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Abstract
In political economy, the seminal contribution of the Baron-Ferejohn bargaining

model constitutes an important milestone for the study of legislative policy-making.
In this paper, we analyze a particular equilibrium characteristic of this model, equilib-
rium uniqueness. The Baron-Ferejohn model yields a class of payo¤-unique stationary
subgame perfect equilibria (SSPE) in which players� equilibrium strategies are not
uniquely determined. We �rst provide a formal proof of the multiplicity of equilibrium
strategies. This also enables us to establish some important properties of SSPE. We
then introduce veto players into the original Baron-Ferejohn model. We state the con-
ditions under which the new model has a unique SSPE not only in terms of payo¤s but
also in terms of players�equilibrium strategies.
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1 Introduction

Institutional procedures play a vital role in legislative decision-making. In this regard, the

Baron-Ferejohn (1989) closed-rule divide-the-dollar game is one of the most widely used

legislative bargaining models to study distributive politics and government policy-making.1

It has some methodological advantages over the models used in social choice theory. For

instance, since it utilizes non-cooperative game theory, equilibrium existence is guaranteed

even if the core is empty. In fact, in the game we analyze here, where a �xed surplus is

divided under majority rule, the core is indeed empty. This feature of the Baron-Ferejohn

model makes it very convenient to study various institutional aspects of political economy.

We believe that it is important to know as much as possible about a workhorse model like

Baron and Ferejohn�s. In this study, we focus on a particular feature of this model, namely

the multiplicity of equilibrium strategies. Baron and Ferejohn (1989) show that any outcome

(meaning any division of the dollar) can be supported as a subgame perfect equilibrium (SPE)

using in�nitely nested punishment strategies as long as there are at least �ve players and the

discount factor is su¢ ciently high. They then restrict attention to stationary subgame perfect

equilibria (SSPE) in which the continuation payo¤s for all structurally equivalent subgames

are identical. This restriction allows them to obtain a unique payo¤-equivalent equilibrium.2

However, even with SSPE, equilibrium strategies cannot be uniquely determined.

The key elements of this multiplicity problem can be highlighted with the following

example. Consider a country with a parliamentary system that needs to select its new

government with majority rule. None of the political parties can achieve a majority on

its own, and therefore, they need to form a coalition government.3 Now suppose the head

of state appoints a random party the right to form a coalition.4 If we adapt the Baron-

1See Snyder, Ting and Ansolabehere (2005) and the references therein for further examples (especially
footnote 6 on page 5). In addition, see Bowen (2014) and Celik, Karabay and McLaren (2013) for its recent
use in trade policy.

2Eraslan (2002) proves uniqueness in SSPE payo¤s.
3Countries generally di¤er in procedures they follow in designing inter-party bargaining over a new gov-

ernment (see Diermeier and van Roozendaal, 1998).
4The selection of a formateur also di¤ers from one country to another. In some countries it is the head

of states (a monarch or an elected president) who appoints the formateur, in others it is an informateur (a
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Ferejohn model to this example, it predicts that the proposer will form a minimum winning

coalition, that the �rst proposal will be accepted, and that the set of equilibrium payo¤s for

the parties involved can be uniquely calculated. However, it does not tell us the composition

of the winning coalition. In fact, there are multiple mixed strategy equilibria each of which

involves a di¤erent set of parties as coalition partners selected with di¤erent probabilities.5

The multiplicity of SSPE arises from the �exibility to choose the randomization probabilities

with which proposers select coalition members. It is possible to show the multiplicity of

equilibrium strategies via examples. One case in hand is provided in footnote 16 of Baron

and Ferejohn (1989). However, no formal proof has been provided. In that paper as well as

the ones that follow, the main emphasis is on equilibrium payo¤s. Our aim in providing a

formal proof is to shift the focus to equilibrium strategies.

In this paper, we �rst provide a formal proof of the multiplicity of equilibrium strategies

for a general n-player symmetric Baron-Ferejohn game (Proposition 1).6 This proof, while

useful on its own, also enables us to establish three important properties that SSPE must

satisfy (Lemmas 1-3). We believe these are very useful results for any applied theorist using

the Baron-Ferejohn model. We also provide, for expositional purposes, an example with

three players that highlights some of the properties and restrictions SSPE have to satisfy.

One of the reasons the original Baron-Ferejohn game allows a very large set of mixed

strategy SSPE is the ex ante symmetry of the players. Important asymmetries may create

incentives for players to choose some of the coalition members with pure strategies. One

example is when some of the players have veto power. Veto players are decision-makers

whose agreement is required to adopt a new policy. Since every elected proposer must

make each veto player a member of the winning coalition, the set of equilibrium strategies

substantially shrinks when there are veto players. In Section 3 of our paper, we investigate

the e¤ects of introducing veto players on equilibrium multiplicity in the Baron-Ferejohn

model. We provide the conditions under which the game has a unique SSPE in terms of not

senior, experienced, �elder statesman�).
5The formation of coalition governments can be quite uncertain with respect to which party will be

included in the coalition (see Müller and Strøm, 2000; and Laver and Scho�eld, 1998).
6A similar exercise for the open-rule version of the Baron-Ferejohn game is done by Primo (2007).
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only payo¤s but also players�equilibrium strategies. Agents with veto power exist and play

an important role in decision-making processes. In this respect, we believe that analyzing the

e¤ect of veto players on equilibrium characteristics of the Baron-Ferejohn model is valuable.

Throughout the analysis, we use the coalition government example we introduced above to

highlight our results. All formal proofs for the general n-player game are relegated to the

appendix.

