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Abstract

A well-established notion in cognitive neuroscience proposes that multiple brain systems

contribute to choice behaviour. These include: (1) a model-free system that uses values

cached from the outcome history of alternative actions, and (2) a model-based system that

considers action outcomes and the transition structure of the environment. The widespread

use of this distinction, across a range of applications, renders it important to index their dis-

tinct influences with high reliability. Here we consider the two-stage task, widely considered

as a gold standard measure for the contribution of model-based and model-free systems to

human choice. We tested the internal/temporal stability of measures from this task, including

those estimated via an established computational model, as well as an extended model

using drift-diffusion. Drift-diffusion modeling suggested that both choice in the first stage,

and RTs in the second stage, are directly affected by a model-based/free trade-off parame-

ter. Both parameter recovery and the stability of model-based estimates were poor but

improved substantially when both choice and RT were used (compared to choice only), and

when more trials (than conventionally used in research practice) were included in our analy-

sis. The findings have implications for interpretation of past and future studies based on the

use of the two-stage task, as well as for characterising the contribution of model-based pro-

cesses to choice behaviour.

Author summary

In this paper, we report a reliability analysis for the estimation of “model basedness”—a

psychological construct that informs a wealth of studies in animal, human and clinical

research. We consider an exemplar paradigm, the two-step task, widely used in the recent

literature. We report low reliability for model-agnostic model-based estimates, as well as

computational model parameter estimates. We suggest how a model-based/free trade-off

might affect reaction-time variability in this task, and go on to suggest use of model
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parameter estimates based on a combination of choice and RT. Finally, we demonstrate

that combining choice and RT estimates improves both model-agnostic and algorithmic

model-based estimates.

Introduction

Animal and human decision-making research suggests that when an agent deliberates on a

course of action more than one control system contributes to choice. A dominant idea invokes

a contribution of a model-free and a more sophisticated goal-directed model-based system.

Both influence the choice process but their relative influence is assumed to vary between indi-

viduals and conditions [1]. Theoretical questions regarding human planning [2], reasoning

[3], development [4], voluntary-control [5], learning under uncertainty [6], motor control [7],

and deployment of attentional resources [8], all invoke this dichotomy. Human neuroimaging

studies suggest these two systems rely on distinct neural substrates [9–11]. Additionally, vari-

ous hypotheses regarding the clinical relevance of this distinction have been put forward [12],

with relative deficits in a model-based system suggested as underpinning clinical conditions

such as compulsivity [13,14], substance-use [15], and obesity [16]. Even moral judgments,

especially of a deontological nature, are suggested to include a model-free and model-based

contributions [17].

The contribution of model-free and model-based systems is often probed via a multi-step

decision tree task, wherein participants are asked to make state selections (navigate their way

in an artificial maze) to attain goal rewards [18]. In this paradigm, a habitual model-free

learner is assumed to select actions based on a reward history alone, without considering task

structure. In contrast, to make better choices, a model-based learner is assumed to avail of a

cognitive map that takes account of transition structure. While in some cases these two systems

can lead to the same action, the task also generates a scenario where these two systems lead to

different actions, enabling measurement of their relative contribution to the decision-making

process [18–20].

In the two-stage decision task participants navigate from a first to a second stage to gain

rewards (see Fig 1). The second stage usually entails four bandits and participants make first

stage choices that probabilistically determine which bandits are available at the second stage

(see Fig 1). First-stage choices provide descriptive measures as well as model parameters that

quantify the contribution of model-free and model-based systems [21]. Thus, when making a

first-stage choice, a model-free system considers whether an action led previously to a reward.

In contrast, a model-based system also considers the transition probabilities. For example, a

model-based learner might select a specific action that was not rewarded on the last trial, based

on an inference form task structure that it will more reliably lead to a more rewarding second-

stage state.

This two-stage decision task is considered a gold-standard for measuring model-based/

model-free contributions to choice behaviour across computational [21], neuroimaging [2],

behavioural [22], developmental [4] and clinical studies [13,23]. Variants of the task are also

used in animal studies [24]. Despite its widespread use no study has yet provided task reliabil-

ity estimates. Almost all studies make exclusive use of a metric of choice, but not reaction-time

(RT), to derive estimates of model-basedness. However, a decision-making literature indicates

RT data is an important source of information [25,26], with a recent study suggesting it might

improve parameter identifiability in reinforcement learning paradigms [27]. It remains
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unclear whether a combination of choice and RT data might improve the reliability of model-

based scores.

Here, using the two-stage task we estimated the reliability of model-based estimates by

exploiting a large data set which included two distinct testing time points derived from the Neu-

roscience in Psychiatry Network’s study [28]. We started by describing a widely used computa-

tional model [18] that allows quantification of model-based/free trade-off in first-stage choices.

Fig 1. A schematic of the two-stage task (panel A) and an example of a random walk used to generate the true

expected value for each of the four bandits at the task second-stage (panel B). At the first-stage participants choose

between two options (represented by abstract fractal images) that determined the presentation of the second-stage via

fixed transition probabilities of 70% (‘common’) or 30% (‘rare’). At the second-stage, participants again choose

between two bandits that led to receipt of reward (£0 or £1 play pounds). Note the second-stage included two pairs of

bandits where the composition of each pair was fixed, but where the value of each bandit drifted slowly and

independently. More specifically the reward associated with the second-stage bandits were subjected to random walks

and thus had to be constantly learned by participants.

https://doi.org/10.1371/journal.pcbi.1006803.g001
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While the latter model is designed to predict choice, we extended on this model to determine

whether a combination of choice and RT data might improve parameter recovery, as well as

improve the reliability of model-based estimates [27]. We demonstrate a relationship between

model-parameters and model-agnostic measures; one based on choices at the first stage and

used widely in past studies, and the other based on RTs at the second stage that is much less

reported in the literature [4,29,30]. We reported internal (within measurement) and temporal

(between measurements) stability of model-parameters and model-agnostic scores, separately

and combined. Overall, our study allowed estimation of psychometric properties of choice-

based model-based estimates and demonstrates how these can be improve upon using RTs.

Model-parameter estimates for model-based/free trade-off

w-parameter I (RL model, choice only). Daw at el., (2011) [18] reported a reinforcement

learning (RL) model that allows quantification of a model-based/free trade-off from first-stage

choice behaviour. Here, the value of each first-stage bandit was the sum of two components:

(1) model-free value–reflecting the amount of previous reward that followed this bandit selec-

tion, and (2) model-based value–reflecting the highest value of the two bandits that is reached

by a common/rare transition following this first-stage action. In simple terms, while the

model-free component was “keeping tabs” of reward history following the selection of a first-

stage action, the model-based component was “looking forward” into the second-stage, and

considered the best bandit that a first-stage action was likely to lead to (by means of a common

transition). The model first updated model-free Q-values at each trial, which were initialized

to zero at the beginning of the experiment, and updated at the end of each trial according to a

SARSA reward prediction error algorithm [31,32].

