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Abstract

Fitness is often defined as the average payoff an animal obtains when it is
engaged in several activities, each taking some time. We point out that
the average can be calculated with respect to either the time distribution,
or to the event distribution of these activities. We show that these two
averages lead to the same fitness function. We illustrate this result through
two examples from foraging theory, Holling II functional response and the
diet choice model, and one game-theoretic example of Hamilton’s rule applied
to the time-constrained Prisoner’s dilemma (PD). In particular, we show that
in these models, fitness defined as expected gain per unit time equals fitness
defined as expected gain divided by expected time. We also show how these
fitnesses predict the optimal outcome for diet choice and the prevalence of
cooperation in the repeated PD game.

Keywords: Diet choice model, fallacy of averages, functional response,12

Hamilton’s rule, Prisoner’s dilemma game.

1. Introduction14

A key concept of evolutionary and behavioral ecology is fitness. Typically,
individuals during their life are engaged in various activities with differential16

consequences on fitness that is then calculated as an average over these activ-
ities. Each of these activities may occur more than once and each occurrence18
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takes some time. Fitness can then be calculated as the average payoff with
respect to either the time distribution of the different activities or the number20

of different activity events. These two approaches can be controversial. One
such controversy relates to optimal foraging theory (Pulliam, 1974; Charnov,22

1976a,b; Stephens and Krebs, 1986) where fitness (or a proxy of fitness) is
defined as the average energy gained per average duration of foraging bout.24

Templeton and Lawlor (1981) argued that several papers on optimal forag-
ing defined fitness as the average of energy intake per unit of time which is26

inconsistent with the formula given in these articles that expresses fitness as
average energy gained per average foraging bout. They argued that such a28

“fallacy of the averages” is due to the fact that the expected value of the
energy gained per unit time (denoted as E(G

T
) where G is the energy ob-30

tained in a time interval of length T ) is not the expected gain divided by the

expected time (denoted as E(G)
E(T )

).32

To see clearly the problem in question, Stephens and Krebs (1986) provide
the following example, with a forager in a three patch environment. An34

individual can either go to patch 1 and stay there for 8 minutes and obtain
5 units of food (choice 1), or it can go first to patch 2, an empty patch, and36

stay there for 3 minutes and then go to patch 3 for 5 minutes and obtain
there 6 units of food (choice 2). For the first choice E(G

T
) = E(G)

E(T )
= 5

8
. For the38

second choice E(G
T

) = 3
5
< E(G)

E(T )
= 3

4
. With these expected values, the optimal

choice for the forager depends on how fitness is defined for choice 2. That40

is, if fitness is taken as E(G
T

) (respectively E(G)
E(T )

), then choice 1 (respectively,

choice 2) is optimal.42

Turelli et al. (1982) argued that the Templeton and Lawlor (1981) fallacy
of averages had not been committed because these authors incorrectly inter-44

preted results of the articles they criticized. Finally, Gilliam et al. (1982)
showed that no fallacy of averages was committed by Charnov (1976b) be-46

cause expected value of the quotient equals the quotient of the expected
values when probability spaces are chosen correctly in his foraging model.48

Indeed, in the above example, the expected values for choice 2 are calculated
with respect to the probability space that has two events, A (empty patch 2)50

and B (patch 3), each with probability 1
2
. That is, E(G

T
) = 1

2
× 0 + 1

2
× 6

5
= 3

5

and E(G)
E(T )

=
1
2
×0+ 1

2
×6

1
2
×3+ 1

2
×5

= 3
4
. The above probability distribution for calcu-52

lating E(G
T

) is incorrect. Instead, the probability of event A (respectively,
event B) here should be the probability the forager is in the empty patch54
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(respectively, patch 3) when a time between 0 and 8 minutes is chosen at
random. These probabilities are then 3

8
and 5

8
respectively. This results in56

E(G
T

) = 3
8
× 0 + 5

8
× 6

5
= 3

4
, which is the same as E(G)

E(T )
for choice 2 with

respect to the original probability space. That is, the expected gain per unit58

of time, E(G
T

), equals expected gain divided by expected time, E(G)
E(T )

, when
these expected values are calculated with respect to the correct probability60

distributions.
We should note that the fallacy of averages described above is related to62

