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ON THE GEOMETRY OF LATTICES AND FINITENESS OF PICARD GROUPS

FLORIAN EISELE

Abstract. Let (K,O, k) be a p-modular system with k algebraically closed and O unramified,

and let Λ be an O-order in a separable K-algebra. We call a Λ-lattice L rigid if Ext1
Λ
(L, L) = 0,

in analogy with the definition of rigid modules over a finite-dimensional algebra. By partitioning

theΛ-lattices of a given dimension into “varieties of lattices”, we show that there are only finitely

many rigid Λ-lattices L of any given dimension. As a consequence we show that if the first

Hochschild cohomology ofΛ vanishes, then the Picard group and the outer automorphism group

of Λ are finite. In particular the Picard groups of blocks of finite groups defined over O are

always finite.

1. Introduction

Let k = k̄ be an algebraically closed field of characteristic p > 0. Let O = W(k) be the ring

of Witt vectors over k, and denote by K the field of fractions of O. In the representation theory

of a finite group G over either of these rings, permutation modules, p-permutation modules and

endo-permutation modules play a pivotal role. However, to even define permutation modules,

one needs to know a group basis of the group ring, a piece of information which is lost when

passing to isomorphic or Morita equivalent algebras. Recovering the information lost when

forgetting the group basis, or at least quantifying the loss, is a fundamental problem in modular

representation theory. This is, for instance, the problem once faces when trying to bridge

the gap between Donovan’s and Puig’s respective conjectures. There are scant results in this

direction, apart from Weiss’ seminal theorem [Wei88], which gives a criterion for a lattice to

be p-permutation requiring only limited knowledge of a group basis (and in some cases none

at all). In the present article we study the following property of lattices over an O-order Λ such

that A = K ⊗O Λ is a separable K-algebra, which of course includes lattices over a finite group

algebra OG:

Definition 1.1. A Λ-lattice L is called rigid if Ext1
Λ
(L, L) = 0.

First and foremost we should point out that permutation lattices over a finite group algebra

OG are rigid in this sense. The notion of rigid modules over finite-dimensional k-algebras is

widely known and well-studied (see for example [DF74, Dad80]), but unfortunately permutation

kG-modules and their ilk usually do not have that property. To see why permutation lattices

do, we can use a well-known alternative characterisation of rigidity in terms of endomorphism

rings, which works for arbitrary Λ-lattices L. Consider the following long exact sequence

obtained by applying HomΛ(L, −) to the short exact sequence 0→ L → L → L/pL → 0:

(1) 0 −→ EndΛ(L)
p
−→ EndΛ(L) −→ EndΛ(L/pL) −→ Ext1

Λ
(L, L)

p
−→ Ext1

Λ
(L, L).

As A is separable, we must have K ⊗O Ext1
Λ
(L, L) � Ext1A(K ⊗O L, K ⊗O L) = 0, meaning that

Ext1
Λ
(L, L) is a finitely generated torsion O-module. By the Nakayama lemma Ext1

Λ
(L, L) is

zero if and only if multiplication by p is injective on it, which, by exactness, happens if and

only if the reduction map

(2) EndΛ(L) −→ EndΛ(L/pL)
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is surjective. Now if R[H\G] is a permutation module over an arbitrary commutative

ring R, then its endomorphisms can be identified with sums
∑

h∈HgH h over double cosets

HgH ∈ H\G/H. That clearly implies the (well-known) fact that the reduction map

EndOG(O[H\G]) −→ EndkG(k[H\G]) is surjective, which by the above implies that O[H\G]

is rigid.

After this short digression on permutation lattices let us state our first main result, which is

that rigid lattices enjoy the same discreteness property as rigid modules over finite-dimensional

algebras.

Theorem A. For every n ∈ N there are at most finitely many isomorphism classes of rigid

Λ-lattices of O-rank at most n.

An easy corollary of this is that only finitely many isomorphism classes of OG-lattices of

any given character can be images of permutation lattices under Morita or stable equivalences

originating from another group or block algebra. Perhaps unsurprisingly, this result is proved

using geometric methods. The basic idea of using a variety of modules (or a variety of

complexes, as the case may be) has been successfully applied to modules and complexes over

finite-dimensional algebras in many different contexts [Dad80, Dad82, DF74, HZS01, ANR13,

Rou11]. The idea is typically that one gets a homomorphism from the tangent space of such

a variety in a point M into Ext1(M,M), whose kernel is the tangent space of the subvariety of

points N isomorphic to M .

The way we obtain a variety parametrising all lattices with a given K-span is quite different

from how one proceeds for finite-dimensional k-algebras. We essentially start with a fixed

lattice, and conjugate an affording representation by a generic matrix. That is how we obtain

our analogue of a variety of modules, a smooth family ofΛ-lattices (see Definition 3.1). Despite

working over O, these smooth families of lattices are actually parametrised by varieties over k.

This is possible due to the theory of Witt vectors. The two main ingredients of Theorem A are

the fact that each smooth family of lattices contains at most one rigid lattice, up to isomorphism

(see Theorem 3.3), and the fact that lattices in a given finite-dimensional A-module can be

appropriately partitioned into finitely many smooth families (see Theorem 4.2).

