

City, University of London Institutional Repository

Citation: Chen, J., Chen, X., Horrocks, I., Jimenez-Ruiz, E. & Myklebus, E. B. (2020).

Correcting Knowledge Base Assertions. In: WWW '20: Proceedings of The Web Conference
2020. (pp. 1537-1547). New York, NY, United States: Association for Computing Machinery.
ISBN 978-1-4503-7023-3 doi: 10.1145/3366423.3380226

This is the published version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/23585/

Link to published version: https://doi.org/10.1145/3366423.3380226

Copyright: City Research Online aims to make research outputs of City,

University of London available to a wider audience. Copyright and Moral Rights

remain with the author(s) and/or copyright holders. URLs from City Research

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,

educational, or not-for-profit purposes without prior permission or charge.

Provided that the authors, title and full bibliographic details are credited, a

hyperlink and/or URL is given for the original metadata page and the content is

not changed in any way.

City Research Online

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

Correcting Knowledge Base Assertions
Jiaoyan Chen

University of Oxford
jiaoyan.chen@cs.ox.ac.uk

Xi Chen
Jarvis Lab Tencent

jasonxchen@tencent.com

Ian Horrocks
University of Oxford

ian.horrocks@cs.ox.ac.uk

Erik B. Myklebust
Norwegian Institute for Water

Research
University of Oslo

erik.b.myklebust@niva.no

Ernesto Jimenez-Ruiz
City, University of London

University of Oslo
ernesto.jimenez-ruiz@city.ac.uk

ABSTRACT
The usefulness and usability of knowledge bases (KBs) is often
limited by quality issues. One common issue is the presence of
erroneous assertions, often caused by lexical or semantic confusion.
We study the problem of correcting such assertions, and present
a general correction framework which combines lexical matching,
semantic embedding, soft constraint mining and semantic consis-
tency checking. The framework is evaluated using DBpedia and an
enterprise medical KB.

KEYWORDS
Knowledge Base Quality, Assertion Correction, Semantic Embed-
ding, Constraint Mining, Consistency Checking
ACM Reference Format:
Jiaoyan Chen, Xi Chen, Ian Horrocks, Erik B. Myklebust, and Ernesto
Jimenez-Ruiz. 2020. Correcting Knowledge Base Assertions. In Proceedings of
TheWeb Conference 2020 (WWW ’20), April 20–24, 2020, Taipei, Taiwan.ACM,
New York, NY, USA, 11 pages. https://doi.org/10.1145/3366423.3380226

1 INTRODUCTION
Knowledge bases (KBs) such as Wikidata [42] and DBpedia [2]
are playing an increasingly important role in applications such as
search engines, question answering, common sense reasoning and
data integration. However, they still suffer from various quality
issues, including constraint violations and erroneous assertions
[11, 31], that negatively impact their usefulness and usability. These
may be due to the knowledge itself (e.g., the core knowledge source
of DBpedia, Wikipedia, is estimated to have an error rate of 2.8%
[44]), or may be introduced by the knowledge extraction process.

Existing work on KB quality issues covers not only error detec-
tion and assessment, but also quality improvement via completion,
canonicalizaiton and so on [31]. Regarding error detection, erro-
neous assertions can be detected by various methods, including
consistency checking with defined, mined or external constraints
[18, 33, 38], prediction by machine learning or statistical methods
[7, 22, 32], and evaluation by query templates [19]; see Section

This paper is published under the Creative Commons Attribution 4.0 International
(CC-BY 4.0) license. Authors reserve their rights to disseminate the work on their
personal and corporate Web sites with the appropriate attribution.
WWW ’20, April 20–24, 2020, Taipei, Taiwan
© 2020 IW3C2 (International World Wide Web Conference Committee), published
under Creative Commons CC-BY 4.0 License.
ACM ISBN 978-1-4503-7023-3/20/04.
https://doi.org/10.1145/3366423.3380226

2.1 for more details. However, the erroneous assertions are often
eliminated [6, 27], and few robust methods have been developed to
correct them.

Lertvittayakumjorn et al. [20] and Melo et al. [21] found that
most erroneous assertions are due to confusion or lexical simi-
larity leading to entity misuse; for example confusion between
Manchester_United and Manchester_City, two football clubs based
in Manchester, UK, can lead to facts aboutManchester_United being
incorrectly asserted about Manchester_City. Such errors are com-
mon not only in general KBs like DBpedia and Wikidata but also
in domain KBs like the medical KB used in our evaluation. Both
studies proposed to find an entity to replace either the subject or
the object of an erroneous assertion; however, subject replacement
used a simple graph metric and keyword matching, which fails
to capture the contextual semantics of the assertion, while object
replacement relies on Wikipedia disambiguation pages, which may
be inaccessible or non-existent, and again fail to capture contextual
semantics.

Other work has focused on quality improvement, for example by
canonicalizing assertions whose objects are literals that represent
entities (i.e., entity mentions); for example, the literal object in
the assertion ⟨Yangtze_River, passesArea, “three gorges district”⟩.
Replacing this literal with the entity Three_Gorges_Reservoir_Region
enriches the semantics of the assertion, which can improve query
answering. Such literal assertions are pervasive in wiki-based KBs
such as DBPedia [2] and Zhishi.me [29], and in open KBs extracted
from text; they may also be introduced when two KBs are aligned
or when a KB evolves. According to the statistics in [15], DBpedia
(ca. 2016) included over 105,000 such assertions using the property
dbp:location alone. Current methods can predict the type of the
entity represented by the literal [15], which is useful for creating
a new entity, and can sometimes identify candidate entities in the
KB [4], but they do not propose a general correction method; see
Section 2.2 for a more details.

In this paper, we propose a method for correcting assertions
whose objects are either erroneous entities or literals. To this end,
we have developed a general framework that exploits related en-
tity estimation, link prediction and constraint-based validation,
as shown in Figure 1. Given a set of target assertions (i.e., asser-
tions that have been identified as erroneous), it uses semantic re-
latedness to identify candidate entities for substitution, extracts a
multi-relational graph from the KB (sub-graph) that can model the
context of the target assertions, and learns a link prediction model

1537

https://doi.org/10.1145/3366423.3380226
https://doi.org/10.1145/3366423.3380226

WWW ’20, April 20–24, 2020, Taipei, Taiwan Jiaoyan Chen, Xi Chen, Ian Horrocks, Erik B. Myklebust, and Ernesto Jimenez-Ruiz

using both semantic embeddings and observed features. The model
predicts the assertion likelihood for each candidate substitution,
and filters out those that lead to unlikely assertions. The frame-
work further verifies the candidate substitutions by checking their
consistency w.r.t. property range and cardinality constraints mined
from the global KB. The framework finally makes a correction deci-
sion, returning a corrected assertion or reporting failure if no likely
correction can be identified.

