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Abstract

This paper analyzes in a spatial framework how much information a seller dis-
closes about the variety he sells when he faces a buyer with a privately known
taste for variety. I identify an equilibrium in which, for each possible variety, the
seller�s optimal strategy consists of either fully disclosing the variety or disclosing
how far it is from the buyer�s expected taste. The set of varieties the seller fully
discloses monotonically expands as the buyer�s taste for variety becomes stronger.
I show that this is the unique undefeated equilibrium. From a policy perspective,
mandating full disclosure is generally socially harmful.
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1 Introduction

A large literature has analyzed how much information a privately-informed seller vol-

untarily reveals when consumers are unable to tell the quality of a product prior to

purchase. In their seminal papers, Grossman [1981], Grossman and Hart [1980] and

Milgrom [1981] show that the seller fully reveals quality as long as there is a credible

and costless means of conveying it. The primary force behind this �nding is the fact

that consumers�willingness-to-pay is strictly increasing in perceived quality. Therefore,

a high-quality seller would always reveal its quality and distinguish itself from its own

lower-quality images. As this reasoning applies to all seller types, if quality information

is withheld, then it can only be the lowest-quality seller. Thus, information �unravels.�

Accordingly, mandatory disclosure rules are redundant because disclosure is costless and

the seller voluntarily reveals quality regardless of its value.

Many goods are characterized by several attributes some of which are horizontal.

However, very little attention has been paid to veri�able information disclosure when

consumers are unable to observe horizontal attributes of a good. The main objective of

this paper is to characterize the extent of information disclosure and the resulting social

e¢ ciency in such environments, and compare the results with those of quality disclosure.

In contrast to a vertical attribute such as quality, consumers rank di¤erent varieties of

a horizontal attribute di¤erently. Geographical location of a hotel, expertise area of a

researcher or sweetness of a wine are a few examples.

It is a priori unclear to what extent the unraveling argument works, if at all, when

consumer uncertainty concerns a horizontal attribute. The seller may choose to provide

only partial information, thereby bringing the perceived attribute closer to the ideal

taste of the average buyer. For example, many �rms these days engage in the practice

of �opaque�selling. Hotwire.com and Priceline.com are two prominent examples in the

travel industry. Along with several �transparent�options, they o¤er travel products whose

characteristics (e.g., the airline company and the departure/arrival time in case of air

tickets, or the name and the geographic location in case of hotels) are not transparent at

the time of purchase.1 Although certain characteristics of the product are revealed before

1People who have memberships with di¤erent airline alliances to accumulate miles will have di¤erent
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purchase (e.g., the range of departure and arrival times for air tickets, or the approximate

geographic location indicated by a circle on the map for hotels), participating consumers

run the risk of receiving a product that they do not prefer much.2 Similarly, a consumer

can rent a compact-size car on Hotwire.com, but the supplier (e.g., Avis, Budget, Hertz

or Dollar) is not revealed until after purchase.3

To analyze the extent of information disclosure in such environments, I consider a

simple sales encounter in which there is a single seller (he) and a single buyer (she).

The good is characterized by a single horizontal attribute, which I call variety. The

seller is privately informed about the variety of the good while the buyer is privately

informed about her ideal taste for the variety. Traditionally, markets with goods that

have horizontal attributes have been analyzed using spatial models, and I continue in

this tradition. Accordingly, the variety of the good and the buyer�s ideal taste for it are

represented by particular locations along a unit line à la Hotelling [1929], and the buyer

strictly prefers a variety that is closer to her ideal taste. Prior to a possible transaction,

the seller chooses a price and makes a report about the variety of the good. The only

restriction I impose on the report is that it must be truthful. Thus, possible reports

range from very precise (revealing the exact variety) to very vague (staying silent). The

buyer observes the price and the report, and responds by purchasing one unit of the good

or none.

I identify a class of payo¤-equivalent perfect Bayesian equilibria (PBE) in which the

information regarding the distance between the variety of the good and the expected

ideal taste of the buyer (from the seller�s point of view) fully unravels.4 That is, the

buyer always learns how far the variety is from her ex ante expected ideal taste, but not

necessarily on which side. The seller fully reveals the variety if and only if the buyer�s

preferences for airline companies. Similarly, two businessmen visiting a city for di¤erent business activi-
ties will have di¤erent preferences for �ight times or hotel locations depending on where and when their
business activities take place. So, these are horizontal attributes.

2Most o­ ine travel agencies follow similar practices for all-inclusive travel packages, not revealing
the airline company operating the �ight or the name/location of the hotel.

3Another interesting example is �Fukubukuro.�This is a Japanese New Year�s Day tradition where
retailers create �lucky bags�with a collection of random items �not seen by buyers until after purchase
�and sell them for a substantial discount.

4Possible PBE within this class di¤er only in terms of the equilibrium strategy of the seller, though
all lead to the same payo¤s.
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preference for her ideal taste is su¢ ciently strong, and the set of fully revealed varieties

monotonically shrinks (from all to (almost) none) as the buyer�s preference for her ideal

taste becomes weaker. Hence, information unraveling is still in e¤ect, but not to the

fullest extent. Moreover, this class of PBE �defeats�all other PBE that may exist.5

From the seller�s point of view, the probability of a purchase is higher when the variety

of the good is closer to the expected ideal taste of the buyer. When it is not su¢ ciently

close, the seller is tempted to disclose only partial information so as to bring the buyer�s

perceived variety (i.e., the expected variety conditional on the report received) closer

to her expected ideal taste. However, such a report leaves some uncertainty regarding

the true variety. The buyer dislikes uncertainty in the sense that her willingness-to-

pay would be higher had the seller made a precise report indicating the same perceived

variety without any uncertainty. Thus, there are two opposing factors the seller takes

into account when deciding what report to make: (i) eradicating buyer uncertainty by

fully revealing the variety, and (ii) bringing the perceived variety closer to the expected

ideal taste of the buyer by disclosing partial information. The buyer understands that her

expected ideal taste acts as a reference point for the seller. This leads her to associate a

partially-revealing report with the variety that is farthest away from this reference point.

Therefore, in situations when the seller discloses partial information, he never includes in

his report varieties that are more distant from the expected ideal taste of the buyer than

the true variety is. Since the seller employs the same strategy for all possible varieties,

the distance between the true variety of the good and the expected ideal taste of the

buyer fully unravels.

It may be easier to see the unraveling result with an example. As described before,

the variety as well as the buyer�s ideal taste are represented by locations over the unit line

[0; 1]. Suppose that the expected ideal taste of the buyer is 1
2
and that, in equilibrium,

the seller fully reveals the varieties in [0:4; 0:6] and makes a report in the form [x; 1� x]

for each other variety x. Consider the case when the seller makes a report saying that

the variety belongs to [0:3; 0:7]. In this case, the buyer rationally infers that the true

variety must be either 0:3 or 0:7 because had the variety been closer to 1
2
, the seller would

5The concept of �undefeated�equilibria is due to Mailath, Okuno-Fujiwara and Postlewaite [1993].
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have made a report that indicated a smaller maximum distance from 1
2
(if, for instance,

x = 0:65, then the seller would be better o¤ sending [0:35; 0:65] rather than [0:3; 0:7]).

Hence, the degree of mismatch between the variety and the expected ideal taste of the

buyer fully unravels.

The strength of the buyer�s preference for her ideal taste plays an important role

in the determination of which varieties are fully revealed. When it is weak, the buyer

perceives di¤erent varieties as close substitutes, so uncertainty about the variety does

not lower her willingness-to-pay too much. In this case, the seller�s incentive to disclose

partial information is higher. Similarly, when it is strong, the seller has a higher incentive

to make a precise report since uncertainty signi�cantly lowers the buyer�s willingness-to-

pay. This relationship is monotonic in the strength of the buyer�s preference for her ideal

taste, and therefore, the set of fully revealed varieties expands as it becomes stronger.

Whether mandatory disclosure rules are bene�cial or not has been an important ques-

tion. According to the literature on quality disclosure, mandatory rules are redundant

because the seller voluntarily reveals the quality regardless of its value. I reach a similar

�nding in this paper. I �nd that a social planner cannot improve welfare by mandating

the seller to fully reveal a particular variety that the seller voluntarily does not, while

such a policy is often socially harmful. The intuition for this �nding is as follows. By

providing full information, the seller improves the match between the buyer and the

product, thereby creating additional surplus for those buyers who have a good match.

In case of partial disclosure, on the other hand, the seller faces a larger expected de-

mand compared to full disclosure. This demand enlargement e¤ect of disclosing partial

information dominates the surplus created by providing full information, and as a result,

forcing the seller to fully reveal a variety that he voluntarily does not is often socially

harmful.

The basic model allows several extensions. I discuss these in section 5. Most impor-

tantly, buyer uncertainty about a vertical attribute (say, quality) can easily be incorpo-

rated. In this case, the usual unraveling story applies with respect to quality disclosure.

Thus, regardless of the buyer�s prior beliefs for it, quality would be fully revealed in every

PBE. Accordingly, all the main results about variety disclosure remain the same.
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Many authors have studied veri�able information disclosure in di¤erent contexts.

However, most of them focus on vertical attributes. Examples include Jovanovic [1982]

in which information disclosure is costly, Matthews and Postlewaite [1985] who allow

the seller to decide whether to acquire quality information or not, Fishman and Hagerty

[1990] who analyze how much discretion a seller should be allowed in choosing how much

information to disclose about quality, Shin [1994] who incorporates uncertainty about the

degree of information the seller possesses about quality, Board [2009], Cheong and Kim

[2004], Hotz and Xiao [2010], Levin, Peck and Ye [2009], Milgrom and Roberts [1986] and

Stivers [2004] who analyze quality disclosure in competitive environments,6 Jin [2005], Jin

and Leslie [2003] and Lewis [2011] who examine quality disclosure empirically, Daughety

and Reinganum [2008] who incorporate the possibility of signaling quality by price into

the standard disclosure framework, and Kartik [2009] who studies a uni�ed model of

veri�able disclosure and cheap talk à la Crawford and Sobel [1982].7

Three closely related papers that analyze disclosure of horizontal attributes are Sun

[2011], Balestrieri and Izmalkov [2011] and Koessler and Renault [2011]. Sun [2011]

considers a very similar problem in which the seller is constrained to either fully reveal

all product information or stay silent. She �nds that the set of seller types who reveal

full information shrinks as quality increases when the buyer is uncertain only about the

location. When the buyer is uncertain about both location and quality, she �nds the

opposite result; i.e., the set of seller types who reveal full information expands as the

actual quality increases. Balestrieri and Izmalkov [2011] investigate a similar problem

employing a mechanism design approach. Assuming that the product is located at either

end of the unit line, they �nd that the optimal mechanism may involve full disclosure, no

disclosure, or an option for the buyer to pay for product information prior to purchase.