Our second main result is an immediate consequence of Theorem A, but we state it as

a theorem nevertheless, since it was the main motivation for writing this paper. The study

of Picard groups of blocks of finite group algebras over O was initiated in [BKL19]. While

[BKL19] primarily studies the group of Morita self-equivalences induced by bimodules of endo-

permutation source, this is where the possibility of Picard groups of blocks always being finite

was first raised. The theorem we obtain is much more general, and provides further evidence

for the speculation put forward in [Eis18] that the Lie algebra of PicO(Λ) (which is shown to be

an algebraic group in that paper) should be related to the first Hochschild cohomology of Λ in

some way or form.

Theorem B. Assume that HH1(Λ) = 0. Then PicO(Λ) is a finite group.

Here PicO(Λ) denotes the group of O-linear self-equivalences of the module category of Λ.

This group is commensurable with the outer automorphism group OutO(Λ), as well as

Outcent(Λ) and Picent(Λ), and we could just as well have stated Theorem B with PicO(Λ)

replaced by any of these groups. The theorem of course immediately implies the following:

Corollary 1.2. Let G be a finite group, and let OGb be a block. Then PicO(OGb) is finite.

There is also a more elementary formulation of this fact which is reminiscent of the second

Zassenhaus conjecture.
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Corollary 1.3. For a finite group G there are only finitely many U(OG)-conjugacy classes of

group bases of OG.

Corollary 1.2 shows that block algebras over O are in some sense extremely rigid, and it

turns their Picard groups into a very interesting finite invariant. This is particularly important

since Külshammer [Kül95] showed that Picard groups play an important role in both Donovan’s

conjecture and the classification of blocks of a given defect group. This theme is explored in

[Eat16, EEL19]. In the way of actual computations, [HN04] determines the Picard group of the

principal block of A6 for p = 3, [EL18] determines Picard groups of almost all blocks of abelian

2-defect of rank three, and this will certainly not mark the end of the story. Unfortunately, we

have very little to offer to aid the calculation of Picard groups. Still, the following might be

useful. Note that T (OGb) denotes the subgroup of PicO(OGb) of equivalences induced by

p-permutation bimodules, which is determined in [BKL19].

Proposition 1.4. Let G be a finite group, let OGb be a block and let P 6 G be one of its defect

groups.

(1) An element of PicO(OGb) lies in T(OGb) if and only if it sends the p-permutation

lattice O[P\G] · b to a p-permutation lattice.

(2) If O[P\G] · b is, up to isomorphism, the only rigid lattice in K[P\G] · b with endomor-

phism ring isomorphic to EndOG(O[P\G] · b), then Picent(OGb) ⊆ T (OGb).

The same is true if we set b = 1 and let P be a Sylow p-subgroup of G. It is also sufficient

to prove that each indecomposable summand L of O[P\G] · b is the unique rigid lattice in

K ⊗O L with endomorphism ring EndOGb(L). It is however unclear whether one can show

such uniqueness in any interesting examples, even though the construction explained in §4 is in

principle constructive. Nevertheless, Proposition 1.4highlights the importance of understanding

and classifying rigid lattices with a given character.

One last thing to note is that while we focus on applications to block algebras in this

article, there are other types of O-orders with vanishing first Hochschild cohomology to which

Theorem B applies. Iwahori-Hecke algebras defined over O, for instance, should have this

property by [GR97, Theorem 5.2].

Notation and conventions. By νp : K −→ Z ∪ {∞} we denote the p-adic valuation on K .

Modules are right modules by default. All varieties are reduced, and by a “point” we mean a

closed point. Λ will always denote an O-order in a separable K-algebra. We will assume that

the reader is familiar with the theory of Witt vectors as laid out in [Ser79, §5–§6].

2. Prerequisites

Recall that a commutative ring R is called a strict p-ring if R is complete and Hausdorff

with respect to the topology induced by the filtration R ⊇ pR ⊇ p2R ⊇ . . ., the element p

is not a zero-divisor in R and R̄ = R/pR is a perfect ring of characteristic p. The condition

that R be complete and Hausdorff is equivalent to the natural homomorphism R −→ lim
←−−

R/piR

being an isomorphism. The theory of Witt vectors shows (see [Ser79, §5 Proposition 10 and

§6 Theorem 8]) that a strict p-ring R with residue ring R̄ is unique up to unique isomorphism

(or, to be more precise, the pair (R, R/pR → R̄) is). In particular, there is a unique ring

homomorphism ϕ : R −→W(R̄), where W(R̄) denotes the ring of Witt vectors over R̄, making
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the diagram

(3) R

!! !!❈
❈

❈

❈

❈

❈

❈

❈

❈

ϕ
// W(R̄)

��
��

R̄

commute, the arrows going down being the natural homomorphism from R into R̄ and the

projection onto the first Witt vector component, respectively.

Notation 2.1. Let R be a strict p-ring with perfect residue ring R̄. For l ∈ N we let

(4) ρl : R −→ R̄l

denote the map which sends r ∈ R to the first l components of the Witt vector ϕ(r) ∈ W(R̄). We

say that r reduces to ρl(r).