Briefly this paper makes the following main contributions:
• It proposes a general framework that can correct both erro-
neous entity assertions and literal assertions;
• It utilizes both semantic embeddings and observed features
to capture the local context used for correction prediction,
with a sub-graph extracted for higher efficiency;
• It complements the prediction with consistency against “soft”
property constraints mined from the global KB;
• It evaluates the framework with erroneous entity assertions
from a medical KB and literal assertions from DBpedia.

2 RELATEDWORK
We survey related work of assertion validation which includes
erroneous assertion detection, link prediction with semantic em-
beddings and observed features, canonicalization, and assertion
correction.

2.1 Assertion Validation
The validity of KB assertions is clearly an important consideration.
One way to is to check their consistency against logical constraints
or rules. Explicitly stated KB constraints can be directly used, but
these are often weak or even non-existent. Thus, before using the
DBpedia ontology to validate assertions, Topper et al. [38] enriched
it with class disjointness, and property domain and range costraints,
all derived via statistical analysis; Paulheim and Gangemi [33] en-
riched it via alignment with the DOLCE-Zero foundational ontology.
Various constraint and rule languages such as Shapes Constraint
Language (SHACL) [18], Rule-Based Web Logics [1] and SPARQL
query templates [19], have also been proposed so that external
knowledge can be encoded and applied.

As machine learning develops, various methods have been pro-
posed to encode the semantics of entities and relations into vectors
for prediction [43]. The observed features are typically indicators
(e.g., paths) extracted for a specific prediction problem. They of-
ten work together with other learning and prediction algorithms,
including supervised classification (e.g., PaTyBRED [21]), autoen-
coder (e.g., RDF2Vec [36]), statistical distribution estimation (e.g.,
SDValidate [32]) and so on. PaTyBRED and SDValidate directly
detect erroneous assertions, while RDF2Vec utilizes graph paths to
learn intermediate entity representations that can be further used
to validate assertions via supervised classification.

In contrast to observed features, which often rely on ad-hoc
feature engineering, semantic embeddings (vectors) can be learned
by minimizing an overall loss with a score function for modeling
the assertion’s likelihood. They can be directly used to estimate the
assertion likelihood. State-of-the-art methods and implementations
include DistMult [46], TransE [3], IterE [47], ComplEx [40], OpenKE
[16] and so on. They can also be combined with algorithms such as

outlier detection [7] and supervised classification [25] to deal with
assertion validation in specific contexts.

On the one hand, the aforementioned methods were mostly de-
veloped for KB completion and erroneous assertion detection, and
few have been applied in assertion correction, especially the seman-
tic embedding methods. On the other hand, they suffer from various
shortcomings that limit their application. Consistency checking
depends on domain knowledge of a specific task for constraint and
rule definition, while the mined constraints and rules are often weak
in modeling local context for disambiguation. Semantic embedding
methods are good at modeling contextual semantics in a vector
space, but are computationally expensive when learning from large
KBs [30] and suffer from low robustness when dealing with real
world KBs that are often noisy and sparse [35].

2.2 Canonicalization
Recent work on KB canonicalization is relevant to our related entity
estimation. Some of this work focuses on the disambiguation of
entity mentions in an open KB extracted from textual data [12, 41,
45]; CESI [41], for example, utilizes side information (e.g., WordNet),
semantic embedding and clustering to identify equivalent entity
mentions. However, these methods cannot be directly applied in
our correction framework as they focus on equality while we aim
at estimating relatedness. The contexts are also different as, unlike
entity mentions, literals have no neighbourhood information (e.g.,
relationships with other entities) that can be utilized.

Chen et al. [4] and Gunaratna et al. [15] aimed at the canoni-
calization of literal objects used in assertions with DBpedia object
properties (whose objects should be entities). Instead of correcting
the literal with an existing entity, they focus on the typing of the
entity that the literal represents, which is helpful when a new entity
is created for replacement. Although [4] also tried to identify an
existing entity to substitute the literal, it suffers from some limita-
tions: the predicted type is used as a constraint for filtering, which
is not a robust and general correction method; the related entity
estimation is ad-hoc and DBpedia specific; and the type predic-
tion itself only uses entity and property labels, without any other
contextual semantics.

2.3 Assertion Correction
We focus on recent studies concerning the automatic correction of
erroneous assertions. Some are KB specific. For example, Dimou et
al. [9] refined the mappings between Wikipedia data and DBpedia
knowledge to correct errors during DBpedia construction, while
Pellissier et al. [34] mined correction rules from the edit history
of Wikidata to resolve its constraint violations. In contrast, our
framework is general and does not assume any additional KB meta
information or external data.

Regarding more general approaches, some aim at eliminating
constraint violations. Chortis et al. [5, 37] defined and added new
properties to avoid violating integrity constraints, while Melo [6]
removed sameAs links that lead to such violations. These methods
ensure KB consistency, but they can neither correct the knowledge
itself nor deal with those wrong assertions that satisfy the con-
straints. Lertvittayakumjorn et al. [20] and Melo et al. [21] both

1538

Correcting Knowledge Base Assertions WWW ’20, April 20–24, 2020, Taipei, Taiwan

correct assertions by replacing the objects or subjects with cor-
rect entities. The former found the substitute by either keyword
matching or a simple graph structure metric, while the latter first
retrieved candidate substitutes from the Wikipedia disambiguation
page (which may not exist, especially for KBs that are not based on
Wikipedia) and then ranked them by lexical similarity. Both meth-
ods, however, only use simple graph structure or lexical similarity
to identify the substitute, and ignore the linkage incompleteness
of a KB. In contrast, our method utilizes semantic embeddings to
exploit the local context within a sub-graph to predict assertion
likelihood, and at the same time uses global property constraints
to validate the substitution.

3 BACKGROUND
3.1 Knowledge Base
In this study we consider a KB that follows Semantic Web standards
including RDF (Resource Description Framework), RDF Schema,
OWL (Web Ontology Language)1 and the SPARQL Query Language
[10]. A KB is assumed to be composed of a TBox (terminology)
and an ABox (assertions). The TBox usually defines classes (con-
cepts), a class hierarchy (via rdfs:subClassOf), properties (roles),
and property domains and ranges. It may also use a more expres-
sive language such as OWL to express constraints such as class
disjointness, property cardinality and so on [14].

The ABox consists of a set of assertions (facts) describing con-
crete entities (individuals), each of which is represented by an
Uniform Resource Identifier. Each assertion is represented by an
RDF triple ⟨s,p,o⟩, where s is an entity, p is a property and o is
either an entity or a literal (i.e., a typed or untyped data value such
as a string or integer). s , p and o are known as the subject, predicate
and object of the triple. An entity can be an instance of one or more
classes, which is specified via triples using the rdf:type property.
Sometimes we will use class assertion to refer to this latter kind of
assertion and property assertion to refer to assertions where p is not
a property from the reserved vocabulary or RDF, RDFS or OWL.

