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ABSTRACT 
Computer vision systems to help blind users are becoming 
increasingly common yet often these systems are not intelligible. 
Our work investigates the intelligibility of a wearable computer 
vision system to help blind users locate and identify people in 
their vicinity. Providing a continuous stream of information, this 
system allows us to explore intelligibility through interaction 
and instructions, going beyond studies of intelligibility that focus 
on explaining a decision a computer vision system might make. 
In a study with 13 blind users, we explored whether varying 
instructions (either basic or enhanced) about how the system 
worked would change blind users’ experience of the system. We 
found offering a more detailed set of instructions did not affect 
how successful users were using the system nor their perceived 
workload. We did, however, find evidence of significant 
differences in what they knew about the system, and they 
employed different, and potentially more effective, use strategies. 
Our findings have important implications for researchers and 
designers of computer vision systems for blind users, as well 
more general implications for understanding what it means to 
make interactive computer vision systems intelligible.  
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1 Introduction 
It is estimated that currently approximately 36 million people 
worldwide are blind [6]. To help them, advances in computer 
vision are being applied to assistive technologies, for example to 
recognize objects and describe scenes using their smartphones 
e.g. Seeing AI 1 , TapTapSee 2 , to help in navigating their 
environment [7,28], or to locate and identify people around them 
in a social situation [38,40,45].  

However, in common with other AI systems, these computer 
vision systems targeted at blind users are ‘black boxes’ because 
their internal workings are unknown to the user [1]. There have 
been many recent calls to make AI systems transparent [9,42], 
alongside efforts to explain the functioning of computer vision 
systems to sighted users in many different domains, often using 
pixel-based visualizations [17,30,36]. We see intelligibility of an 
AI system as the ability of a user to build an appropriate mental 
model [31,32] that guides the user’s interactions with the system. 
The user’s mental model can be influenced through explicit 
explanations of the system’s behavior [4,22], through 
instructions or tutorials [23], or simply through exploring and 
interacting with a system [11,23]. Previous research [22,23,25] 

                                                             
1 https://www.microsoft.com/en-us/ai/seeing-ai 
2 https://taptapseeapp.com/ 
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has indicated that explicit explanations about system decisions 
can lead to better understanding of how a system works, and 
that in turn, increased understanding leads to better user 
experience. Thus, understanding how this novel assistive 
technology operates is arguably crucial to their effective use by 
blind users. 

Making computer vision systems that help blind users to 
navigate or explore their environment understandable faces two 
main challenges. First, current visual approaches to explain 
system behavior are inappropriate for blind users. Second, these 
systems usually provide a continuous stream of information, 
which makes explaining the decision-making of the system in 
real time problematic. How systems become ‘transparent’ or 
intelligible to sighted or blind users through other means, for 
example through exploration and interaction, or through 
instructions and tutorials, has received less attention. 

Our aim was to study the intelligibility of a computer vision 
system that helps blind users locate and identify people in their 
vicinity using a continuous stream of information. In this case, 
users can only come to know this system through exploration or 
instruction. We were particularly interested in whether basic or 
enhanced instructions about how the system worked would 
affect the user experience of the system, reflect in users’ 
interactions with the system, and their understanding of how the 
system worked. Our research questions were as follows: 
• How do basic or enhanced instructions influence the user 

experience? 
• How much, what type and what level of knowledge do 

blind users gain of the system? 
• What is the effect of intelligibility on user interactions and 

use of the system? 
Our work holds lessons for designers of intelligible computer 

vision systems for blind users, and contributes a deeper 
understanding of making AI systems intelligible for all users. 

2 Related Work 
Much recent work has focused on making AI system 
interpretable and transparent [2,3,8,9,26,29,34,43]. One way to 
make a system transparent is through explanations 
[14,22,25,27,39], and some work has provided (sighted) users 
with explanations of a computer vision system’s behavior 
[17,18,20,30,36,44]. Explanations of how the system reasoned can 
lead to a deeper understanding of system actions and behavior 
[23] and better user experience by increasing user satisfaction 
[15,41], or user trust and/or reliance [5,10,33]. 