We will extend the map ρl to vectors and matrices over R. There is also no need to explicitly

record the ring R in our notation, due to the uniqueness of the isomorphism between a strict

p-ring and the corresponding ring of Witt vectors explained above.

A strict p-ring with a perfect residue field is a complete discrete valuation ring, and if this

residue field is moreover algebraically closed we may view any set of truncated Witt vectors over

it as affine space. This applies to our ring O. It is clear that if f ∈ O[X1, . . . , Xn] is a polynomial

and r ∈ N, then the condition “νp( f (x̂1, . . . , x̂n)) > r” for x̂1, . . . , x̂n ∈ O
n is equivalent to certain

polynomials in the entries of ρr(x̂1), . . . , ρr(x̂n) vanishing. That is, “νp( f (x̂1, . . . , x̂n)) > r” is

essentially a “closed condition” on Witt vectors. The point of the remainder of this section is to

understand the implications of this simple observation.

Definition 2.2. Let f ∈ O[X1, . . . , Xn] be a polynomial, and let l ∈ N.

(1) We define νp( f ) as the minimal p-valuation of a coefficient of f .

(2) For a point x = (x1,0, . . . , x1,l−1, . . . , xn,0, . . . , xn,l−1) ∈ A
n·l(k) we define

(5) νp,x( f ) = min{νp( f (x̂1, . . . , x̂n)) | x̂ = (x̂1, . . . , x̂n) ∈ O
n such that ρl (̂x) = x}

We call νp,x( f ) the generic valuation of f at x.

We may extend this generic valuation to K(X1 . . . , Xn) in the obvious way. One should note

though that if f is a rational function rather than a polynomial, then νp( f (̂x)) could be either

bigger or smaller than νp,x( f ), depending on the choice of x̂ ∈ On reducing to x.

Proposition 2.3. Assume the situation of Definition 2.2.

(1) For any x̂ = (x̂1, . . . , x̂n) ∈ O
n reducing to x we have

(6) νp,x( f ) = νp( f (x̂1 + pl · Z1, . . . , x̂n + pl · Zn))

where Z1, . . . , Zn are indeterminates.

(2) If an x̂ ∈ On reduces to x, then there is a ẑ ∈ W(F̄p)
n such that

(7) νp( f (̂x + pl · ẑ)) = νp,x( f ).

Proof. (1) Note that the right hand side cannot be bigger than the left hand side. On the other

hand, if νp( f (x̂1+pl Z1, . . . , x̂n+pl Zn)) = m ∈ Z>0, then p−m f (x̂1+pl Z1, . . . , x̂n+pl Zn)

reduces to a non-zero polynomial in k[Z1, . . . , Zn], and we can certainly find values for

the Zi for which the polynomial does not vanish. This shows that the right hand side

cannot be smaller than the left hand side either.
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(2) By the first part we know that p−νp,x( f ) f (x̂1 + pl Z1, . . . , x̂n + pl Zn) reduces to a non-zero

polynomial g ∈ k[Z1, . . . , Zn], and νp( f (̂x + pl · ẑ)) = νp,x( f ) if and only if g(z) , 0,

where z is the reduction of ẑ modulo p. Hence, what we are looking for is a z ∈ F̄n
p which

avoids the vanishing set of a polynomial defined over k. Since An(F̄p) is Zariski-dense

in An(k) such a z exists trivially. �

Corollary 2.4. Let E be the ring of Witt vectors over an algebraically closed field k′ containing

k, and let f ∈ O[X1, . . . , Xn] be a polynomial. For x ∈ An·l(k) the value of νp,x( f ) is independent

of whether we consider f as a polynomial over O or over E.

Proof. This follows from the first part of Proposition 2.3. �

Corollary 2.5. In the situation of Proposition 2.3 let f1, . . . , fd ∈ O[X1, . . . , Xn] (d ∈ N) be

non-zero polynomials. Then, for any x̂ ∈ On reducing to x, we have

(8) νp,x( f1 · · · fd) = νp( f1(̂x) · · · fd (̂x))

if and only if

(9) νp,x( fi) = νp( fi (̂x)) for all 1 6 i 6 d.

Proof. By the first part of Proposition 2.3 we have νp,x( f1 · · · fd) =
∑

i νp,x( fi). Moreover, the

valuation of a polynomial at an x̂ is always greater than or equal to the generic valuation of the

polynomial at x, but never smaller. The claim follows. �

The above shows that if we have finitely many non-zero polynomials f1, . . . , fd (d ∈ N), then

there is always an x̂ reducing to x such that νp( fi (̂x)) = νp,x( fi) for all i at once. One last thing

we need to understand is what the set of all points x ∈ An·l(k) with νp,x( f ) > r (for some given

polynomial f and r ∈ Z>0) looks like geometrically. Proposition 2.6 below answers this, and is

essentially a consequence of the fact that such a set is the complement of the image of an open

set under the projection onto the first l components of a Witt vector, which will be a closed set.