Let a1/a2 be the actions selected in the first/second stage of the task and reward at trial t be

r(t)�{0,1}. The values of the actions in the second-stage were updated according to:

QMF
ða2;tþ1Þ ¼ QMF

ða2;tÞ þ aðrðtÞ � QMF
ða2;tÞÞ ð1Þ

where α was a learning rate (free parameter) and (r(t)-QMF
(a2,t)) represented a reward predic-

tion error. The model-free values of first-stage actions were updated using both the value of

the second-stage action, and reward prediction error of the second-stage action:

QMF
ða1;tþ1Þ ¼ QMF

ða1;tÞ þ a ðQ
MF
ða2;tÞ � QMF

ða1;tÞÞ þ a lðrðtÞ � QMF
ða2;tÞÞ ð2Þ

where λ was the eligibility trace (free parameter) capturing the effect of the second-stage pre-

diction error on the first-stage action value.

The model-based learning strategy incorporated the empirical transition probabilities and

second-stage QMF values to estimate the value of first-stage actions according to:

QMB
ða1;tÞ ¼ Pðs2ja1Þ �maxðQMF

ðs2;tÞÞ þ Pðs3ja1Þ �maxðQMF
ðs3;tÞÞ ð3Þ

where s2/s3 represented the two states in the second-stage (see Fig 1), and P(s2|a1)/ P(s3|a1)

the transition probability. Finally, a w-parameter quantified model-based vs. model-free trade-

off in first-stage actions, allowing the calculation of a net Q-value for each first-stage action:

Qnet
ða1;tÞ ¼ ð1 � wÞQMF

ða1;tÞ þ wQMB
ða1;tÞ þ p � Stay

ða1;tÞ ð4Þ

QMF refers to the first-stage bandit Q-value calculated in the SARSA algorithm. Stay(a1,

t)�{0,1} denoted whether a1 was taken in the previous trial multiplied by p (free parameter) esti-

mating the tendency to repeat the previous action regardless of reward (i.e., perseveration).

The probability of a first/second action was determined using a softmax, with a 1/β parameter
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representing the decision temperature:

Pða1; tÞ ¼
expðbQnetða1; tÞÞ
X

a0
expðbQnetða0; tÞÞ

ð5Þ

Pða2; tÞ ¼
expðbQMFða2; tÞÞ

X

a0
expðbQMFða0; tÞÞ

ð6Þ

The overall model included five parameters: a w-parameter (model-based/model-free

trade-off), a learning-rate (α, the updating rate of values given a new outcome), a decision tem-

perature (β, the amount of decision stochasticity), an eligibility trace (λ, referring to updating

first-stage decision values based on second-stage outcomes) and a choice-perseveration

parameter (p, tendency to repeat first-stage choices regardless of previous outcome or

transition).

w-parameter II (DDM-RL, choice & RT). While many reinforcement learning models

are designed to explain agents’ choices, the value differences between two choices also influ-

ences decision-time [33,34]. Moreover, it has been argued that use of RTs can increase the reli-

ability of parameter estimates in RL models [27]. To explore whether including RTs improve

reliability of w-parameter estimates, we extended the Daw et al., 2011 RL model to predict a

combination of choice and RT, based on an assumption that value discriminability will be

reflected in both choice and RT (with higher value differences leading to quicker RTs).

Previous studies have argued that a combination of choice and RT can be predicted by inte-

grating Q-learning RL algorithms with evidence accumulation mechanisms [27,34–37]. Here,

we used the Wiener drift-diffusion model whereby the decision process is described as a con-

tinuous random walk (or diffusion) process [38–40]. In this model, evidence accumulated

towards one of two boundaries, with time to reach one of the two boundaries and the identity

of the attained boundary, determining decision-time and choice. At each time point, the

amount of evidence in favour of one of the two alternatives drifted as a function of:

d
di
Xi ⁓ Normalðd; s2Þ ð7Þ

where d was a drift-rate towards the selected action, and s2 is fixed to 1 to allow scaling. The

distance between the boundaries was determined by a free parameter–a, which represented

the response policy. Greater distance between boundaries (a parameter) led to a more cautious

policy (slower and more accurate response) while faster drift-rate (d parameter) led to greater

sensitivity (quicker and more accurate decisions). Finally, X0 (the amount of evidence when

the process starts) was equal to 0.5�a, given that we assumed no prior bias towards one of the

two alternatives. The time of first passage, and which boundary was attained first, were there-

fore probabilistic with a probability determined by the parameter set.

Next, to account for a combination of choice and decision-time generated by the value dif-

ferences, Eq 7 was adjusted so that the drift-rate for each trial was the difference between the

Q-values of the two alternatives, and the upper/lower boundary represented the selected and

competitor choices a and a’ [27,34]:

d
di
Xi ⁓ NormalðbðQða; tÞ � Qða0; tÞÞ; s2Þ ð8Þ

Therefore ; d ¼ bðQ a; tð Þ � Q a0 ; t
� �

Þ, meant a greater value difference between the

selected and alternative action translates in the model as higher drift-rates. The b parameter

Improving reliability of model-based estimates with drift-diffusion modeling
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allowed further scaling (as both fixing s2 = 1 and the Q-value range is arbitrary). Finally, a

non-decision time parameter τ was added to the decision-time representing the duration that

passed without any diffusion process (e.g., early perceptual/late motor processes), with RT

being the sum of decision-time (accounted for by the first passage of time in the Wiener diffu-

sion model) and τ. Overall, the current drift-diffusion model with reinforcement learning

(DDM-RL) included five parameters from the Daw model accounting for RL algorithms (α1,

α2, λ, p,w) along with three DDM parameters (b,a,τ). Estimation of log-likelihood given a com-

bination of choice and RT per trial was obtained by using an analytic solution for Wiener’s

first passage of time [38] (the code was obtained from [41]).

Model-agnostic estimates for model-based/free trade-off

While the w-parameter serves as a process-based measurement of model-based/free trade-off

(and thus has a clear interpretation), the literature makes use of model-agnostic measures that

map directly to changes in the w-parameter. Model-agnostic measures can be beneficial as

they are straightforward to calculate (can be done without model fitting or RL algorithms).

Here we examined a commonly used score based on first-stage choice [4,18,23,30], describing

a greater tendency of a model-based agent to revisit a state that was previously rewarded as a

function of common vs. uncommon transitions. We show that this tendency translates into

systematic value differences in the second-stage. Giving the known relationship between

discriminability and RT [33,42] this observation allowed us to elaborate a second score based

on second-stage RTs (RT2) [4,30].

MB-I (choice). Model-based choice is estimated by calculating the interaction effects of

transition (common vs. rare) and reward (rewarded vs. non-rewarded) in the previous trial on

the probability of repeat of a first-stage choice in the next trial. A purely model-free learner is

blind to transition structure, and therefore should display a higher probability of repeating the

last first-stage choice when rewarded, regardless of transition (reward’s main effect, see S1 Fig,

left panel). In contrast, a model-based learner has knowledge of transition probabilities, and

makes use of that knowledge to choose the best bandit on the next trial. For a model-based

learner a reward increases the probability of repeating a first-stage choice only when the previous

transition was common, while after uncommon transitions reward reduces the probability of

repeating first-stage action (increasing the chance that the agent would return to the state where

the reward was obtained). This translates into a positive interaction of previous reward and pre-

vious transition on the probability of repeat of the first-stage action (see S1 Fig, right panel).