Less work has been conducted on exploring how systems 
become ‘transparent’ or intelligible to users through other means, 
for example through exploration and interaction, or through 
instructions and tutorials. The theory of mental models [31] 
argues that all users build an internal representation of how a 
system works through exploring a system as from previous 
interactions with similar systems, and then use this mental 
model to predict its actions and to shape their interactions and 
use with the system. We can distinguish different types of 
knowledge that might be encoded in a mental model: ‘knowing 

that’ and ‘knowing how’ [37]. Declarative knowledge (‘knowing 
that’) are facts and data whereas procedural knowledge 
(‘knowing how’) is associated with skills and rules [16]. 
Rasmussen’s Skill-Rules-Knowledge (SRK) framework [35] adds 
that there might be different levels of mental models, for example, 
in a shallow (functional) mental model users employ a rule-based 
level, whereas in a deep (structural) mental model, users are able 
to employ a knowledge-based level.  

3 Methods 
The study employed a between-group design with two levels of 
instruction about how the system worked: Basic intelligibility 
and Enhanced intelligibility. Participants with visual 
impairments used a prototype system to carry out a semi-
realistic task which mimicked networking at a career event. A 
mixed-methods approach was used which included both 
quantitative measures and qualitative data to gain a deeper 
understanding of the effects of intelligibility.  

3.1 Prototype Overview 
The prototype, developed by Microsoft Research, is comprised of 
a wearable headset (Figure 1) and a computer vision system 
which helps blind users to locate people around them, and to 
identify them if they have been trained into the system. The 
wearable headset has four cameras for detecting people, 
providing a detection angle of 160 degrees. The headset is 
capable of providing continuous spatialized audio, using a 
variety of sounds as auditory icons to feedback to the user about 
what it can ‘see’, and announcing identified individuals’ names. 

The computer vision system rests primarily on a pose and an 
ID model. The pose model recognizes that a person is present by 
detecting landmarks such as shoulders and a face. The ID model 
identifies an individual using facial recognition, in addition to 
building a world in which the movement of people is tracked.  

 

 

Figure 1: The Wearable Headset Prototype. It consists of 
an adjustable “headband” with one forward-facing camera, 
and three peripheral cameras. It also has bone-conducting 

earphones to provide spatialized audio. A small battery 
pack is included to the rear of the headset. 
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3.2 Participants 
Thirteen participants (12 males and 1 female) completed the 
study, ranging in age from 17 to 33 (M = 20.85). Participants were 
randomly allocated to either the Basic or Enhanced intelligibility 
group. Even though all participants were registered blind, there 
was a considerable variation in their visual abilities. Table 1 
shows their background information, and their allocated 
condition. 

 
ID Age Gender Vision Group 

1 33 Male No light perception for 10 
years. 

Basic 

2 23 Female Full field of vision, sees 
objects more than 6 meters 

away, since birth. 

Basic 

3 17 Male Light perception, since birth. Enhanced 

4 17 Male Light perception and 

full field of vision, since birth. 

Enhanced 

5 18 Male Severely reduced field of 
vision, since birth. 

Enhanced 

6 22 Male Light perception, sees objects 
more than 6 meters away,  

full field of vision, since birth. 

Basic 

7 21 Male Light perception, sees objects 
between 3 and 6 meters away, 

since birth. 

Enhanced 

8 20 Male Light perception, since birth. Basic 

9 18 Male Light perception, sees objects 
more than 6 meters away, 

since birth. 

Enhanced 

10 20 Male Light perception, sees objects 
more than 6 meters away, full 

field of vision, since birth. 

Basic 

11 20 Male Light perception, sees objects 
between 3 and 6 meters away, 

since birth. 

Enhanced 

12 22 Male Light perception, since birth. Basic 

13 20 Male Light perception, sees objects 
between 3 and 6 meters away, 
full field of vision, since birth. 

Enhanced 

Table 1: Background and Allocated Group of Participants 

The participants were recruited through VICTA, a charity 
running a week-long UK-based residential event in June 2019 for 
young people who are blind or partially sighted to learn 
technology and communication skills. None of the participants 
had previously encountered a wearable computer vision system 
such as the one used in our study. An ad was sent via email, and 
those who wished to take part received an accessible electronic 
consent form. If below the age of 18, the consent form was 
signed by a parent or guardian. Approval for this study was 
granted by the IRB board of Microsoft and noted by the 
Computer Science Ethics Committee of City, University of 
London. We did not pay any incentives but the participants 
received a few items of company merchandise, and detailed 
feedback about their communication and social skills.  

3.3 Procedure 
The study included a pre-task session to familiarize the 
participant with the system. The main session mimicked a career 
networking event where the participants used the prototype to 
find a recruitment specialist to talk to. The post-task session 
gathered responses from the participants about the use of the 
system and their background information. Overall, the whole 
session lasted for 45 minutes, and the participants completed the 
study individually.  