Proposition 2.6. Given f ∈ O[X1, . . . , Xn], l ∈ N and r ∈ Z>0, there is a closed subvariety

Vl,νp,−( f )>r ⊆ A
n·l defined over k such that for any algebraically closed k′ ⊇ k we have

(10) Vl,νp,−( f )>r (k
′) = {x ∈ An·l(k′) | νp,x( f ) > r}

Proof. Fix an algebraically closed k′ ⊇ k, and set E = W(k′). Let x ∈ An·l(k′), and let x̂ ∈ En

be the element reducing to it such that the first l components of the Witt vector x̂i are given by the

xi, j for 0 6 j 6 l − 1, and all other components are zero (note that we use two indices to refer to

the n ·l entries of x, which is more natural since we want to think of x as an element of kn×l , rather

than kn·l). As E is the ring of Witt vectors over k′ and f is defined over k, we get polynomials

fi ∈ k[X1,0, . . . , X1,l−1, . . . , Xn,0, . . . , Xn,l−1, Z1, j, . . . , Zn, j | 0 6 j 6 i] (where i ∈ Z>0) such that

f (̂x + pl · ẑ) (for arbitrary ẑ ∈ En) is given by the Witt vector whose i-th component is the

evaluation of fi at x and ρi+1(̂z1), . . . , ρi+1(̂zn). The polynomials fi do not depend on k′.

Now νp,x( f ) > r if and only if, for all 0 6 i < r , x is a zero of all coefficients of fi
as a polynomial in k[X1,0, . . . , X1,l−1, . . . , Xn,0, . . . , Xn,l−1][Z1, j, . . . , Zn, j | 0 6 j 6 i]. Hence

we can define Vl,νp,−( f )>r as the zero locus of these coefficients, which are elements of

k[X1,0, . . . , X1,l−1, . . . , Xn,0, . . . , Xn,l−1]. �
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3. Smooth families of lattices and rigidity

In this section we will prove the main ingredient going into Theorem A, which is Theorem 3.3

below. To do this, we first need to introduce the structure we use to endow parametric families of

lattices with the structure of a variety over k. We call this structure a smooth family ofΛ-lattices.

Its definition is quite straight-forward, and it is not difficult to show that we can parametrise all

Λ-lattices of a given index in a fixed lattice by finitely many such families (see §4). Note that

lattices in a smooth family as defined below have isomorphic K-span, and therefore the same

character in case Λ is a block or a group algebra.

Definition 3.1. A smooth family of Λ-lattices L(−) is a pair (∆,Z ∩U), where

(1) ∆ : Λ −→ K[X1, . . . , Xn]
m×m (for certain m, n ∈ N) is a representation,

(2) Z∩U is the intersection of an irreducible closed subvarietyZ ⊆ An·l
= A

l × . . .×Al ,

and open subvarietyU ⊆ An·l
= A

l × . . . × Al (for some l ∈ N), both defined over k,

such that the following hold:

(1) sing(Z) ∩ U = ∅.

(2) Let E = W(k′) for some algebraically closed field k′ ⊇ k. If x̂ ∈ En reduces to a point

x = ρl (̂x) ∈ Z(k
′) ∩ U(k′) then

(11) ∆x̂ : Λ −→ Em×m : λ 7→ ∆(λ)|(X1,...,Xn)=(x̂1,...,x̂n)

is well-defined, and the isomorphism type of the corresponding E ⊗O Λ-lattice only

depends on x.

A few remarks are in order. Firstly, the elements of An·l(k′) represent the first l Witt vector

components of elements in En. To reflect this fact we identify the coordinate ring of An·l

with k[Xi, j | 1 6 i 6 n, 0 6 j 6 l − 1]. A second thing to note is that the reason we are

considering extensions E of O is that we need those to specialise at “generic points” in the proof

of Theorem 3.3 below. In applications we actually only require the property that specialisation

at points inZ(k) ∩ U(k) is well-defined. The last thing we should note is that the requirement

thatZ ∩U be smooth and irreducible only serves to get uniqueness in Corollary 3.4 and make

the proof of Theorem 3.3 slightly nicer. As such, its inclusion in the definition is really a matter

of preference.

Notation 3.2. In the situation of Definition 3.1 we denote the E ⊗O Λ-lattice corresponding to

a point x ∈ Z(k′) ∩ U(k′) by L(x). Of course L(x) is only defined up to isomorphism. We

say that L(−) = (∆,Z ∩ U) contains (the isomorphism class of) L(x). We also refer to the

(common) O-rank of Λ-lattices contained in L(−) as the “O-rank of L(−)”.

Theorem 3.3. If L(−) = (∆,Z ∩ U) is a smooth family of Λ-lattices, then the subset of

U(k) ∩ Z(k) such that the corresponding Λ-lattices are isomorphic to some fixed rigid Λ-

lattice contains a Zariski-open subset.