Jensen’s inequality (Jensen, 1906), where in general E(f(X)) ≤ (≥)f(E(X))
if f is a concave (convex) function. For example the fact that log(X) is a64

concave function implies that the geometric mean is never greater than the
arithmetic mean for positive-valued X. In the case we consider there is a66

similar inequality caused by a failure to correct for the appropriate usage
of probability spaces when evaluating fitness in two distinct ways, which we68

elaborate on below.
Let us consider an individual with two activities that we call activity 170

and activity 2 (this is easily extended to the case with an arbitrary number
of activities, see the Appendix). Now consider a time interval T = T1 + T272

where Ti is the total time the individual spends in activity i. The probability
distribution of these activity times is then (t1, t2) = (T1/T, T2/T ). We define74

our fitness (proxy) Π as the average (with respect to the distribution of
activity times t = (t1, t2)) energy gain per time. That is,76

Π = Et

(
G

T

)
=
π1

τ1

T1

T
+
π2

τ2

T2

T
=
π1

τ1

t1 +
π2

τ2

t2, (1)

where Et is the expectation operator with respect to the distribution of ac-78

tivity times, πi is the energy gain of a single event of activity i and τi is the
time this event takes.80

Now we consider the distribution of activity events. Let mi be the number
of times event i takes place in a time interval T . Then the distribution of82

activity events is (e1, e2) = (m1/M,m2/M) (where M = m1 + m2). Since
Ti = miτi and T = m1τ1 +m2τ2, the relationship between the distribution of84

activity times and the distribution of activity events is given by

ti =
miτi

m1τ1 +m2τ2

=
eiτi

e1τ1 + e2τ2

.86

Thus,

Π = Et

(
G

T

)
=
π1

τ1

t1 +
π2

τ2

t2 =
e1π1 + e2π2

e1τ1 + e2τ2

=
Ee(G)

Ee(T )
(2)88
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Figure 1: Illustration of formulas (1) and (2). In this example there are two
activities with energy gain per event π1 = 1 and π2 = 2. Also, in time interval
T = 9, there are three activity 1 events and two activity 2 events with each
event taking time τ1 = 1 and τ2 = 3, respectively. Thus the distribution of
activity times is (t1, t2) = (1/3, 2/3) and so the average energy gain per unit time
is 1 × 1/3 + 2/3 × 2/3 = 7/9 as in (1). The distribution of activity events is
(e1, e2) = (3/5, 2/5). The area below the graph of the function is the total energy
gain Ee(G) = 3π1 + 2π2 = 7 obtained in the total time T , so Π = 7/9 as in (2).

where Ee is the expectation operator with respect to the distribution of ac-
tivity events.90

In this article, we begin by briefly illustrating the equivalence of Et

(
G
T

)
and Ee(G)

Ee(T )
through applying the method to the development of the well-known92

Holling II functional response (Holling, 1959) and to the diet choice model
(Charnov, 1976a). We then provide a more comprehensive treatment of a94

third application that generalizes Hamilton’s rule (Hamilton, 1963; Broom
and Rychtář, 2013) on the evolution of cooperation to the repeated Prisoner’s96

dilemma game when the number of rounds played depends on strategy choice.
As pointed out there and in the Discussion, the equivalent ways to calculate98

rate of gain have renewed importance for more recent behavioral models
that include the effects of activity times. In all three examples, we show how100

to calculate either the time or the event distribution, which is the crucial
component in determining an individual’s gain rate.102

Holling type II functional response

For the Holling II functional response, we consider two activities of a104

predator: searching for a prey, and handling a prey. Because searching for a
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prey is always followed by handling a prey, the number of searching events106

(m1) and handling events (m2) must be the same (m1 = m2) and so half
the events are handling and the other half are searching, i.e., e1 = e2 = 1/2108

is the distribution of events. Moreover, from the searching activity event
the predator does not gain any energy, π1 = 0, while handling a prey item110

provides energy gain π2 = E. Thus

Π =
Ee(G)

Ee(T )
=

1
2
0 + 1

2
E

1
2
τs + 1

2
h

=
E

τs + h
(3)112

where we assume that on average it takes time τ1 = τs to find a prey and
time τ2 = h to handle the prey. If x denotes the number of prey and λ is the114

predator search rate, a searching predator encounters on average λx prey per
unit time and τ1 = τs = 1/(λx). Then116

Π =
Eλx

1 + λhx

is the rate of energy intake based on the Holling type II functional response118

that measures the expected number of prey consumed by the predator per
unit time (Holling, 1959). We note that the distribution of activity times is120

now

t1 =
m1τ1

m1τ1 +m2τ2

=
m1/(λx)

m1/(λx) +m1h
=

1

1 + λhx
122

and

t2 =
m2τ2

m1τ1 +m2τ2

=
m1h

m1/(λx) +m1h
=

λhx

1 + λhx
.124

In this example, it was trivial to obtain the distribution of events, due to
the sequential nature of searching for and handling of prey items. In general,126

the distribution of events and/or times can be more complicated or more
difficult to calculate, as we will demonstrate in the following two examples.128