Koessler and Renault [2011] study a more general model that allows for both horizontal

and vertical di¤erentiation, and characterize the conditions under which a monopolist

6Hotz and Xiao [2010] and Levin, Peck and Ye [2009] also allow for horizontal product attributes.
However, they assume that these are commonly known by consumers.

7See also Kamenica and Gentzkow [2011] who study how a sender can in�uence the decision of a
rational agent by controlling her informational environment, and Rayo and Segal [2010] who examine
optimal information disclosure when both the sender and the receiver possess private information. Dif-
ferently from the classical disclosure literature, however, both papers assume that the sender credibly
commits to a disclosure policy prior to learning his private information.
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fully reveals product characteristics. They �nd that full revelation is always an equi-

librium if product and consumer types are independently distributed. Moreover, they

identify the conditions under which full revelation is the unique outcome.

Other related papers are Lewis and Sappington [1994], Anderson and Renault [2006]

and Johnson and Myatt [2006]. Lewis and Sappington [1994] examine the trade-o¤ that a

seller faces in deciding how much knowledge to endow buyers of their idiosyncratic tastes

for the product. While improved information facilitates price discrimination through

which the seller can capture some of the extra surplus, it also leads to some buyers

earning informational rents. If the buyers acquire no information, on the other hand, the

seller can fully capture the surplus of the �average�buyer. They �nd that the seller �nds

it optimal either to endow buyers with the most precise information or to provide no new

information. Johnson and Myatt [2006] consider a general framework that builds upon

the intuition that many economic activities �including informative advertising �in�uence

the dispersion of consumer valuations, leading to a rotation in the demand curve. They

�nd that pro�ts are a U-shaped function of the dispersion of consumer valuations in

many circumstances and, as a result, similar to Lewis and Sappington [1994], the seller

pursues either maximal dispersion (niche-market strategy), serving high-value buyers at

a high price, or minimal dispersion (mass-market strategy), serving a large fraction of

buyers at a lower price. Anderson and Renault [2006] analyze the conditions under which

a monopolist chooses to advertise price information and/or product match information.

They introduce �threshold match�advertising whereby a consumer learns whether her

willingness-to-pay for the product is above or below a threshold. They show that a

monopolist does better by advertising threshold match rather than full match. They also

�nd that a monopolist may publicize only price, only match, or both depending on the

value of the search cost consumers face.8

In all of the three papers above, buyers are ex-ante identical and the seller has no

private information. Buyers�match value with the product is a random draw from a

probability distribution that is known to both the monopolist and the consumer. There-

8See also Anderson and Renault [2009] which considers comparative advertising in a duopoly setting
in which �rms can also advertise their rival�s product characteristics, and Anderson and Renault [2011]
which extends Anderson and Renault [2006] by introducing quality disclosure.
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fore, the particular way the seller reveals information is uninformative for buyers. Buyers

make no inferences, for instance, if the seller does not reveal any information.

The remainder of the paper is organized as follows. In the next section, I introduce

the basic model. In sections 3 and 4, I characterize the equilibrium level of information

disclosure and investigate its social welfare properties. In section 5, I discuss possible

extensions to the main model. Finally, in section 6, I present the concluding remarks.

2 Model

A pro�t-maximizing seller (S) o¤ers a good (G) for sale which is characterized by a

location over the unit interval, denoted by x 2 [0; 1]. The location here indicates the

variety of G, such as color, sweetness, etc. S is privately informed about x. I will use

masculine pronouns for S and sometimes refer to x as S�s type. The production costs do

not depend on x, and without loss of generality, are assumed to be zero.

On the other side of the market, there is a single potential buyer (B) who has a unit

demand for G. B�s ideal taste, which describes the particular variety of G that she ideally

wants to consume, is described by a location � 2 [0; 1]. This is private knowledge of B.

Similarly, I will use feminine pronouns for B and sometimes refer to � as B�s type. If B

buys a unit of G at a price P , then her net utility is v � t(� � x)2 � P , where v is the

gross utility B enjoys when the variety of G perfectly matches with her ideal taste (i.e.,

when x = �) and t measures the degree of disutility B incurs when x and � di¤er from

each other.9 Not buying G yields zero utility. If B buys a unit of G, then S�s payo¤ is

P . Otherwise, S gets zero payo¤.

The timing of the game is as follows. First, Nature selects a value for x 2 [0; 1]

from a strictly positive density function f (x) which is symmetric around 1
2
, and a value

for � from a uniform density function de�ned over [0; 1]. Hence, the ex-ante expected

value of both the location of G and the ideal taste of B is 1
2
. S privately observes x

while B privately observes �. After observing x, S sends a truthful and costless message

M � [0; 1], and chooses a price P to which he commits thereafter.10 As a tie-breaking

rule, I assume in case of an indi¤erence between two or more messages that S sends the
9Alternatively, v can be interpreted as the quality of G. See section 5 for further discussion.
10A message is truthful when x 2M .
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most precise message. B observes M and P , and then decides whether to buy G or not.

Finally, the payo¤s are realized. All aspects of the game are common knowledge.

It is necessary to make a few remarks about the model. First, note that B�s utility

function is strictly concave in (�� x). This means that B dislikes uncertainty about the

location of G. For instance, at a given price, a precise messageM =
�
1
2

	
is more favorable

for B than a message M =
�
1
2
� "; 1

2
+ "
�
which implies a conditional expected value of

1
2
for x. Second, although I assume a single buyer with a privately known ideal taste,

the results are identical with a continuum of buyers whose ideal tastes are uniformly

distributed over the unit line. These two speci�cations are equivalent. Third, B has a

unit demand in my model. This is without loss of generality because, as it will be clear

later, the probability of a purchase declines with price. In other words, despite the unit

demand assumption, S faces a downward-sloping expected demand function. Fourth, I

assume that S makes his reporting and pricing decisions simultaneously and that price is

observed by B prior to purchase. The simultaneity assumption is not crucial; S may make

his reporting and pricing decisions in any order. However, it is crucial that B observes

the price prior to purchase and S commits to the price he chooses. Finally, in line with

the quality disclosure literature, I focus on truthful and costless messages.

The location of the good, x, is exogenously given in this paper. However, it is possible

to allow S to in�uence it. Consider a production process in which the choice of location

is subject to an error and S chooses a target location for G (for instance, sweetness of

a wine crucially depends on the climate which is di¢ cult to predict beforehand). The

realized value of the error then determines the �nal location of G. Assuming that B knows

the distribution of the error, her prior beliefs for the �nal location will be de�ned over

a subset of [0; 1]. In fact, if the error term has a zero-mean symmetric distribution, S

chooses a target location of 1
2
since this is the expected ideal taste of B from his point of

view. In this case, B�s prior beliefs for x will be symmetric around 1
2
.

I use the concept of perfect Bayesian equilibrium (PBE) to solve the model. Let m(x)

describe the reporting strategy of S which is a mapping from [0; 1] to all subsets of [0; 1]

such that x 2 m. This determines what message S sends as a function of his private

information. Let p (x jM) denote the pricing strategy of S when the message he sends

8



is M . Similarly, let b(�;M; P ) describe the buying strategy of B, where b = 1 if she buys

G and b = 0 if she does not. Finally, let � describe how B updates her beliefs based on

the message and the price chosen by S. Thus, � (z jM;P ) is the probability density B

assigns to x = z when S sends a messageM and chooses a price P . A PBE for this game

is then de�ned as follows.

De�nition A PBE for this game is a quadruple � = (b; p;m; �) which is characterized

by the following four conditions:

(D.1) For all M and P , b is B�s best buying decision:

b(�;M; P ) =

�
1,

R 1
0
(v � t(�� x)2 � P )�(x jM;P )dx � 0

0, otherwise
:

(D.2) Given (D.1), p is the price that maximizes S�s expected revenue when he sends a

message M :

p(x jM) = argmax
P

Z 1

0

b(�;M; P )Pd�.

(D.3) Given (D.1) and (D.2), m is the message that maximizes S�s expected revenue

subject to x 2 m:

m(x) = arg max
M�fxg

Z 1

0

b (�;M; p(x jM)) p(x jM)d�.

(D.4) Let 
 describe the set of locations that induce S to send a message M and choose a

price P , i.e., 
 = fx j m =M; p = Pg. Then, for all M and P such that 
 6= ;,

B updates her beliefs in the following way:

�(x jM;P ) =
( f(x)R

x2

f(x)dx

, x 2 


0, otherwise
.

(D.1) states that, for any observed messageM and price P , B decides to buy a unit of

G only if, given her updated beliefs, her expected net utility is non-negative. S rationally

anticipates B�s best response to any given M and P , and chooses the best price and

message that maximize his expected revenue,
R 1
0
b(�;M; P )Pd�. These are stated in

(D.2) and (D.3). Finally, (D.4) states that B rationally anticipates the price and the

message S chooses for each x, and updates her beliefs about x in a Bayesian way for any

observed M and P .
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3 Equilibrium information disclosure

In this section, I investigate the properties of equilibrium information disclosure. I start

with a benchmark case in which S knows B�s type while B is uncertain about the variety

x. I show that full disclosure is the unique outcome in this case. This will later help

me answer whether B would have any incentive to reveal her type to S if she had such

an opportunity. I then move to the analysis of two-sided asymmetric information and

identify a class of PBE with partial disclosure. Finally, in subsection 3.3, I discuss other

PBE and then argue that the PBE I identify in subsection 3.2 is the only undefeated

PBE.

3.1 A benchmark case: One-sided asymmetric information

Suppose S knows B�s type. In this case, for a given message M , he will charge a price

P = v � tE [(�� x)2 j x 2 
] and enjoy a revenue equal to P , where 
 is the set of

locations that induce S to send a message M . In other words, S will optimally choose a

price that leaves no surplus to B. Obviously, S fully reveals x when it perfectly overlaps

with B�s taste; i.e., when x = �. This allows him to charge a price and earn a revenue of

v. When x is farther away from �, S would ideally want to pool with the locations that

are closer to �, thus lowering the expected mismatch E [(�� x)2 j x 2 
] and increasing

the price. However, as this reasoning applies to all types of S, B infers from such a

pooling message that x cannot be any closer to � than the farthest location included

in the message. To see this, suppose � < 1
2
and take a variety x = � � " for some

" 2 (0; �]. Suppose that S sends a message M = [�� "; �+ "]. If B naively interpreted

this message, then S would charge a price P = v � t
R �+"
��" (� � x)

2 dF (x)
F (�+")�F (��") and B

would buy. However, a rational B would realize that the types of S with j�� xj < "

would never pool with x = � � " or x = � + ". Instead, they would send a message

M = [�� j�� xj ; �+ j�� xj] which would enable them to charge a higher price and

enjoy a higher revenue. Thus, B infers that x is equal to either �� " or � + " following

a message M = [�� "; �+ "].