Such a KB can be accessed by SPARQL queries using a query
engine that supports the relevant entailment regime (e.g., RDFS or
OWL) [13]; such an engine can, e.g., infer ⟨e0 rdf:type c2⟩, given
⟨e0 rdf:type c1⟩ and ⟨c1 rdfs:subClassOf c2⟩. In addition, large-scale
KBs (aka knowledge graphs) often have a lookup service that en-
ables users to directly access its entities by fuzzy matching; this
is usually based on a lexical index that is built with entity labels
(phrases defined by rdfs:label) and sometimes entity anchor text
(short descriptions). DBpedia builds its lookup service2 using the
lexical index of Spotlight [23], while entities of Wikidata can be
retrieved, for example, via the backend API of OpenTapioc [8].

3.2 Problem Statement
In this study, we focus on correcting ABox property assertions
⟨s,p,o⟩ where o is a literal (literal assertion) or an entity (entity
assertion). Note that in the former case correction may require
more than simple canonicalization; e.g., the property assertion

1There is a revision of the Web Ontology Language called OWL 2, for simplicity we
also refer to this revision as OWL.
2https://wiki.dbpedia.org/lookup

⟨Sergio_Agüero, playsFor, “Manchester United”⟩ should be corrected
to ⟨Sergio_Agüero, playsFor, Manchester_City⟩.

Literal assertions can be identified by data type inference and
regular expressions as in [15], while erroneous entity assertions
can be detected either manually when the KB is applied in down-
stream applications or automatically by the methods discussed in
Section 2.1. It is important to note that if the KB is an OWL ontology,
the set of object properties (which connect two entities) and data
properties (which connect an entity to a literal) should be disjoint.
In practice, however, KBs such as DBpedia often do not respect this
constraint.

We assume that the input is a KBK , and a set E of literal and/or
entity assertions that have been identified as incorrect. For each
assertion ⟨s,p,o⟩ in E, the proposed correction framework aims at
either finding an entity e from K as an object substitute, such that
e is semantically related to o and the new triple ⟨s,p, e⟩ is true, or
reporting that there is no such an entity e in K .

4 METHODOLOGY
4.1 Framework
As shown in Figure 1, our assertion correction framework mainly
consists of related entity estimation, link prediction, constraint-
based validation and correction decision making. Related entity
estimation identifies those entities that are relevant to the object
of the assertion. Given a target assertion t = ⟨s,p,o⟩, its related
entities, ranked by the relatedness, are denoted as REt . They are
called candidate substitutes of the original object o, and the new
assertions when o is replaced are called candidate assertions. We
adopt two techniques — lexical matching and word embedding — to
measure relatedness and estimate REt . Note that the aim of this step
is to ensure high recall; precision is subsequently taken care of via
link prediction and constraint-based validation over the candidate
assertions.

Link prediction estimates the likelihood of each candidate as-
sertion. For each entity ei in REt , it considers a target assertion
t = ⟨s,p,o⟩ and outputs a score that measures the likelihood of
⟨s,p, ei ⟩. To train such a link prediction model, a sub-graph that con-
tains the context of the correction task (i.e., E) is first extracted, with
the related entities, involved properties and their neighbourhoods;
positive and negative assertions are then sampled for training. State-
of-the-art semantic embeddings (TransE [3] and DistMult [46]), as
well as some widely used observed features (path and node) are
used to build the link prediction model.

Constraint-based validation checks whether a candidate asser-
tion violates constraints on the cardinality or (hierarchical) range
of the property, and outputs a consistency score which measures
its degree of consistency against such constraints. Such constraints
can be effective in filtering out unlikely assertions, but modern
KBs such as DBpedia and Wikidata often include only incomplete
or weak constraints, or do not respect the given constraints as no
global consistency checking is performed. Therefore, we do not
assume that there are any property cardinality or range constraints
in the KB TBox,3 but instead use mined constraints, each of which
is associated with a supporting degree (probability).
3Any property range and cardinality constraints that are defined in the TBox, or that
come from external knowledge, can be easily and directly injected into the framework.

1539

https://wiki.dbpedia.org/lookup

WWW ’20, April 20–24, 2020, Taipei, Taiwan Jiaoyan Chen, Xi Chen, Ian Horrocks, Erik B. Myklebust, and Ernesto Jimenez-Ruiz

Correction decisionmaking combines the results of related entity
estimation, link prediction and constraint-based validation; it first
integrates the assertion likelihood scores and consistency scores,
and then filters out those candidate substitutes that have low scores.
Finally, it either reports that no suitable correction was found, or
recommends the most likely correction.

4.2 Related Entity Estimation
For each target assertion t = ⟨s,p,o⟩ in E, related entity estimation
directly adopts o as the input if o is a literal, or extracts the label of o
if o is an entity. It returns a list REt containing up to k most related
entities; i.e., |REt | ≤ k . Our framework supports both a lexical
matching based approach and a word embedding based approach;
this allows us to compare the effectiveness of the two approaches
on different KBs (see Section 5.2).

For those KBs with a lexical index, the lexical matching based
approach can directly use a lookup service based on the index,
which often returns a set of related entities for a given phrase.
Direct lookup with the original phrase, however, often misses
the correct entity, as the input phrase, either coming from the
erroneous entity or the literal, is frequently noisy and ambigu-
ous. For example, the DBpedia Lookup service returns no entities
with the input “three gorges district” which refers to the entity
dbr:Three_Gorges_Reservoir_Region. To improve recall, we retrieve
a list of up tok entities by repeating entity lookup using sub-phrases,
starting with the longest sub-phrases and continuing with shorter
and shorter sub-phrases until either k entities have been retrieved
or all sub-phrases have been used. The list of each lookup is or-
dered according to the relatedness (lexical similarity) to the original
phrase, while all the lists are concatenated according to the above
lookup order. To extract the sub-phrases, we first tokenize the origi-
nal phrase, remove the stop words and then concatenate the tokens
in their original order for sub-phrases of different lengths. For those
KBs without an existing lexical index, the lexical matching based ap-
proach adopts a string similarity score i.e., normalized Edit Distance
[26] to calculate the relatedness of an entity with its label.

The word embedding based approach calculates the similarity
of o against each entity in the KB, using vector representations
of their labels (literals). It (i) tokenizes the phrase and removes
the stop words, (ii) represents each token by a vector with a word
embedding model (e.g., Word2Vec [24]) that is trained using a large
corpus, where tokens out of the model’s vocabulary are ignored,
(iii) calculates the average of the vectors of all the tokens, and (iv)
computes the distance-based similarity score of the two vectors by
e.g., the cosine similarity.

Compared with lexical matching, word embedding considers the
semantics of a word, which assigns a high similarity score to two
synonyms. In the above lookup example, “district” becomes noise as
it is not included in the label of dbp:Three_Gorges_Reservoir_Region,
but can still play an important role in the word embedding based
approach due to the short word vector distance between “district”
and “region”. However, in practice entity misuse is often not caused
by semantic confusion, but by similarity of spelling and token
composition, where the lexical similarity is high but the semantics
might be quite different. Moreover, lexical matching with a lexical
index makes it easy to utilize multiple items of textual information,

such as labels inmultiple languages and anchor text, where different
names of an entity are often included.