The Diet Choice model of Optimal Foraging Theory

The diet choice model (Charnov, 1976a) for two types of prey considers a130

predator searching for prey in an environment with prey types a and b. Let
us assume that there are xi (i = a, b) prey type i in the environment. Also132

assume the predator has the same search rate λ for both types and cannot
encounter more than one prey at a time. Then, during a total search time134
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T1, the predator encounters T1λ(xa + xb) prey, of which T1λxa (respectively,
T1λxb) are type a (respectively, type b).136

Upon encountering a prey type i = a, b, the predator either starts to
“handle” the prey with probability ui, or starts a new search for another138

prey. Immediately after handling a prey item the predator starts searching
for a new prey. Thus, there are three activities of a predator: searching140

for a prey (activity 1), handling prey type a (activity 2), and handling prey
type b (activity 3). In time interval T , a predator either searches for a prey142

(which takes time T1), or handles prey type a (T2), or prey type b (T3), i.e.,
T = T1 + T2 + T3. If it takes hi time units to handle a single prey of type144

i (i.e. τ2 = ha, τ3 = hb), then T2 = λuaxahaT1 and T3 = λubxbhbT1. Thus,
T1 = T/(1+λuahaxa+λubhbxb), from which the distribution of activity times146

(T1
T
, T2
T
, T3
T

) follows easily.
Let Ea and Eb be energy gains from handling one prey a or b item,148

respectively (i.e. π2 = Ea, π3 = Eb). Also, π1 = 0 since the predator does
not get any energy during searching. Thus, the predator’s fitness defined as150

average energy gain per unit time is given by

Π = Et

(
G

T

)
=
π1

τ1

T1

T
+
π2

τ2

T2

T
+
π3

τ3

T3

T
=

λuaxaEa + λubxbEb
1 + λuaxaha + λubxbhb

(4)152

which extends equation (1) to three activities. Equation (4) is the well-
known formula for fitness used in the diet choice model of optimal foraging154

(Charnov, 1976a; Stephens and Krebs, 1986).
As emphasized in this article, the fitness is also given through the distri-156

bution of activity events. Specifically, in the time interval T , there are m1 =
T1λ(xa +xb) searches, m2 = T1λuaxa prey a handled and m3 = T1λubxb prey158

b handled events. Since the search time for one prey is τs = 1/(λ(xa + xb))
(cf. Holling type II functional response),160

Π =
Ee(G)

Ee(T )
=

m10 +m2Ea +m3Eb
m1

1
λ(xa+xb)

+m2ha +m3hb
=

T1λuaxaEa + T1λubxbEb
T1 + T1λuaxaha + T1λubxbhb

.

(5)
The equivalence of (4) and (5) was pointed out by Gilliam et al. (1982) using162

different notation.
To maximize Π, the predator will handle all prey items it encounters that164

are most profitable (i.e., ua = 1 if we assume that Ea

ha
> Eb

hb
) and will handle all

(respectively, none) of prey type b it encounters if the density xa of prey type166
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a is below (respectively, above) the positive threshold level of Eb

λ(Eahb−Ebha)

(Charnov, 1976a; Stephens and Krebs, 1986). As shown in Cressman et al.168

(2014), this optimal outcome of foraging theory can be interpreted as the
game-theoretic solution where the predator faces a decision tree and chooses170

the Nash equilibrium solution.
The following example applies similar game-theoretic reasoning in a more172

traditional setting.

Fitness in the repeated Prisoner’s dilemma game: Hamilton’s rule174

One fallacy of averages mentioned by Templeton and Lawlor (1981) is
Hamilton’s rule that altruistic behavior is favored in models of kin selection176

when Loss of individual fitness
Gain in relative’s fitness

is less than the degree of relatedness. This is related
to cooperation and defection in the repeated Prisoner’s dilemma (PD) game.178

The single shot PD assumes that when two individuals interact, they have
two strategies, either to cooperate, or to defect. If an individual cooperates,180

it pays cost c and gives benefit b > c > 0 to its partner.1 If it defects, it does
not pay the cost. The single shot PD game has the payoff matrix182