2 The Baron-Ferejohn game

A q-quota rule symmetric Baron-Ferejohn game is an in�nite-horizon sequential multilateral

bargaining game with the following structure. Let N = f1; 2; :::; ng denote the set of players

(n > 3 and odd). At the beginning of the game, one of the n players is randomly selected
(equivalently, recognized) with equal probability 1

n
to make a proposal for the division of $1.

Let X = fx 2 Rn+ : xi > 0 and
nP
i=1

xi � 1g denote the set of feasible allocations, where xi is

the share player i receives. In addition, denote ui as the utility of player i and assume that

utility is linear in money such that ui = xi, 8i.

Once a proposal is made, each player simultaneously votes and if the proposal x 2 X

receives q votes, 1 < q < n, it is accepted and the game ends.7 Otherwise, the game proceeds

to the next period in which another player (possibly the same) is randomly selected to make

a proposal. This process continues until an agreement is reached. If no agreement is ever

reached, each player receives a zero payo¤. When voting on a proposal, players compare their

current payo¤ with the alternative of continuing to the next period.8 All players discount

the future at a common rate of � � 1.

We are now ready to describe the solution concept. Let Ht be the history of the game

that contains identity of the proposers, proposals that have been put forward and actions

taken up to period t. A feasible action ait (Ht) for player i in period t can be described as

follows
7When the voting rule is unanimous, i.e., when q = n, the Baron-Ferejohn game has a unique SSPE.

Since this is obvious, we assume q < n for the rest of the analysis.
8To eliminate unreasonable equilibria, weakly dominated strategies are ruled out.
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ait (Ht) 2
�
X and faccept; rejectg

faccept; rejectg
if player i is the proposer,

otherwise.

A strategy si for player i is a sequence of actions fait (Ht)g1t=1, and a strategy pro�le s

is an n-tuple of strategies (s1; s2; :::; sn), one for each player. We restrict our attention to

stationary subgame perfect equilibria (SSPE). A strategy pro�le s is subgame perfect if and

only if unilateral deviations from s at a single stage are not bene�cial (it satis�es one-stage

deviation condition, see p.110 in Fudenberg and Tirole) and is stationary if it is time and

history independent. A strategy pro�le is stationary subgame perfect if it is stationary and

subgame perfect. Intuitively, in a stationary equilibrium, a player who is recognized to make

a proposal in any two di¤erent periods behaves the same way in both sessions (in the case of a

mixed-strategy equilibrium, this generally means choosing the same probability distribution

over o¤ers).9

In the following theorem, we rephrase Theorem 1 of Eraslan (2002), which characterizes

the set of SSPE.

Theorem 1 Let player i 2 N denote the proposer and xij represent the share she allocates

to the jth player. Then, the set of SSPE can be described as follows:

ai =
�
xii; x

i
j

�
2 X with probability gi( i),

aj = accept i¤ xij > �Vj for all j 6= i,

where

xii = 1�
nP
j 6=i
�Vj 

ij,

xij = �Vj 
ij, for all j 6= i,

where Vj represents the equilibrium continuation payo¤ of player j and is given by

Vj =
1

n

 
1�

nP
k 6=j
�Vk

P
 j2Cj

 jkgj( j) +
nP
k 6=j
�Vj

P
 k2Ck

 kjgk( k)

!
. (1)

9Baron and Kalai (1993) argue that stationarity is an attractive restriction since it is the �simplest�
equilibrium such that it requires the fewest computations by agents.
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In the above expressions,  i = ( i1; :::;  ii�1;  ii+1; :::;  in)0 2 Ci is an (n� 1)-dimensional

vector (excluding  ii) of ones and zeros, gi( i) is the probability distribution of coalitions

that player i can form and Ci is the set of (n�1)-dimensional vectors that solve the following

program:

min
(�ij)j 6=i

nP
j 6=i
�ij�Vj, subject to

nP
j 6=i
�ij = q � 1 and

�ij 2 f0; 1g .

Proof. The proof is provided in Eraslan (2002) and thus omitted.

Notice that in an SSPE, a proposer makes an allocation of $1 such that it will be accepted

by exactly q � 1 other players besides herself since she wants to maximize her own share of

the dollar. In other words, she o¤ers a positive share to only q � 1 other players, thereby

forming a minimum winning coalition. As a result, we can interpret those players who receive

a positive share as coalition partners. To formalize this idea, consider the following. For

any i 6= j, let pij represent the probability that ith player, as a proposer, gives jth player its

discounted continuation payo¤

pij =
P

 i2Ci
 ijgi( i). (2)

In other words, pij represents the probability that player i includes player j in the winning

coalition.10 Given the randomization probabilities pij, it is possible rewrite equation (1) as

Vj =
1

n

 
1�

nP
k 6=j
pjk�Vk +

nP
k 6=j
pkj�Vj

!
(3)

10An example may be helpful. Consider a 5-player game with q = 3, and assume that player 1 is the
proposer. There are 6 possible coalitions that player 1 may form:  11 = (1; 1; 0; 0),  12 = (1; 0; 1; 0),  13 =
(1; 0; 0; 1),  14 = (0; 1; 1; 0),  15 = (0; 1; 0; 1) and  16 = (0; 0; 1; 1) with corresponding probabilities g1i for

i = 1; :::; 6 and
6X
i=1

g1i = 1. Hence, we have: p
12 = g11 + g12 + g13 , p

13 = g11 + g14 + g15 , p
14 = g12 + g14 + g16 and

p15 = g13 + g
1
5 + g

1
6 .
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Thus, �Vj denotes the payo¤ the jth player expects to get if she votes no to the current

proposal, and the bargaining is carried over to the next period. We establish a useful

property of continuation payo¤s in our �rst lemma.