4.3 Link Prediction
Given related entities REt of a target assertion t = ⟨s,p,o⟩, link
prediction is used to estimate a likelihood score for the candidate
assertion ⟨s,p, ei ⟩, for each entity ei in REt . For efficiency in dealing
with very large KBs, we first extract a multi-relational sub-graph for
the context of the task, and then train the link predictionmodel with
a sampling method, observed features and semantic embeddings.

4.3.1 Sub-graph. Given a KB K and a set of target assertions
E, the sub-graph corresponding to E is a part of K , denoted as
KE = ⟨E, P ,T ⟩, where E denotes entities, P denotes object prop-
erties (relations) and T denotes assertions (triples). As shown in
Algorithm 1, the sub-graph is calculated with three steps: (i) extract
the seeds — entities and properties involved in the target assertions
E, as well as related entities of each assertion in E; (ii) extract the
neighbourhoods — directly associated assertions of each of the seed
properties and entities; (iii) re-calculate the properties and entities
involved in the assertions. Note that |= means an assertion is ei-
ther directly declared in the KB or can be inferred by the KB. The
statements with |= can be implemented by SPARQL: Line 13 needs
|P | queries each of which retrieves the associated assertions of a
given property, while Line 14 needs 2 × |E | queries each of which
retrieves the associated assertions of a given subject or object.

Algorithm 1: Sub-graph Extraction (K , E, REt)

1 Input: (i) The whole KB: K , (ii) The set of target assertions: E, (iii)
The related entities of each target assertion: REt , t ∈ E

2 Result: The sub-graph: KE = ⟨E, P, T ⟩
3 begin
4 % Step 1: Extract the seeds
5 SE = {s | ⟨s, p, o ⟩ ∈ E } % extract subject entities
6 P = {p | ⟨s, p, o ⟩ ∈ E } % extract target properties
7 RE = ∪t∈EREt % The union of related entities
8 E = SE ∪ RE
9 foreach ⟨s, p, o ⟩ in E do
10 if o is an entity then
11 E = E ∪ {o } % add object entity

12 % Step 2: Extract the neighbourhoods
13 T = { ⟨s, p, o ⟩ |p ∈ P ∧ K |= ⟨s, p, o ⟩ }
14 T = T ∪ {⟨s, p, o ⟩ |o ∈ E ∧ s ∈ E ∧ K |= ⟨s, p, o ⟩ }
15 % Step 3: Re-calculate entities and properties
16 E = E ∪ {s | ⟨s, p, o ⟩ ∈ T } ∪ {o | ⟨s, p, o ⟩ ∈ T }
17 P = P ∪ {p | ⟨s, p, o ⟩ ∈ T }
18 return KE = ⟨E, P, T ⟩

4.3.2 Sampling. Positive and negative samples (assertions) are ex-
tracted from the sub-graph KE = ⟨E, P ,T ⟩. The positive samples
are composed of two parts: Tpos = Tsp ∪ Tpr , where Tsp refers
to assertions whose subjects and properties are among SE (i.e.,
those subject entities involved in E) and P respectively (Tsp =
{⟨s,p,o⟩|s ∈ SE ∧ p ∈ P ∧ ⟨s,p,o⟩ ∈ T }), while Tpr refers to those

1540

Correcting Knowledge Base Assertions WWW ’20, April 20–24, 2020, Taipei, Taiwan

Target	Assertions
e.g.,

<Yangtze_River, passesArea,
“three	gorges	district">

<Sergio_Agüero,	 playsFor,	
Manchester_United>

Related Entities
(Candidate	Substitutes)

Sub-graph	&	Samples

Soft	Property	Constraints
(Cardinality	and	Range)

SPARQL
Query

Related Entity
Estimation

Link	Prediction	
Model

Embeddings &
Observed Features

Assertion
Likelihood	Scores

Consistency
Scores

Candidate
Assertions

Correction	Decisions
e.g.,

<Yangtze_River,	passesArea,	
Three_Gorges_Reservoir_Region>

< Sergio_Agüero,	 playsFor,	
Manchester_City>

Decision Making
(Filtering &
Ensemble)

Consistency
Checking

Knowledge Base

Constraint
Mining

Figure 1: The Overall Framework for Assertion Correction

assertions whose objects and properties are among RE and P respec-
tively (Tpr = {⟨s,p,o⟩|p ∈ P ∧ o ∈ RE ∧ ⟨s,p,o⟩ ∈ T }).Tsp andTpr
are calculated by two steps: (i) extract all the associated assertions
of each property p in P fromT ; (ii) group these assertions according
to SE and RE. Compared with an arbitrary assertion inT , the above
samples are more relevant to the candidate assertions for prediction.
This can help release the domain adaption — the data distribution
gap between the training and predicting assertions.

The negative samples include two parts as well:Tneд = T̃sp∪T̃pr ,
where T̃sp is constructed according to Tsp by replacing the object
with a random entity in E, while T̃pr are constructed according
to Tpr by replacing the subject with a random entity in E. Take
Tsp as an example, for each of its assertion ⟨s,p,o⟩, an entity ẽ is
randomly selected from E for a synthetic assertion t̃ = ⟨s,p, ẽ⟩ such
that K ⊭ t̃ , where ⊭ denotes that an assertion is neither declared
nor can be inferred, and t̃ is added to T̃sp . In implementation, we
getK ⊭ t̃ if t̃ < T , asT is extracted from the KB with inference.Tpr
is constructed similarly. The size of Tpos and Tneд is balanced.

4.3.3 Observed Features. We extract two kinds of observed features
— the path feature and the node feature. The former represents
potential relations that can connect the subject and object, while
the latter represents the likelihood of the subject being the head
of the property, and the likelihood of the object being the tail of
the property. For the path feature, we limit the path depth to two,
for reducing computation time and feature size, both of which are
exponential w.r.t. the depth. In fact, it has been shown that paths of
depth one are already quite effective. They outperform the state-of-
the-art KB embedding methods like DistMult and TransE, together
with the node feature on some benchmarks [39]. The predictive
information of a path also vanishes as its depth increases.

In calculation, we first extract paths of depth one: FP1so and FP1os ,
where FP1so represents properties from s too (i.e., {p0 |⟨s,p0,o⟩ ∈ T }),
while FP1os represents properties from o to s (i.e., {p0 |⟨o,p0, s⟩ ∈ T }).
Next we calculate paths of depth two (ordered property pairs) in two
directions as well: FP2so = {(p1,p2)|⟨s,p1, e⟩ ∈ T ∧ ⟨e,p2,o⟩ ∈ T },
FP2os = {(p1,p2)|⟨o,p1, e⟩ ∈ T ∧ ⟨e,p2, s⟩ ∈ T }. Finally we merge
these paths: FP = FP1so ∪ FP1os ∪ FP2so ∪ FP2os , and encode them
into a multi-hot vector as the path feature, denoted as f p . Briefly
we collect all the unique paths from the training assertions as a
candidate set, where one path corresponds to one slot in encoding.