Proof. Assume that we have an x ∈ Z(k) ∩ U(k) such that L(x) is rigid. Let m

be the ideal of elements of k[Z] vanishing at x. As Z is smooth at x, the comple-

tion of the local ring k[Z]m is isomorphic to k[[T1, . . . ,TdimZ]]. Hence we get a map

ϕ : k[X1,0, . . . , X1,l−1, . . . , Xn,0, . . . , Xn,l−1] −→ k[[T1, . . . ,Tr]], where r = dim(Z)+n, with im-

age contained in k[[T1, . . . ,TdimZ]], which factors through k[Z], and whose composition with

the evaluation map k[[T1, . . . ,Tr]]։ k is the same as evaluation at x (the n spare variables will

come in handy later on). Define w = (ϕ(Xi, j) | 1 6 i 6 n, 0 6 j 6 l − 1) ∈ k[[T1, . . . ,Tr]]
n·l .

Then w lies inZ(k((T1, . . . ,Tr))), and w(0, . . . , 0) = x. Here w(0, . . . , 0) denotes the evaluation

of w at (T1, . . . ,Tr) = (0, . . . , 0).
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Define

(12) R =

∞⋃
i=0

O[[T
1/pi

1
, . . . ,T

1/pi

r ]] and E0 = lim
←−−

R/piR.

That is, E0 is the p-adic completion of R. The residue ring E0/pE = R/pR can be identified

with

(13) R̄ =

∞⋃
i=0

k[[T
1/pi

1
, . . . ,T

1/pi

r ]],

which is a perfect ring of characteristic p. In particular E0 is a strict p-ring. Hence E0 is

isomorphic to W(R̄) by a unique isomorphism preserving the surjection onto R̄. Now W(R̄)

embeds into E = W(k′), where k′ = k((T1, . . . ,Tr)). Long story short, we get an embedding of

O-algebras R ֒→ E =W(k′) factoring through an embedding of rings of Witt vectors E0 ֒→ E.

Now choose, for each 1 6 i 6 n, a ŵ
′
i
∈ R such that ρl(ŵ

′
i
) = (wi,0, . . . ,wi,l−1). The

reason we can do this is that ρl : E0 −→ R̄l factors through E0/p
lE0, and R surjects onto

R/pl R � E0/p
lE0, the latter two being canonically isomorphic since E0 is the completion of

R. Thus we get a ŵ′ = (ŵ′
1
, . . . , ŵ′n) ∈ Rn such that ρl(ŵ

′) = w. Since R is defined as a union

of rings, we actually get that

(14) ŵ′ ∈ O[[S1, . . . , Sr]]
n where S1 = T

1/pe

1
, . . . , Sr = T

1/pe

r for some e ∈ N.

Since w only involves the indeterminates T1, . . . ,TdimZ , we can actually assume that

ŵ′ ∈ O[[S1, . . . , SdimZ]]
n. We then define ŵi = ŵ

′
i
+ pl · SdimZ+i for 1 6 i 6 n. The up-

shot is that ŵ = (ŵ1, . . . , ŵn) ∈ O[[S1, . . . , Sr]]
n satisfies ρl(ŵ) = w and the individual entries

ŵi are algebraically independent over K . Moreover, ρl(ŵ(0, . . . , 0)) = x, since ρl commutes

with evaluation at (0, . . . , 0) by the universal property of Witt vectors. Note that our construction

of ŵ also ensures that νp,w(g) = νp(g(ŵ)) for all g ∈ O[X1, . . . , Xn] (where we view ŵ as an

element of En), since ŵ is polynomial in the spare variables TdimZ+i , and therefore

(15) νp,w(g) = νp(g(ŵ
′
1 + pl · TdimZ+1, . . . , ŵ

′
n + pl · TdimZ+n)) = νp(g(ŵ)),

which is seen by using Proposition 2.3 and the fact that νp is independent of whether we regard

the TdimZ+i as indeterminates or as elements of the valuation ring E.

Using ŵ we can now define an O-algebra homomorphism

(16) ϕ̂ : O[X1, . . . , Xn] −→ O[[S1, . . . , Sr]] : Xi 7→ ŵi

“lifting” ϕ. Our assumptions ensure that ϕ̂ is injective, which will be important later. More-

over, the element ŵ, by construction, gives us representations ∆ŵ and ∆ŵ(0,...,0), affording

L(w) and L(x), respectively. A priori, the image of ∆ŵ is only contained in m × m-matrices

over E. However, since the images of ∆ŵ are obtained from the images of ∆ (which live in

K[X1, . . . , Xn]
m×m) by substituting Xi = ŵi , we actually get that the image of ∆ŵ is also con-

tained in m×m-matrices over K · O[[S1, . . . , Sr]]. Hence the images of ∆ŵ actually have entries

in E ∩ (K · O[[S1, . . . , Sr]]) = O[[S1, . . . , Sr]].

It now follows that

(17) ∆ŵ(λ) = ∆ŵ(0,...,0)(λ) +
∑

i∈Zr
>0
\{(0,...,0)}

Γi(λ) · S
i1
1
· · · Sir

r for all λ ∈ Λ,

where each Γi is a map from Λ into Om×m. Assume that at least one of the Γi is not the zero

map, and let j ∈ Zr
>0

be degree-lexicographically minimal such that Γj is non-zero. Then

(18) Γj(λ · γ) = ∆ŵ(0,...,0)(λ) · Γj(γ) + Γj(λ) · ∆ŵ(0,...,0)(γ)
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for any λ, γ ∈ Λ. That is, Γj defines an element of Ext1
Λ
(L(x), L(x)), which we assumed was zero.