Lemma 1
nP
j=1

Vj = 1, where Vj is as given in equation (1).

Proof. See the Appendix.

In other words, the equilibrium continuation payo¤s of the players must add up to the

total size of the surplus to be shared. As a result, Lemma 1 makes clear that there is no

waste. Moreover, given the symmetry of the players, we can state our second lemma.

Lemma 2 Given that all players are symmetric, their equilibrium continuation payo¤s must

be equal, i.e., V1 = V2 = ::: = Vn =
1
n
.

Proof. See the Appendix.

Therefore, as long as there is symmetry among players, each player�s expected share is

equal. In the next lemma, we show that the equilibrium strategies are balanced (see Baron

and Kalai, 1993); i.e., all players have an equal probability of being included in minimum

winning coalitions when added up over all proposing players.

Lemma 3 In every SSPE, the probability that player j is included in a winning coalition is

given by 1
n
(1 +

nP
i6=j
pij) = q

n
. In other words, SSPE strategies are balanced.

Proof. See the Appendix.

Given Lemmas 1-3, we can state our �rst main result.

Proposition 1 The set of randomization probabilities fpijg in a q-quota rule symmetric

Baron-Ferejohn game is not singleton.
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Proof. See the Appendix.

One solution to the symmetric Baron-Ferejohn game, for instance, has all players choosing

each possible minimum winning coalition with an equal probability (this in turn implies that

pij = q�1
n�1). Another solution involves, if we imagine players placed around a circle, each

player choosing the q � 1 players on her right with pure strategy.

To make the exposition clear and highlight some of the above results, focus on a 3-player

game with q = 2 (i.e., three-player simple majority rule game). Recall the example we

considered in the introduction about a country with a parliamentary system. Assume now

that there are three political parties (players) with equal number of seats in the parliament

(thus no party has majority control). A coalition government needs to be formed and assume

that in accordance with the number of seats they hold, each party has an equal chance to

be the formateur.11 To form a coalition government, the formateur party needs one other

party�s support and assume that in accordance with Riker�s size principle (Riker, 1962), only

minimum winning coalitions are formed, i.e., all-party coalitions do not occur.

Using equation (3), the continuation payo¤ of each party can be written as

V1 =
1
3
[(1� p12�V2 � p13�V3) + (p

21 + p31) �V1] ,

V2 =
1
3
[(1� p21�V1 � p23�V3) + (p

12 + p32) �V2] ,

V3 =
1
3
[(1� p31�V1 � p32�V2) + (p

13 + p23) �V3] .

(4)

In light of Lemma 2, we have V1 = V2 = V3 =
1
3
. Therefore, equations in (4) become

p12 + p13 = p21 + p31,

p21 + p23 = p12 + p32,

p31 + p32 = p13 + p23.

(5)

11One key uncertainty about coalition government formation can be the designation of a formateur. Dier-
meier and Merlo (2004) analyze formateur selection process for 11 parliamentary democracies over the period
1945-1997. They conclude that the data supports the proportional selection, where formateurs are selected
randomly proportional to the distribution of seat shares in the parliament as suggested by Baron-Ferejohn
model.
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Furthermore, given that each proposer needs one other vote to obtain majority support,

we must have

p12 + p13 = p21 + p23 = p31 + p32 = 1. (6)

Equations (5) and (6) imply that p12 = p23 = p31.12 As a result, randomization probabilities

are not uniquely determined. Put another way, the probabilities that a given party will

be chosen as a coalition partner are not unique. However, this is not to say that any

con�guration of randomization probabilities is consistent with SSPE behavior. In particular,

in this 3-player example, if the 1st player elects the 2nd player k% of the time in a given SSPE,

then the 2nd player must be electing the 3rd player, and the 3rd player must be electing the

1st player k% of the time as well (where the choice of k is unrestricted, k 2 [0; 100]).

3 Baron-Ferejohn game with veto players

There is a large literature on veto players in political science (for examples, see Tsebelis,

2002). Most of the work in this literature analyzes the relationship between policy stability

and veto players, i.e., how policy stability is a¤ected by the number and ideological di¤er-

ences of veto players. According to Tsebelis (2002, p.34), all political institutions including

parliaments, party systems, regime types can be translated into veto player framework. In

this sense, veto players play an important role in policy-making. In general, we can speak

of two types of veto players: individual (the U.S. president, permanent members of the U.N.

security council) or collective (the House and the Senate in the U.S.). Individual veto players

can block the adoption of a new policy unilaterally whereas collective veto players can block

the new policy if all of them agree to do so. For example, each permanent member of the

U.N. Security Council can unilaterally prevent adoption of a proposal, even if it has received

the required number of votes. Over the history of the U.N., the veto has been used many

times. In fact, not only its use but also the possibility of its use can a¤ect U.N. actions (for

example, the veto threat by France for the second U.N. Security Council resolution on Iraq).

12This can also be seen from combining equation (5) with Lemma 3.
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In the context of Baron-Ferejohn framework, there are other papers that employ veto

power. Winter (1996) examines the change in veto players�power (payo¤s) with respect to

a change in (i) the negotiation length (deadline) and (ii) the number of non-veto players.

Primo (2006) studies spending limits and executive veto authority, and shows that while

imposing a cap on spending is welfare improving, the e¤ect of a veto on spending depends

on the presence of a cap as well as the ideology of the executive. Nunnari (2012) analyzes

the e¤ect of veto power in a game with an endogenous status quo policy. In his model,

unlike the original Baron-Ferejohn model, when a proposal is accepted the game does not

end, rather a new committee member is randomly recognized to propose a new division of

the dollar. He shows the existence of Markow equilibrium of this game and �nds that the

policy eventually converges to the one where the veto player obtains the whole dollar. Celik,

Karabay and McLaren (2015) examine the e¤ect of veto power in the context of trade-policy

determination. However, none of these papers focus on the relationship between the existence

of veto players and multiplicity of equilibrium strategies.