When an assertion is encoded into a vector, a slot of the vector is
set to 1 if the slot’s corresponding path is among the assertion’s
paths and 0 otherwise.

The node feature includes two binary variables: f n = [vs ,vo],
where vs denotes the likelihood of the subject while vo denotes the
likelihood of the object. Namely, vs = 1 if there exists some entity
o′ such that ⟨s,p,o′⟩ ∈ T and vs = 0 otherwise. vo = 1 if there
exists some entity s ′ such that ⟨s ′,p,o⟩ ∈ T and vo = 0 otherwise.

Finally we calculate f p and f n , and concatenate them for each
sample in Tpos ∪ Tneд , and train a link prediction model with a
basic supervised classifier named Multiple Layer Perception (MLP):

Mpn
classifier e.g., MLP
←−−−−−−−−−−−−−−−

Tpos∪Tneд

[
f p , f n

]
. (1)

We also adopt the path-based latent feature learned by the state-
of-the-art algorithm RDF2Vec [36], as a baseline. RDF2Vec first
extracts potential outstretched paths of an entity by e.g., graph
walks, and then learns embeddings of the entities through the neural
language modelWord2Vec. In training, we encode the subject and
object of an assertion by their RDF2Vec embeddings, encode its
property by a one-hot vector, concatenate the three vectors, and
use the same classifier MLP. The trained model is denoted asMr2v .

4.3.4 Semantic Embeddings. A number of semantic embedding
algorithms have been proposed to learn the vector representation
of KB properties and entities. One common way is to define a
scoring function to model the truth of an assertion, and use an
overall loss for learning. We adopt two state-of-the-art algorithms
— TransE [3] and DistMult [46]. Both are simple but have been
shown to be competitive or outperform more complex alternatives
[3, 17, 46]. For high efficiency, we learn the embeddings from the
sub-graph.

TransE tries to learn a vector representation space such that o
is a nearest neighbor of s + p if an assertion ⟨s,p,o⟩ holds, and o is
far away from s + p otherwise. + denotes the vector add operation.
To this end, the score function of t = ⟨s,p,o⟩, denoted as д(t),
is defined as d(es + ep ,eo), where d is a dissimilarity (distance)
measure such as L2 norm, while es , ep and eo are embeddings of s ,
p and o respectively. The embeddings have the same dimension that
is configured, and are initialized by one-hot encoding. In learning,
a batch stochastic gradient descent algorithm is used to minimize

1541

WWW ’20, April 20–24, 2020, Taipei, Taiwan Jiaoyan Chen, Xi Chen, Ian Horrocks, Erik B. Myklebust, and Ernesto Jimenez-Ruiz

the the following margin-based ranking loss:

L =
∑

t ∈T ,t→t̃

[
γ + д(t) − д(t̃)

]
+

(2)

where γ > 0 is a hyper parameter, [·]+ denotes extracting the
positive part, and t̃ represents a negative assertion of t , generated
by randomly replacing the subject or object with an entity in E.

DistMult is a special form of the bilinear model where the non-
diagonal entries in the relation matrices are assumed to be zero.
The score function of an assertion ⟨s,p,o⟩ is defined as eTp (es ◦ eo),
where ◦ denotes the operation of pairwisemultiplication. As TransE,
the embeddings are initialized by one-hot encoding, with the a
dimension configured. A similar margin-based ranking loss as (2)
is used for training with batched stochastic gradient descent.

In prediction, the likelihood score of an assertion can be calcu-
lated with the corresponding scoring function and the embeddings
of its subject, property and object. We denote the link prediction
model by TransE and DistMult asMte andMdm respectively.

4.4 Constraint-based Validation
We first mine two kinds of soft constraints — property cardinality
and hierarchical property range from the KB, and then use a con-
sistency checking algorithm to validate those candidate assertions.

4.4.1 Property Cardinality. Given a property p, its soft cardinality
is represented by a probability distribution D

p
car (k) ∈ [0, 1], where

k ≥ 1 is an integer that denotes the cardinality. It is calculated
as follows: (i) get all the property assertions whose property is p,
denoted as T (p), and all the involved subjects, denoted as S(p), (ii)
count the number of the object entities associated with each subject
s in S(p) and p: ON (s,p) = |{o |⟨s,p,o⟩ ∈ T (p)}|, (iii) find out the
maximum object number: ON

p
max =max {ON (s,p)|s ∈ S(p)}, and

(iv) calculate the property cardinality distribution as:

D
p
car (k) =

|{s ∈ S(p)|ON (s,p) = k}|

|S(p)|
,k = 1, ...,ON

p
max , (3)

where |·| denotes the size of a set. Specially ON
p
max = 0 if T (p)

is empty. Dp
car (k > n) is short for

∑ON p
max

i=n+1 D
p
car (k = i), denoting

the probability that the cardinality is larger than n. In implementa-
tion, T (p) can be accessed by one time SPARQL query, while the
remaining computation has linear time complexity w.r.t. |T (p)|.

The probability of cardinalityk is equal to the ratio of the subjects
that are associated with k different entity objects. For example,
considering a property hasParent that is associated with 10 different
subjects (persons) in the KB, if one of them has one object (parent)
and the remaining have two objects (parents), then the cardinality
distribution is: Dcar (k = 1) = 1

10 and Dcar (k = 2) = 9
10 . Note that

although such constraints follow Closed Word Assumption and
Unique Name Assumption, they behave well in our method. On the
one hand, probabilities are estimated to represent the supporting
degree of a constraint by the ABox. One the other hand, they are
used in an approximate model to validate candidate assertions
instead of as new and totally true knowledge for KB TBox extension.

4.4.2 Hierarchical Property Range. Given a property p, its range
constraint consists of (i) specific range which includes the most
specific classes of its associated objects, denoted as Cpsp , and (ii)

general rangewhich includes ancestors of thesemost specific classes,
denoted as Cpдe , with top classes such as owl:Thing being excluded.
A most specific class of an entity refers to one of the most fine
grained classes that the entity is an instance of according to class
assertions in the KB. Note that there could be multiple such classes
as the entity could be asserted to be an instance of multiple classes
for which there is no sub-class relationship. General classes of an
entity are those that subsume one or more of the specific classes as
specified in the KB via rdfs:subClassOf assertions.