Hence there is a B ∈ Om×m such that, for any λ ∈ Λ, Γj(λ) = ∆ŵ(0,...,0)(λ) · B − B · ∆ŵ(0,...,0)(λ).

Conjugating ∆ŵ by id+B · S
j1
1
· · · S

jr
r yields a representation with an expansion as in (17) where

the degree-lexicographically smallest i with Γi , 0 is strictly bigger than j. Iterating this process

gives a sequence of conjugating elements in GLm(O[[S1, . . . Sr]]) that converge with respect

to the topology induced by the realisation of O[[S1, . . . , Sr]] as lim
←−−
O[S1, . . . , Sr]/(S1, . . . , Sr)

i.

The limit of these elements will conjugate ∆ŵ to ∆ŵ(0,...,0).

We now know that E ⊗O L(x) is isomorphic to L(w), as these are the modules afforded by

the two representations we just showed are conjugate. In elementary terms, this means that the

linear system of equations

(19) ∆ŵ(λ) ·M −M · ∆ŵ(0,...,0)(λ) (for λ in a basis of Λ)

has a solution M ∈ GLm(E). However, the coefficients of the system of equations (19) lie

in the subring of E generated by elements of the discrete valuation ring RpR which have

preimages in K(X1, . . . , Xn) under the map ϕ̂ from earlier (extended to fields of fractions).

Hence the E-lattice of solutions to (19) has a basis consisting of matrices M1, . . . ,Md (with

d = rankE Hom(L(w), E ⊗O L(x))) with entries in the aforementioned subring. Now the fact

that Lw and E ⊗O Lx are isomorphic is equivalent to the assertion that the polynomial

det(M1 · Z1 + . . . +Md · Zd) ∈ E[Z1, . . . , Zd]

has p-valuation zero (i.e. some coefficient has p-valuation zero). But then one can easily find

z ∈ Od (or even W(F̄p)
d) such that the p-valuation of det(M1 · z1 + . . .+Md · zd) is zero. Then

M = M1 · z1 + . . . +Md · zd is an element of GLm(E) with entries that have preimages in

K(X1, . . . , Xn) such that M−1 · ∆ŵ(λ) ·M = ∆ŵ(0,...,0)(λ) for all λ ∈ Λ. Now recall that ∆ŵ(λ) is

obtained from ∆(λ) by entry-wise application of ϕ̂ (again, extended to fields of fractions). Let

M′ be a preimage under ϕ̂ of M, that is, M′ has entries in K(X1, . . . , Xn). Then M′−1 ·∆(λ) ·M′

must be a preimage under ϕ̂ of ∆ŵ(0,...,0)(λ) (for any λ ∈ Λ). But since ϕ̂ is injective by

construction, we get

(20) M′−1 · ∆(λ) ·M′ = ∆ŵ(0,...,0)(λ) for all λ ∈ Λ,

which is now an equation entirely in K(X1, . . . , Xn) = frac(O[X1, . . . , Xn]).

Now let y be another point in U(k) ∩ Z(k), and let ŷ ∈ On be an element such that

ρl (̂y) = y. Since ∆ŷ is obtained from ∆ by substituting Xi = ŷi, equation (20) implies that

L(y) � L(x) provided M′|(X1,...,Xn)=ŷ ∈ GLm(O). Note that all g ∈ O[X1, . . . , Xn] which occur

as numerators or denominators of either M′ or M′−1 satisfy νp,w(g) = νp(g(ŵ)), and substituting

(X1, . . . , Xn) = ŵ in M′ and M′−1 gives back M and M−1 by definition. By Proposition 2.6

there are closed subvarieties Vl,νp,−(g)>νp,w(g) and Vl,νp,−(g)>νp,w(g)+1 of An·l defined over k such

that w lies in Vl,νp,−(g)>νp,w(g)(k
′) but not in Vl,νp,−(g)>νp,w(g)+1(k

′). Since w was chosen as a

generic point for Z, any subvariety of An·l defined over k contains w if and only if it contains

Z. It follows that (Vl,νp,−(g)>νp,w (g) \ Vl,νp,−(g)>νp,w(g)+1) ∩ Z is an open subvariety ofZ, whose

k-rational points are by definition those y for which νp,y(g) = νp,w(g).

We conclude that there is an open subvarietyV ofU such that for any y ∈ V(k) there is a ŷ

for which M′|(X1,...,Xn)=ŷ and M′−1 |(X1,...,Xn)=ŷ lie in Om×m (in fact, the valuation of each entry is

the same as that of the corresponding one of M). Hence L(y) � L(x) for all y ∈ V(k), which

completes the proof. �

Corollary 3.4. A smooth family of Λ-lattices contains at most one isomorphism class of rigid

lattices.
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Proof. We assume Z to be irreducible, which means that any two non-empty Zariski-open

subsets have non-trivial intersection. In particular, if the family contains two rigid lattices,

then their respective sets of points parametrising lattices isomorphic to them have non-trivial

intersection. This implies that any two rigid lattices in the family must be isomorphic. �

4. Varieties of lattices

In this section we will show how to parametrise all Λ-lattices in a given finite-dimensional

K ⊗O Λ-module V , up to isomorphism. The idea is to start with a fixed lattice, and then

to conjugate an affording representation by an upper-triangular basis matrix with “generic

entries” above the diagonal. The condition that the specialisation of the resulting “generic

representation” ∆ at some x̂ be integral is a closed condition on the Witt vector components of

x̂, which, after a minimal amount of work, gives setsZ ∩U such that each (∆,Z ∩U) defines

a smooth family of Λ-lattices.