3.3.1 Pre-task Session 
The pre-task session stage was led by a sighted and a blind 
researcher who alternated facilitation.  

When the participant arrived, they were told what the study 
would involve. They were then familiarized with how to wear 
the system and the system’s basic functions, such as the volume 
control. The participants in the study were randomly allocated 
into two conditions, the Basic Intelligibility condition and the 
Enhanced intelligibility condition. All 13 participants in the 
study received Basic intelligibility instructions of the system, 
while seven participants were provided with further Enhanced 
intelligibility instructions. The Basic instructions explained what 
a specific audio sound meant; the sound was played to the 
participants to provide a better understanding for them: 

• If you hear the “person identifier knock” sound, the system 
has detected that a person is in front of you.  

• If you hear the “face identifier knock” sound, the system has 
not only detected that a person in front of you but has 
detected their face as well. If the system can identify who it 
is, it will announce the person’s name. 

• The “woodblock” sounds help you find a face. They get 
higher in pitch as the camera aligns with a person’s face. 
The “snap” sound indicates that the system has found the 
person’s face. 

 
The Enhanced instructions gave further information on the 

internal workings of the system:  

• The system works within a certain range. It can detect a 
person up to 10 meters away. This is about the length of 
two cars or about 15 walking steps. It can identify people’s 
faces best when they are within 4 meters, about slightly less 
than a car length or about 6 walking steps. 

• The system will detect people within a 160-degree angle in 
front you. This is about shoulder to shoulder.  

• To detect a person, it needs to see the head (eyes, nose, ears) 
or the torso (shoulder, chest and arms).  

• The system needs to see the eyes, ears and nose of a person 
to positively identify him or her. 

• It will read out the name of a recognized person each time 
your gaze crosses the midline of the person who is directly 
in front of you. 

• The system remembers where people are and will assume 
that they stay in the same place for 10 seconds since it last 
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saw them. Therefore, the system may read out a name 
despite the person not being in front of you anymore. It 
may also read out a name if a person is not looking at you, 
but still in front of you.  

• There are a number of reasons the system could produce a 
‘person identifier knock’ sound but not read out a name: 

- they are too far away. 
- their eyes, ears or nose are obscured or turned 

away. 
- the user is moving his or her head to quickly for a 

clear image. 
• If you hear a ‘person identifier knock’ sound not followed 

by a name, the person is either not trained in the system or 
has not been recognized yet.  

Last, the researchers reminded the participant of the name of 
the recruiter they were to look for in the career networking task, 
and they were guided to the networking event which was being 
conducted next door.  

3.3.2 Main Session 
We decided to use a career networking event for this study for 
three reasons: 1. A networking event is an example of a social 
context which people with visual impairments would find the 
system useful, adding to the ecological validity of the study. 2. It 
encouraged the participant to use the features of the system to 
find and identify the recruiter. 3. We were able to control 
extraneous variables and ensure each session was repeatable.  

The career networking event was carefully orchestrated to 
mimic a real event yet make it repeatable (Figure 2).  

 

 

Figure 2: Networking Task Setup During Main Session. 
Confederates talking to each other would be situated in 
the middle of the room, with a technology demonstrator 
and a recruiter to the back of the room. The participant 

would enter to the front-left, and need to locate the 
recruiter to the back-right. 

On entering the room, two study confederates were talking to 
each other in the middle of the room. If the participant started a 
conversation with them, they could answer his questions but 

otherwise not engage or point them in the direction of the 
recruiter. To the left at the back of the room was a demonstrator 
showing an accessible programming environment. To the right 
in the far corner away from the participant was the recruitment 
specialist, alongside some tables with refreshments. 
The recruiter was asked to avoid looking at the door when the 
participant came in, and during the first 7 minutes of the 
networking event remained seated silently in the back of the 
room so it would not make the task of finding her too easy. If the 
participant had spent over 7 minutes looking unsuccessfully for 
the recruiter, the recruiter would approach the participant. The 
participants were allowed to use their assistive technologies as 
per usual; sighted guides were instructed to ensure safety but not 
to lead. 

In addition to the headset cameras, we also recorded the 
activity in the room with a static camera placed at the middle far 
end of the room.  