Given the above argument, S can do no better than revealing x fully because he can

never induce B to believe that the variety is closer to her ideal taste than it actually is.

10



In other words, the distance between the variety and B�s ideal taste, j�� xj, e¤ectively

becomes a vertical attribute and it therefore fully unravels in every PBE.11 Given the

tie-breaking assumption in favor of more precise reports, S fully reveals x in the unique

PBE and earns a revenue equal to P = v� t(�� x)2. B, on the other hand, always buys

G but does not derive any consumer surplus.

3.2 Two-sided asymmetric information

In this subsection, I turn back to the analysis of two-sided asymmetric information. I

�rst describe B�s optimal behavior for a given message and price. I then describe the

optimal message and the price S chooses for each x, taking B�s optimal behavior given.

The main result is stated in Proposition 2 which provides a description of equilibrium

information disclosure.

B�s optimal behavior is summarized by (D.1) and (D.4). Given a message M and a

price P , she updates her beliefs about x, as described in (D.4), and buys G if and only

if her net expected surplus from buying is non-negative, as described in (D.1). Thus,

b(�;M; P ) = 1, v � tE
�
(�� x)2 j x 2 


�
� P � 0, (1)

where 
 is, as described in (D.4), the set of locations that induce S to send a message

M and choose a price P . Solving expression (1) for � yields

�L = max

(
0; E [x j x 2 
]�

r
v � P
t

� V ar [x j x 2 
]
)
, (2)

�H = min

(
1; E [x j x 2 
] +

r
v � P
t

� V ar [x j x 2 
]
)
, (3)

where �L (�H) is the lowest (highest) type of B that buys G when S sends a message M

and chooses a price P .

Since S is uncertain about �, he takes B�s optimal behavior as given and chooses a

message and a price that maximizes the expected revenue E [bP ] as described in (D.2).

For notational convenience, let D denote the expected demand S faces. This is simply

11The same unraveling argument equally applies when B has a downward-sloping demand at a known
location.
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the probability that � lies between �L and �H . Since S�s priors for � are uniform over

[0; 1], it is given by

D(P ;x; v; t) = �H � �L.

As mentioned in the previous section, t measures how strong B�s preference for her

ideal taste is, and v can be interpreted as the quality of G. When t is high, a mismatch

between the variety and B�s ideal taste reduces B�s willingness-to-pay badly. Similarly,

when v is high, consumption of G o¤ers a high utility. Therefore, the expected demand

S faces at a given price is increasing in the value of v
t
.

Analyzing the expected demand function, D(P ;x; v; t), leads to two important obser-

vations. On the one hand, S wants to bring the perceived location of G (i.e., E [x j x 2 
])

as close to the expected ideal taste of B (which is 1
2
) as possible by sending a partially-

revealing message that pools the actual location of G with more central ones. This strictly

raises the expected demand S faces when x is close to 0 or 1. On the other hand, S wants

to keep uncertainty (captured by V ar [x j x 2 
]) as low as possible because B dislikes

it. At times �L and �H do not bind (i.e., not equal to 0 and 1, respectively), a higher

uncertainty lowers the expected demand. These two factors work against each other, so

S�s optimal decision depends on which factor dominates.

First, consider the situation when x is commonly known (or, equivalently, when S fully

reveals it). Letting a subscript 1 indicate this situation, equations (2) and (3) reduce to

�L1 = max

(
0; x�

r
v � P
t

)
,

�H1 = min

(
1; x+

r
v � P
t

)
.

Let p1 and R1 denote, for a given (v; t), the optimal price S chooses and the resulting

equilibrium expected revenue he makes when x is known. For a given location x, the

revenue-maximizing price is12

p1(x; v; t) = argmax
P
PD1(P ;x; v; t),

which leads to equilibrium expected revenue S makes

R1(x; v; t) = p1D1(p1; x; v; t).
12The equilibrium value of p1 for all (x; v; t) can be found in section A1 of the appendix.
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Proposition 1 R1(x; v; t) is strictly increasing for x < min
�p

v
3t
; 1
2

	
, constant for

min
�p

v
3t
; 1
2

	
� x � max

�
1
2
; 1�

p
v
3t

	
and strictly decreasing for min

�
1
2
; 1�

p
v
3t

	
<

x � 1.

Proof. See section A2 of the appendix.

From S�s point of view, the likelihood B buys G is higher the closer the location of G

is to the expected ideal taste of B. That is why the revenue S expects under full location

information increases as x gets closer to 1
2
. When v

t
is not too high, neither �L1 nor �

H
1

binds (i.e., is not equal to 0 and 1, respectively) at the optimal price S chooses for the

values of x between min
�p

v
3t
; 1
2

	
and max

�
1
2
; 1�

p
v
3t

	
. Therefore, for these locations,

S is e¤ectively unconstrained and is able to achieve the highest revenue he can. When

x is closer to the edges, on the other hand, either �L1 or �
H
1 becomes binding and the

expected demand S faces goes down. Therefore, S earns a lower revenue as x is farther

away from 1
2
. When v

t
is su¢ ciently high, either �L1 or �

H
1 is binding for all locations and

therefore R1 attains a unique maximum at x = 1
2
.

Proposition 1 has an important implication: when B is uncertain about x, S�s optimal

information disclosure strategy calls for fully revealing all locations min
�p

v
3t
; 1
2

	
� x �

max
�
1
2
; 1�

p
v
3t

	
. This is because doing so leads to a revenue of R1(12 ; v; t). Since

neither �L1 nor �
H
1 is binding at the optimal price S chooses for these locations, sending

a partially-revealing message cannot improve the expected demand S faces. Note that

x = 1
2
is fully revealed in every PBE regardless of the value of v

t
.

This observation plays a key role in the characterization of equilibrium information

disclosure. Suppose that S fully reveals the locations that lie in (z; 1� z) in equilibrium

and consider the case when x = z. S knows that, regardless of the message he sends, B will

never assign a positive probability to the values of x between z and 1�z because S would

normally fully reveal these locations. In other words, the usual unraveling story is at work

here. In case S chooses not to fully reveal x = z, his problem is to choose a message that

brings the perceived location as close to 1
2
as possible while keeping uncertainty as low as

possible. Since f(x) is symmetric around 1
2
, S can induce a perceived location of exactly

1
2
by sending, for instance, a message M = [z; 1 � z]. This message also leads to the

lowest uncertainty that S can induce. In fact, as Proposition 2 describes, S�s equilibrium

13



choice reduces to either fully revealing x = z or sending a partially-revealing message

that would induce B to think that x is equal to either z or 1� z.

Proposition 2 There exists a class of payo¤-equivalent PBE in which the value of��1
2
� x
�� is always revealed, whereas x is fully revealed if and only if v

t
is su¢ ciently low.

Moreover, the set of fully revealed locations monotonically shrinks as v
t
becomes higher.

Proof. See section A2 of the appendix.

Proposition 2 describes how the information unraveling result extends to markets with

goods that have horizontal attributes. In equilibrium, B understands that her expected

ideal taste acts as a reference point for S. This leads her to adopt a pessimistic posture

in which she associates a partially-revealing message with the location that is farthest

away from this reference point. Therefore, in case S chooses to send a partially-revealing

message, he pools the true location only with the ones that are equally or less distant

from 1
2
. Since S employs the same strategy for all possible locations, the distance between

the true location of G and the expected ideal taste of B fully unravels.

It is important to note that there are many messages that lead to the same equilibrium

outcome. For example, a message M = [z; 1� z] or simply M = fz; 1� zg induces B to

conclude that the true location is either z or 1� z. Multiplicity of equilibrium messages

is typical in veri�able information disclosure games. However, since all equilibria are

payo¤-equivalent, it does not change any of the results. It is also important to note that,

in case S sends a partially-revealing message, he would choose the same price for either of

the two locations that are inferred by B since, otherwise, price would signal the location.

So, in equilibrium, price is not informative about location.

Similar with the earlier notation, let a subscript 0 indicate a partially-revealing mes-

sage whereby p0 and R0 denote the optimal price S chooses and the equilibrium expected

revenue he earns when he sends a partially-revealing message. If R0 > R1 for a particular

x, then S chooses to send a partially-revealing message. The revenue S expects to earn in

this case can be found as follows. Suppose x = z and S sends a message M = [z; 1� z].

B�s inference is 
 = fz; 1 � zg where she assigns equal probability to each possibility.13

13Note that Bayes�rule does not work since both are ex-ante zero-probability events. In this case,
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So,

E [x j x 2 
] = 1

2
,

V ar [x j x 2 
] =
�
1

2
� z
�2
,

and thus equations (2) and (3) reduce to

�L0 = max

8<:0; 12 �
s
v � P
t

�
�
1

2
� z
�29=; ,

�H0 = min

8<:1; 12 +
s
v � P
t

�
�
1

2
� z
�29=; .

Expressing these expressions for a generic x, the revenue-maximizing price is14

p0(x; v; t) = argmax
P
PD0(P ;x; v; t),

where D0(P ;x; v; t) = �
H
0 � �L0 . This leads to the equilibrium expected revenue S earns

R0(x; v; t) = p0D0(p0; x; v; t).

Compared to full disclosure, sending a partially-revealing message induces S to charge

a lower price. Therefore, if S chooses to send a partially-revealing message rather than a

fully-revealing one, the expected demand he faces in the former case must be larger than

the expected demand he faces in the latter. This is depicted in Figure 1 for v = 0:6,

t = 1 and x = 0:3. The solid curve is the expected demand S faces when x is fully

revealed, D1, and the dashed curve is the expected demand he faces when he sends a

partially-revealing message, D0. For su¢ ciently high prices, neither �
L
1 nor �

H
1 is binding

and therefore S can expand D1 on both sides of x by lowering price. This is no longer

updating proceeds as follows:

Prob(x = z j x 2 fz; 1� zg) = lim
"!0

F (z + ")� F (z)
F (z + ")� F (z) + F (1� z)� F (1� z � ") :

Using l�Hôpital�s rule,

Prob(x = z j x 2 fz; 1� zg) = lim
"!0

f(z + ")

f(z + ") + f(1� z � ") =
f(z)

f(z) + f(1� z) =
1

2
.

14The equilibrium value of p0 for all (x; v; t) can be found in section A1 of the appendix.
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true for prices for which �L1 is binding (this happens for prices below the kink in D1). In

this region, the marginal e¤ect of a price decrease is much smaller under full disclosure

than partial disclosure. For the parameter values in Figure 1, even though p�0 < p�1, S

still chooses to send a partially-revealing message because D�
0 � D�

1 is su¢ ciently large

to ensure a higher revenue.