Each range class c in C
p
sp (Cpдe resp.) has a probability in [0, 1]

that represents its supporting degree by the KB, denoted as Dp
sp (c)

(Dp
дe (c) resp.).C

p
sp ,C

p
дe and the supporting degrees are calculated by

the following steps: (i) get all the object entities that are associated
withp, denoted asOE(p); (ii) infer the specific and general classes of
each entity oe inOE(p), denoted asCsp (p,oe) andCдe (p,oe) respec-
tively, and at the same time collectCpsp as ∪oe ∈OE(p)Csp (p,oe) and
C
p
дe as ∪oe ∈OE(p)Cдe (p,oe); (iii) compute the supporting degrees:

D
p
sp (c) =

|{oe |oe ∈OE(p),c ∈Csp (p,oe)}|
|OE(p) | , c ∈ C

p
sp ,

D
p
дe (c) =

|{oe |oe ∈OE(p),c ∈Cдe (p,oe)}|
|OE(p) | , c ∈ C

p
дe .

(4)

The degree of each range class is the ratio of the objects that are
instances of the class, as either directly declared in the ABox or
inferred by rdfs:subClassOf. The implementation needs one time
SPARQL query to get OE(p), and |OE(p)| times SPARQL queries to
get the specific and ancestor classes. The remaining computation
has linear time complexity w.r.t. |OE(p)|. As property cardinality,
range is also used for approximating the likelihood of candidate as-
sertions, with a consistency checking algorithm introduced bellow.

4.4.3 Consistency Checking. As shown in Algorithm 2, constraint
checking acts as a model, to estimate the consistency of an assertion
against soft constraints of hierarchical property range and cardi-
nality. Given a candidate assertion t = ⟨s,p, e⟩, the algorithm first
checks the property cardinality, with a parameter named maximum
cardinality exceeding rate σ ∈ (0, 1]. Line 5 counts the number of
entity objects that are associated with s and p in the KB, assuming
that the correction is made (i.e., t has been added into the KB). Note
that 1 ≤ n ≤ ON

p
max + 1. Line 6 calculates its exceeding rate r w.r.t.

ON
p
max , where r ∈ (−∞, 1]. In Line 8, ON

p
max = 0 indicates that p

is highly likely to used as a data property in the KB. This is common
in correcting literal assertions: one example is the property has-
Name whose objects are phrases of entity mentions but should not
be replaced by entities. In this case, it is more reasonable to report
that the object substitute does not exist, and thus the algorithm sets
the cardinality score ycar to 0.

Another condition of settingycar to 0 is r ≥ σ . Specially, when σ
is set to 1.0, r ≥ σ (i.e.,ON

p
max = 1 , n = 2) means that p is a object

property with functionality in the KB but the correction violates
this constraint. Note that n can exceed ON

p
max by a small degree

which happens when ON
p
max is large. For example, when σ is set

to 0.5, r = 0.25 (i.e., ON
p
max = 4 and n = 5) is allowed. Line 11 to

16 calculate the property cardinality score ycar as the probability
of being a functional property (n = 1), or as the probability of being
a none-functional property (n > 1). Specially, we punish the score

1542

Correcting Knowledge Base Assertions WWW ’20, April 20–24, 2020, Taipei, Taiwan

when n > ON
p
max (i.e., r > 0) by multiplying it with a degrading

factor 1 − r : the higher exceeding rate, the more it degrades.
Line 17 to 21 calculate the property range score yran , by comb-

ing the specific range score yran,c and the general range score
yran,д with their importance weights ωc and ωд . Usually we make
the specific range more important by setting ωc and ωд to e.g.,
0.8 and 0.2 respectively. Line 19 computes yran,c and yran,д : the
score is higher if more classes of the objects are among the range
classes, and these classes have higher range degrees. For example,
considering the property bornIn with the following range cardinal-
ity: Cpsp = {City,Town, Place}, C

p
дe = {Place}, D

p
sp (City) = 0.5,

D
p
sp (Town) = 0.4, Dp

sp (Place) = 0.05 and D
p
дe (Place) = 0.95, we

will have (i)yran,c = 1−(1−0.5)(1−0.05) = 0.525 andyran,д = 0.95
if C(e) = {City, Place}, (ii) yran,c = 0.05 and yran,д = 0.95 if
C(e) = {Villaдe, Place}, and (iii) yran,c = 0 and yran,д = 0 if
C(e) = {Pro f essor , Person}. The order of the consistency degree
against the property range is: {City, Place} > {Villaдe, Place} >
{Pro f essor , Person}.

The algorithm finally returns the property cardinality score ycar
and the property range score yran . The former model is denoted
asMcar while the letter is denoted asMran . According to some
empirical analysis, we can multiply or average the two scores, as
the final model of consistency checking, denoted asMcar+ran .

4.5 Correction Decision Making
Given a target assertion t in E, and its top-k related entities REt , for
each entity ei in REt , the correction framework (i) calculates the
assertion likelihood score yli with a link prediction model (Mpn ,
Mte orMdm), and the consistency score yci withMcar ,Mran

orMcar+ran ; (ii) separately normalizes yli and yci into [0, 1] ac-
cording to all the predictions by the corresponding model for E;
(iii) ensembles the two scores by simple averaging: yi =

(yli +y
c
i)

2 ;
(iv) filters out ei from REt if yi < τ . Note ei is always kept if t
is a literal assertion and its literal is exactly equal to the label of
ei . The related entities after filtering keep their original order in
REt , and are denoted as RE ′t . τ is a parameter in [0, 1] that needs
to be adjusted with a developing data set. It eventually returns
none, which means there is no entity in the KB that can replace the
object of t , if RE ′t is empty, and the top-1 entity in RE ′t as the object
substitute otherwise. The ensemble of the link prediction score and
constraint-based validation score is not a must. Either of them can
make a positive impact independently, while their ensemble can
make the performance higher in most cases (cf. Section 5.4).

5 EVALUATION
5.1 Experiment Settings
5.1.1 Data. In our experiment, we correct assertions in DBpedia
[2] and in an enterprise medical KB whose TBox is defined by clinic
experts and ABox is extracted from medical articles (text) by some
open information extraction tools (cf. more details in [28]). DBpedia
is accessed via its official Lookup service, SPARQL Endpoint4 and
entity label dump (for related entity estimation withWord2Vec). The
medical KB contains knowledge about disease, medicine, treatment,

4http://dbpedia.org/sparql

Algorithm 2: Consistency Checking (Mran ,Mcar)

1 Input: (i) A candidate assertion: t = ⟨s, p, e ⟩, (ii) property
cardinality constraint: ⟨Dp

car , ON p
max ⟩, (iii) the maximum

cardinality exceeding rate: σ ∈ (0, 1], (iv) hierarchical
property range constraint: ⟨Dp

sp, D
p
дe , C

p
sp, C

p
дe ⟩, (v)

weights of the specific range and general range: ⟨ωc , ωд ⟩
2 Result: ycar : score that t is consistent with the property

cardinality; yran : score that t is consistent with the
property range

3 begin
4 % count the number of object entities
5 n = | {o |K |= ⟨s, p, o ⟩, o is entity} ∪ {e } |;