Lemma 4.1. Let L be a Λ-lattice of rank m ∈ N and let l be some non-negative integer. Then

there are finitely many smooth families of Λ-lattices L1(−), . . . , Ld(−) (d ∈ N) such that each

Λ-sublattice L′ 6 L for which the quotient L/L′ has length l as an O-module is contained in

one of the Li(−).

Proof. Let ∆L : Λ −→ Om×m be a representation affording L, and let us fix v1, . . . , vm ∈ Z>0

such that v1 + . . . + vm = l. Let us also fix an algebraically closed k′ ⊇ k and set E = W(k′)

(this is just to formally verify the conditions of a smooth family of Λ-lattices). Consider the

upper-diagonal matrix

(21) B =

©­­­­­
«

pv1 X1 X2 · · · Xm−1

0 pv2 Xm · · · X2m−3

0 0 pv3 · · · X3m−6
...

...
...
. . .

...

0 0 0 · · · pvm

ª®®®®®¬
∈ K[X1, . . . , Xm(m−1)]

m×m

We will define finitely many smooth families of Λ-lattices such that every Λ-sublattice of Om

(considered as aΛ-lattice via∆L) which has anO-basis consisting of the rows of B|(X1,...,Xm(m−1))=x̂

for some x̂ ∈ Om(m−1) is contained in one of these families. That will actually prove the lemma,

since every O-sublattice of Om with quotient of O-length l has a basis given by the rows of a

matrix of the same form as B for some v1, . . . , vm ∈ Z>0 with v1 + . . . + vm = l.

First define

(22) ∆ : Λ −→ K[X1, . . . , Xm(m−1)]
m×m : λ 7→ B · ∆L(λ) · B

−1

Note that pl · ∆ takes values in O[X1, . . . , Xm(m−1)]
m×m, and for a given λ ∈ Λ and 1 6 i, j 6 m

we have that pl · ∆(λ)i, j is an element f ∈ O[X1, . . . , Xm(m−1)]. From the theory of Witt vectors

we get polynomials f0, . . . , fl−1 ∈ k[Xi′, j ′ | 1 6 i′ 6 m(m − 1), 0 6 j′ 6 l − 1] such that

(23) ρl( f (̂x)) =
(
f0(ρl (̂x)), . . . , fl−1(ρl (̂x))

)
for all x̂ ∈ Em(m−1). The intersection of the vanishing sets of the polynomials f0, . . . , fl−1 defines

a closed subvariety Xi, j,λ ⊆ A
m(m−1)·l defined over k. By definition, the representation ∆x̂ (for

x̂ ∈ Em(m−1)) takes values in Em×m if and only if x̂ reduces to a point of X(k′), where

(24) X =

m⋂
i, j=1

⋂
λ

Xi, j,λ (λ running over a basis of Λ)
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Moreover, one checks that the row space of the matrix B specialised at any element of Em(m−1)

contains pl · Em, which implies that if x̂, ŷ ∈ Em(m−1) reduce to the same point in X(k′), then

the respective row spaces of the matrices B|(X1,...,Xm(m−1))=x̂ and B|(X1,...,Xm(m−1))=ŷ are equal, which

implies that the representations ∆x̂ and ∆ŷ are conjugate.

The only remaining problem is the fact that X is in general neither smooth nor irreducible.

However, we can decomposeX as a union of finitely many irreducible components, remove the

singular loci from each irreducible component, then decompose the singular loci into irreducible

components, and so on and so forth. We ultimately obtain finitely manyZ1, . . . ,Zd ⊆ A
m(m−1)·l

closed andU1, . . . ,Ud ⊆ A
m(m−1)·l open (d ∈ N) such that

(25) X =

d⋃
i=1

Zi ∩Ui

By construction, the Li(−) = (∆,Zi ∩ Ui) are smooth families of Λ-lattices such that each

Λ-sublattice of L with a basis of the same shape as B is contained in one of the Li(−), as

required. �

Theorem 4.2. Let V be a finite-dimensional K ⊗O Λ-module. Then there are finitely many

smooth families ofΛ-lattices M1(−), . . . ,Md(−) such that each fullΛ-lattice L 6 V is contained

in one of the Mi(−).