[Place Figure 1 approximately here]

A comparison of R1 and R0 yields the set of locations that are fully revealed in

equilibrium. This is graphically illustrated in Figure 2 for v = 0:6 and t = 1. The

horizontal axis indicates the value of x. The solid curve is the expected revenue S earns

when x is fully revealed, R1, while the dashed curve is the expected revenue he earns

when he sends a partially-revealing message, R0. As seen in the �gure, a set of central

locations (i.e., x 2 [xH ; 1 � xH ]) is fully revealed because, as described earlier, S can

achieve a revenue of R1(12 ; v; t) by fully revealing these locations. Focusing on x �
1
2
, as

x gets more distant from 1
2
, �L1 becomes binding in case S fully reveals x, so S prefers

sending a partially-revealing message, thereby bringing the perceived variety to 1
2
and

thus expanding demand. The adverse e¤ect of uncertainty is minimal for locations close

to 1
2
but increases quickly as x gets closer to the edges. Therefore, the locations below

xL (symmetrically those above 1� xL) are also fully revealed.

[Place Figure 2 approximately here]

Recall that for an observed message M and price P , B buys G if and only if her

location is at most
q

v�P
t
� V ar [x j x 2 
] units away from E [x j x 2 
]. For a given

value of x, if v
t
is su¢ ciently low (i.e., when v

t
< V ar [x j x 2 
]), D0 � 0 for any

price, so fully revealing x is optimal. As v
t
increases, S can generate a positive demand

by sending a partially-revealing message for low enough prices. Moreover, a higher v
t

lowers the negative e¤ect of a marginal increase in price on D0 by reducing the adverse

e¤ect of uncertainty (since the e¤ect of V ar [x j x 2 
] vanishes as v
t
becomes large).
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As a result, a higher v
t
makes it more likely that S sends a partially-revealing message,

thereby bringing the perceived variety to 1
2
. When v

t
is su¢ ciently high, S fully reveals

only the most central variety x = 1
2
.

Holding v constant, for lower (higher) values of t, both curves in Figure 2 shift upwards

(downwards). The magnitude of the shift is higher for R0 compared to R1. Therefore, the

set of fully revealed locations shrinks (grows). In other words, xH increases (decreases)

while xL decreases (increases) as vt becomes higher. When
v
t
is below a certain threshold

(approximately 0:521), S fully reveals all values of x. When it is su¢ ciently high (higher

than 0:75), S fully reveals only x = 1
2
, while sending a partially-revealing message for the

remaining locations.

Would B reveal her ideal taste if she had such an opportunity? The answer is no

since, as discussed in the preceding subsection, S would fully extract B�s surplus if he

knew �. By keeping it as private information, on the other hand, certain types of B

will surely enjoy a strictly positive expected utility while no type of B will ever end up

with a negative utility. Thus, it is B�s private information about her ideal taste that is

responsible for any partial information disclosure that may arise in equilibrium.

3.3 Other PBE and equilibrium selection

The model presented in section 2 allows for other PBE. An example is a fully revealing

one. A belief structure that supports this particular PBE can be described as follows:

in case S sends an o¤-equilibrium message, B puts probability 1 on the location that is

most distant from 1
2
, and if there are two such locations, then she puts probability 1 on

the one on the left (or right).

It is well understood for models of costless information disclosure that equilibrium

re�nements such as �Intuitive Criterion�or �Universal Divinity�have no bite in selecting

equilibria. This applies to the current model as well. Therefore, I turn attention to a more

recent re�nement introduced by Mailath et al. [1993], called �Undefeated Equilibria.�

According to this re�nement, an equilibrium is �defeated� if it fails the following test.

Consider a proposed equilibrium and take a message that is o¤ the equilibrium path. If

there is an alternative equilibrium in which this message is on the equilibrium path for a
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non-empty set of types and it is precisely these types that obtain higher payo¤s (strictly

higher for at least one type) in the alternative equilibrium, then the test requires that

the beliefs in the former equilibrium follow Bayes�rule for this set of types. Applying

this re�nement to the current model leads to the following result.

Proposition 3 The (class of) PBE described in Proposition 2 is the only undefeated

(class of) PBE.

Proof. See section A2 of the appendix.

To give a sense of the proof, compare the PBE described in Proposition 2 with a

fully revealing PBE. Consider the message M = fz; 1 � zg which is an o¤-equilibrium

message for the fully revealing PBE. Suppose the parameter values are such that this is

an on-equilibrium message for the PBE described in Proposition 2. Then, types z and

1 � z must be earning a strictly higher revenue by sending M = fz; 1 � zg rather than

fully revealing themselves. It thus follows that the fully-revealing PBE is defeated by the

PBE described in Proposition 2 because beliefs in the former do not put probability 1
2

on each location, but instead put probability 1 on x = z. A similar reasoning applies to

all other PBE. Therefore, the class of PBE described in Proposition 2 arises as the only

undefeated PBE.

4 Social Planner�s Problem

In this section, I analyze the social welfare properties of equilibrium information disclo-

sure. I focus attention on policies in which a social planner may mandate S to fully reveal

a given set of locations.15 When full disclosure is not mandatory for a particular location

x, S may choose to fully reveal it or send a partially-revealing message as described in

the previous section (i.e., pool it with 1 � x). Thus, if the total expected welfare (S�s

revenue plus B�s net utility) evaluated under full disclosure is higher than the expected

welfare evaluated under a partially-revealing message for a particular location x, then

the social planner mandates S to fully reveal it (unless S voluntarily does so).

15The �rst-best is to set the price equal to the marginal cost of production (which is 0) and force S to
fully reveal the variety at all times.
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Even though the classical information disclosure literature typically �nds excessive

information disclosure, this �nding critically depends on the assumption that consumers

have unit demands with identical reservations prices. In this case, since disclosure does

not change the equilibrium quantity purchased, it is purely redistributive. In the current

model, on the other hand, the expected demand S faces is downward-sloping. Although

S charges a higher price under full location information, B makes a better-informed

decision. So, while it is clear that S�s expected revenue goes down by mandating him to

fully reveal a location which he would normally not reveal, B�s net expected utility may

increase. Therefore, it is a priori unclear whether there is any need for intervention.16

Denote the expected consumer surplus as CSi and the total expected welfare as Wi,

where i = 1 if S sends a fully revealing message and i = 0 if S sends a partially-revealing

message. When x is fully revealed, S chooses a price p1 and B buys G if her location is at

most
q

v�p1
t
units away from x (in other words, if � 2

�
�L1 ; �

H
1

�
). Thus, for a particular

value of x,

CS1(x; v; t) =

�H1 (p1;x;v;t)Z
�L1 (p1;x;v;t)

(v � p1(x; v; t)� t(�� x)2)d�, (4)

W1(x; v; t) = R1(x; v; t) + CS1(x; v; t). (5)

Similarly, when S sends a partially-revealing message, he chooses a price p0 and B

buys G if her location is at most
q

v�p0
t
�
�
1
2
� x
�2
units away from 1

2
. Thus,

CS0(x; v; t) =

�H0 (p0;x;v;t)Z
�L0 (p0;x;v;t)

�
v � p0(x; v; t)� t(�� x)2

�
d� (6)

W0(x; v; t) = R0(x; v; t) + CS0(x; v; t). (7)

Alternatively, consumer surplus can conveniently be expressed as the area under the

corresponding demand curve and above the equilibrium price.17

CS1(x; v; t) =

vZ
p1(x;v;t)

D1(P ;x; v; t)dP ,

16If disclosure is su¢ ciently costly, a monopoly seller may under-provide full quality information when
demand is downward-sloping. See Daughety and Reinganum [2008] and Celik [2011] for further details.
17See section A3 of the appendix for a formal derivation.
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CS0(x; v; t) =

v�t( 1
2
�x)2Z

p0(x;v;t)

D0(P ;x; v; t)dP:

Given the set of policies available to the social planner and the welfare de�nitions

given in equations (5) and (7), the social planner mandates S to fully reveal a particular

variety x if W1(x; v; t) > W0(x; v; t) whereas R1(x; v; t) < R0(x; v; t) (so that S normally

sends a partially-revealing message). Proposition 4 establishes that there is actually no

variety x for which this is true.

Proposition 4 Mandating S to fully reveal a location does not improve social welfare,

while it is often socially harmful.

Proof. See section A2 of the appendix.

For B, there are two opposing consumer surplus e¤ects of partial disclosure. Both of

these e¤ects can be seen in Figure 1. On the one hand, being partially informed about

the variety, B�s expected match with G is reduced compared to full information, which

leads to a decrease in consumer surplus. This is the area above p�1 and between the two

demand curves in Figure 1. On the other hand, for varieties that are close to 0 or 1, S

can expand the expected demand by sending a partially-revealing message, in particular

for low prices (this is because �L1 or �
H
1 becomes binding for prices below a threshold,

so the rate at which S can expand D1 by lowering price goes down). In such a case, S

charges a lower price, which leads to a higher demand and a higher consumer surplus.

This is the area between the two prices, p�0 and p
�
1, and to the left of D0. It is the

magnitude of these two e¤ects that determines if partial disclosure improves welfare. I

show in the proof of Proposition 4 that the second e¤ect is always larger than the �rst one

in situations in which S normally sends a partially-revealing message (i.e., CS0 > CS1

whenever R0 > R1), so mandating S to fully reveal x harms S. In other words, the

demand enlargement e¤ect of disclosing partial information is large enough to o¤set the

loss due to potential mismatch.18

18Under partial disclosure, some buyer types incur very high transportation costs ex post, while some
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5 Discussion

In this section, I discuss several points related to possible extensions of the model. The

�rst point regards incorporating uncertainty about quality. As noted before, the parame-

ter v can be interpreted as the quality of the good. If the buyer is also uncertain about

the quality, it can easily be shown that the seller�s expected revenue is strictly increasing

in the perceived quality of the buyer. This is true even when the seller is assumed to be

uncertain about the buyer�s taste for quality.19 Thus, regardless of her prior beliefs for

it, quality would be fully revealed in every PBE. In other words, the usual unraveling

story applies with respect to quality disclosure. Accordingly, all of the main results about

location disclosure remain valid.

Second, I have considered a general message technology whereby the seller could send

any message that includes the true location of the good. If the seller is somehow con-

strained to either fully reveal the location or stay silent, then the structure of equilibrium

information disclosure substantially changes. When the buyer�s preference for her ideal

taste is su¢ ciently strong, the seller fully reveals all locations. When it is weak, the

seller fully reveals a set of central locations while staying silent for the remaining ones.

