

accuracies up to 7 decimal places, for varying monitoring frequency. The analysis has been

then extended �rst to a jump di¤usion setting with constant interest rates, then to the case of

a stochastic term structure of interest rates.

As a jump di¤usion market setup for pricing CBs is new in the literature, we have also

used the proposed algorithm to analyze the behaviour of the contract price under this more

complex representation of the �rm value. The main results of the numerical analysis show

that the jump di¤usion setup originates lower values of the CB when compared to the classical

Black-Scholes-Merton framework. This is essentially due to the higher probability of default

generated by the inclusion of market shocks in the model, i.e., by the negatively skewed and

leptokurtic distribution of the log-�rm value resulting from the jump di¤usion setup.

An issue that is not dealt with in this work is the calibration of the market model. In fact,
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as discussed in Section 8.2.2, we adopt a structural approach to the credit risk in the same

spirit as Merton (1974). However, the fact that the �rm value is not directly observable in the

market, leaves open the problem of model calibration. In Section 8.2.3 we discuss a few possible

solutions to this issue, the implementation and testing of which is left for future research.

Finally, we note that the CB valuation scheme we present here is general enough to accom-

modate, for example, a stock-based setting, as opposed to the current �rm value-based model,

with jumps and stochastic interest rates, for suitably modi�ed CB payo¤ functions (8.10-8.13)

(e.g., Goldman Sachs (1994), Barone-Adesi et al. (2003)). Also, if necessary, the put provision

can be �exibly incorporated into the payo¤ function (see Goldman Sachs (1994)). Apart from

the computation of the CB prices, our method can be extended to the computation of the price

sensitivities. Moreover, the extensive CB pricing scheme we suggest here can be easily reduced

and specialized in pricing simpler exotic derivatives and, in fact, extend the work of Lord et al.

(2008) on the pricing of Bermudan/American vanilla options to the case of stochastic interest

rates.
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Appendix 8.A�Equivalent martingale measure changes: the t-

forward measure

Proposition 24 For the pure-discount bond price Ps (t), 0 � s � t, in (8.4), there exists a

martingale measure P� de�ned by its Radon-Nikodým derivative with respect to P


�s : =
dP�

dP

����
Fs
= exp

�
��2

Z s

0

m2
u (t)

2
du�

�
1� �2

� Z s

0

m2
u (t)

2
du

+�

Z s

0
mu (t) dWu +

p
1� �2

Z s

0
mu (t) d ~Wu

�
; s 2 [0; t] ;

where W and ~W are independent P-standard Brownian motions. We de�ne P� as the t-forward

measure associated to the numéraire Ps (t).

Proof. The pure-discount bond price Ps (t) satis�es the de�nition of a numéraire, as in

Geman et al. (1995). Then, based on Geman et al. ((1995), Theorem 1), we construct the

Radon-Nikodým derivative


�s =
dP�

dP

����
Fs
=
Ps (t) e

�
R s
0 rudu

P0 (t)
:

From (8.4), we have that


�s = exp

�
�
Z s

0

m2
u (t)

2
du+

Z s

0
mu (t) dWr;u

�
= exp

�
��2

Z s

0

m2
u (t)

2
du�

�
1� �2

� Z s

0

m2
u (t)

2
du+ �

Z s

0
mu (t) dWu

+
p
1� �2

Z s

0
mu (t) d ~Wu

�
;

which follows in virtue of the decomposition Wr = �W +
p
1� �2 ~W , for independent Brownian

motions W and ~W .

Based on Proposition 24, we conclude, in virtue of the Girsanov theorem, that W and Wr

retain their semimartingale property and decompose, after the measure change, to
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Ws = W �
s +

Z s

0
�mu (t) du;

Wr;s = W �
r;s +

Z s

0
mu (t) du;

where W � and W �
r are correlated P�-standard Brownian motions with constant correlation

� 2 (�1; 1).
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Appendix 8.B�Characterization of the bivariate log-�rm value�

interest rate process under the forward measure

In the subsequent derivation, for compactness we denote E ( �j Ft) = Et under a generic proba-

bility measure P .