[ C D

C b− c −c
D b 0

]
(6)

where the matrix entries give the payoff to the row player when interacting184

with the column player. Thus, any player prefers to play against a cooperator
rather than against a defector. So, if each player in an interacting pair is free186

to decide whether to continue the interaction or not, it can be assumed that
a pair of cooperators want to stay together as long as possible while all other188

pairs will disband after one round. This leads us to consider the repeated
Prisoner’s dilemma where the same players play the single shot PD game for190

several rounds.
In our repeated PD game there are two types of players, Cooperators192

and Defectors. When two cooperators meet, their interaction lasts for τ > 1
rounds and that their cumulative payoff is πCC ≡ (b− c)τ for each of them.194

On the other hand, when a Defector meets either a Cooperator or another

1With these parameters, Hamilton’s rule is that altruistic behavior is favored when
c
b < r where r measures the degree of relatedness.
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Defector, the interaction lasts one round. The payoff matrix per interaction196

is then [ C D

C πCC πCD
D πDC πDD

]
=

[ C D

C (b− c)τ −c
D b 0

]
(7)198

where the payoffs are given for the row player. We also assume that, be-
tween rounds, individuals from disbanded pairs, (i.e., those players whose200

interactions has ended) form new pairs at random.
Fitnesses2 for the two strategies are taken as average payoffs per round202

with each round lasting one unit of time. Let us consider the fitness of a
cooperator3. In each round, this cooperator has two activities; namely, it is204

either paired with a cooperator or with a defector. Let TCC (respectively TCD)
be the total time (i.e., the number of rounds) that the cooperator is paired206

with a cooperator (respectively, defector) in T = TCC + TCD rounds, i.e., in
the time interval T . That is, the distribution of the cooperator’s activity208

times is (tCC , tCD) = (TCC/T, TCD/T ) and so the fitness of a cooperator, ΠC

is210

ΠC = Et

(
G

T

)
=
πCC
τ

TCC
T

+
πCD

1

TCD
T

= (b− c)TCC
T
− cTCD

T
. (8)

We can also consider the distribution of activity events (eCC , eCD) for the212

cooperator. Let mCC (respectively, mCD) be the number of interactions the
cooperator has with a cooperator (respectively, defector) in a time interval214

T . Then the cooperator’s distribution of activity events is (eCC , eCD) =
(mCC/M,mCD/M) (where M = mCC + mCD). Since tCC = mCCτ

mCCτ+mCD
=216

eCCτ
eCCτ+eCD

and tCD = mCD

mCCτ+mCD
= eCD

eCCτ+eCD
,

ΠC = Et

(
G

T

)
=
πCC
τ
tCC +

πCD
1
tCD =

eCCπCC + eCDπCD
eCCτ + eCD

=
Ee(G)

Ee(T )
. (9)218

That is, the cooperator’s fitness is given either as the expected payoff per
round (with respect to the cooperator’s distribution of activity times) or as220

the expected payoff divided by expected time (with respect to the coopera-
tor’s distribution of activity events).222

2In this section we change terminology to the more traditional one used in evolutionary
game theory. That is, instead of energy gain we use payoff and instead of average gain
rate we use fitness.

3The fitness of a Defector is calculated analogously.
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To calculate fitness from (9), we need to know one of the activity dis-
tributions of the cooperator as a function of the number of cooperators nC224

and the number of defectors nD in the population. To this end, we assume
that the distribution of activity times is given through the equilibrium of the226

discrete-time pair formation process that describes changes in the number
of pairs as in Zhang et al. (2016). We note that in this example the CC228

interaction time τ affects both the payoffs from such an interaction and the
overall distribution of the interacting pairs.230

Let nCC(t) be the number of cooperator pairs (i.e., CC pairs), nCD(t) be
the number of CD pairs and nDD(t) be the number of DD pairs at round t.232

With random pairing of disbanded singles between rounds, the distributional
dynamics is then234

nCC(t+ 1) =(1− 1

τ
)nCC(t) +

(
2nCC(t)

τ
+ nCD(t)

)2

4
(
nCC(t)
τ

+ nCD(t) + nDD(t)
) ,

nCD(t+ 1) =
2
(

2nCC(t)
τ

+ nCD(t)
)

(nCD(t) + 2nDD(t))

4
(
nCC(t)
τ

+ nCD(t) + nDD(t)
) ,

nDD(t+ 1) =
(nCD(t) + 2nDD(t))2

4
(
nCC(t)
τ

+ nCD(t) + nDD(t)
) .