Let transition and reward at trial t be represented by Xtransition(t)�{0,1} for common and

uncommon and Xreward(t)�{0,1} for unrewarded and rewarded trials. Sticking with the same

choice at the first-stage can be represented by Ystay �{0,1} for switch and stay choices. Then

stay probability (chance of repeating first-stage choice) can be defined as P(Ystay | Xtransition(t),

Xreward(t)). Individual MB-I(choice) scores can then be obtained by calculating the paired interac-

tion of previous transition and reward on stay probability. This was achieved by first calculat-

ing the effect of transition separately for rewarded and unrewarded trials:

Rewarded ¼ PðYstayðtþ1ÞjXtransitionðtÞ ¼ 0;XrewardðtÞ ¼ 1Þ � PðYstayðtþ1ÞjXtransitionðtÞ ¼ 1;XrewardðtÞ ¼ 1Þ ð9Þ

Unrewarded ¼ PðYstayðtþ1ÞjXtransitionðtÞ ¼ 0;XrewardðtÞ ¼ 0Þ � PðYstayðtþ1ÞjXtransitionðtÞ ¼ 1;XrewardðtÞ ¼ 0Þ ð10Þ

then calculating the difference between the two effects:

MB � IðchoiceÞ ¼ Rewarded � Unrewarded ð11Þ

Improving reliability of model-based estimates with drift-diffusion modeling
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Scores that are constrained by group prior (i.e., hierarchical MB-I(choice)) were obtained by

fitting a mixed-effect logistic for trial-by-trial data (the following indicates Wilkinson notation

[43]):

PðYstayðtþ1ÞÞ⁓ TransitionðtÞ � RewardðtÞ þ ðTransitionðtÞ � RewardðtÞj SubjectÞ ð12Þ

Whereby the MB-I(choice) score was the individual slope of the transition x reward interaction.

MB-II (RT). Here, we added a less traditional MB score to ascertain whether this score

increased the reliability of MB estimates [4,30]. This score is based on an assumption that

more model-based participants are quicker to make a second-stage choice after common tran-

sitions, and slower after uncommon transitions, compared to model-free participants. This

score was previously found to correlate positively with MB-I(choice), and w-parameter [4,30], as

well as correlate with right ventral striatum dopamine levels during task performance, mimick-

ing an effect obtained with model-based model parameters [30]. The score was obtained as fol-

lows:

MB � IIðRTÞ ¼ meanðRT2j XtransitionðtÞ ¼ 1Þ � meanðRT2j XtransitionðtÞ ¼ 0Þ: ð13Þ

with MB-II(RT) scores that are also constrained by group parameter obtained by a mixed effect

linear regression whereby MB-II(RT) was the individual slope of the transition main effect (the

following indicates Wilkinson notation [43]):

RT2ðtÞ⁓ TransitionðtÞþðTransitionðtÞj SubjectÞ ð14Þ

In the results section below, we test the relationship between process-based and model-

agnostic estimates which further allowed us to describe why stronger deployment of model-

based strategies in the first-stage might lead to higher MB-II(RT).

Results

Obtaining model-based estimates from empirical data

Psychometric properties in empirical data. We used data from the Neuroscience in Psy-

chiatry Network’s (NSPN) study [28]. This is a community-based longitudinal sample of

young volunteers (age 14–24 years), living in Cambridgeshire and London regions, UK. The

study was designed to measure developmental change. Participants completed a two-step task

lab testing, among other measurements. Here we focused on psychometric properties of the

task, across questions referring to development. Participants were excluded if they had recog-

nised learning disabilities or neurological disorders. Our final dataset included 554 subjects

(274 males, 280 females) at two time points: baseline (mean age = 18.85, range 14.1 to 24.98)

and follow-up (mean age = 20.33, range 15.11 to 26.48). For further details see Methods as well

as Kiddle et al., 2018.

Process-based estimates. To obtain w-parameters estimates at the individual level, we

fitted the RL (choice) and DDM-RL (choice & RT) to empirical data, separately for each

time point. Fitting was performed either with (i.e., hierarchical fit) or without group pri-

ors (i.e., individual fit, see Methods for further details). We fit two versions of the RL

model, with five parameters (single α and β for both stages) and seven parameters (α1, α2,

β1, β2 for each stage), and compared the two by calculating Bayesian inference criteria

(BICint) which penalizes for the number of parameters (difference of 10 points or more is

considered strong evidence, with lower scores indicating better fit)[44]. BIC at both base-

line [BIC int_5_parameters = 134738.6, BIC int_7_parameters = 134194.7] and follow-up [BIC

int_5_parameters = 216901.9, BIC int _7_parameters = 215646] favoured the seven parameter
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model. Hence, this model was used for all further analysis (see S2 Table for parameters

descriptive statistics).

We also fit two versions for the DDM-RL, one with single DDM parameters (a,b,τ) at each

stage and one with two sets (a1,b1,τ1,a2,b2,τ2) at each stage. BIC at both baseline [BIC int_8_para-

meters = 113648.1, BIC int _11_parameters = 104220.4] and follow-up [BIC int_8_parameters = 174546,

BIC int_11_parameters = 162964.3] favoured the 11 parameter model. Hence, this model was used

on further analysis (see S2 Table for parameters descriptive statistics).

Model-agnostic estimates. We next calculated model-agnostic scores, MB-I(choice) and

MB-II(RT) for each individual from choice and RT data. We calculated the scores separately at

each time point either with (i.e., hierarchical scores, Eqs 12 and 14) or without group priors

(i.e., individual scores, see Eqs 11 and 13 and S2 Fig for histograms). To obtain an estimate of

the effect-size of model-agnostic measures we calculated η2 estimates (explained variance) for

each score, across participants and across time measurements. For MB-I(choice) the transi-

tion�reward interaction factor explained 25.1% of the first-stage stay probability. For

MB-II(RT), the transition factor explained 67.3% of the mean RT2 variability.

The relationship between process-based and model-agnostic estimates

First, we wanted to assess whether changes in w-parameter directly affected MB-I(choice), and

MB-II(RT). To do this we systematically increased the w-parameter in an RL-DDM model, and

calculated both MB-I(choice) and MB-II(RT), in-silico. A strong relationship between all three

estimates was evident (see Fig 2A).

While the relationship between the w-parameter and MB-I(choice) is well documented [18],

that is not the case for MB-II(RT). This raises a question as to why does RT2 differ as a function

of model-based/free trade-off? Our assumption was that compared to a model-free agent, a

model-based agent has better discriminability between the values of the two options (larger Q-

value differences) when reached by a common vs. an uncommon transition. This is because a

model-based agent is more likely to choose a first-stage bandit that will lead to the maximal Q-

value out of the four second-stage alternatives via a common transition (Eq 3 and Fig 2D).