Following Geman et al. ((1995), Corollary 2) and the change to the P� measure as described

in Proposition 24, we have that

E�s (exp (iv1Yt + iv2rt)) =
Es
�
exp

�
�
R t
s rudu+ iv1Yt + iv2rt

��
Ps (t)

: (8.22)

Given the independence of the jump part of the jump di¤usion process from the di¤usion part

and the short rate, we restate the right-hand side of equation (8.22) as

1

Ps (t)
Es
�
exp

�
�
Z t

s
rudu+ iv1

�
Ys +

Z t

s

�
ru � �2=2� � (�L (�i)� 1)

�
du

+�

Z t

s
dWu

�
+ iv2rt

��
Es
�
exp

�
iv1

Z
R
l (Nt (dl)�Ns (dl))

��
: (8.23)

Then, equation (8.23) is equivalent to

1

Ps (s+ �)
exp

�
Ys +

�2

2

iv1
iv1 � 1

�

�
Es (exp ((iv1 � 1) (Ys

+

Z s+�

s

 
ru �

1

2

�
�

iv1
iv1 � 1

�2!
du+ �

iv1
iv1 � 1

Z s+�

s
dWu

!
+ iv2rs+�

!!

� exp (�i� (�L (�i)� 1) v1�)Es
�
exp

�
iv1

Z
R
l (Ns+� (dl)�Ns (dl))

��
; (8.24)

where � = t� s. Next, we de�ne

~� = �
v1
~v1
;

~v1 =
iv1 � 1

i
;

~Yt = Ys +

Z t

s

�
ru � ~�2=2

�
du+ ~�

Z t

s
dWu
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and split (8.24) into the product of

Cs (�) =
1

Ps (s+ �)
exp (Ys + �~��=2) ; (8.25)

Ds (v1; v2; �) = Es
�
exp

�
i~v1

�
Ys +

Z s+�

s

�
ru � ~�2=2

�
du+ ~�

Z s+�

s
dWu

�
+iv2rs+� ))

= Es
�
exp

�
i~v1 ~Ys+� + iv2rs+�

��
; (8.26)

Fs (v1; �) = exp (�i� (�L (�i)� 1) v1�)Es
�
exp

�
iv1

Z
R
l (Ns+� (dl)�Ns (dl))

��
= exp (� (�i (�L (�i)� 1) v1 + �L (v1)� 1) �) : (8.27)

As far as (8.26) is concerned, we apply the characterization of regular a¢ ne Markov processes

of Du¢ e et al. (2000) and Du¢ e et al. (2003), as stated in Section 3.3 of this thesis. Based on

this, we have that

Ds (v1; v2; �) = exp (E0 (v1; v2; �) + E1 (v1; v2; �) rs + E2 (v1; v2; �)Ys) ; (8.28)

where E0, E1 and E2 satisfy the subsequent system of generalized Riccati equations:

@E0 (v1; v2; u)

@u
= ��rE1 (v1; v2; u)�

~�2

2
E2 (v1; v2; u) +

1

2

�
�2rE

2
1 (v1; v2; u)

+2~��r�E1 (v1; v2; u)E2 (v1; v2; u) + ~�
2E22 (v1; v2; u)

�
;

@E1 (v1; v2; u)

@u
= ��E1 (v1; v2; u) + E2 (v1; v2; u) ;

@E2 (v1; v2; u)

@u
= 0;

E0 (v1; v2; s) = 0; E1 (v1; v2; s) = iv2; E2 (v1; v2; s) = i~v1:

Given the fact that the log-�rm value model contains no mean-reverting term and the interest

rate process is of Ornstein-Uhlenbeck type, we explicitly obtain from Kallsen ((2006), Corollary