3.3.3 Post-task Session 
This part began with the NASA-TLX survey [13] to measure 
perceived workload for aspects of Mental Demand, Physical 
Demand, Temporal Demand, Performance, Effort and 
Frustration.  We developed a 21-point tactile, high-visibility scale 
supplemented with braille stickers intended for the blind 
researcher to note down their answer.  

 The second part of the post-task session was an interview 
which measured the knowledge the user had of the system. We 
framed this as teaching someone else how to use the system. 
Participants were given the option of demonstrating their 
answer by using the system. We included several follow-up 
questions that probed a participant’s understanding of the 
system further: 
• If the headset calls out the name of a person, what can the 

user assume the system can see?  
• If Tom was sitting down and the person he was trying to 

identify was standing up, where should Tom look to 
identify the person?’  

• If the system played this (woodblock) sound, what should 
he do? 

• If Tom took all the advice on board and could still not hear 
a name, what should Tom assume? 

Finally, background information was collected using the 
World Health Organization’s definition of severe sight 
impairment (blindness), and the Royal National Institute for the 
Blind’s criteria for being certified severely visually-impaired.  

3.4 Data Collection and Analysis 
3.4.1 User Experience 
To obtain measures for actual and perceived user experience, we 
used task success and workload ratings.  

We used two measures of task success. First, we timed how 
long it took the 13 participants to find the recruiter from when 
they entered the room. We then performed a Mann-Whitney U 
Test to investigate any differences between the Basic and 
Enhanced group. Second, we analyzed the model predictions to 
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measure how accurate the system was in identifying the 
recruiter. We calculated the accuracy as the fraction of times the 
system identified the recruiter as NEW or UNDETECTED until 
the correct ID. Unfortunately, the system only captured the data 
for six participants, two of which were in the Enhanced group, 
and thus our results are only indicative.  

The responses to the NASA-TLX questions were entered in a 
spreadsheet as the participants answered. We translated the 
score given on the tactile scale to the raw workload scale 
between 0 to 100; a higher rating indicated more demand, thus a 
low rating is ‘good’. A mental model score for one participant 
was unfortunately not entered; this data point was excluded 
from the analysis. A Mann-Whitney test was performed to find 
out whether there was a significant difference in workload 
between the Basic Intelligibility group and the Enhanced 
intelligibility group. Sometimes, participants would mention 
why they gave a certain score and this was later transcribed to 
understand reasons for the ratings.  

3.4.3 Participants’ Knowledge 
The interview was captured on a video camera which was then 
transcribed. We developed codes (Table 2) to apply to their 
answers, breaking them into declarative, structural and 
procedural knowledge types. For each participant, we then 
calculated a mental model score for each type of knowledge as 
the sum of the answers where an incorrect answer was valued as 
-1 and a correct answer was valued as 1. A Mann-Whitney test 
was used to compare whether there was a significant difference 
between the two groups for each knowledge type. To ensure 
reliability of the coding, we conducted an inter-rater reliability 
test between two researchers on 20% of the data. Given an 
acceptable average agreement of 0.63 for the Jaccard Index, the 
rest of the transcripts were independently coded by the first 
researcher.  

 
Type Code 

 
Definition 

 
Example 

 

Declarative  Woodblocks 
and “snap” 

 

Woodblocks play to 
help you find the 
face of the person 

who is most directly 
in front of the 
camera. The 

woodblocks get 
higher in pitch the 
more aligned you 
are to a face. The 
"snap" sound that 

comes with it 
indicates that the 
system has found 

the face. 

“The higher the 
pitch of the 

woodblocks the 
closer I was of 

finding the face”. 

Declarative  "click" This sound means 
the system has 

detected a person. 

“When I heard a 
sound like this 
(clicks finger) it 

means the system 
has found a 

person”. 

Declarative "knock" This sound means 
that the system has 

found a face. 

"If the system 
makes a knock it 

means it has seen a 
face". 

Structural Person ID The system needs to 
see the eyes, ears 

and nose of a person 
to positively identify 
him/her, about 4 m 
away. The system 

has to be trained to 
recognize people. 

“For the system to 
identify a face, it 
needs to see the 
eyes, nose and 

mouth”.  

 

Structural Person detect To detect a person, 
it needs to see the 
head (eyes, nose, 
ears) or the torso 

(shoulder, chest and 
arms), about 10 
meters away. 

“In order to identify 
a person, it needs to 
see the head or the 

torso”. 

Structural Debugging Information 
regarding why the 

system is not able to 
identify someone, 

about what the 
cause of the problem 

is.  