Therefore, common transitions for model-based agents have a better chance of having a larger

Q-value difference and hence better discriminability between the two values (see Fig 2B),

whereby higher discriminability is tightly related to quicker RTs. To test this assumption we

performed two complimentary in-silico analyses. First, we located in each trial the second-

stage state that had the highest Q-value bandit out of the four second-stage bandits (hereafter,

‘best state’) and the alternative state (hereafter, ‘worst state’). We then calculated the averaged

ΔQ-value (maximum–minimum Q-value) for the best vs. worst state and compared the two

ΔQ-values for the two states. We found that on average the best state also had better value

discriminability (mean ΔQ-value = .59) compared to the worst state (mean ΔQ-value = .27; see

Fig 2C). This confirms the first part of our assumption, postulating that the state that holds the

highest Q-value bandit (out of the four bandits) also entails higher value discriminability. Sec-

ond, since model-based agents are more likely to reach the state with the highest Q-value ban-

dit by means of a common transition (see Eq 3 and Fig 2D), it follows that higher w-parameter

will lead to higher ΔQ-value for common vs. uncommon transitions. A second analysis con-

firmed this assumption, showing higher ΔQ-value for common and lower ΔQ-value for

uncommon transitions as w-parameters values were increased in-silico (see Fig 2B). In the

RL-DDM model ΔQ-value is directly translated into higher drift-rates, leading to quicker RTs

on average (see Eq 8). Thus, this result confirms our assumption that systematic differences in

model-predictions for RT2 as a function of transition type, are a direct result of model-based/

free trade-off at the first-stage.

Improving reliability of model-based estimates with drift-diffusion modeling

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006803 February 13, 2019 8 / 25

https://doi.org/10.1371/journal.pcbi.1006803


To examine the relationship between the three scores in empirical data, MB-I(choice), MB-II

(RT) and w-parameter we averaged each score across both time points (baseline and follow-up)

and calculated Pearson/Spearman correlation coefficient (see Table 1). Results suggest a strong

relationship between MB-I(choice), MB-II (RT) (with ⁓37% shared variance, see Fig 3A), and a

moderate relationship of both with w-parameter (see Fig 3B and 3C). Examining Table 1

shows that hierarchical scores outperform individual ones in general. Finally, we examined

whether correlations between the w-parameter and the scaling (b2), or the threshold (a2)

Fig 2. Examining the relationship between model-agnostic scores (MB-I(choice), MB-II(RT)) and the w-parameter. To obtain these plots we

gradually increased the w-parameter from 0 to 1 in .1 steps, each time simulating 200 experiments with 5,000 trials each using the DDM-RL

model (All other parameters were selected randomly and uniformly form a pre-defined range, of α1/2[0,1], λ[0,1], w[0,1], p[0,.5], b1/2[1,10], a1/

2[1,3], τ1/2[.01,.5] for each experiment). (A) For each of the 200 experiments, we averaged MB-I(choice) and MB-II(RT) (see Eqs 11 and 13) scores.

We then standardized the eleven mean scores, separately for each MB score. Results showed a strong relationship between the w-parameter and

both model-agnostic measures. (B) Here we illustrate how deployment of model-based strategies in the first-stage is affecting MB-II(RT) via

systematic effects on second-stage value discrimination. Specifically, Panel B presents averaged ΔQ-value (max–min Q-value) for the second-

stage state the agent visited. Results confirmed that higher w-parameter values lead to higher/lower value discriminability (ΔQ-value) after

common/uncommon transitions, respectively. Notably, in the DDM-RL model ΔQ-values are directly and positively associated with drift-rates

and hence contribute to faster RTs (see Eq 8). This result illustrate why higher w-parameter is associated with quicker/slower RT2 after common/

uncommon transitions, respectively. (C/D) To further demonstrate how deployment of model-based strategies in the first-stage leads to

systematic value differences in the second-stage we labelled in each trial the best and worst state (state that included the highest Q-value out of the

four available second-stage bandits, and the alternative state). Panel C shows that across all simulation the best state was related with higher value

discriminability (higher ΔQ-value), regardless of the w-parameter. Panel D further shows that higher w-parameter is related with higher

probability of visiting the best state by means of common transitions (see Eq 3). Therefore, Panels C & D illustrates the reason that higher w-

parameter leads to higher value discriminability after common trials as illustrated in Panel B.

https://doi.org/10.1371/journal.pcbi.1006803.g002
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parameters in the second-stage contribute to the empirical correlations between the w-param-

eter and MB-II(RT). For example, if model-based individuals also had systematically larger

thresholds and/or systematically higher scaling in the second-stage this might inflate

MB-II(RT). We calculated Spearman correlations and found a modest positive correlation

between w and b2 (r = .09, p = .03) and a non-significant correlation between a2 (r = .06, p =

.14). Importantly, Spearman partial-correlation analysis indicated that the empirical relation-

ship reported in Table 1 between the w-parameter and MB-II(RT) remains largely unaffected

after controlling for b2 parameter estimates (Partial correlation = .41, p< .001).

Parameter recovery

To examine the influence of task length on the reliability of estimated parameters, we per-

formed a parameter recovery analysis. Table 2 presents the correlation between the true and

recovered parameters, as a function of the number of trials in the analysis. While the w-param-

eter reached an acceptable value only after ⁓1000 trials for the RL model, the DDM-RL model

reached the same value after as little as 200 trials (see Table 2 and Fig 4A and 4B). Furthermore,

the fact that the learning rate for the first-stage showed better recovery for the DDM-RL vs. RL

model, suggests an overall better parameter recovery for the first-stage in the former.

Internal stability

To measure internal stability, we calculated split-half reliability scores [45–47]. These scores

are obtained by splitting a task into two (or more) parts and then estimating the extent to

which the different parts reflect the same score. Here, we adopted a common practice of split-

ting the task into odd and even trials [45,46]. Note that we can still calculate MB score even

when omitting odd/even trials by omitting the behaviour of the previous trial from the analy-

sis, but not the coding (rare/common, rewarded/unrewarded). We estimated a MB score sepa-

rately for each part, calculated a Pearson correlation coefficient to estimate the extent that the

two parts reflect the same score, and used the Spearman-Brown formula to get a final estimate

of internal constancy (owing to splitting the task into two parts, the Pearson correlation scores

reflects internal consistency for only half of the trials; Spearman-Brown formula allows correc-

tion of the correlation estimate to reflect internal reliability as if it was obtained in two parts,

each with a complete number of trials). A conventional criterion is that the odd-even correla-

tion should exceed .7. Table 3 summarises our findings showing good reliability for

Table 1. Correlation estimates describing the relationship between the different model-based estimates.

MB-I (choice) MB-II (RT)

Individual scores:

MB-II (RT) .53a
(.47-.59) .

w-parameter (RL) .38 (.30-.45) .26 (.18-.34)

w-parameter (DDM-RL) .41 (.33-.47) .24 (.16-.32)

Hierarchical scores:

MB-II (RT) .61a
(.56-.66) .

w-parameter (RL) .31b
(.23-.38) .33b

(.26-.41)

w-parameter (DDM-RL) .37b
(.30–44) .36b

(.29-.43)

Note.
aPearson correlation estimate.
bSpearman rank estimate

https://doi.org/10.1371/journal.pcbi.1006803.t001
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MB-I(choice), when using hierarchical scores, and for MB(RT) for both individual and hierarchi-

cal scores.