6 r = (n−ON p
max)

ON p
max

; % calculate the exceeding rate

7 % no object entities are associated with p in the KB, or the
cardinality exceeds the maximum by a specific rate

8 if ON p
max = 0 ∥ r ≥ σ then

9 ycar = 0;
10 else
11 if n = 1 then
12 % probability as a functional property
13 ycar = D

p
car (k = 1);

14 else
15 % probability as a none-functional property

16 ycar =

{
Dp
car (k > 1), if r ≤ 0
(1 − r) · Dp

car (k > 1), else

17 C(e) = {c |K |= ⟨e, rdf:type, c ⟩ }; % get the object’s classes
18 % calculate the constraint score of specific and general ranges

19


yran,c = 1 −

∏
c∈Cp

sp∩C (e)
(1 − Dp

ran (c)),

yran,д = 1 −
∏
c∈Cp

дe∩C (e)
(1 − Dp

ran (c));

20 % calculate the overall range constraint score
21 yran = ωc · yran,c + ωд · yran,д ;
22 return ycar , yran

symptoms, foods and so on, with around 800 thousand entities, 7
properties, 48 classes, 4 million property assertions. The data are
representative of two common situations: errors of DBpedia are
mostly inherited from the source while errors of the medical KB
are mostly introduced by extraction.

For DBpedia, we reuse the literal set proposed by [4, 15]. Literals
containing multiple entity mentions are removed, while proper-
ties with insufficient literal objects are complemented with more
literals from DBpedia. We annotate each assertion with a ground
truth (GT), which is either a correct replacement entity from DB-
pedia (i.e., Entity GT) or none (i.e., Empty GT). Ground truths are
carefully checked using DBpedia, Wikipedia, and multiple external
resources. Regarding the medical KB, we use a set of assertions
with erroneous entity objects that have been discovered and col-
lected during deployment of the KB in enterprise products; the GT
annotations have been added with the help of clinical experts. For
convenience, we call the above two target assertion sets DBP-Lit
and MED-Ent respectively.5 More details are shown in Table 1.

5DBP-Lit data and its experiment codes: https://github.com/ChenJiaoyan/KG_Curation

1543

http://dbpedia.org/sparql
https://github.com/ChenJiaoyan/KG_Curation

WWW ’20, April 20–24, 2020, Taipei, Taiwan Jiaoyan Chen, Xi Chen, Ian Horrocks, Erik B. Myklebust, and Ernesto Jimenez-Ruiz

Assertions (with Entity GT) # Properties # Subjects #
DBP-Lit 725 (499) 127 668
MED-Ent 272 (225) 7 200

Table 1: Some statistics of DBP-Lit and MED-Ent.

5.1.2 Settings. In the evaluation, we first analyze related entity esti-
mation (Section 5.2) and link prediction (Section 5.3) independently.
For the former, we report the recall of Entity GTs of different meth-
ods with varying top-k values, based on which suitable settings
are selected for the framework. For link prediction, we compare
different KB embeddings and observed features, using those target
assertions whose Entity GTs are recalled in related entity estimation.
The related entities of a target assertion are first ranked according
to the predicted score, and then standard metrics including Hits@1,
Hits@5 and MRR (Mean Reciprocal Rank) are calculated.

Next we evaluate the overall results of the assertion correction
framework (Section 5.4), where the baselines are compared with,
and the impact of link prediction and constraint-based validation
is analyzed. Three metrics are adopted: (i) Correction Rate which is
the ratio of the target assertions that are corrected with right sub-
stitutes, among all the target assertions with Entity GTs; (ii) Empty
Rate which is the ratio of the target assertions that are corrected
with none, among all the target assertions with Empty GTs; (iii)
Accuracy which is the ratio of the truly corrected target assertions
by either substitutes or none, among all the target assertions. Note
that accuracy is an overall metric considering both correction rate
and empty rate. Either high (low resp.) correction rate or empty rate
can lead to high (low resp.) accuracy. With the overall results, we
finally analyze the constraint-based validation with more details.

The reported results are based on the following setting (unless
otherwise specified). Word2Vec [24] is trained using the Wikipedia
article dump in June 2018. In link prediction, γ is set by linear
increasing w.r.t. the training step, the embedding size is set to 100,
and the other training hyper parameters such as the number of
epochs and MLP hidden layer size are set such that the highest MRR
is achieved on an evaluation sample set. For RDF2Vec, pre-trained
versions of DBpedia entities by Mannheim University6 are tested,
and the results with the best MRR are reported. In constraint-based
validation, σ , ωc and ωд are set to 1.0, 0.8 and 0.2 respectively,
according to the algorithm insight. Some other reasonable settings
explored can achieve similar results. The embeddings are trained
by GeForce GTX 1080 Ti with OpenKE [16], while the remaining is
computed by Intel(R) Xeon(R) CPU E5-2670 @2.60GHz.

5.2 Related Entity Estimation
We compare different methods and settings used in related entity
estimation with the results presented in Figure 2, where the recall
of Entity GTs by top-k related entities are presented. First, we find
that the lexical matching based methods (Lookup, Lookup∗ and Edit
Distance) have much higher recall than Word2Vec, on both DBP-
Lit and MED-Ent. The reason for DBP-Lit may lie in the Lookup
service provided by DBpedia, which takes not only the entity label
but also the anchor text into consideration. The latter provides more
6https://bit.ly/2M4TQOg

semantics, some of which, such as different names and background
description, is very helpful for recalling the right entity. The reason
for MED-Ent, according to some empirical analysis, is that the
erroneous objects are often caused by lexical confusion, such as
misspelling and misusing of an entity with similar tokens. Second,
our Lookup solution with sub-phrases, i.e., Lookup∗, as expected,
outperforms the original Lookup. For example, when both curves
are stable, their recalls are around 0.88 and 0.81 respectively,

The target of related entity estimation in our framework is to
have a high recall with a k value that is not too large (so as to avoid
additional noise and limit the size of the sub-graph for efficiency).
In real application, the method and k value can be set by analyzing
the recall. According to the absolute value and the trend of the
recall curves in Figure 2, our framework uses Lookup∗ with k = 30
for DBP-Lit, and Edit Distance with k = 76 for MED-Ent.

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

0 5 10 15 20 25 30

Lookup
Lookup*
Word2Vec

top-𝒌

Recall

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 10 20 30 40 50 60 70 80 90

Edit	Distance

Word2Vec

top-𝒌

Recall

DBP-Lit MED-Ent

Figure 2: The recall of Entity GTs by top-k related entities

5.3 Link Prediction
5.3.1 Impact of Models. The results of different link prediction
methods are shown in Table 2, where the sub-graph is used for
training. The baseline Random means randomly ranking the re-
lated entities, while AttBiRNN, which is successfully applied in
[4] for literal object typing, refers to the attentive bidirectional
Recurrent Neural Networks that utilize the labels of the subject,
property and object. First of all, the results verify that either latent
semantic embeddings or observed features with MLP are effective
for both DBP-Lit and MED-Ent: MRR, Hits@1 and Hits@5 are all
dramatically improved w.r.t. Random and AttBiRNN.