“The system is not 
identifying anyone 
because it cannot 

see a face”. 

Procedural Actions to be 
taken 

What actions needed 
or taken to use the 
system effectively, 

or how to overcome 
a problem.  

“In order to find 
someone who is 

standing up. I 
would have to look 

up.”  

Table 2: Knowledge Type Code Set 

3.4.4 Participants’ Strategies 
During the networking event, the participants’ behaviors were 
captured on a video camera. This afforded us the ability to focus 
on aspects of the participants’ movements (e.g., gaze, pace, 
bodily comportment). We coded the actions by the participants 
as shown in Table 3. We used MAXQDA to apply codes directly 
on to the relevant video section. Each time the participant 
changed their movement (e.g., was walking but then stopped) 
the researcher paused the video, created a new timestamp and 
recorded the behavior. Therefore, each different movement acted 
as a unit of analysis. 

Code Description 

Gaze: Straight ahead Participant were looking straight ahead.  

Gaze: Low Participants gaze was low so they were looking 
at a downward angle. 

Gaze movement: Up and 
Down/Down and Up 

Participants moves their head up and then down 
or the other way around. 

Gaze movement: Left and 
Right/Right and Left  

The participant looks horizontally: left and right 
or right and left.  

Stops walking The participant was walking but has now 
stopped. 

Walks slowly The participant walks slowly, often one step at a 
time. 

Walks normal pace The participant is walking at a normal pace. 

Finds Recruiter The participant managed to find the recruiter 
during the task.  

Facilitator (speaks) The participant speaks to the facilitator, this 
often happened if they had a question. 

Conversation with 
confederates 

The participant was having a conversation with 
the confederates.  

Table 3: Strategies Code Set  
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Visualizations were created for the behavioral journey of 
each participant, using the x-axis for time in minute chunks until 
finding the recruiter, and each different type of behavior 
received its own color for clarity. We then sorted these 
visualizations into groups where the behavioral journeys 
appeared similar, using an approach adapted from [12].  

4 Results 

4.1 User Experience 
We analyzed whether there were any differences in perceived 
workload (Figure 3). While all measures were lower in general 
for the Enhanced group, the overall workload for the Enhanced 
group (M=23.10, SD=18.54) was very similar to the Basic group 
(M=23.50, SD=16.61). A subsequent Mann-Whitney U test 
confirmed that there were no significant differences between 
Enhanced and Basic groups (U = 16.00, p = 0.88). Further Mann-
Whitney U tests indicated that there were also no significant 
differences between Enhanced and Basic groups for mental 
demand (U = 15.00, p = 0.71), physical demand (U = 13.00, p = 
0.29), temporal demand (U = 17.50, p = 0.66), performance (U = 
18.00, p = 0.73), effort (U = 13.50, p = 0.31) and frustration (U = 
18.50, p = 0.74). We can also note that the workloads for both 
groups were generally low which indicates low demand and 
good satisfaction with the prototype. 

 

Figure 3: Mean NASA-TLX scores. All scores are low, with 
no significant difference between Basic and Enhanced 

groups. 

Participants stated a variety of reasons for their ratings. 
Recall that higher ratings are ‘worse’. Mental demand and effort 
were sometimes rated high because participants had to 
remember what every sound meant which is very difficult with 
such limited exposure. Some higher ratings for physical demand 
were based on weight of the headset. The higher ratings for 
temporal demand might be due because many participants felt 
the duration of talking to the recruiter was too short:  

“Really wanted to do it for longer. That’s because it’s 
15 minutes rather than 20 minutes.”- User 
11_Enhanced 

Many participants rated their performance quite low because 
even though they found the recruiter successfully they had 
difficulties with misidentifications or figuring out the direction 
of sounds along the way:  

“[…] I did find her quite successfully but I had 
difficulty. The problem was that the system recognized 
<the recruiter> and but apparently there was a person 
standing in front of me that the system was not trained 
on so I was a little confused since I thought <the 
recruiter> was standing in front of me whilst she was 
not.” - User4_Enhanced 

We then investigated whether the two condition had any 
bearing on the success of participants in completing the task. 
When we analyzed system’s accuracy we found that both groups 
had very similar accuracy in identifying the recruiter, M=18.5% 
accuracy, SD=0.13 for the Basic group and M=15.34%, SD=0.04 
for the Enhanced group. Because of the small and imbalanced 
sample, we did not investigate this through a statistical test. 
Further, there was not a significant difference between the two 
groups (p=0.445) even though the Basic group (M=1:13, SD=0.03) 
found the recruiter slightly faster than the Enhanced group 
(M=2:31, SD=0.09). 