To test for the effect of the number of trials on internal stability, we performed the half-test

reliability analysis using the first 20 trials alone. We then repeated the analysis, each time add-

ing one additional trial and re-calculating the reliability scores. Fig 5 presents our findings for

empirical data (only follow-up data, where we had more trials), as well as simulated data from

the DDM-RL and RL models. We found that MB-I(choice) score first reached criteria (>.7) after

411 trials for data simulated from the RL model. MB-I & II reached the same criteria after 199

and 204 trials, respectively, for data simulated from the DDM-RL model. In empirical data,

MB-I(choice) failed to reach stability after 200 trials. If indeed an evident linear trend is main-

tained then the reliability of the MB-I(choice) should reach ⁓.8 after roughly 350 trials. Fig 5 sug-

gests that the same internal consistency (.8) for MB score II (RTs) can be reached after about

100 trials.

Fig 3. (A/B/C) Scatterplots showing the relationship between the three hierarchical model-based estimates obtained from

empirical data (scores were averaged across baseline and follow-up).

https://doi.org/10.1371/journal.pcbi.1006803.g003
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One reason MB-I(choice) might have lower internal stability is that it reports on four types of

trials (see Eqs 9–11). Moreover, uncommon trials are less frequent by definition, and so these

estimates are potentially noisier. Consequently, we examined the internal consistency of stay

probability for these four trial types separately, again using the follow-up data alone (where we

had more trials).

Table 2. Spearman’s correlation estimating the relationship between the true and recovered parameters.

Trials in the analysis

200 500 1000 5000

RL model

(choice)

α1 .54 .62 .68 .92

α2 .95 .98 .99 .99

λ .53 .71 .71 .88

w .61 .69 .82 .97

p .82 .90 .91 .97

β1 .82 .90 .93 .98

β2 .89 .96 .98 .99

DDM-RL model

(choice & RT)

α1 .68 .72 .84 .94

α2 .99 .99 .99 .99

λ .58 .75 .83 .92

w .90 .95 .96 .99

p .91 .94 .97 .99

b1 .93 .93 .99 .99

a1 .93 .98 .99 .99

τ1 .99 .99 .99 .99

b2 .99 .99 .99 .99

a2 .97 .99 .99 .99

τ2 .99 .99 .99 .99

https://doi.org/10.1371/journal.pcbi.1006803.t002

Fig 4. (A/B) Scatter plots for true compared to recovered w-parameter (estimating model-based/free trade off). Results show a better correlation for

DDM-RL (panel B; modeling choice & RT, r = .9) compared with an RL (choice only) model previously reported in the literature (panel A, r = .62).

https://doi.org/10.1371/journal.pcbi.1006803.g004
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We found for all four types an acceptable internal stability after 200 trials (see Fig 5). Why

would MB-I(choice) score show low internal consistency after 200 trials, if the four conditions

used to calculate it are reasonably stable? The answer may rest in the observation that differ-

ence scores are mathematically less reliable than their components, as long as the measurement

noise is independent [48]. This means that only high reliability for each of the four conditions

will provide reasonable reliability for the MB score itself. Therefore, it is plausible that after

⁓350 trials, when the four probabilities attain good internal reliability, will an interaction score

become acceptably reliable.

Temporal stability

To assess temporal stability we calculated Pearson’s correlation between baseline and follow-

up MB estimates. Results are presented in Table 3. We found overall low temporal stability for

the w-parameter in both RL and DDM-RL models (see S3 Table for the remaining parame-

ters). Model-agnostic scores had low to medium stability with slightly better estimates for hier-

archical MB-I(choice) scores compared with individual ones. We also applied a method

suggested by Silva and Hare, allowing to correct for a minority of cases where the state value

can cause misinterpretation of MB-I(choice) [49]. Specifically, we added two control variables to

the hierarchical regression coding the fractals selected at the first-stage and second-stages (See

Eq 2 in Silva and Hare study [49]), however we found very similar temporal stability (r = .41)

for MB-I(choice).

To assess whether better temporal stability were obtained by aggregating the two MB scores

(choice and RTs) we turned to latent factors analysis using structural equation modelling

(SEM) [50]. SEM is a multivariate method that combines factor analysis and multiple regres-

sion. It allows estimation of structural relationships between latent constructs and their mea-

sured variables (indicators). Latent factors are considered less noisy than their counterparts

[51], but come with the disadvantage that these latent factors are sometimes difficult to inter-

pret [52]. Here, we constructed two MB latent factors for baseline and follow-up time points,

with each latent factor predicting MB-I(choice) and MB-II(RT). Pearson correlation between the

baseline and follow-up latent MB factors, showed better estimates compared to the separate

scores (Table 3, see also S3 Fig for indicators).

Table 3. Psychometric properties for model-based estimates.

Internal consistency (201 trials) Temporal stability

MB-I (choice) Individual scores .52c
(.45–58) .28a

(.20-.36)

Hierarchical scores .81c
(.78-.84) .40a

(.32-.46)

MB-II (RT) Individual scores .87c
(.85-.90) .33a

(.25-.40)

Hierarchical scores .87c
(.85-.89) .33a

(.25-.40)

Latent score (choice & RT) . .75a
(.71-.78)

w-parameter (RL model) Individual scores . .16 b (.07-.24)

Hierarchical scores . .21b
(.13-.29)

w-parameter (DDM-RL model) Individual scores . .20b
(.12-.28)

Hierarchical scores . .14b
(.05-.22)

aPearson correlation estimate.
bSpearman rank correlation estimate.
cSpearman-Brown corrected Pearson correlation estimate.

Estimates in brackets represent 95% confidence intervals.

https://doi.org/10.1371/journal.pcbi.1006803.t003
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Fig 5. Internal consistency estimates for MB-I(choice) and MB-II(RT). In all figures, x-axis represents the number of

trials in the analysis, and y-axis the Pearson’s correlation (corrected using Spearman-Brown formula) between the

scores calculated for odd and even trials. (A) Internal stability for MB-I(choice) obtained from simulated data of RL vs.

DDM-RL models. Results suggest that reliability reached criteria for the RL-DDM with fewer trials compared to the RL

model. (B) Internal stability for MB-II(RT) obtained from simulated data of the DDM-RL model. (C/D) Internal

stability for MB-I(choice) and MB-II(RT) calculated from empirical data (follow-up only). (E) Internal consistency in
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Finally, as the time-gap between measurements was not the same for all participants (see

Procedure), we explored whether temporal reliability might increase with shorter time-gaps.

We calculated a regression where baseline scores, time-gap and their paired interaction pre-

dicted follow-up scores (separately for MB I & II). For the individual MB-I(choice) we found a

significant interaction (p< .01), such that a shorter time-gap predicted higher temporal stabil-

ity. To assess further the magnitude of this interaction effect, we performed a median split on

time-gap estimates (above/below 18 months between baseline and follow-up). We found that

participants in the short time-gap group had higher temporal stability, (r = .41) compared with

those tested on longer time-gaps (r = .13). No interaction effect of time-gap on temporal stabil-

ity estimates was found for hierarchical regression MB-I(choice) or MB-II(RT) scores (all p-

values>.8). Finally, our data set had a subset of 61 participants that had an additional measure-

ment, six months after baseline. S1 Text presents temporal stability scores between baseline

and the six-month follow-up.