Depending on the shape of the buyer�s prior beliefs, there may be multiple PBE. In this

case, each PBE is characterized with a di¤erent set of fully revealed locations. The set of

fully revealed locations shrinks in every PBE as the buyer�s preference for her ideal taste

becomes weaker, but is always non-empty. Sun [2011] analyzes this problem when the

buyer�s disutility due to a mismatch increases linearly with the value of the mismatch

(i.e., when the transportation cost function is linear). Her �ndings are very similar with

one major di¤erence. She �nds that the seller stays silent for all locations if the buyer�s

preference for her ideal variety is su¢ ciently strong.

turn lucky. In section A3 of the appendix, I show that

�H0Z
�L0

(�� x)2 d� =
�H0Z
�L0

1

2

�
(�� x)2 + t(1� x� �)2

�
d�,

so, on average, these e¤ects even out.
19Consider the utility function �v � p � t(� � x)2, where � > 0. Here, � measures the buyer�s taste

for quality. It is easy to show that the seller�s expected revenue is strictly increasing in the perceived
quality when the seller is uncertain about � and � while the buyer is uncertain about v and x.
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The third point is about the shape of the transportation cost function. The class

of PBE described in Proposition 2 remains valid for any strictly convex transportation

function. When the transportation function is linear as in Sun [2011], although the PBE

described in Proposition 2 is still valid, there are many other PBE which are payo¤-

equivalent for the seller, but are substantially di¤erent in terms of the buyer�s equilibrium

inferences. To see this, suppose that v
t
is large enough so that all types of the buyer

are served in equilibrium. In this case, the seller optimally charges a price equal to

v � t
2
(the price that leaves the buyer types � = 0; 1 indi¤erent between buying and

not), but otherwise is indi¤erent between sending any (truthful) message that leads

to a perceived location of 1
2
. One example is M = fx; 1� xg for each x as in the

current paper, while another example isM = [0; 1] for all varieties, which is equivalent to

staying fully silent. The inferences in these two examples are quite di¤erent. While the

PBE described in Proposition 2 is still valid with a linear transportation function, the

welfare results may change. The seller is able to capture a much higher portion of the

buyer�s surplus by sending a partially-revealing message since the buyer is more neutral

to uncertainty. Therefore, in situations in which the seller only slightly prefers sending a

partially-revealing message to fully revealing x, it may be welfare enhancing to mandate

the seller to fully reveal x.20

The fourth point is related to the assumption of costless information disclosure. If

disclosure is costly, on the contrary, then the seller may prefer staying silent when the

location is close to the edges. However, provided that it is not too costly, the structure

of information disclosure stays the same for more central locations. If it is too costly, the

seller stays silent for all locations. In this case, it may be socially bene�cial to mandate

the seller to fully reveal a set of central locations. See Daughety and Reinganum [2008]

and Celik [2011] for a similar result in a quality-disclosure framework when the seller

faces a downward-sloping demand.

20As an example, take x = 0. If the seller sends M = f0; 1g, he chooses p0 = v � t
2 and the resulting

revenue is R0 = p0. If he fully reveals x, then the demand he faces is D1 (P ) = v�P
t , so the optimal

price is p1 = v
2 and the resulting revenue is R1 =

v2

4t . When
v
t = 2 �

p
2, it is easy to verify that

R0 = R1. However, CS0 = 0 because all buyer types have the same willingness-to-pay when the seller
sends M = f0; 1g, while CS1 > 0 because the buyer types � < v�p1

t enjoy a strictly positive surplus
when x = 0 is fully revealed. Therefore, for v

t slightly above 2 �
p
2, it is better to mandate the seller

to fully reveal x = 0.
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A �nal point is about the prior beliefs of the buyer about the location of the good.

Even though I have assumed that the prior beliefs are symmetric around 1
2
, the class

of PBE described in Proposition 2 is valid for any prior beliefs. Consider the following

o¤-equilibrium beliefs. When the seller includes many locations in his message, the buyer

associates the good with the location that is farthest away from 1
2
. In case there are two

such locations, the buyer assigns a positive probability to both.21 Under these beliefs,

the seller never sends a message that includes locations farther away from the center than

the good�s true location. Therefore, the class of PBE described in Proposition 2 remains

valid. However, it is generally not the unique PBE. Unless f(x) is symmetric around
1
2
, sending a partially-revealing message as described in Proposition 2 does not lead to

a perceived location of 1
2
. Therefore, the seller may choose a message that brings the

perceived location closer to 1
2
unless the adverse e¤ect of uncertainty is too high.

6 Conclusion

In this paper, I analyze the level of information a privately-informed monopoly seller

voluntarily reveals about the horizontal attribute of the good he sells. The horizontal

attribute is captured by a location over the unit line. I consider a single buyer with a

privately known ideal taste which is also captured by a location (although the �ndings

would be the same if there is a continuum of buyers with di¤erent ideal tastes). Although

information unraveling does not apply to the fullest extent, it is still at work. I show

that there is a unique class of undefeated PBE in which the degree of mismatch between

the true location of the good and the expected ideal taste of the buyer fully unravels.

The driving force for this �nding is the (optimal) skepticism of the buyer; any partially-

revealing message induces her to believe that the true location of the good is the one in

the message that is farthest away from her expected ideal taste. The seller fully reveals

the true location only when the buyer�s preference for her ideal taste is su¢ ciently strong.

As it becomes weaker, the set of fully revealed locations monotonically shrinks and when

21There is an exception for messages such that M �
�p

v
3t ; 1�

p
v
3t

�
. These are the locations for

which the seller earns a revenue of R1
�
1
2 ; v; t

�
. In this case, assume the buyer believes the message as

it is. Since such an inference introduces a positive variance, the seller would never deviate from fully
revealing x �

�p
v
3t ; 1�

p
v
3t

�
.
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it is su¢ ciently weak, the seller fully reveals only the location that corresponds to the

expected ideal taste of the buyer.

From a social point of view, I �nd that it is never welfare-improving, but is often

socially harmful, to mandate the seller to fully reveal a location that he voluntarily does

not. The reason for this �nding is the demand enlargement e¤ect of a partially-revealing

message whereby the seller typically charges a lower price compared to what he would

charge under full disclosure. This is in line with the classical information disclosure

literature which also �nds excessive disclosure.

I have assumed that horizontal attributes of a good can be described by a single

location. Future work may consider multiple horizontal and vertical attributes and ana-

lyze the incentives of a monopoly seller to provide information on multiple dimensions.

Moreover, such an extension would enable an empirical test of the model. An example

is the market for real estate where there is typically a limited number of characteristics

sellers may reveal in advertisements.

Appendix

A1 Equilibrium price

In this section of the appendix, I derive the equilibrium price S chooses under the two

possible scenarios: when S fully reveals x and when he sends a partially-revealing message.

This will later be helpful in the proofs of propositions. Note that since S�s beliefs for �

are uniform over [0; 1], the probability B buys G at a given price is symmetric around
1
2
with respect to x. So, it will be su¢ cient to characterize equilibrium price for x � 1

2

only.

Case 1 When S fully reveals x

Since S�s beliefs for � are uniform over [0; 1], the probability B buys G at some given

price is symmetric around 1
2
with respect to x. So, it will be su¢ cient to characterize

equilibrium price for x � 1
2
only. By equations (2) and (3), for a given (P; v; t), if S
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chooses a price such that v�P
t
< 1

4
, then

D1(P ;x; v; t) =

8<: x+
q

v�P
t

, x <
q

v�P
t

2
q

v�P
t

,
q

v�P
t
� x � 1

2

:

If, on the other hand, 1
4
� v�P

t
< 1, then

D1(P ;x; v; t) =

8<: x+
q

v�P
t

, x < 1�
q

v�P
t

1 , 1�
q

v�P
t
� x � 1

2

.

Finally, when v�P
t
� 1, all types of B buy G, so D1(P ;x; v; t) = 1. Maximization of

P
�
x+

q
v�P
t

�
with respect to P leads to a price of 2t

9

�
3v
t
� x2 + x

q
3v
t
+ x2

�
, while

the same for 2P
q

v�P
t
leads to a price of 2v

3
. Checking for corner solutions leads to the

following equilibrium price (tedious but otherwise straightforward algebra).

� If v
t
< 3

4
,

p1(x; v; t) =

8><>:
2t
9

�
3v
t
� x2 + x

q
3v
t
+ x2

�
, x <

p
v
5t

t
�
v
t
� x2

�
,
p

v
5t
� x <

p
v
3t

2v
3

,
p

v
3t
� x � 1

2

.

� 3
4
� v

t
< 5

4
,

p1(x; v; t) =

(
2t
9

�
3v
t
� x2 + x

q
3v
t
+ x2

�
, x <

p
v
5t

t
�
v
t
� x2

�
,
p

v
5t
� x � 1

2

.

� If 5
4
� v

t
< 3,

p1(x; v; t) =

(
2t
9

�
3v
t
� x2 + x

q
3v
t
+ x2

�
, x < 2�

p
1 + v

t

t
�
v
t
� (1� x)2

�
, 2�

p
1 + v

t
� x � 1

2

.

� If v
t
� 3,

p1(x; v; t) = t
�v
t
� (1� x)2

�
for all x � 1

2
.

Note that p1 is non-monotonic in x (as x goes from 0 to 1
2
). For v

t
< 5

4
, when x is

su¢ ciently close to 0, S prefers to keep the price low in order to increase the probability

of a purchase, thereby leaving a positive surplus to the � = 0 type B. So, in this region,

S e¤ectively chooses the highest type of B that he wants to serve. Therefore, as x gets
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closer to 1
2
, the price S optimally sets increases. When

p
v
5t
� x � min

�p
v
3t
; 1
2

	
, it

becomes optimal to make � = 0 type B indi¤erent between buying and not. Therefore,

the equilibrium price is decreasing in this region. When v
t
� 5

4
on the other hand, the

real question S faces is whether to sell or not to the � = 1 type B. This particular type

is willing to pay more for values of x closer to 1. Therefore, the equilibrium price is

increasing over x 2
�
0; 1

2

�
when v

t
is large.

Case 2 When S sends a partially-revealing message

When S sends a partially-revealing message, say M = [x; 1 � x], B infers that the true

variety must be either x or 1 � x. Hence, when S charges a price P , equations (2) and

(3) reduce to

�L0 = max

8<:0; 12 �
s
v � P
t

�
�
1

2
� x
�29=; ,

�H0 = min

8<:1; 12 +
s
v � P
t

�
�
1

2
� x
�29=; .

For a given (P; v; t), if S chooses a price such that v�P
t
< 1

4
,

D0(P ;x; v; t) =

8<: 0 , x < 1
2
�
q

v�P
t

2
q

v�P
t
�
�
1
2
� x
�2

, 1
2
�
q

v�P
t
� x � 1

2

.

Similarly, if 1
4
� v�P

t
< 3

4
,

D0(P ;x; v; t) =

8<: 2
q

v�P
t
�
�
1
2
� x
�2

, x < 1
2
�
q

v�P
t
� 1

4

1 , 1
2
�
q

v�P
t
� 1

4
� x � 1

2

.