Our paper is also close in spirit to McCarty (2000a) and (2000b). Those papers, as in

ours, also indicate that the existence of veto power ties down the set of equilibrium strategies.

However, there are a few di¤erences between our paper and his papers. First and foremost,

unlike ours, his focus is not on the multiplicity of equilibrium strategies. McCarty (2000a)

analyzes the e¤ect of executive veto on legislative spending, whereas McCarty (2000b) dis-

tinguishes between veto and proposal power. Second, we only consider absolute veto power,

meaning that it is not possible to override a veto. As a result, the equilibrium coalition size is

not di¤erent from the no-veto case as long as the number of veto players does not exceed the

quota rule. In contrast, in McCarty (2000a) and (2000b), the existence of veto players often

causes larger coalitions to form in equilibrium and the size of the coalition depends on the

override rule. Our treatment of veto players can be considered as a special case of his papers

with absolute veto power. We have followed this approach since our focus is speci�cally on

the equilibrium multiplicity rather than the general e¤ects of veto players, such as coalition

size, payo¤s, etc.
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There are applications of veto players in other venues, too. Consider, for example, an

indivisible asset to be traded. Assume that this asset is jointly owned by r individuals

(sellers) and that there are n � r potential buyers, where 1 � r < n. Assume also that

the sale of this asset will create surplus for both sides but how this surplus will be shared

depends on the relative position of the sellers and buyers. In this example, the quota rule is

r+1 and there are r veto players since the asset cannot be sold unless all of the sellers agree

to it. As can be seen from these examples, veto power and veto players are quite relevant

and vital part of any decision-making.

Our focus is the e¤ect of veto players on a speci�c equilibrium characteristic of the

Baron-Ferejohn game, equilibrium uniqueness. Let us describe the new game in more detail.

Consider an n-player, q-quota rule symmetric Baron-Ferejohn game with r veto players such

that 1 � r < q < n.13 The set of SSPE for this modi�ed game can be described as in

Theorem 1. The only di¤erence is that in the minimization problem, there is an extra

constraint such that �ij = 1 if j is a veto player. In other words, any proposer must include

all veto players in the winning coalition, so pij = 1 for any j who is a veto player. Now,

consider the following lemma which is a modi�ed version of Lemma 2.

Lemma 4 The equilibrium continuation payo¤ of all veto players is the same, V veto
i =

V veto
j = ::: = V veto. Moreover, the equilibrium continuation payo¤ of all non-veto players

is the same and strictly smaller than the equilibrium continuation payo¤ of veto players,

Vi = Vj = ::: = V < V veto.

Proof. See the Appendix.

We can categorize players into two groups, veto and non-veto. Lemma 4 establishes that

the continuation payo¤s are identical within each group, and that the continuation payo¤ of

veto players is strictly larger than that of non-veto players. The next lemma provides the

necessary condition for equilibrium uniqueness.

13If r > q, then only veto players are included in any winning coalition and the problem becomes trivial
since there is no need to choose any coalition partners. Of course, there is no multiplicity of SSPE in this
case. Hence, to make the problem interesting, we assume r < q.
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Lemma 5 In a q-quota rule Baron-Ferejohn game with n players, all of whom have equal

recognition probabilities and r of whom have veto power, a necessary condition to obtain a

unique SSPE (not only in terms of payo¤s but also in terms of players�equilibrium strategies)

is to have r = q � 1.

Proof. See the Appendix.

We are now ready to state our second main result.

Proposition 2 A q-quota rule Baron-Ferejohn game with n players, all of whom have equal

recognition probabilities and r of whom have veto power, has a unique SSPE (not only in

terms of payo¤s but also in terms of players�equilibrium strategies) if and only if q = 2 and

r = 1.

Proof. See the Appendix.

Thus, when an agreement requires only two players�consent (q = 2), the existence of a

single veto player gives us a unique solution not only in terms of payo¤s but also in terms of

strategies. This result is valid for any n > 3. In the context of the asset example mentioned
earlier, if the asset is owned by a single seller who faces many potential buyers, then the

resulting SSPE will be unique. This is true since the sale of the asset requires the consent

of the seller and one of the potential buyers.

To highlight this result, we continue to use the coalition government example we consid-

ered before but this time we assume that one of the three parties has veto power, say party

1. One way to motivate this is the presence of strong ideological di¤erences between parties.

Assume that there are three parties with equal seats and also assume that two of these

parties would not form a coalition with each other due to opposing ideological views.14 This

14For example, after the recent elections of June 2015 in Turkey, Nationalist Movement Party (Turk-
ish: Milliyetci Hareket Partisi (MHP)) announced that it will not be involved in any coalition gov-
ernment that includes People�s Democratic Party (Turkish: Halklar¬n Demokratik Partisi (HDP)); see
http://www.hurriyet.com.tr/gundem/29306673.asp.
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makes the remaining third party the veto player, which can form a coalition with others.15

In addition, we continue to assume that only minimum winning coalitions occur.

Using equation (3) and noting that p21 = p31 = 1, the continuation payo¤ of each party

can be written as

V veto
1 =

1

3

�
1� p12�V2 � p13�V3

�
+
2

3
�V veto

1 , (7)

V2 =
1

3

�
1� �V veto

1

�
+
1

3
p12�V2, (8)

V3 =
1

3

�
1� �V veto

1

�
+
1

3
p13�V3. (9)

Using Lemma 4, we have V veto
1 > V2 = V3. Given that V2 = V3, equations (8) and (9)

necessarily imply

p12 = p13. (10)

Equations (10) and (6) imply p12 = p13 = 1
2
. Moreover, solving equations (7), (8) and (9),

we obtain

V veto
1 =

2� �

6� 5� and V2 = V3 =
2(1� �)

6� 5� .