These findings suggest that participants experience of using 
the system and the workload they have when completing a task 
does not significantly differ when they do, or do not have, 
additional knowledge of how the system works. Our results echo 
Kulesza et al.’s findings [24], where there were no significant 
differences in demand when participants received additional 
knowledge about the internal workings of the system compared 
to those who did not. Therefore, this suggests knowing more 
about the complex nature of the system does not create a 
workload burden, contradicting suggestions that ‘simpler’ 
explanations should be favored [27].  

4.2 Knowledge Gained 
The users’ mental model of the system was an important aspect 
in the study as we know from previous research that this shapes 
how they use the system and predict its actions [23,25]. We 
therefore turned our attention to the mental model scores that 
we calculated for each participant, and investigated whether 
there were any differences in the types of knowledge that 
participants with basic or enhanced instructions displayed, for 
each type of knowledge (Figure 4). 
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Figure 4. Mean mental model scores. There were no 
significant differences between Basic and Enhanced 

groups for declarative knowledge scores but there were 
significant differences between structural and procedural 

knowledge scores. 

4.2.1 Declarative Knowledge 
A Mann-Whitney U test found that there was no significant 
difference in the declarative knowledge the users were able to 
recall during the post-task interview (U = 19.50, p = .84). This 
suggests that in both groups participants could recall the 
meaning of each sound correctly; not surprising as both groups 
received an explanation of what each sound meant. However, 
declarative knowledge cannot be guaranteed for everyone. For 
example:  

“Spin his head -moves his head from left to right- to 
check what happens with the sound. If the sound stops 
after a certain degree he can orient the amount of 
degrees which the person is situated. He can kind of 
get the dimension of the person.”- User10_Basic  

Previous research has found users often misunderstand 
computer vision systems [18]; in this case, the system does not 
use dimensions of people. This is something that designers of 
computer vision systems need to be cautious of to avoid losing 
the user’s trust when their expectations are violated [19]. 

 

4.2.2 Structural Knowledge 
A Mann-Whitney U test found that the mental model scores 
were significantly different between the Basic and the Enhanced 
group (U = 4.00, p = 0.014). The Enhanced intelligibility 
instructions delivered structural knowledge of the system, so it 
makes sense that the Basic intelligibility group scored lower.  

Structural knowledge is crucial if the system does not behave 
as expected. For example, in response to ‘What should Tom 
assume if he the system does not call out a name?’: 

 “The person is not entered in to the system because if 
I look at you, I hear the sound but I do not hear 
anything.” - User7_Enhanced 
“that…it may be the case that a person that the system 
is not trained on is standing between you and the 
recognized person so I would tell him to watch out for 
that”. -User4_Enhanced 

In contrast, the absence of correct structural knowledge of 
the system often left participants in the Basic intelligibility group 
to create their own ideas about how the system works:  

“The computer vision system detected the person in 
front of you and determined that it’s <name of 
researcher>, so it can just be feet, foot, I don’t know 
arm, or hair, anything I guess, as long as it’s here.”- 
User6_Basic 

 Drawing on declarative knowledge, participants in the Basic 
intelligibility group could have correctly deduced that the system 
sees a face because they were told that the face identifier knock 
sound plays “when the camera aligns with a person’s face”.  

However, some participants moved more effortlessly between 
different knowledge types and knowledge levels, for example: 

“Move his head around slowly listen to the pitch of the 
woodblocks sound, the higher it gets the closer the face 
of the person is.”- User 4_Enhanced 

This participant knew that the computer vision system has to 
get closer to the persons’ face for the pitch to get higher and can 
articulate a rule for this. He then suggested what behavior 
should be carried out when the user hears the Woodblocks, 
moving to the knowledge-based level. Thus, it appears that 
structural knowledge needs to be explicitly taught, as it is not a 
given that users will be able to ‘reason from first principles’ and 
get from declarative knowledge to structural knowledge easily. 

 4.2.3 Procedural Knowledge 
An example of an incorrect procedural knowledge was when the 
participant was asked: “If Tom was sitting down and I was 
standing in front of him about an arm's length away where 
would Tom have to look in order for the system to recognize me 
and call out my name?”  