Finally, when v�P
t

� 3
4
, all types of B buy G, so D0(P ;x; v; t) = 1. Maximizing

PD0(P ;x; v; t), with respect to P leads to the following equilibrium price (when the

expected demand equals 0 for any P � 0, I assume that the equilibrium price is 0).

� If v
t
< 1

4
,

p0(x; v; t) =

(
0 , x < 1

2
�
p

v
t

2t
�
v
t
�( 12�x)

2
�

3
, 1
2
�
p

v
t
� x � 1

2

.

26



� If 1
4
� v

t
< 3

4
,

p0(x; v; t) =
2t
�
v
t
�
�
1
2
� x
�2�

3
, for all x � 1

2
.

� If 3
4
� v

t
< 1,

p0(x; v; t) =

8><>:
2t
�
v
t
�( 12�x)

2
�

3
, x < 1

2
�
q

v
t
� 3

4

t
�
v
t
�
�
1
2
� x
�2 � 1

4

�
, 1
2
�
q

v
t
� 3

4
� x � 1

2

.

� If v
t
� 1,

p0(x; v; t) = t

 
v

t
�
�
1

2
� x
�2
� 1
4

!
, for all x � 1

2
.

In this scenario, when v
t
is small, S cannot generate any demand for G unless it is

located su¢ ciently close to 1
2
. So, in this case, the choice of price is random. I assume,

for simplicity, that S charges a price of 0 in such a case. In all other cases, p0 is strictly

positive and it strictly increases as x gets closer to 1
2
. When v

t
su¢ ciently large, S serves

all types of B, so in this case, the equilibrium price is the one that leaves zero surplus to

� = 0 (or, equivalently, � = 1) type B.

A2 Proofs of the Propositions

In this section, I present the proofs of the propositions stated in the main text. Since

the prior beliefs for x are symmetric around 1
2
, I will consider only the values of x over�

0; 1
2

�
unless otherwise noted.

Proof of Proposition 1. Using Envelope Theorem, over the values of x for which

p1 =
2t
9

�
3v
t
� x2 + x

q
3v
t
+ x2

�
, we have dR1

dx
= P @D1(P ;x;v;t)

@x
evaluated at P = p1. In this

range, D1 = x+
q

v�P
t
, so @D1

@x
= 1. Since p1 > 0, it follows that dR1

dx
= p1 > 0 for these

values of x. For the values of x for which � = 0 or � = 1 type B is made indi¤erent between

buying and not, Envelope Theorem is not applicable (because it is a corner solution).

When v
t
< 5

4
, this happens for

p
v
5t
� x < min

�p
v
3t
; 1
2

	
in which case S charges a

price p1 = t
�
v
t
� x2

�
and faces an expected demand D1 = x +

q
v�P
t
= 2x. So, the

equilibrium revenue is simply R1 = 2t
�
v
t
� x2

�
x, which is strictly increasing in x for all

x < min
�p

v
3t
; 1
2

	
. Similarly, when v

t
� 5

4
, it happens for max

�
0; 2�

p
1 + v

t

	
� x � 1

2
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in which case S charges a price p1 = t
�
v
t
� (1� x)2

�
and serves all types of B (since

x+
q

v�P
t
= 1), so R1 = t

�
v
t
� (1� x)2

�
. This is again strictly increasing in x. Finally,

when v
t
< 3

4
, S charges a price p1 = 2v

3
for
p

v
3t
� x � 1

2
and faces an expected demand

D1 = 2
q

v�P
t
= 2
p

v
3t
. The revenue R1 = 4v

3

p
v
3t
is constant for these values of x.

Proof of Proposition 2. I start with showing that there exists a PBE in which the

value of
��1
2
� x
�� fully unravels. I then proceed with showing that the set of fully revealed

locations shrinks as v
t
is higher. To make the latter easier, I present two lemmas below.

Finally, I argue that there are values of v
t
for which R0 < R1 for all x and for which

R0 > R1 for all x. This concludes the proof.

Before proceeding, it is useful to make the following two important observations.

First, if two messages lead to the same perceived variety, S strictly prefers the message

associated with a lower implied variance. Formally, suppose there are two messages M

and M 0 such that E [x j x 2 
] = E [x j x 2 
0] and V ar [x j x 2 
] < V ar [x j x 2 
0].

Then, M leads to a strictly higher expected revenue than M 0. Second, o¤-equilibrium

beliefs cannot be randomly chosen in veri�able disclosure games. After observing an

o¤-equilibrium message M , B will not assign a positive probability to any x 62 M . For

example, if S unexpectedly fully reveals x, then B believes S because lying is ruled out.

First, suppose v
t
< 3

4
so that the region

p
v
3t
� x � 1 �

p
v
3t
is non-empty. By

Proposition 1, this is where the expected revenue S earns is constant and is equal to

R1
�
1
2
; v; t

�
. The locations in this region must be fully revealed in every PBE because

any partially-revealing PBE implies a positive variance, V ar [x j x 2 
] > 0, and S can

pro�tably deviate by fully revealing x thereby achieving R1(x; v; t) = R1
�
1
2
; v; t

�
. For

x <
p

v
3t
, by Proposition 1, R1(x; v; t) is strictly increasing in x. Given that S fully

reveals all x 2
�p

v
3t
; 1�

p
v
3t

�
, then it is best for S to either fully reveal x or reveal��1

2
� x
��, say by sendingM = [x; 1�x], for all x <

p
v
3t
(symmetrically, for x > 1�

p
v
3t
).

The latter strategy is associated with the lowest variance among all possible inferences

S may induce B to make. This is because pooling with locations that are farther away

from 1
2
than the true location simply raises V ar [x j x 2 
]. An example of supporting o¤-

equilibrium beliefs are as follows: after observing a partially-revealing message, B assigns

a probability of 1 to the location that is farthest away from 1
2
(in case there are two such
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locations, assume that B assigns full probability to the location on the left). Note that

under these beliefs, S is indi¤erent between sending any message M �
�p

v
3t
; 1�

p
v
3t

�
for

p
v
3t
� x � 1 �

p
v
3t
because any such message leads to an expected revenue of

R1
�
1
2
; v; t

�
. However, by the tie-breaking rule that S chooses the most precise message

in case of indi¤erence, he fully reveals all of these locations.

When v
t
� 3

4
, R1(x; v; t) is strictly increasing in x for all x � 1

2
. Again, given that

S fully reveals x = 1
2
in every PBE, it is best for S to either fully reveal x or reveal��1

2
� x
��, say by sending M = [x; 1 � x], for all x 6= 1

2
. Hence, when S sends a message

M = [x; 1 � x], B optimally assigns a positive probability to both x and 1 � x. This

completes the �rst part of the proof.

Next, I show that the set of fully revealed locations shrinks as v
t
becomes higher. This

is substantially eased by the following two lemmas. The �rst one establishes that, under

both strategies S may choose (i.e., either fully reveal x or reveal
��1
2
� x
��), the derivative of

equilibrium revenue divided by t with respect to v
t
is equal to the corresponding expected

demand. The second lemma shows that whenever a partially-revealing message is more

pro�table than fully revealing x, the expected demand under the former is at least as

large as the one under the latter. Before proceeding with the lemmas, note from equations

(2) and (3) that, under both strategies, price enters the expected demand function as P
t
.

Moreover, the equilibrium prices I �nd in section A1 are multiples of t. Thus, both pj
t

and Rj
t
(j = 0; 1) are functions of only x and v

t
.

Lemma 1 d(R1=t)
d(v=t)

= D1(p1; x; v; t) and
d(R0=t)
d(v=t)

= D0(p0; x; v; t) for all x.

Proof of Lemma 1. I start with the case when S fully reveals x. First, take the

values of x and v
t
for which p1

t
= 2

9

�
3v
t
� x2 + x

q
3v
t
+ x2

�
. In this region, D1 = x +q

v�P
t
. By the Envelope Theorem, d(R1=t)

d(v=t)
= P

t
@D1
@(v=t)

evaluated at P = p1. Since @D1
@(v=t)

=

� @D1
@(P=t)

, and the revenue maximization problem implies D1 +
P
t
@D1
@(P=t)

= 0 evaluated at

P = p1, we have
d(R1=t)
d(v=t)

= D1. When v
t
< 5

4
, for

p
v
5t
� x � min

�p
v
3t
; 1
2

	
, S charges

a price p1 = t
�
v
t
� x2

�
and faces an expected demand D1 = x +

q
v�P
t
= 2x. The

equilibrium revenue is simply R1 = 2t
�
v
t
� x2

�
x, and thus, d(R1=t)

d(v=t)
= 2x, which equals the

equilibrium expected demand. Similarly, when v
t
� 5

4
, for max

�
0; 2�

p
1 + v

t

	
< x � 1

2
,

S charges a price p1 = t
�
v
t
� (1� x)2

�
and serves all types of B, so R1 = t

�
v
t
� (1� x)2

�
.
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Again, d(R1=t)
d(v=t)

= 1 which equals the equilibrium expected demand. Finally, when v
t
< 3

4
,

for
p

v
3t
� x � 1

2
, S charges a price p1 = 2v

3
and faces an expected demand D1 =

2
q

v�P
t
= 2

p
v
3t
. Hence, R1

t
= 4

�
v
3t

�3=2
, and thus, d(R1=t)

d(v=t)
= 2

p
v
3t
which, again, equals

the equilibrium expected demand.

When S sends a partially-revealing message, there are three prices depending on x

that he can possibly charge, as given in section A1. When x < 1
2
�
p

v
t
, the expected

demand equals 0 for all values of the price, so the result is trivial for this case. In the

range where p0 =
2t
�
v
t
�( 12�x)

2
�

3
, the expected demand is D0 = 2

q
v�P
t
�
�
1
2
� x
�2
. By

Envelope Theorem, d(R0=t)
d(v=t)

= P
t
@D0
@(v=t)

evaluated at P = p0. Since @D0
@(v=t)

= � @D0
@(P=t)

, and

the revenue maximization problem implies D0 +
P
t
@D0
@(P=t)

= 0 evaluated at P = p0, we

have d(R0=t)
d(v=t)

= D0. Finally, in the range where p0 = t
�
v
t
�
�
1
2
� x
�2 � 1

4

�
, the expected

demand is D0 = 1. Hence, R0t =
p0
t
, and thus, d(R0=t)

d(v=t)
= 1 = D0.

Lemma 2 If R0 � R1 for some x, then D0 � D1 for the same x.

Proof of Lemma 2. When x = 1
2
, two regimes are equivalent, so the following

analysis applies to x < 1
2
. If R0 � R1 for some x at which D0 = 1, the result is trivial.