A straightforward comparison establishes that V veto
1 > V2 = V3.

Recall that the standard Baron-Ferejohn game does not generate a unique SSPE due to

the multiplicity of equilibrium strategies, i.e., multiplicity of the randomization probabilities

pij.16 In this new game with one of parties having veto power, we reach a unique SSPE also

in terms of equilibrium strategies since both p12 and p13 are uniquely determined.

15Other examples outside the coalition government context prevail as well. One such example is the
amendment of Canadian Constitution, which is provided in Winter (1996). The British Parliament had the
veto authority to overturn any proposal for the amendment of Canadian Constitution between the years
1867 and 1982. This veto power was changed in 1982 with another rule which required that the proposal for
amendment must be supported at least two-thirds of the provinces in Canada and also that the supporting
provinces must have 50% of the population. At that time, Ontario and Quebec together had more than 50%
of the population. That means they together had a veto power without constituting a winning coalition.
Another example is from �nance, called "golden share". Golden share grants minority shareholders veto
rights on certain issues in shareholders�meetings.
16Note that in the standard Baron-Ferejohn game, continuation values are uniquely determined.
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When q = 2 and r = 1, each non-veto player is bound to choose the only veto player as

a coalition partner with pure strategy. Moreover, since we need that non-veto players have

equal continuation payo¤s in any SSPE, the veto player, as a proposer, must equally ran-

domize between the non-veto players. From the results obtained in the proof of Proposition

2, we can state the following.

Remark When q > 2, the minimum number of veto players required to obtain a unique

SSPE (not only in terms of payo¤s but also in terms of players� equilibrium strategies) is

n� 1, which is not viable given that r < q < n.

Thus, when q > 2 there are many SSPE that di¤er in terms of randomization strategies.

The underlying reason is similar to the one in the original Baron-Ferejohn model. We know

from Lemma 5 that a necessary condition to obtain equilibrium uniqueness is r = q � 1.

This automatically implies that for q > 2, we must have r > 1. But with two or more veto

players, there is a �exibility with the choice of the randomization probabilities with which

veto players select non-veto players as coalition partners. To see this, consider the following

example. Suppose n = 4, q = 3 and r = 2, and order players such that i = 1, 2 are veto

players and i = 3, 4 are non-veto players. Then, two possible SSPE (among others) are as

follows: (1) when proposer, player 1 chooses players 2 and 3 with pure strategy, player 2

chooses players 1 and 4 with pure strategy, player 3 as well as player 4 chooses players 1 and

2 with pure strategy; (2) when proposer, player 1 chooses player 2 with pure strategy and

randomizes equally between players 3 and 4, player 2 chooses player 1 with pure strategy

and randomizes equally between players 3 and 4, player 3 as well as player 4 chooses players

1 and 2 with pure strategy. Both of these are legitimate SSPE because each non-veto player

appears in a winning coalition with the same probability (i.e., strategies are balanced in

both).

Having veto players introduces an ad hoc constraint in the bargaining game that changes

the composition of randomization probabilities. Therefore, a one-to-one comparison between

the non-veto and the veto games in terms of equilibrium multiplicity is di¢ cult. One way to

13



examine the e¤ect of introducing veto players is to compare the number of equations with

the number of unknowns. Without any veto players, there are (n � 1)n unknowns (n � 1

possible randomizations for each of the n players) and 2n�1 linearly independent equations

(n � 1 equations implied by the construction of continuation payo¤s given in equation (3)

and n equations implied by the property of balanced strategies �please see the proofs of

Lemmas 2 and 3, and Proposition 1 for more details). With veto players, the number of

unknowns decreases to (n� 1)(n� r) when r < q� 1 (n� r� 1 possible randomizations for

each of the n� r non-veto players, plus n� r possible randomizations for each of the r veto

players) and to r(n� r) when r = q� 1 (n� r possible randomizations for each of the r veto

players). Similarly, the number of equations decreases to 2n� 1� r when r < q � 1 and to

n � 1 when r = q � 1 (again follows from the construction of continuation payo¤s and the

property of balanced strategies �please see the proofs of Lemmas 4 and 5, and Proposition

2 for more details).17

Another way to examine the e¤ect of introducing veto players is to see how it narrows

down the number of possible coalition formations. In a q-quota game with r veto players,

each veto player�s problem is to o¤er an acceptable payo¤ to each one of the remaining r� 1

veto players, and to an additional q�r players from the pool of n�r non-veto players. Hence,

the total number of possible coalitions that a veto player can form is (n�r)!
(q�r)!(n�q)! . Note that

this is the same number of coalitions that could be formed by each player in a (q � r + 1)-

quota game with n� r + 1 players and zero veto players. In contrast, if there were no veto

players, then the total number of possible coalitions for each player would be (n�1)!
(q�1)!(n�q)! .

Hence, introduction of veto power substantially lowers the number of possible coalitions

each veto player can form (except for when r = 1). Similarly, for each non-veto player as the

proposer, the main task is to decide which q�r�1 of the remaining non-veto players shall be

included in the winning coalition, besides all veto players. This would generate (n�r�1)!
(q�r�1)!(n�q)!

possible coalitions, which is the same number of coalitions as in a (q � r)-quota game with

n� r players and no veto players. And once again, compared with (n�1)!
(q�1)!(n�q)! , each non-veto

17The discontinuity at r = q � 1 is due to the fact that when r = q � 1, non-veto players have no choice
but form the winning coalition with veto players alone besides themselves.
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player has a substantially smaller number of possible winning coalitions to form.