Proof. Fix some full Λ-lattice L0 6 V . It is well-known that every full Λ-lattice in V is

isomorphic to a Λ-lattice L such that L0 · (Γ : Λ)2 6 L 6 L0, where (Γ : Λ) denotes the biggest

two-sided Γ-ideal contained in Λ, Γ being a maximal order containing Λ. Therefore there is an

upper bound n ∈ N on the composition length of L0/L as an O-module which depends only on

V and Λ. Now we can just apply Lemma 4.1 to L0 for all 0 6 l 6 n, such as to obtain finitely

many smooth families of Λ-lattices containing all Λ-sublattices of L, up to isomorphism. �

5. Proofs of the main theorems and applications

It should be fairly clear by now how Corollary 3.4 and Theorem 4.2 imply Theorem A, and

Theorem B is an immediate consequence of that. We still include proofs for completeness’

sake.

Proof of Theorem A. As K ⊗O Λ is assumed to be separable, there are only finitely many

isomorphism classes of K ⊗O Λ-modules V of dimension 6 n. By Theorem 4.2 there are, for

each such V , finitely many smooth families of Λ-lattices such that each full Λ-lattice in V is

contained in one of these families. Hence every Λ-lattice of rank 6 n is contained in one of

finitely many smooth families of Λ-lattices, and by Corollary 3.4 each such family can contain

at most one isomorphism class of rigid lattices. �

Proof of Theorem B. We can assume without loss of generality that Λ is basic. Then every

element of PicO(Λ) is represented by a Λ-Λ-bimodule Λα, where α ∈ AutO(Λ). Define

Λ
e
= Λ

op ⊗O Λ. Then Λe is again an O-order in a separable K-algebra, and we can view

elements of PicO(Λ) as Λe-lattices. Note that if α ∈ AutO(Λ), then id ⊗α ∈ AutO(Λ
e), and

Λα (that is, the Λ-Λ-bimodule Λ twisted by α on the right) is the same as Λid ⊗α (that is, the

right Λe-module Λ twisted by id ⊗α). Hence Ext1
Λe(Λα,Λα) � Ext1

Λe(Λ,Λ) = HH1(Λ), and the

latter is zero by assumption. That is, the elements of PicO(Λ) are rigid Λe-lattices of O-rank

equal to the O-rank of Λ. By Theorem A there are only finitely many such Λe-lattices, up to

isomorphism. �

Proposition 1.4 is actually just the combination of Theorem B and Weiss’ criterion.
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Proof of Proposition 1.4. Consider (OGb)e as a block of O(Gop × G). Let M be an (OGb)e-

module representing an element of Pic(OGb). By Weiss’ criterion (see [Wei88], and [MSZ18]

for a version allowing O as a coefficient ring) our M has trivial source if and only if the lattice

of P-fixed points taken on the left

(26) P M � P(OGb ⊗OGb M) � (POGb) ⊗OGb M � O[P\G] · b ⊗OGb M

has trivial source as an OGb-module, that is, is p-permutation. That proves the first part.

Now if M represents an element of Picent(OGb), then O[P\G] · b ⊗OGb M has the same

character as O[P\G] · b, and isomorphic endomorphism ring. Moreover, we clearly have

(27) Ext1
OGb
(O[P\G] ·b⊗OGb M,O[P\G] ·b⊗OGb M) � Ext1

OGb
(O[P\G] ·b, O[P\G] ·b) = 0.

Hence, by our uniqueness assumption, we have O[P\G] · b ⊗OGb M � O[P\G] · b as OGb-

modules, which, by the above, implies that M lies in T(OGb). �

To finish, let us briefly mention the following nice consequence of Theorems A and B, even

though it is implied by [Thé95, Theorem (38.6)], a theorem due to Puig.

Proposition 5.1. Let {OGibi}i∈I (for some index set I) be a family of block algebras defined

over O with fixed defect group P, each of which Morita equivalent to some fixed O-algebra A

by means of some fixed OGibi-A-bimodule Mi. If there is a bound, independent of i, on the

dimension of L ⊗OGibi Mi for indecomposable p-permutation OGibi-modules L, then the OGibi

split into finitely many equivalence classes with respect to splendid Morita equivalence.

Proof. Note that by assumption P is a subgroup of Gi for every i ∈ I. Equivalently, one could

also assume that there is a fixed embedding P ֒→ Gi for each i, but we are going to take the

former point of view. By Theorem A there are only finitely many rigid A-lattices of rank smaller

than the given bound on images of indecomposable p-permutation modules. Hence I splits

up into finitely many sets I1, . . . , Id such that I =
⋃d

j=1 I j and, for every i ∈ I j , the A-module

O[P\Gi] · bi ⊗OGibi Mi has the same indecomposable summands as some fixed A-module L j . It

follows that if i, i′ ∈ I j , then Mi ⊗A M∨
i′

maps the indecomposable summands of O[P\Gi] · bi to

the indecomposable summands of O[P\Gi′] · bi′. One can show using the same argument as in

the proof of Proposition 1.4 that Mi ⊗A M∨
i′

is a p-permutation O(G
op

i
×Gi′)-module. By [Pui99,

7.5.1] (or, independently, by results of [Sco90]) this implies that the Mi ⊗A M∨
i′

for i, i′ in a fixed

I j are splendid up to restriction along an automorphism of P, of which there are only a finite

number. That is, each I j splits into finitely many subsets such that the blocks parametrised by

any one of the subsets are pair-wise source algebra equivalent by means of the Mi ⊗A M∨
i′

. �
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