3.5) that

E2 (v1; v2; �) = i~v1; (8.29)
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E1 (v1; v2; �) = iv2 exp (���) +
1� exp (���)

�
i~v1

= iv2 (cosh (��)� sinh (��)) +
i~v1
�
(1� cosh (��) + sinh (��)) ; (8.30)
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(sinh (2��)� cosh (2��) + 1) : (8.31)

Summarizing, equations (8.25) and (8.27-8.31) lead to

E�s (exp (iv1Ys+� + iv2rs+� )) = Cs (�) exp (E0 (v1; v2; �) + E1 (v1; v2; �) rs

+E2 (v1; v2; �)Ys)F (v1; �) :

Furthermore, upon considering the transformation

(Z;Zr) = (Ys+� � Ys + lnPs (s+ �) ; rs+� � rs exp (���)) ;

we obtain that

�� (v1; v2) = E� (exp (iv1Z + iv2Zr))

is independent of Ys and rs.
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In fact,

�� (v1; v2) = exp (iv1 (�Ys + lnPs (s+ �))� iv2rs exp (���))

�E�s (exp (iv1Ys+� + iv2rs+� ))

= exp (iv1 (�Ys + lnPs (s+ �))� iv2rs exp (���)

� lnPs (s+ �) + Ys +
�~�

2
� + E0 (v1; v2; �)

+E1 (v1; v2; �) rs + E2 (v1; v2; �)Ys)F (v1; �)

= exp

�
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iv1
iv1 � 1

� + (iv1 � 1)As (s+ �) + E0 (v1; v2; �)
�
F (v1; �) ; (8.32)

where As (s+ �) is given by equation (8.7).
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Chapter 9

Concluding remarks

In this thesis, we focus on two �nancial instruments whose accurate and e¢ cient pricing has

been for years a major concern for both the practitioners and academics. The Fourier transform-

based numerical integration method we develop in this thesis, deals with convergence issues,

and dimensionality and payout structure limitations reported in previous attempts. It o¤ers

clear advantages over other numerical techniques in terms of its �exibility to capture real-world

speci�cations for both products, despite their completely di¤erent payout structure, and its

generality in respect of the modelling assumptions for the underlying state variables. Hence,

we believe that this work contributes signi�cantly to an important area of �nance.

In the �rst part of the thesis, the main focus is on the pricing of discretely sampled arith-

metic Asian options. Under the assumptions of the Black-Scholes-Merton economy, the pro-

posed method is shown to be numerically competitive to the well-established PDE technique

of Veµceµr1 (2002) and the e¢ cient analytical approximation by Lord (2006a), especially for high

asset volatilities. By further expanding to the non-Gaussian Lévy context, our backward price

convolution approach clearly distinguishes from the previous forward density convolutions by

Carverhill and Clewlow (1990), Benhamou (2002) and Fusai and Meucci (2008) which exhibit

non-monotone convergence. By smooth convergence of our scheme, extrapolation in space for

a �xed number of monitoring points guarantees highly precise results, whereas extrapolating in

the time dimension speeds up the convergence to the price of a continuously sampled option.

1A detailed numerical comparison against Veµceµr�s PDE technique can be found in µCerný and Kyriakou (2010).
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Furthermore, extension to calculate the price sensitivities is straightforward without af-

fecting the order of computational e¤ort. Comparisons against e¢ cient Monte Carlo schemes,

equipped with accurate analytical prices/sensitivities of geometric Asian options as control

variates, illustrate the numerical advantage of our convolution technique.