4 Conclusion

This paper �rst presents a formal proof of the multiplicity of equilibrium strategies in the

original (symmetric) closed-rule Baron-Ferejohn game. In doing so, we also establish impor-

tant properties that stationary subgame perfect equilibria must satisfy. We then analyze a

new version of the game by introducing veto players. Agents with veto power exist and play

an important role in decision-making processes. We show that when the quota rule is 2, the

existence of a single veto player provides us with a unique equilibrium not only in terms of

payo¤s but also in terms of strategies. We highlight our results using a coalition government

example, where two of the three political parties needs to form an alliance to establish the

new government. We believe that these results will be of great interest to applied theorists

using the Baron-Ferejohn model.

Appendix

Proof of Lemma 1. This can be seen analytically by summing equation (1) over j

nP
j=1

Vj =
nP
j=1

1

n

 
1�

nP
k 6=j
pjk�Vk +

nP
k 6=j
pkj�Vj

!
,

Next, using equation (2), we obtain

nP
j=1

Vj =
nP
j=1

1

n

 
1�

nP
k 6=j
�Vk

P
 j2Cj

 jkgj( j) +
nP
k 6=j
�Vj

P
 k2Ck

 kjgk( k)

!
, or

nP
j=1

Vj =
nP
j=1

1

n
� 1

n

 
nP
j=1

nP
k 6=j
�Vk

P
 j2Cj

 jkgj( j)�
nP
j=1

nP
k 6=j
�Vj

P
 k2Ck

 kjgk( k)

!
Note that

nP
j=1

nP
k 6=j
�Vk

P
 j2Cj

 jkgj( j) =
nP
j=1

nP
k 6=j
�Vj

P
 k2Ck

 kjgk( k),

so we have
nP
j=1

Vj =
nP
j=1

1

n
= 1.
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Proof of Lemma 2. Consider an n-player game with q-quota rule, where 1 < q < n. In

this game, in any winning coalition, there will be q players including the proposer. Without

loss of generality, order the continuation values such that V1 � V2 � ::: � Vn. First, suppose

that Vn�1 < Vn. By Lemma 1, this implies that Vn > 1
n
. Since player n has the highest

continuation value, she is in a winning coalition only when she is the proposer. This means

that Vn = 1
n
(1 �

n�1P
i=1

pni�Vi) � 1
n
, since Vi > 0 for all i, a contradiction. Hence, Vn�1 = Vn.

We can continue in the same fashion until we reach player q (in other words, the last one we

analyze is Vq < Vq+1 = ::: = Vn). This establishes that

Vq = Vq+1 = ::: = Vn. (11)

After that, we continue as follows. Assume that Vq�1 < Vq. This implies that V1 < 1
n
. In

this case, players 1, 2,... , q � 1 are always in the winning coalition and they will be o¤ered

a payo¤ of �V1, �V2; ::: �Vq�1 as a coalition partner. Thus, using equation (11), the �rst

player�s continuation payo¤ can be written as

V1 =
n� 1
n

�V1 +
1

n

 
1�

q�1P
j=2

�Vj � �Vq

!
. (12)

In addition, using Lemma 1 and equation (11), we obtain

q�1P
j=2

Vj = 1� V1 � (n� q + 1)Vq. (13)

Next, substituting equation (13) into equation (12), we get

V1 =
n� 1
n

�V1 +
1

n
(1� � (1� V1 � (n� q + 1)Vq)� �Vq) , or

V1 =
n� 1
n

�V1 +
1

n
�V1 +

1� �

n
+
n� q

n
�Vq,

Simplifying the above equation gives us

V1 =
1

n
+
n� q

n

�

1� �
Vq.

Since Vq > 0, this is a contradiction to the claim that V1 < 1
n
. Therefore, it must be the case

that Vq�1 = Vq. We can continue in the same fashion until we reach player 1 (meaning that

the last one to check is V1 < V2 = :::Vq). This establishes the result.
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Proof of Lemma 3. In a q-quota symmetric Baron-Ferejohn game, the probability that

player j is included in a wining coalition is given by 1
n
(1 +

nP
i6=j
pij). In what follows, we will

determine the value of
nP
i6=j
pij. Lemma 2 implies that each player is always o¤ered the same

share whenever she is in a winning coalition (except for when she is the proposer). Thus,

using Lemma 1, Lemma 2 and equation (3), we obtain

Vj =
1

n

 
1�

nP
i6=j
pji�Vi +

nP
i6=j
pij�Vj

!
, for all j = 1; 2; :::; n, or

1

n
=
1

n

 
1� �

1

n

nP
i6=j
pji + �

1

n

nP
i6=j
pij

!
,

which implies that
nP
i6=j
pij =

nP
i6=j
pji, for all i, j and i 6= j. (14)

Notice also that

nP
i6=j
pji =

nP
i6=j

P
 j2Cj

 jigj( j) =
P

 j2Cj

nP
i6=j
 jigj( j) =

P
 j2Cj

gj( j)
nP
i6=j
 ji. (15)

There is a total of (n�1)!
(q�1)!(n�q)! possible coalitions the i

th player may form when she is the

proposer. All of these possibilities occur with certain probabilities which add up to 1, i.e.,P
 j2Cj

gj( j) = 1. In addition, we know by de�nition that
nP
i6=j
 ji = q � 1 (see Theorem 1).