(10)

For example, the number of cooperating pairs in the next round equals the236

number of continuing pairs (1− 1
τ
)nCC plus the number of newly formed pairs

(Zhang et al., 2016; Křivan and Cressman, 2017). These authors show that238
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for τ 6= 1,4 (10) has a unique equilibrium

nCC =
nC(2τ − 1) + nD −

√
4nCnDτ + (nC − nD)2

4(τ − 1)
,

nCD =

√
4nCnDτ + (nC − nD)2 − nC − nD

2(τ − 1)
,

nDD =
nC + nD(2τ − 1)−

√
4nCnDτ + (nC − nD)2

4(τ − 1)
.

240

The distribution of activity times for a cooperator are then tCC = 2nCC

2nCC+nCD

and tCD = nCD

2nCC+nCD
. The fitness functions evaluated at this distribution are242

ΠC =

(
nC(2τ − 1) + nD −

√
(nC − nD)2 + 4nCnDτ

2nC(τ − 1)

)
b− c,

ΠD =

(√
(nC − nD)2 + 4nCnDτ − nC − nD

2nD(τ − 1)

)
b,

(11)

when τ 6= 1. We note that, for τ = 1, the fitness functions are those of the244

classic one-shot PD game, ΠC = nC

N
b − c and ΠD = nC

N
b, where it is always

better to defect than cooperate. These classic payoffs can be found directly246

by assuming equation (10) is in equilibrium using τ = 1, or taking the limit
of equation (11) as τ tends to 1.248

When the population size N ≡ nC +nD is fixed, the above fitnesses define
a two-strategy time-constrained (population) game. Defect is always a (pure-250

strategy) Nash equilibrium (NE) of this game (since 0 = ΠD > ΠC = −c
when nD = N). On the other hand, Cooperate is never a NE since b =252

ΠD > ΠC = b − c when nC = N . However, for τ ≥ (b+c)2

(b−c)2 , there exist other
mixed strategy NE which are found by solving ΠC = ΠD. These are given254

4For τ = 1, the distribution of pairs is given by (nCC , nCD, nDD) =(
n2
C

2(nC+nD) ,
nCnD

nC+nD
,

n2
D

2(nC+nD)

)
where pair proportions are given by the Hardy–Weinberg

formula (e.g., the proportion of CC pairs among all pairs is
n2
C

(nC+nD)2 and the number of

all pairs is (nC + nD)/2).
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by (Křivan and Cressman 2017; see also Zhang et al., 2016)

(nC , nD) =

(
1

2
N

(
1−

√
τ(b− c)2 − (b+ c)2

√
τ − 1(b− c)

)
,
1

2
N

(
1 +

√
τ(b− c)2 − (b+ c)2

√
τ − 1(b− c)

))
,

(nC , nD) =

(
1

2
N

(
1 +

√
τ(b− c)2 − (b+ c)2

√
τ − 1(b− c)

)
,
1

2
N

(
1−

√
τ(b− c)2 − (b+ c)2

√
τ − 1(b− c)

))
.

(12)256

They also showed that the second mixed NE in (12) with the larger pro-

portion of cooperators is stable when τ > (b+c)2

(b−c)2 in the sense that ΠC > ΠD258

(respectively, ΠC < ΠD) when the proportion of cooperators is slightly less
(respectively, slightly more) than at this NE. That is, Hamilton’s rule gen-260

eralizes to the time-constrained PD game to state that selection favors the
coexistence of cooperators and defectors when the interaction between coop-262

erators lasts a sufficient number of rounds, which is independent of genetic
relatedness.264

Discussion

In this article, we consider the problem of calculating fitnesses in ecology266

in an appropriate and consistent manner. We show that fitness calculated as
expected gain per unit time equals fitness calculated as expected gain divided268

by expected time provided probability spaces are chosen correctly. We apply
this approach to three fundamental models of population and evolutionary270

ecology. In the first model, the two activities of an individual predator are
searching for a prey and then handling it when encountered, leading in a272

natural way to fitness given through the Holling type II functional response
when all prey are of the same type. In the second model, the diet choice274

of optimal foraging with two prey types, an individual predator has three
different activities; namely, searching for a prey, handling prey type one or276

handling prey type two. In the third model, the repeated Prisoner’s dilemma,
where the number of rounds is strategy dependent, the game’s solution based278

on Nash equilibria leads to a version of Hamilton’s rule predicting when
selection favors cooperative behavior.280