Power analysis for group level estimates

A question of great practical interest is how reliability in group-level estimates scale with

group size. Specifically, an interest in group differences in model-based abilities (e.g. assessing

differences between clinical and healthy populations, or effects of manipulations) renders it

important to estimate the chance of finding a between-subjects effect in group comparisons,

given such an effect exists in the population. We performed a power analysis using simulated

data from the DDM-RL model, examining an ability to detect differences in MB estimates

between two groups (control vs. experiment). Specifically, we examined statistical power

(chance for a statistically significant result given an effect exists in the population) as a function

of effect-size between groups (small, medium or large), the number of participants (30, 100 or

500 per group) and the number of trials (200, 500 or 1000).We generated two truncated w-

parameter Gaussian distributions (control, experiment) with a standard deviation of .1 (based

on the empirical parameters obtained from fitting the model, see S2 Table) and means set to

generate a small effect-size (group means were .49/.51, Cohen’s d = .2), medium effect-size

(group mean was .475/.525, Cohen’s d = .5) or large effect-size (group means .46/.54, Cohen’s

d = .8). For each of the three effect-sizes we sampled across 1000 iterations of N participants

(30, 100 or 500) with n trials (50, 100 or 500).

For each iteration we calculated MB I&II scores (choice & RT) for each agent, and calcu-

lated the test statistics chi-square of a MANOVA analysis with both scores as dependent vari-

ables. A statistically significant chi-square means that an H0 (no group difference in model-

based estimates) can be rejected given the data. As we know the ground truth (H0 is false), we

calculated the percentage of studies that would reach the correct conclusion (reject H0). There-

fore, for each effect-size, sample size (N) and experiment length (n) we calculated the percent-

age of samples above the critical chi-square, representing the proportion of studies that would

obtain a statistically significant effect. Table 4 presents the results, showing very low power for

small effect sizes for all sample sizes, reasonable power for a medium effect with 500 subjects,

and good power for a large effect with 500 subjects.

empirical data for the four conditions that assemble MB-I(choice) (CR: common-rewarded, CU: common-unrewarded,

UR: uncommon-rewarded, UU: uncommon-unrewarded, see Eq 9–11). Ribbons present 95% CI. The horizontal line

represents the .7 criteria for internal stability.

https://doi.org/10.1371/journal.pcbi.1006803.g005
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Discussion

Our study examined the psychometric properties of model-based/model-free estimates in a

two-stage decision task. First, we quantified the extent to which participants consider both the

transition and reward history when making a first-stage choice (MB-I(choice)). Second, we

quantified the benefit/cost in second-choice RTs following common/uncommon transitions

(MB-II(RT)).

While MB-I(choice) is widely exploited in the literature [4,13,18,30], the latter is less used

[4,30], raising the question as to whether it actually helps quantify MB processes and whether

it can enhance the reliability of MB estimates. We considered a computational model that pre-

dicted both choice and RT (DDM-RL). A simulation analysis showed a close relationship

between the process-based w-parameter (quantifying model-based/free trade-off at the first

stage) and MB-II(RT). Specifically, we found that deployment of model-based strategies at the

first-stage affected the value discriminability of bandits at the second-stage. As discriminability

is strongly and negatively related to RTs [33,42], it follows that these value differences should

be observed at the level of RTs. A tight relationship between the w-parameter and MB-II(RT)

highlights the latter as a promising index of the deployment of model-based strategies at the

first-stage. Furthermore, our findings suggest that a model that predicted a combination of

choice and RT had better recovery properties for the w-parameter, as well as greater internal

consistency for model-agnostic measures in simulated data (both choice and RT scores).

What do our results suggest in terms of reliability of model-agnostic MB measures? First,

we found that MB-I(choice), but not MB-II(RT) had a low internal stability when the 201 trials

version of the task was used. An antecedence search for Daw et al.’s (2011) study revealed 31

studies that directly used the same paradigm to quantify model-free and model-based involve-

ment from observed data. Of these 31 studies, 25 studies used 201 trials or less, and the remain-

der used approximately 300 trials. The low internal reliability of MB-I (choice) seems to be

attributable to the fact that this score is based on estimation of four conditions. Moreover, the

fact that uncommon trials are less frequent, renders it even more challenging. According to

our calculations, MB-I(choice) is expected to attain reasonable internal reliability at ⁓350 trials,

at least 75% longer than is usual practice up to now. Second, as regards temporal stability, both

MB-I(choice) and II(RT) fell short in terms of expected conventional criteria. The use of the

group prior (hierarchical fit) vastly improved the internal consistency score for MB-I(choice),

and its temporal stability to a lesser extent. However this should be interpreted with caution,

since the group prior might drive a more stable, but less valid measure. Finally, using both

MB-I(choice) and II(RT) to estimate a latent model-based factor, showed much better stability

Table 4. Statistical power (percent of studies that rejected the null hypothesis, given an effect exists) for a between group design (control vs. experiment).

Table values show the chance of finding a statistically significant between group effect as a function of true effect-size, sample-size and number of trials in the experiment.

200 trials 500 trials 1000 trials

Small effect

(Cohen’s d = .2)

30 participants 4.5% 5.8% 7.5%

100 participants 6.2% 9% 8.2%

500 participants 14.1% 24% 28.2%

Medium effect

(Cohen’s d = .5)

30 participants 7% 7% 7.9%

100 participants 11% 15% 15.1%

500 participants 52.8% 64% 67%

Large effect

(Cohen’s d = .8)

30 participants 11.5% 10.9% 13%

100 participants 31.5% 30.3% 37.8%

500 participants 94.7% 90.7% 96.9%

https://doi.org/10.1371/journal.pcbi.1006803.t004
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between the two time points. This is in line with previous claims that latent factor analysis

using SEM can be a simple and straightforward method of reducing measurement noise [51].

Overall, a DDM-RL model improved psychometric properties for model-based estimates in

the two-step task as reflected in better parameter recovery, as well as improved stability of

model-agnostic scores (calculated from simulated data). It also provided a link between

model-based/free trade-off in first-stage choices and RT differences in second-stage choices.

This link is important because it supports a claim that both choice and RT based model-agnos-

tic scores reflect model-based/free trade-off at the first-stage, allowing use of the combination

of these two scores to provide a more reliable estimation. However, when looking at the psy-

chometric properties of the w-parameter, it seemed DDM-RL did not improve the temporal

stability compared to that of the RL (choice only) model. One reason for this might be that the

number of trials was not enough to allow DDM-RL to attain a stable estimation of the w-

parameter (121 trials in baseline and 201 at follow-up). Another possible reason might be that

model-based/free trade-off in the first stage influence RTs in the second-stage via additional

processes not accounted for by DDM-RL. For example, MB-II(RT) score might also be related

to the expectation participants have for the common transition-related state. That is, partici-

pants with stronger deployment of model-based strategies in the first-stage, also take more

time to make a decision regarding a second-stage selection, shortening RT for common trials.