Hence, equation (15) becomes

nP
i6=j
pji = q � 1, for j = 1; :::; n.18 (16)

Using equation (14),
nP
i6=j
pij =

nP
i6=j
pji = q � 1, for j = 1; :::; n.

18Consider our previous example given in footnote 10, where n = 5, q = 3, and player 1 is the proposer.
Recall that: p12 = g11 + g

1
2 + g

1
3 , p

13 = g11 + g
1
4 + g

1
5 , p

14 = g12 + g
1
4 + g

1
6 and p

15 = g13 + g
1
5 + g

1
6 . This implies

that
5X
j=2

p1j = 2(g1 + g2 + g3 + g4 + g5 + g6) = 2.
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Hence,
1

n
(1 +

nP
i6=j
pij) =

1

n
(1 + q � 1) = q

n
.

Proof of Proposition 1. This result directly follows from Lemmas 1, 2 and 3. We already

know from Lemma 2 that Vi = 1
n
, 8i. Thus, what remains to be determined are n(n � 1)

randomization probabilities (n � 1 possible randomizations for each of the n players). We

have n � 1 linearly independent equations given by equation (14), and n equations given

by equation (16). Since n(n � 1) > 2n � 1 for any n > 3, the solution to randomization

probabilities is not unique.

Proof of Lemma 4. First, note that Lemma 1 is still valid. Consider an n-player game

with q-quota rule, where q < n. There are also r veto players, with r < q for quota rule

to be e¤ective. In this game, in any winning coalition, there will be q players including

the proposer. Without loss of generality, assume that players 1; 2; :::; r are veto players and

players r + 1; r + 2; :::n are non-veto players. In addition, order the continuation values of

non-veto players such that Vr+1 � Vr+2 � ::: � Vq � ::: � Vn. First, suppose that Vn > Vn�1.

Since player n has the highest continuation value among non-veto players, she is in a winning

coalition only when she is the proposer. This means that Vn = 1
n
(1 �

n�1P
k=1

pnk�Vk). On the

other hand, Vn�1 = 1
n

�
1�

n�2P
k=1

p(n�1)k�Vk

�
+ 1

n

 
nP

k 6=n�1
pk(n�1)�V(n�1)

!
. Note that the second

term in this expression may be positive, for instance, when q = n� 1, or when q is smaller

but Vn > Vn�1 = ::: = V1. Given our ranking of continuation payo¤s, it must be true

that 1 �
n�1P
k=1

pnk�Vk = 1 �
n�2P
k=1

p(n�1)k�Vk, since otherwise the minimization problem de�ned

in Theorem 1 is violated. In simple terms, both proposers n � 1 and n choose the same

least-costly way of obtaining support for their proposal. But this implies that Vn � Vn�1, a

contradiction. Hence, Vn�1 = Vn. We can continue in the same fashion until we reach player

q (in other words, the last one we analyze is Vq < Vq+1). This establishes that

Vq = Vq+1 = ::: = Vn�1 = Vn. (17)

After that, we continue as follows. Assume that Vq�1 < Vq. This implies that Vr+1 <
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1�
rP
i=1

V vetoi

n�r . In this case, in addition to veto players, players r+1, r+2,..., q�1 are always in

the winning coalition and they will be o¤ered a payo¤ of �Vr+1, �Vr+2; ::: �Vq�1 as a coalition

partner. Thus, using equation (17), player r + 1�s continuation payo¤ can be written as

Vr+1 =
n� 1
n

�Vr+1 +
1

n

 
1�

rP
j=1

�V veto
j �

q�1P
j=r+2

�Vj � �Vq

!
. (18)

In addition, using Lemma 1 and equation (17), we obtain

rP
j=1

V veto
j +

q�1P
j=r+2

Vj = 1� Vr+1 � (n� q + 1)Vq. (19)

Next, substituting equation (19) into equation (18), we get

Vr+1 =
n� 1
n

�Vr+1 +
1

n
(1� � (1� Vr+1 � (n� q + 1)Vq)� �Vq) ; or

Vr+1 =
n� 1
n

�Vr+1 +
1

n
�Vr+1 +

1� �

n
+
n� q

n
�Vq,

Simplifying the above equation gives us

Vr+1 =
1

n
+
n� q

n

�

1� �
Vq. (20)

Similarly, we can write veto player i�s continuation payo¤ (where i 2 f1; 2; :::; rg) as

V veto
i =

n� 1
n

�V veto
i +

1

n

 
1�

rP
j 6=i
�V veto

j �
q�1P
j=r+1

�Vj � �Vq

!
. (21)

Furthermore, using Lemma 1 and equation (17), we obtain

rP
j 6=i
V veto
j +

q�1P
j=r+1

Vj = 1� V veto
i � (n� q + 1)Vq. (22)

Next, substituting equation (22) into equation (21), we get

V veto
i =

n� 1
n

�V veto
i +

1

n

�
1� �

�
1� V veto

i � (n� q + 1)Vq
�
� �Vq

�
, or

V veto
i =

n� 1
n

�V veto
i +

1

n
�V veto

i +
1� �

n
+
n� q

n
�Vq,
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Simplifying the above equation gives us

V veto
i =

1

n
+
n� q

n

�

1� �
Vq. (23)

If we compare equations (20) and (23), we see that Vr+1 = V veto
i for any i 2 f1; 2; :::; rg.

Therefore, the initial requirement that Vr+1 <
1�

rP
i=1

V vetoi

n�r becomes

Vr+1 <
1� rVr+1
n� r

, or

Vr+1 <
1

n
.