From section A1, this happens for 1
2
�
q

v
t
� 3

4
� x � 1

2
when 3

4
� v

t
< 1, and for all x

when v
t
� 1. For values of x for which p0 = 0 or for which p1 = 2v

3
, it is always true that

R0 < R1, so, again, the result is trivial. For the remaining con�gurations, it is enough to

simply compare the equilibrium values of p0 and p1 for the same x. When x <
p

v
5t
, for

all x in the range,

p1 =
2t

9

 
3v

t
� x2 + x

r
3v

t
+ x2

!
� 2v

3
>
2t
�
v
t
�
�
1
2
� x
�2�

3
= p0.

When
p

v
5t
� x < min

�p
v
3t
; 1
2

	
,

p1

�r
v

3t
; v; t

�
=
2v

3
>
2t
�
v
t
�
�
1
2
�
p

v
3t

�2�
3

= p0

�r
v

3t
; v; t

�
.

Since p1 is decreasing and p0 is increasing in x in this range, it follows that p1 > p0 for

all x here, too. Hence, if R0 � R1 for some x < min
�p

v
3t
; 1
2

	
, then it must be that

D0 � D1 for the same x.

Finally, I argue that there are values of v
t
for which R0 < R1 for all x and for which

R0 > R1 for all x (except for x = 1
2
where R0 = R1). Together with the two lemmas,
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this concludes the proof. Note that R0 < R1 for all x �
p

v
3t
(since R1 = R1

�
1
2
; v; t

�
in this region) and for all x � 1

2
�
p

v
t
(since R0 = 0 in this region).

p
v
3t
= 1

2
�
p

v
t

when v
t
= 3

8(2+
p
3)
. Thus, when v

t
� 3

8(2+
p
3)
, R0 < R1 for all x. Similarly, when

v
t
is su¢ ciently high, R0 > R1 for all x. For instance, when v

t
> 3, from section A1,

R0 = t
�
v
t
�
�
1
2
� x
�2 � 1

4

�
and R1 = t

�
v
t
� (1� x)2

�
. A comparison yields that R0 > R1

when 1
2
� x > 0, which is true for all x < 1

2
.22 Thus, for each value of x, there is a value

of v
t
such that R0 > R1. Then, by Lemmas 1 and 2, if R0 > R1 at some x, then R0 > R1

at the same value of x for all higher values of v
t
.

Proof of Proposition 3. I �rst provide a formal de�nition of �defeated equilibrium.� I

then provide an algorithm that establishes that the class of PBE described in Proposition

2 defeats any other class of PBE. I �nally show that there exists no other PBE that defeats

the class of PBE described in Proposition 2, so this class is the unique �undefeated PBE.�

For the remainder of the proof, I restrict on-the-equilibrium-path messages to perfectly

overlap with the inferences; i.e., m (x) � 
 (m (x)). This is without any loss of generality

because it is the equilibrium inferences that distinguishes two PBEs from each other,

while there are typically in�nitely many messages that lead to the same inferences.

De�nition Denote R (�; x) as the revenue S earns for variety x in PBE �. Then,

� � (b; p;m; �) defeats �0 � (b0; p0;m0; �0) if there exists M � [0; 1] such that

(i) No type in �0 sends M , while the set of types in � that send M is non-empty, i.e.,

8x 2 [0; 1], m0(x) 6=M , and T = fx 2 [0; 1] j m(x) =Mg 6= ?;

(ii) All types that send M in � earn higher payo¤s (strictly higher for at least one) in

� than �0; i.e., 8x 2 T , R (�; x) � R (�0; x) and T s = fx 2 T j R (�; x) > R (�0; x)g 6= ?;

(iii) Beliefs in �0 are inconsistent for x 2 T s in the following sense: 9x 2 T for

which �0 (x jM) 6= f(x)�(x)R
~x2T

�(~x)f(~x)d~x
for any � : T ! [0; 1] satisfying � (~x) = 1 if ~x 2 T s and

� (~x) = 0 if ~x 62 T (thus allowing for types that are indi¤erent to randomize).

Let the PBE described in Proposition 2 be denoted as �� and take some other PBE

�0. It can be established by following the algorithm below that �� defeats �0.

22In fact, it can be shown that R0 < R1 for all x when v
t . 0:521 and R0 > R1 for all x when

v
t � 0:75. However, the derivation is long and tedious, but otherwise straightforward algebra. Since it
is not important for the results, I skip it here. It is available upon request.
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(1) Locate a variety x for which m� (x) 6= m0 (x).

(2) Denote the variety in m0 (x) that is closest to 1
2
as x1 (pick randomly if there are

two such varieties).

(3) Check if R (�0; 1� x1) � R (�0; x1) or not. If this holds, then it must be that

both x = x1 and x = 1 � x1 do strictly better in �� than in �0. So, beliefs in �0 are

inconsistent.23

(4) If R (�0; 1� x1) > R (�0; x1), then m0 (1� x1) must involve at least one variety

that is closer to 1
2
than x1. Locate the variety in m0 (1� x1) that is closest to 1

2
(pick

randomly of there are two such varieties) and denote it as x2.

(5) Repeat steps 3 and 4 until you �nd a variety xn for which R (�0; 1� xn) �

R (�0; xn). Such a variety must exist because R (�0; 1� x) = R (�0; x) for x = 1
2
.

It is helpful to articulate a bit more on the algorithm. First, suppose that x1 is the

only location in m0 (x), so R (�0; x1) = R1 (x1). Then, by the assertion in step 1, it must

be that m� (x1) = fx1; 1� x1g, and by the de�nition of ��,

R (��; x1) = R (�
�; 1� x1) = R0 (x1) > R1 (x1) .

Assuming R (�0; 1� x1) � R (�0; x1), it follows that

R (�0; 1� x1) � R (�0; x1) = R1 (x1) < R (��; x1) = R (��; 1� x1) .

This means that upon observing a message m = fx1; 1� x1g, beliefs in �0 should assign

a probability of 1
2
to both x = x1 and x = 1 � x1. However, in such a case, S would

deviate from �0 and instead send m = fx1; 1� x1g for both x = x1 and x = 1�x1. Thus,

�� defeats �0.

Next, suppose that m0 (x1) = m
0 (1� x1) = fx1; 1� x1g, so beliefs in �0 assign equal

probability to x = x1 and x = 1 � x1 upon observing this message. Due to the tie-

breaking condition, this means that R1 (x1) < R0 (x1). However, by step 1, it must be

23This step is satis�ed for any symmetric PBE for which R (�; x) = R (�; 1� x) for all x 2 [0; 1].
In principle, there may exist asymmetric PBE, too. As an example, suppose f (�) is uniform and v

t is
large enough. Then the following is a PBE: all x except for x = 0:4 and x = 0:59 are fully revealed
while S sends m = f0:4; 0:59g for x = 0:4 and 0:59. Possible beliefs that support this PBE involve
taking the message m = f0:4; 0:59g literally, so assigning Pr (x = 0:4) = Pr (x = 0:59) = 0:5 after seeing
m = f0:4; 0:59g, and assigning probability one to the variety that is farthest away from 1

2 (on the one on
the left if there are two such varieties) for any other message. The forth and �fth steps of the algorithm
apply only for asymmetric PBE.
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that m� (x1) = x1, which means R1 (x1) � R0 (x1). Thus, if m� (x1) = x1, �0 cannot

involve m0 (x1) = m
0 (1� x1) = fx1; 1� x1g.

Finally, suppose that there are at least two distinct asymmetric locations in m0 (x).

Denote the variety in m0 (x) that is closest to 1
2
as x1 and assume that R (�0; 1� x1) �

R (�0; x1). By the asymmetry of m0 (x), it must be that

R0 (x1) > R (�
0; x1) = R (�

0; x) .

In other words, S would have strictly preferred sending m = fx1; 1� x1g if B assigned

a probability of 1
2
to both x = x1 and x = 1 � x1 upon observing this message. Now,

suppose m� (x1) = fx1; 1� x1g in ��. Then, beliefs in �0 must be inconsistent because

otherwise S would deviate from �0 by sending m = fx1; 1� x1g for both x1 and 1 � x1,

and earn a higher payo¤. If S fully reveals x1 in ��, i.e., if m� (x1) = x1, then by the

construction of ��,

R1 (x1) � R0 (x1) ,

so it follows that

R1 (x1) � R0 (x1) > R (�0; x1) .

In such a case, S would again deviate from �0 by sending m = x1 for x = x1, so beliefs in

�0 are inconsistent.

It is possible that �0 is asymmetric and that R (�0; 1� x1) > R (�0; x1). Then, as

stated in step 4, m0 (1� x1) must involve at least one variety that is closer to 1
2
than

x1 because otherwise R (�0; 1� x1) could not be strictly larger than R (�0; x1). Denoting

the variety in m0 (1� x1) that is closest to 1
2
as x2, one can proceed as in the previous

paragraph. If it is again the case that R (�0; 1� x2) > R (�0; x2), the algorithm calls

for repeating the same process until a variety xn is located for which R (�0; 1� xn) �

R (�0; xn). Since the algorithm alternates between the two sides of 1
2
and gets strictly

closer to 1
2
at each new iteration, such a critical variety xn 6= 1

2
exists.

As the �nal step of the proof, I show that there are no other PBE that defeat the

class of PBE described in Proposition 2. The approach is very similar to the �rst part of

the proof, so I will be more brief. Suppose, on the contrary, that there is another PBE

�0 that defeats ��. Then, there exists at least one message M such that no type in ��
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sends M while the set of types in �0 that send M is non-empty, and all types that send

M in �0 earn higher payo¤s (strictly higher for at least one type) in �0 than ��. By this

latter observation, we can immediately rule out the scenarios in which only one type in

�0 sends M and in which only two types in �0 that are equally distanced from 1
2
send

M . Hence, there must be at least two asymmetric types in �0 that send M . Denote the

variety in M that is closest to 1
2
as x1 (pick randomly if there are two such varieties).

If all variaties in M are on either the left-hand side or the right-hand side of 1
2
, then it

is obvious that type x1 would be strictly better o¤ by sending a fully revealing message

and earning R1 (x1). By the construction of ��, we know that R (��; x1) � R1 (x1), so

it cannot be true that all types that send M in �0 earn higher payo¤s in �0 than ��.

Similarly, if there are some variaties inM that are on the left-hand side of 1
2
and some on

the right-hand side, then type x1 would be strictly better o¤ by sending fx1; 1� x1g and

earning R0 (x1) since this implies a perceived variety 1
2
and has a strictly lower variance.

Since it must be that R (��; x1) � R0 (x1), it again cannot be true that all types that

send M in �0 earn higher payo¤s in �0 than ��. Hence, we reach a contradiction.