However, in the uncommon transition, model-based individuals would need to inhibit their

expectation and switch to an unexpected state, thus prolonging response latency [53]. A

model-free participant would be less sensitive to such expectations and show similar RTs on

both transitions. However, DDM-RL model was unable to capture these set-shifting effects,

therefore such possibilities need to the object of further study.

Two straightforward procedures can promote increased reliability in model-based estimates

using the two-step paradigm. The first is relatively easy to implement, and involves acquiring

more trials than commonly used in current practice. The second is consideration be given to

using both first-stage choice and second-stage RTs to attain higher stability. Until now, most if

not all decision models in the goal-directed literature use choice data, disregarding the time an

agent takes to commit to that choice. Decision models that account for a combination of

choice and RT (e.g., evidence accumulation models) might prove more reliable than models

that rely on choice alone. Finally, where possible, the use of repeated measures indicating a

latent model-based factor should be much preferred.

Given the noisy estimates for model-based behaviour, this raises questions concerning posi-

tive findings already reported (see introduction). Our findings would suggest that past studies

underestimate the true effect of different contributions to choice behaviour. An example here

is the small effect sizes found in studies that compare clinical and healthy participants [13,29].

While some studies report MB I & II [4,29,30], we suggest that use of a combination of these

two scores in both model-agnostic and computational analyses should increase reliability of

model-based estimates, allowing for better assessment of effect-sizes and boosting replicability.

In conclusion, a conceptual distinction between model-based vs. model-free processes in

behaviour control has fostered a rich and growing literature. However, we highlight potential

reliability issues that can be addressed by relatively simple measures, such as increasing the

number of trials and by applying modelling to both choice and RTs. One goal of computa-

tional neuroscience is to assess cognitive processes at a single subject level. For example, pre-

dicting/explaining clinical symptoms based on computational/neurological cognitive

estimates to eventually inform clinical decisions [54,55]. This requires provision of stable and

reliable estimates and our study highlights ways this can be advanced.
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Limitations

Two limitations need to be considered. First, test-retest stability might suffer from the fact

that, in our study, at the second measurement participants had more experience with the task.

This can either reduce re-test stability (both measurements are not measuring exactly the same

thing) and/or might increase the apparent reliability of the second measurement, as more

experience in the task can lead participants to behave more consistently. Our analysis cannot

differentiate between those aspects. Second, our data were obtained from an adolescent and

young adult population and the study findings cannot be generalised outside the type of popu-

lation we investigated.

Materials and methods

Ethics statement

The study was carried out in accordance with the Declaration of Helsinki and Good Clinical

Practice guidelines. Ethical approval was granted by Cambridge Central Research Ethics Com-

mittee (12/EE/0250).

Participants

Data was obtained from the Neuroscience in Psychiatry Network’s (NSPN) study [28]. This is

a community-based longitudinal sample of young volunteers (age 14–24 years), living in Cam-

bridgeshire and London regions, UK. The study was designed to measure developmental

change. Participants were recruited by invitation sent to local general practitioners (GP),

adverts in the community, schools and further education colleges. Written informed consent

was given by the participants aged 16–24 years, those aged 14–15 years gave written informed

assent and their parents/legal guardian provided written informed consent. Participants were

recruited in an age- sex-stratified sample, for the following five age groups: 14–15, 16–17, 18–

19, 20–21, and 22–24 years. Participants were invited to take part in detailed behavioural

assessments including computer-based evaluations, clinical assessments and IQ measures,

during three time points (N = 819, N = 63, N = 571). Only participants that had completed the

measurement of interest (two-stage task) were included in the current analysis. In order not to

reduce the sample-size substantially (owing to lower sample-size at the second time point) we

used data only from the first and third time-points (henceforth, baseline and follow-up). How-

ever we report a subset of our analysis with the second time-point in S1 Text. Our final dataset

included 554 subjects (274 males, 280 females) in two time points: baseline (mean age = 18.85,

range 14.1 to 24.98) and follow-up (mean age = 20.33, range 15.11 to 26.48). Further details

about recruitment, participants consent, and ethical approval can be found at Kiddle et al.,

(2018) [28] (Note that the Kiddle et al., study was reported before data collection was com-

pleted, and has a slightly lower amount of participants included. The current analysis is based

on data collected up until March 2018. To the best of our knowledge, no more participants

were tested after that date).

Procedure

For both measurements (baseline and follow-up) participants were invited to a lab session in

one of the UK’s collaborating institutions [28]. The mean time gap between the two measure-

ments was 17.75 months (range 11.76 to 31.44 month). At each measurement session partici-

pants completed computer-based cognitive evaluations, clinical assessments and IQ measures.

At the end of the assessment day, participants were paid a fixed amount plus a bonus based on
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performance. For the purpose of this study we focus on analysing data obtained from the two-

stage task.

Two-stage decision task

The task was the same as the one developed by Daw at el., (2011) [18], and is described in Fig

1. Participants are instructed to win as many rewards (play pounds) as possible, and were told

also that they would receive a payment bonus based on overall task performance. At each of

the stages, subjects select one of two stimuli within 2 seconds. The inter-trial interval was ran-

domly selected from a uniformed distribution ranging from 1 to 2 seconds. The task included

121 trials at baseline and 201 trials at follow-up (a shorter version in baseline was given due to

time constraints, and increased to 201 to match Daw et al., 2011). A short break was provided

after half of the trials were completed.

Participant exclusion and pre-processing

We included participants that had a completed data set for both baseline and follow-up

(N = 569). We excluded participants that responded in the two-stage task with the same key

on more than 95% of the trials (two participants), or had implausible RTs (below 150ms) on

more than 10% of the trials (13 participants; Gillan et al., 2016). This resulted in the inclusion

of a total of 554 participants in our full analyses. For the remaining two-stage task data, the

first trial in each block, as well as trials with implausible RTs (below 150ms) were omitted from

the analysis (1% of the overall trials).

Parameter recovery

To perform parameter recovery analysis we randomly selected parameters values for 100

agents from uniform distribution with ranges set to α[0,1], β[1,8], λ[0,1], w[0,1], p[0,.5], b1/

2[1,10], a1/2[1,3], τ1/2[.01,.5]. Parameters were extracted individually for each agent by optimiz-

ing a log-likelihood function with a genetic algorithm ‘GA’ optimization method in in Matlab,

using a population size of 200 and a maximum iteration of 400.

Model-fitting routines

Individual fit was obtained by using a genetic algorithm ‘GA’ optimization method with a pop-

ulation size of 200 and maximum iteration of 400, followed by fminunc optimisation using

Matlab, separately for each individual data set. This was repeated five times for each individual,

each round with different starting points. To obtain hierarchical fit we used expectation-maxi-

misation with Laplace approximation method[56]. In this approach, individual-participant

parameters are treated as independent random effects sampled from Gaussian-population dis-

tributions (one distribution per parameter), whose means and variances are estimated. To

examine how well the model predicted participants’ RTs, we compared simulated and

observed RT histograms, and found a good match (see S4 Fig, see also S5 and S6 Figs for

model predictions and empirical behaviour as a function of value discriminability).