If we look at equation (20), we see that Vr+1 > 1
n
, since Vq > 0, a contradiction. Thus, we

must have Vq�1 = Vq. We can continue in the same fashion until we reach player r + 1 (in

other words, the last one we analyze is Vr+1 < Vr+2). So far, we have

Vr+1 = ::: = Vn = V . (24)

Given equation (24), we can write veto player i�s continuation payo¤ (where i 2 f1; 2; :::; rg)

as

V veto
i =

n� 1
n

�Vi +
1

n

 
1�

rP
j 6=i
�V veto

j � �(q � r)Vq

!
. (25)

In addition, using Lemma 1 and equation (24), we obtain

rP
j 6=i
V veto
j = 1� V veto

i � (n� r)Vq. (26)

Next, substituting equation (26) into equation (25), we get

V veto
i =

n� 1
n

�V veto
i +

1

n

�
1� �

�
1� V veto

i � (n� r)Vq
�
� �(q � r)Vq

�
, or

V veto
i =

n� 1
n

�V veto
i +

1

n
�V veto

i +
1� �

n
+
n� q

n
�Vq,

Simplifying the above equation gives us

V veto
i =

1

n
+
n� q

n

�

1� �
Vq. (27)
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Since equation (27) is true for any veto player, we have

V veto
1 = V veto

2 = ::: = V veto
r = V veto.

The �nal step of the proof is comparing V with V veto. Assume that V veto � V . This

implies that V veto � 1
n
, which is a contradiction, since as can be observed from equation

(27), V veto
i > 1

n
for any � > 0.

Proof of Lemma 5. Using Lemma 1 and equation (3), we obtain

V veto
i =

1

n

�
1� �(r � 1)V veto

i � �Vj
nP

k=r+1

pik
�
+
n� 1
n

�V veto
i , for i = 1; :::; r,

Vj =
1

n

0@1� r�V veto � �Vj
nP
k 6=j
k=r+1

pjk

1A+ 1

n

 
�Vj

nP
k 6=j
pkj

!
, for j = r + 1; :::; n. (28)

Notice also that for a veto player i and a non-veto player j, it is true that

nP
k=r+1

pik =
nP

k=r+1

P
 i2Ci

 ikgi( i) =
P

 i2Ci
gi( i)

nP
k=r+1

 ik, for i = 1; :::; r, (29)

nP
k 6=j
k=r+1

pjk =
nP
k 6=j
k=r+1

P
 j2Cj

 jkgj( j) =
P

 j2Cj
gj( j)

nP
k 6=j
k=r+1

 jk, for j = r + 1; :::; n. (30)

For each veto player, there is a total of (n�r)!
(q�r)!(n�q)! possible coalitions she may form when she

is the proposer. All of these possibilities occur with certain probabilities which add up to 1,

i.e.,
P

 i2Ci
gi( i) = 1. In addition, we know that

nP
k 6=j
 ik = q � 1 = (r � 1) +

nP
k=r+1

 ik. Then,

we have
nP

k=r+1

 ik = q � r. Hence, equation (29) becomes

nP
k=r+1

pik = q � r, for i = 1; :::; r. (31)

Similarly, for each non-veto player, there is a total of (n�r�1)!
(q�r�1)!(n�q)! possible coalitions she may

form when she is the proposer. All of these possibilities occur with certain probabilities which
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add up to 1, i.e.,
P

 j2Cj
gj( j) = 1. In addition, we know that

nP
k 6=j
 jk = q � 1 = r+

nP
k 6=j
k=r+1

 jk.

Then, we have
nP
k 6=j
k=r+1

 jk = q � r � 1. Hence, equation (30) becomes

nP
k 6=j
k=r+1

pjk = q � r � 1, for j = r + 1; :::; n. (32)

Furthermore, since for all non-veto players continuation value is the same as indicated in

Lemma 4, and the �rst term on the right hand side of equation (28) is also the same due to

equation (32), the second term must be the same as well, implying

nP
k 6=i
pki =

nP
k 6=j
pkj for all i, j = r + 1; :::; n and i 6= j. (33)

Note that using Lemma 1 and equation (23), we can uniquely determine V veto and V .

For the randomization probabilities, the necessary condition to obtain uniqueness is that

r = q � 1. To see this, assume in contrast that r < q � 1. In this case, we need to solve

for (n� r � 1) randomization probabilities for each one of the (n� r) non-veto players. In

addition, we have (n� r) randomization probabilities for each one of the r veto players, thus

a total of r(n� r) + (n� r)(n� r � 1) unknowns. On the other hand, we have r equations

implied by equation (31), (n�r) equations implied by equation (32), and (n�r�1) equations

implied by equation (33), thus a total of n + (n � r � 1) equations. In order to have the

number of unknowns smaller than or equal to the number of equations, we must have

r(n� r) + (n� r)(n� r � 1) � n+ (n� r � 1), or

r > n� 1� 1

n� 2 .

Given that r < q � 1 and that r < q < n, we need to consider n > 3 only. However, in that

case, the above requirement becomes r > n� 1, which is not feasible since r < q < n.

Proof of Proposition 2. In light of Lemma 5, we can restrict our attention to the case

where r = q � 1. The right-hand side of equation (32) is zero for all for j = r + 1; :::; n.

Hence, pjk = 0 for all k 6= j and j = r + 1; :::; n. This leaves us with (n� r) randomization
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probabilities for each one of the r veto players, thus a total of r(n � r) unknowns. On the

other hand, we have r equations implied by equation (31), and (n� r� 1) equations implied

by equation (33).19 In order to have the number of unknowns smaller than or equal to the

number of equations, we must have

r(n� r) � r + (n� r � 1)

) r � 1 or r > n� 1.

Given that r < q < n and r = q � 1, the only possible way to obtain uniqueness is when

r = 1, and q = 2.
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