The need to simulate Lévy processes has further motivated our study on the tempered sta-

ble process, which has hitherto proved di¢ cult to simulate. The joint Monte Carlo-Fourier

transform simulation scheme we propose copes with the limitations of the biased scheme pro-

posed by Madan and Yor (2008), and the approach of Poirot and Tankov (2006) speci�cally

tailored to path-independent contracts. We are currently exploring a multivariate generaliza-

tion of the tempered stable process (CGMY subclass) which can accommodate a full range of

possible dependence, as opposed to previous contributions in the literature (see Ballotta and

Bon�glioli (2010)). We will then employ our joint Monte Carlo-Fourier transform scheme to

evaluate contracts written on more than one underlying, e.g., basket and Asian basket options,

which are commonly traded in the credit and energy markets. This is important, since pure

numerical integration techniques are too slow to compete with Monte Carlo in pricing this type

of contracts due to increasing model dimensionality (e.g., see Lord et al. (2008)).

We also consider an extension of the convolution method from the Lévy to the two-dimensional

Heston and Bates stochastic volatility frameworks for pricing discretely sampled Asian options.

As a benchmark, we utilize an e¤ective Monte Carlo strategy, which combines the biased sam-

pling mechanism of Andersen (2008) with the geometric Asian price we derive for non-Lévy

log-returns as a control variate. Numerical examples illustrate that the convolution procedure

has an extra edge for high precision levels, whereas the control variate Monte Carlo is faster

when smaller accuracies are sought. The latter also requires that we pre-estimate the inherent

bias, which varies with the number of time steps employed; however, to accurately measure

the bias, it is necessary to hold in advance the exact option price, which may only be com-

puted via the convolution method. Furthermore, in contrast with the Monte Carlo method, the

convolution method provides us with the option prices on a grid of initial variance values.

Overall, our study suggests that, for non-Gaussian Lévy models, the skewness and excess

kurtosis are the primary factors driving the option prices, rather than the actual model choice.

The absence of skewness and excess kurtosis in the Gaussian distribution also explains the ob-
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served gap between the prices for Gaussian and non-Gaussian Lévy log-returns. The impact of

the model choice on the option deltas and gammas is even weaker. Introducing, further, stochas-

tic volatility relaxes the assumption of independence of the log-returns, leading to departures

from the Lévy-based prices.

Interesting extensions for future research include the pricing of forward-start and in-progress

Asian options, with time to maturity greater or smaller than the averaging period respectively.

From the implementation side, the next step in our research would be to implement a computa-

tional algorithm which involves sequential evaluation in the Fourier space, skipping successive

transformations between the state and Fourier spaces; a novel method towards this direction

has been proposed recently by Feng and Linetsky (2008) based on the fast Hilbert transform,

which involves a discrete approximation with exponentially decaying errors. Of similar perfor-

mance is also the technique suggested by Fang and Oosterlee (2008b) based on Fourier-cosine

series expansions.

In the second part of the thesis, we propose a new valuation framework for CBs, which

comprises a jump di¤usion model for the �rm value process and correlated stochastic interest

rate movements. Adopting such an approach allows default to be reached following a number

of consecutive shocks in the value of the �rm. This complements previous contribution by

Bermúdez and Webber (2004) who, by limitation of their PDI scheme, assume that default

occurs only once, and thereafter the �rm value evolves as a pure di¤usion, eliminating the

possibility of future exogenous default events to occur. Our numerical analysis has shown that

the inclusion of market shocks in the �rm value process increases the probability of default,

resulting in lower CB values when compared to the pure di¤usion paradigm. Furthermore,

the numerical scheme we propose is able to accommodate �exibly a number of contract-design

features, such as discrete cash �ows, conversion forced by a call from the issuer, or voluntary

conversion at the option of the CB holder prior to a dividend payment.

Although �rm-value approaches provide a natural link between debt and equity, which is

ideal in the CB valuation, the fact that the �rm value is an unobserved state variable, leaves

open the problem of model calibration. We have discussed a few possible routes towards solving

this issue, the implementation and testing of which is left for future research. Alternatively, the

presented valuation scheme can be tailored to an equity-based setting with jumps and stochastic
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interest rates, subject to suitably modi�ed payo¤ functions. It can be further specialized in

pricing of other Bermudan/American options and barrier options under stochastic interest rates.
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