“[points to his face] I would first turn him around 
[pivots his body around to show a turning around 
movement] tell him to turn and whenever he hears a 
little knocking sound he has to stop and walk for a bit. 
I would start him having his back to the person.” – 
User10_Basic  

Although this participant provided correct declarative 
knowledge – that the system has to see the target’s face – the 
procedural advice he offered is incorrect. It would not make 
sense to turn your back to the target’s face if you are trying to 
identify who they are. This is an inappropriate way of using the 
system. 
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We conducted a Mann-Whitney test to determine whether 
there was significant difference between the Basic intelligibility 
group and the Enhanced intelligibility group. We found that in 
the Enhanced group scored significantly higher than those in the 
Basic group (U = 6.00, p = .035), showing better procedural 
knowledge. For example, a correct procedural mental model 
came from a participant when asked “If Tom was sitting down 
and I was standing in front of him about an arm's length away 
where would Tom have to look in order for the system to 
recognize me and call out my name?”: 

“Straight up and above to recognize your face. He 
would have to judge your height and then towards it.” 
– User3_Enhanced  

Recall that none of the participants received procedural 
knowledge of the system as part of their instructions, that 
is, behaviors that one could take to improve the use of the 
system. Our finding suggests that users in the Enhanced 
intelligibility group were able to leverage their structural 
knowledge about the system and its internal workings to guide 
them on what behaviors they should adopt when using the 
system, using a knowledge-based level.  

4.3 Strategies Used 
While we found very similar user experience across the different 
groups, we wanted to see whether the participants’ different 
types and levels of knowledge might have had implications for 
their interactions with the technology.  

About half of the participants used horizontal gaze 
movements, where they scanned their environment from side to 
side (Figure 5, yellow) to find the recruiter, usually while they 
stopped walking (Figure 5, white). Five participants using this 
strategy were in the Enhanced group whereas there were only 
two participants in the Basic intelligibility group.  

Looking side to side is suited to the computer vision system 
for three reasons: 1. This head movement increases the field of 
view of the computer vision system, 2. The participants can use 
the spatialized audio to get better location information, and 3. 
there is a higher chance of triggering the ID announcements as 
targets cross the midline of vision. It seems that this was a 
strategy that was employed deliberately by participants, as 
referenced in the post-task interview: 

“He should basically try to stand still and look around 
slowly -scans his head from left to right- because it will 
mention the name, or it will make the -knocks on the 
desk- sound if it sees a face and then if it’s a 
recognizable face it will also mention the name of the 
said person.”- User11- Enhanced 

 Recall that the system also provides help for finding a face 
through playing “woodblock” sounds that help to align the user 
to a person’s face which helps with identification. To this end we 
were also interested in whether participants moved their heads 
vertically, i.e. up and down, during the task (Figure 5, orange). 
This is a behavior which can increase the effectiveness of the 
system, especially as the recruiter was sitting down for the first 7 
minutes of the task. Only five participants exhibited this 

 

Figure 5: Behavioural Journey For Participants. (Horizontal (yellow) and vertical (orange) head movements, stopping 
(white), and walking slowly (red) and at a normal pace (blue). Enhanced participants’ journeys are outlined in black.) 

More participants in the Enhanced group than the Basic group used horizontal head movements to explore their 
environment, while participants in the Basic group used walking to explore the space. 
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behavior participants, with four of them in the Enhanced 
intelligibility group. Again, some participants appeared to 
employ this strategy deliberately, as they mentioned it during 
the post-task interview:  

“I first looked around a little and then it didn’t make 
any sound or anything then I looked a bit down and it 
didn’t make a sound, then I bend over a little, with my 
head on the sitting height and then it managed to.”- 
User11- Enhanced  

A different common strategy seems was employed by six 
participants, who explored the environment through walking 
around slowly (Figure 5, red) or at a normal pace (Figure 5, blue). 
Five participants using this strategy were in the Basic 
intelligibility group whereas only one were Enhanced group 
participants. In contrast to the head movement strategy, this 
might not lead to better use as announcements might be missed 
and spatialized audio might not be as useful to these participants. 

Taken together the results suggest participants in the 
Enhanced intelligibility group in comparison to those who 
received Basic instructions were more likely to apply effective 
movements when using the system, and do so deliberately.  