MB-I(choice) and MB-II(RT) scores were obtained separately for each time. Individual scores

were the descriptive individual mean differences described in Eqs 11 and 13. That is, for MB-I(-

choice) we coded a Stay variable (0 for switch, 1 for stay), and calculated the mean(Stay) for each

of the four conditions in Eqs 9 and 10 (the previous trial was with common/uncommon transi-

tion, rewarded or unrewarded). MB-II(RT) was the difference in mean RT2 for uncommon vs.

common trials (Eq 13). We also obtained individual scores that were based on group priors

(Hierarchical scores, Eqs 12 and 14). For MB-I(choice) we calculated a logistic regression using
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‘lmer’ R package, with a Laplace approximation and bound optimization by quadratic approxi-

mation (BOBQA). Variables coding was done similar to previous studies, with Transition

coded as -1 or 1 for uncommon/common transitions, and Reward as -1/1 for unrewarded /

rewarded trials[4,13,49]. The logistic regression included fixed effects and random effects for

the full factorial design where Stay is predicted by intercept, previous transition, previous

reward and their interaction. The random effects for the transition x reward interaction was

then used as MB-I(choice). For MB-II(RT) we fitted a mixed effect linear regression using the

same R package, predicting RT2. The linear regression included fixed and random effect for

the intercept and transition effects. Slope random effect for the transition effect was used for

MB-II(RT) scores.

Structural equation modeling

Temporal stability analysis was performed twice, once by clamping each score and once with-

out clamping. That is, instead of estimating separate parameters for the loading of each MB

score on the latent factor, we also tested model fit when ‘clamping’ the parameters so that each

MB score has the same loading for both time-measurements. The model with clamping

showed slightly better fit to the data (RMSE = .087, BIC = 139.24) compared to the one without

clamping (RMSE = .126, BIC = 144.96), and was therefore used in this analysis.

Data availability

Open-Science Framework (OSF) project including: (1) a Matlab code for simulating RL and

DDM-RL models (2) a .csv data file with empirical observations (fully anonymized) and (3) an

R code that generates the internal consistency plots for both MB scores (choice & RT), and for

simulated and observed data, can be found here: https://osf.io/zc24g/?view_only=

d7f00134186c411986cc4de46b38edc5

Supporting information

S1 Text. Temporal stability analysis with a shorter time-gap (6-month).

(DOCX)

S2 Text. List of Members of the NSPN consortium.

(PDF)

S1 Table. Internal and temporal reliability scores for mean stay probability, main effect of

reward and main effect of transition on stay probability for first-stage choices.

(DOCX)

S2 Table. Descriptive statistics for RL and DDM-RL hierarchical model parameters.

(DOCX)

S3 Table. Temporal stability estimates for hierarchical model parameters.

(DOCX)

S1 Fig. Predictions regarding the interaction effect of previous transition and reward on the

probability that a learner will repeat the choice at the first stage (pStay) for a model-free (panel

A) and model-based (panel B) learners. A model-free learner is assumed to be influenced by

previous reward alone (if the previous trial was rewarded, the model-free learner is more likely

to make the same choice at the first stage). For a pure model-based agent, previous reward

should have the same effect in common transitions. However, in uncommon transitions, the

chances of repeating the first stage choice is reduced when the previous trial was rewarded.
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MB-I(choice) is the interaction which is zero for a pure model-free and positive for a model-

based learner.

(TIF)

S2 Fig. Histograms for baseline and follow-up measurements for both hierarchical MB

scores. (A) MB-I(choice), indicated the interaction score for the effect of previous reward and

transition on the probability of sticking with the same first stage choice. (B) MB-II(RT) indi-

cated the differences in second stage RTs between uncommon and common trials. Positive val-

ues for both scores were assumed to indicate a higher involvement of model-based processing.

The histograms suggest most of the population tend to show positive value in both scores.

(TIF)

S3 Fig. Test-retest reliability for MB latent factor. In this model, each MB latent factor is pre-

dicting two observed MB scores (MB-I & II), separately for baseline (left side) and follow-up

(right side). Estimates represent standardized beta coefficients. ���p< .001.

(TIF)

S4 Fig. Q-Q plots for simulated vs. empirical RTs. To assess the ability of the DDM-RL to

predict participants RTs, we calculated for each empirical RT2 distribution at baseline/follow-

up nine RT percentiles (.1 to .9). We then simulated for each individual 50 experiments with

1000 trials each, based on the fitted parameters, and calculated RT percentiles from simulated

data. The plot suggests a good match between empirical and predicted RTs as can be seen by a

linear trend between the empirical vs. simulated percentiles (with a tendency of the model to

overestimate long RTs). Each color representing a different individual.

(TIF)

S5 Fig. Model predictions and empirical behaviour for the task’s second-stage, as a func-

tion of value discriminability. Here, we simulated for each participants Q-values using the

individual’s parameters (hierarchical RL-DDM) and the sequence of events the individual

experienced (i.e., rewards and transitions during performance). For each trial we calculated

ΔQ-value (maximum-minimum), and averaged model predictions for choices and RTs (based

on simulations of 100 decisions per trial). Therefore, for each trial we obtained empirical

choices and RTs taken form participants behaviour as well as averaged choices and RTs simu-

lated by the model, based on the trial-by-trial Q-values. Trials were then binned into five bins

according to ΔQ-value of 0 to .2, .2 to .4, .4 to .6, .6 to .8 or .8 to 1 (represented in the x-axis

across all plots). Results are presented separately for model-free and model-based participants

(grouped by means of median split over the w-parameter estimates). (A/B) Probability of

selecting the bandit with the higher Q-value, as a function of value discriminability (difference

between high and low Q-value bandit). (C/D) Mean reaction-times as a function of value

discriminability. Overall, these plots present a good fit between model prediction and partici-

pants’ behaviour, with no visual difference between model-based and model-free behaviour.

Error bars for empirical data represent standard error.

(TIF)

S6 Fig. Model predictions and empirical behaviour for the task’s second-stage RT quan-

tiles, as a function of value discriminability. For each trial we obtained empirical choices and

RTs taken form participants behaviour as well as averaged choices and RTs simulated by the

model, based on the calculated trial-by-trial Q-values (see S5 Fig caption for further details).

Trials were binned into five bins according to ΔQ-value of 0 to .2, .2 to .4, .4 to .6, .6 to .8 or .8

to 1 (represented in the x-axis across all plots). We then further binned for each individual RTs

into five bins, separately for each ΔQ-value bin (total of 25 bins pre individual). We then
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calculated the mean RT (in seconds) for each of the 25 bins separately for model-free and

model-based participants (group by means of median split over the w-parameter estimates).

(A/B) Observed second-stage RTs as a function for model-free and model-based individuals.

(C/D) Model predictions for model-free and model-based individuals. Overall, we did not find

any differences between model-free and model-based individuals in terms of how good the

model predicted RTs. This is despite a slight tendency of the model to predict quicker RTs for

the last bin, and slower RTs for the fast bin. Error bars for empirical data represent standard

error.

(TIF)
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