In all three models, we explicitly show that the fitnesses whether they are
calculated as average gain per time, or average gain over average time lead to282

the same outcome when averaging is taken with respect to the distribution
of activity times or the distribution of activity events, respectively. However,284
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as illustrated by the third model, the challenging problem when calculat-
ing fitnesses can be to describe the distribution of activity times or activity286

events. This becomes more problematic in multi-strategy time-constrained
games, including those that involve searching times in the pair formation288

process, where analytic expressions for these distributions are often unavail-
able. Nevertheless, in several recent articles on these general models, it has290

been shown, either by generalizing the distributional dynamics approach of
Example 3 (e.g., Křivan and Cressman, 2017; Cressman and Křivan, 2019)292

or by using Markov methods (e.g., Garay et al., 2017, 2018), that the dis-
tributions still exist and are unique as functions of strategy numbers. The294

resultant fitness functions then define a population game that can be solved
numerically if their analytic formulas are intractable.296

A series of papers that also involve time delays and similar types of calcu-
lations are the game-theoretic kleptoparasitism models starting with Broom298

and Ruxton (1998) (see also Broom et al. (2004, 2008)). Here individuals
could find their own food or steal from others, and were faced with strate-300

gic decisions about whether to challenge for food items, or to concede items
when challenged. Individuals chose strategies to minimise the expected time302

for them to consume an item; thinking of an activity event as the sequence
of actions until an item is consumed, the payoff is then effectively that from304

(2) where by definition Ee(G) = 1 and Ee(T ) is the expected consumption
time. Payoffs were also calculated in an equivalent way too, through finding306

the handling ratio, the proportion of individuals handling a food item at any
time. Since food could only be consumed when in the handling state, the308

payoff per unit time was simply the handling ratio multiplied by the handling
rate, which is a special case of equation (1).310

The methodology that we have described can generalise to more complex
scenarios where a number of different events are possible, each with their own312

distinct durations and rewards, and often with restrictions on the sequence in
which they can occur. A natural area to consider is life history theory (Roff,314

1992; Stearns, 1992), where trade-offs between times in distinct stages of life,
and relative investment in different aspects such as reproduction and growth,316

are both common and often complicated. Here the scenario is generally not
so simple as to maximise the expected reward functions (1) or (2), but there is318

potential to adapt the ideas we have developed here to consider more general
situations. As a rule the more complex the model, the greater the scope for320

erroneous thinking when evaluating fitness. As we have considered in this
paper, even apparently straightforward situations can be perilous.322
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In summary, foraging situations can be modeled either by considering
the expected gain per unit time, or the expected gain per foraging event.324

Some modeling situations lend themselves to the first approach, some to
the second. In this paper we have shown that when properly considered,326

these two methods are entirely equivalent and consequently researchers can
be appropriately flexible in their approach.328
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Appendix A. Equivalence of payoffs with respect to time and event336

distributions

Let us consider i = 1, . . . , I events, each taking time τi. The payoff from338

each event is πi, and the number of times each event takes place is mi.
Consider the following three forms (A and B are similar in appearance,340

C somewhat different) of fitness payoff/fitness functions.

Payoff A =

∑I
i=1miπi∑I
i=1miτi

,342

that is, the total reward from all events divided by the total time. Dividing
all terms by the total number of events344

M =
I∑
i=1

mi

we obtain346

Payoff B =

∑I
i=1

mi

M
πi∑I

i=1
mi

M
τi

where mi/M is the proportion of events of type i.348

We can rearrange payoff A in another way

Payoff C =

∑I
i=1miπi∑I
i=1 miτi

=
I∑
i=1

miτi∑I
j=1 mjτj

πi
τi
.350

Here the term miτi∑I
j=1mjτj

in the sum is the proportion of time spent in event

i.352

We note that Payoff B is written as the reward per interaction weighted by
the proportion of interactions, and Payoff C is the reward per time weighted354

by the proportion of time. There are two plausible mistakes that can be
made when calculationg the payoff. The example from Stephens and Krebs356

(1986) gives two different payoffs. E(G)/E(T ) is just Payoff B above, and
so also equivalent to Payoff C. Their other payoff E(G/T ) gives a different358

value as we have discussed. This makes the mistake of using reward per time
weighted by proportion of interactions. The reverse bias, which uses reward360

per interaction weighted by proportion of time, is a well known concept
in renewal theory, “length-biased sampling” (Qin, 2017). Here individuals362
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that live/stay longer (or are larger) are more likely to be observed and lead
to estimation bias (although the bias can be corrected for as long as the364

researcher is aware of it, Lehnen, 2005).
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