5 Discussion and Conclusions 
Our study investigated the intelligibility of a computer vision 
system for blind users when receiving only basic instructions 
containing declarative knowledge versus enhanced instructions 
comprising additional structural knowledge of the system. Our 
study found that these different types of knowledge played no 
part in perceived or actual user experience that we were able to 
measure during the very short time our participants employed 
this technology. Possibly, with more data, especially over a 
longer duration of use, this might change, and differences might 
still be found.  

Unsurprisingly, because they were taught this through 
enhanced instructions, we found that participants in the 
Enhanced group knew more of how the system worked i.e. they 
had more structural knowledge. However, these participants also 
had more procedural knowledge i.e. they knew what to do to 
make the system work well, and to overcome any obstacles in its 
use. In the absence of structural and procedural knowledge, 
users might build up a ‘wrong’ or incomplete mental model of 
the prototype which might also reflect in inappropriate use. 

We found some evidence that this is indeed the case. We 
presented results that indicated two distinct strategies in using 
the prototype, one of which might be more useful in locating and 
identifying people by blind users. Exploring the environment 
through scanning either horizontally or vertically is exploiting 
the prototype’s capabilities more effectively, and this strategy 
was more frequently and deliberately taken by participants 
receiving Enhanced instructions.  

These findings have three clear implications for designing 
and building computer vision systems for blind users: 
• These systems can be successfully employed by blind users 

with very little training. Almost all of our participants 

found the right person within a couple of minutes, and the 
workload of using the prototype was low. 

• In addition to basic declarative knowledge, developers of 
these systems need to give users structural knowledge 
about how the system works in terms of how features are 
used in the models and how these relate together to enact 
the system behavior, in this case, person detection and 
identification.  

• Different strategies of users employing the system are to be 
expected. However, it appears it is possible for blind users 
to build better mental models when given more detailed 
information, translating this into more effective search 
strategies. It seems that successful use of the system can be 
‘nudged’ through more information, echoing findings from 
explaining interactive machine learning systems [21,23].  

Our study is not without limitations. First, we were only able 
to observe a very short period of prototype use with limited 
numbers of participants due to the difficulties in recruiting this 
user group. Further studies of the prototype system should be 
extended in scope, and take place in real-world social situations. 
This would allow us to investigate how users grasp the nuances 
of the system given the instruction over time, and whether the 
behavior and mental model of users given Basic instructions 
would improve with further experience of the system, to what 
was observed for the Enhanced instruction group. 

Second, the participants of our study differed in their visual 
abilities; some participants had some albeit very reduced vision 
which might have affected how they used the system. Further 
studies are necessary on how to support blind users especially as 
there is a wide range of visual abilities within this user group. 

Third, we were also stymied by data losses that affected our 
ability to investigate the effect of intelligibility on the accuracy 
of the system. However, measuring the accuracy of computer 
vision systems in their natural use such as ours is difficult. 
Typically, accuracy is evaluated by precision and recall. 
However, in a computer vision system that runs continuously 
and changes views dynamically with head movements, this is 
difficult to measure as potentially every frame would need 
manual labeling with ground truth data. 

Last, our study only differentiated between basic and 
enhanced instructions but did not focus on what instructions 
mattered the most, nor how these instructions could be most 
effectively delivered. Investigating the mental models of users in 
detail could which could provide further insights on more 
intelligible designs of such computer vision systems, and well as 
optimizing the method for delivery. For example, users could 
take part in a demonstration and experience the system first-
hand. This would likely further deepen their mental model. 

Our study can also inspire future work investigating the 
intelligibility more generally. We argue that there is a need for 
exploring the following research gaps : 
• Currently, a lot of research is conducted into making 

systems transparent, without similar research into what 
would make these systems intelligible to users. Further 
empirical studies to measure intelligibility of systems are 
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desperately needed to advance our understanding in 
designing appropriate explicit explanations, or brief 
instructions, or how to support intelligibility through 
exploration. 

• A much more refined characterization of users’ 
‘understanding’ is warranted. In this study, we have 
attempted to tease apart the correctness of the mental 
model, and the types and levels of knowledge that a user 
might have. These differences in ‘understanding’ might 
have finely faceted impacts on system use. 

• A common effect of explanations and improved mental 
models that is investigated is trust. However, in many 
circumstances, appropriate or better system use might be a 
more desirable outcome. Further investigations of the 
impacts of intelligibility on human-machine teaming or 
cooperation between human and computer is needed. 

Our study provides a step towards making AI systems 
intelligible to users, by supporting people who are blind to better 
use a computer vision system in navigating social situations. 
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