Proof of Proposition 4. From section A1, when v
t
� 1, all types of B are served

for any x in case S sends a partially-revealing message, and v � t(� � x)2 � 0 for each

type of B. Thus, when v
t
� 1, W0 � W1 for all x (with equality when all types of B

are served under full disclosure, too). So, the proof is trivial in this case; mandating full

disclosure brings no extra gain while it may be harmful. Similarly, for parameter values

where the expected demand is zero under the partially-revealing strategy (this happens

for x � 1
2
�
p

v
t
when v

t
� 1

4
), full disclosure is welfare superior to sending a partially-

revealing message. However, since S voluntarily reveals all x for these parameter values,

there is no need for mandating full disclosure. For the remainder of the proof, I focus on

the remaining situations (i.e., v
t
< 1 and D0 > 0) and show that CS0 > CS1 whenever

R0 > R1, so the result follows.

Case 1: x <
p

v
5t

In this case, if S sends a partially-revealing message for x, the resulting consumer surplus
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is expressed as

CS0 =

v�t( 12�x)
2Z

p0

2

s
v � P
t

�
�
1

2
� x
�2
dP =

4t

3

 
v � p0
t

�
�
1

2
� x
�2!3=2

.

In the region where p0 =
2t
�
v
t
�( 12�x)

2
�

3
, this is equal to CS0 = 4t

3

�
v
t
�( 12�x)

2

3

�3=2
. In the

same region,D0 = 2
q

v�p0
t
�
�
1
2
� x
�2
= 2

r
v
t
�( 12�x)

2

3
, soR0 = p0D0 = 4t

�
v
t
�( 12�x)

2

3

�3=2
.

Thus, it follows thatCS0 = 1
3
R0 in this region. In the region where p0 = t

�
v
t
�
�
1
2
� x
�2 � 1

4

�
,

on the other hand, CS0 = 4t
3

�
1
4

�3=2
= t

6
.

When S fully reveals x, the resulting consumer surplus is

CS1 =

v�tx2Z
p1

 
x+

r
v � P
t

!
dP +

vZ
v�tx2

2

r
v � P
t

dP .

Evaluated at x = 0, p1 = 2v
3
, and CS1 =

vR
2v=3

q
v�P
t
dP = 2t

3

�
v
3t

�3=2
. Demand evaluated

at x = 0 is given by D1 =
q

v�p1
t
=
p

v
3t
, so R1(0; v; t) = 2t

�
v
3t

�3=2
. Thus, it follows that

CS1(0; v; t) =
1
3
R1(0; v; t).

Next, observe that

dCS1(x; v; t)

dx
= (v � tx2 � p1)�

 
x+

r
v � p1
t

!
dp1
dx
,

dR1(x; v; t)

dx
= p1,

where the second line follows from the Envelope Theorem. The equilibrium price in this

region can be rewritten as p1 = 2t
9

�q
3v
t
+ x2 + 2x

��q
3v
t
+ x2 � x

�
and the resulting

demand as x+
q

v�p1
t
= 1

3

�q
3v
t
+ x2 + 2x

�
. Taking the derivative of p1 with respect to

x and then multiplying the result with the expected demand gives 
x+

r
v � p1
t

!
dp1
dx

=
1

3

0@1� xq
3v
t
+ x2

1A p1.
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Thus,

d
�
CS1 � R1

3

�
dx

= (v � tx2 � p1)�
 
x+

r
v � p1
t

!
dp1
dx

� p1
3

= v � tx2 �

0@5
3
� 1
3

xq
3v
t
+ x2

1A p1.
Note that xp

3v
t
+x2

is increasing in x, so the maximum value it can take in this region is
p

v
5tp

3v
t
+ v
5t

= 1
4
. Similarly, tx2 � 0 and p1 � 2v

3
. Thus,

d
�
CS1 � R1

3

�
dx

� v �
�
5

3
� 1

12

�
2v

3
= � v

18
< 0.

So, R1
3
rises more quickly than CS1 as x increases, which means that CS1 < 1

3
R1 for all

x in this region. Thus, in the region where p0 =
2t
�
v
t
�( 12�x)

2
�

3
, we have

CS0 � CS1 >
1

3
(R0 �R1).

This condition means that if R0 � R1 for a particular x, then CS0 � CS1 and, in turn,

W0 � W1 for the same x. Hence, mandating full disclosure is harmful.

When 3
4
� v

t
< 1, if S sends a partially-revealing message, he charges a price p0 =

t
�
v
t
�
�
1
2
� x
�2 � 1

4

�
for 1

2
�
q

v
t
� 3

4
< x � 1

2
. As argued before, in this region, CS0

t
=

4
3

�
1
4

�3=2
= 1

6
. In the following, I �rst show for the same region that CS1

t
is increasing in

v
t
, and then show that maxx CS1t evaluated at v

t
= 1 is less than 1

6
. First, note that CS1

can be rewritten as

CS1 = (v � tx2 � p1)x�
2t

3
x3 +

2t

3

�
v � p1
t

�3=2
+
4t

3
x3

= t

�
v � p1
t

�
x+

2t

3

�
v � p1
t

�3=2
� t

3
x3.

Next, observe that

d
�
v�p1
t

�
d
�
v
t

� = 1� 2
9

0@3 + 3x

2
q

3v
t
+ x2

1A =
1

3
� x

3
q

3v
t
+ x2

> 0.

Since CS1
t
is increasing in v�p1

t
, it is also increasing in v

t
. When v

t
= 1, it is easy to show

that v�p1
t
= 1

3

�p
3 + x2 � x

�
. Plugging this back into CS1 and maximizing it with respect

36



x leads to argmaxxCS1 � 0:2256 andmaxx CS1t � 0:141. This is less than 1
6
, which means

that CS0 > CS1 for all parameter values for which p0 = t
�
v
t
�
�
1
2
� x
�2 � 1

4

�
.

Case 2:
p

v
5t
� x < min

�p
v
3t
; 1
2

	
In this case, p1 = v � tx2 and thus,

CS1 =

vZ
v�tx2

2

r
v � P
t

dP =
4t

3
x3.

The revenue S earns when he fully reveals x is R1 = 2t
�
v
t
� x2

�
x. The condition

p
v
5t
�

x < min
�p

v
3t
; 1
2

	
can equally be represented as 3x2 < v

t
� 5x2, so 4tx3 < R1 � 8tx3.

Hence, CS1 < 1
3
R1, which implies that

CS0 � CS1 >
1

3
(R0 �R1).

As argued before, in the region where p0 = t
�
v
t
�
�
1
2
� x
�2 � 1

4

�
, CS0 = t

6
. Evaluated at

x = 1
2
, CS1 = 4t

3
x3 = t

6
. Hence, CS0 > CS1 for all x < 1

2
in this region. Again, mandating

S to fully reveal x in situations when he voluntarily does not is socially harmful.

Case 3: min
�p

v
3t
; 1
2

	
� x � 1

2

This case is relevant only when v
t
< 3

4
. In this region, R1 > R0 for all x (except for x = 1

2

where two regimes are equivalent). So, mandatory disclosure rules are unnecessary.

A3 Consumer surplus

In this section, I show that the consumer surplus expressions given in equations (4) and

(6) can alternatively be expressed in the following form:

CS1(x; v; t) =

vZ
p1(x;v;t)

D1(P ;x; v; t)dP ,

CS0(x; v; t) =

v�t( 1
2
�x)2Z

p0(x;v;t)

D0(P ;x; v; t)dP .

Starting with CS1, for a given p < v,

v � p� t(�� x)2 � 0 for all � 2
�
�L1 (p; x; v; t); �

H
1 (p; x; v; t)

�
.
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We can then write v � p1 � t(�� x)2 as

v � p1 � t(�� x)2 =
vZ

p1

1
�
v � P � t(�� x)2

�
dP ,

for any � 2
�
�L1 (p1; x; v; t); �

H
1 (p1; x; v; t)

�
, where 1 [�] is the indicator function. Hence,

CS1(x; v; t) =

�H1 (p1;x;v;t)Z
�L1 (p1;x;v;t)

(v � p1 � t(�� x)2)d�

=

�H1 (p1;x;v;t)Z
�L1 (p1;x;v;t)

vZ
p1(x;v;t)

1
�
v � P � t(�� x)2

�
dPd�

=

vZ
p1(x;v;t)

�H1 (p1;x;v;t)Z
�L1 (p1;x;v;t)

1
�
v � P � t(�� x)2

�
d�dP

=

vZ
p1(x;v;t)

�
�H1 (P; x; v; t)� �L1 (P; x; v; t)

�
dP

=

vZ
p1(x;v;t)

D1(P ;x; v; t)dP ,

where the forth line follows from the following three observations:

v � P � t(�� x)2 � 0 for � 2
�
�L1 (P; x; v; t); �

H
1 (P; x; v; t)

�
;

�L1 (p1; x; v; t) � �L1 (P; x; v; t) for all P 2 [p1(x; v; t); v] ,

�H1 (p1; x; v; t) � �H1 (P; x; v; t) for all P 2 [p1(x; v; t); v] .

To establish the equivalence for CS0, �rst note that due to the symmetry of the

uniform distribution around 1
2
and the fact that

���L0 � 1
2

�� = ���H0 � 1
2

��, it follows that
�H0R
�L0

� d�
�H0 ��L0

= 1
2
. Thus, we have the following equality:
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�H0Z
�L0

(�� x)2 d�

�H0 � �L0
=

�H0Z
�L0

�
�2 � 2�x+ x2

� d�

�H0 � �L0

=

�H0Z
�L0

�
�2 � x+ x2 +

�
1

2
� �
��

d�

�H0 � �L0

=

�H0Z
�L0

1

2

�
(�2 � 2�x+ x2) + (�2 � 2� (1� x) + (1� x)2)

� d�

�H0 � �L0

=

�H0Z
�L0

1

2

�
(�� x)2 + t(1� x� �)2

� d�

�H0 � �L0
.

Now, the equivalence of the two consumer surplus expressions can be shown as follows.

CS0(x; v; t) =

�H0 (p0;x;v;t)Z
�L0 (p0;x;v;t)

(v � p0 � t(�� x)2)d�

=

�H0 (p0;x;v;t)Z
�L0 (p0;x;v;t)

�
v � p0 �

t

2

�
(�� x)2 + (1� x� �)2

��
d�

=

�H0 (p0;x;v;t)Z
�L0 (p0;x;v;t)

vZ
p0(x;v;t)

1

�
v � P � t

2

�
(�� x)2 + (1� x� �)2

��
dPd�

=

vZ
p0(x;v;t)

�H0 (p0;x;v;t)Z
�L0 (p0;x;v;t)

1

�
v � P � t

2

�
(�� x)2 + (1� x� �)2

��
d�dP

=

v�t( 1
2
�x)2Z

p0(x;v;t)

D0(P ;x; v; t)dP .

The upper bound of the integral in the last line above becomes v� t(1
2
� x)2 because

D0 = 0 for all � for prices above v � t(12 � x)
2.
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Figure 1. Expected demand curves S faces for x = 0.3 
when v = 0.6 and t = 1.
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Figure 2. The set of fully revealed locations (indicated by double arrows)
when v = 0.6 and t = 1.
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