We also find that concatenating the node feature and path feature
(Node+Path) achieves higher performance than the node feature
and the path feature alone, as well as the baseline RDF2Vec which
is based on graph walks. For DBP-Lit, it outperforms RDF2Vec by
39.9%, 44.1% and 45.5% for MRR, Hits@1 and Hits@5 respectively.

Meanwhile, Node+Path performs better than TransE and Dist-
Mult for DBP-Lit, while for MED-Ent, TransE and DistMult out-
performs Node+Path. For example, considering the metric of MRR,
Node+Path is 71.3% higher than DistMult for DBP-Lit, but DistMul
is 108.8% higher than Node+Path for MED-Ent. One potential rea-
son is the difference in the number of properties and sparsity of the
two sub-graphs. DBP-Lit has 127 properties in its target assertions
and 1958 properties in its sub-graph; while MED-Ent has 7 proper-
ties in its target assertions and 19 properties in its sub-graph. The
small number of properties for MED-Ent leads to quite poor path
feature, which is verified by its independent performance (e.g., the

1544

https://bit.ly/2M4TQOg

Correcting Knowledge Base Assertions WWW ’20, April 20–24, 2020, Taipei, Taiwan

MRR is only 0.09). In the sub-graph of DBP-Lit, the average number
of connected entities per property (i.e., density) is 150.7, while in
the sub-graph of MED-Ent, it is 2739.0. Moreover, a larger ratio of
properties to entities also leads to richer path features. According
to these results, we use Node+Path for DBP-Lit and DistMult for
MED-Ent in our correction framework.

Methods
DBP-Lit MED-Ent

MRR Hits@1 Hits@5 MRR Hits@1 Hits@5
Random 0.199 0.100 0.275 0.027 0.013 0.066
AttBiRNN 0.251 0.126 0.348 0.255 0.111 0.414
TransE 0.342 0.173 0.518 0.744 0.652 0.862

DistMult 0.424 0.300 0.536 0.752 0.694 0.806
RDF2Vec 0.419 0.320 0.492 — — —
Node 0.495 0.379 0.604 0.338 0.171 0.514
Path 0.473 0.356 0.578 0.090 0.028 0.133

Node+Path 0.586 0.461 0.716 0.360 0.200 0.525
Table 2: Link prediction results based on the sub-graph.

5.3.2 Impact of The Sub-graph. We further analyze the impact of
sub-graph usage in training the link prediction model. The results
of some of the methods that can be run over the whole KB with
limited time are shown in Table 3, where Node+Path (DBP-Lit) uses
features extracted from the whole KB but samples from the sub-
graph. One the one hand, in comparison with Node+Path trained
purely with the sub-graph, Node+Path with global features actu-
ally performs worse. As all the directly connected properties and
entities of each subject entity, related entity and target property are
included in the sub-graph, using the sub-graph makes no difference
for node features and path features of depth one. Thus the above
result is mainly due to the fact that path features of depth two actu-
ally makes limited contribution in this link prediction context. This
is reasonable as they are weak, duplicated or even noisy in compar-
ison with node features and path features of depth one. One the
other hand, learning the semantic embeddings with the sub-graph
has positive impact on TransE and negative impact on DistMult
for MED-Ent. However the impact in both cases is quite limited.
Considering that the sub-graph has only 36.9% (11.2% resp.) of the
entities (assertions resp.) of the whole medical KB, which reduces
the training time of DistMult embeddings from 46.7minutes to 19.0
minutes, the above performance drop can be accepted.

Cases MRR Hits@1 Hits@5
TransE (MED-Ent) 0.713 (-.031) 0.608 (-.044) 0.834 (-.028)
DistMult (MED-Ent) 0.766 (+.014) 0.721 (+.027) 0.822 (+.016)
Node+Path (DBP-Lit) 0.504 (-.082) 0.384 (-.077) 0.611 (-.105)

Table 3: Link prediction results based on the whole KB, and their
outperformance (gap) over those based on the sub-graph

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0 0.2 0.4 0.6 0.8 1

Correction Rate

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

Empty Rate

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0 0.2 0.4 0.6 0.8 1

Accuracy

Lookup* Lookup* +	LP Lookup* +	CV Lookup* +	LP	+	CV

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 0.2 0.4 0.6 0.8 1

Correction Rate

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 0.2 0.4 0.6 0.8 1

Empty Rate

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 0.2 0.4 0.6 0.8 1

Accuracy

EditDistance EditDistance	+	LP EditDistance	+	CV EditDistance	+	LP	+	CV

Figure 3: Overall results of the correction framework for DBP-Lite
[Above] and MED-Ent [Below]. + LP and + CV represent filtering
with link prediction and constraint-based validation respectively,
with the filtering threshold τ ranging from 0 to 1with a step of 0.05.

5.4 Overall Results
Figure 3 presents the correction rate, empty rate and accuracy of our
assertion correction framework with a ranging filtering threshold
τ . Note that lexical matching without any filtering is similar to the
existing method discussed in related work [20]. On the one hand,
we find that filtering with either link prediction (LP) or constraint-
based validation (CV) can improve the correction rate when τ is set
to a suitable range. This is because those candidate substitutes that
are lexically similar to the erroneous object but lead to unlikely
assertions are filtered out, while those that are not so lexically
similar but lead to true assertions are ranked higher. As the empty
rate is definitely increased after filtering (e.g., improved from 0.252
to 0.867 by Lookup∗ + LP + CV for DBP-Lit), the accuracy for both
DBP-Lit and MED-Ent is improved in the whole range of τ . On the
other hand, we find that averaging the scores from link prediction
and constraint-based validation is effective. It leads to both higher
correction rate and accuracy than either of them for some values
of τ , such as [0.05, 0.1] for DBP-Lit and [0.85, 0.95] for MED-Ent.

Table 4 presents the optimum correction rate and accuracy. Note
that they are achieved using a suitable τ setting; in real applications
this can be determined using an evaluation data set. With these
results, we make the following observations. First, the optimum
results are consistent with our above conclusions regarding the
positive impact of link prediction, constraint-based validation and
their ensemble. For example, the optimum accuracy of DBP-Lit is
improved by 32.6% using constraint-based validation in comparison
with the original related entities by lexical matching. The correction
rate of MED-Ent provides another example: REE + LP + CV is 1.5%
higher than REE + LP, and 121.4% higher than REE + CV.

Second, lexical matching using either Lookup (for DBP-Lit) or
Edit Distance (for MED-Ent) has a much higher correction rate
and accuracy thanWord2Vec, while our Lookup with sub-phrases
(Lookup∗) has even higher correction rate than the original Lookup

1545

WWW ’20, April 20–24, 2020, Taipei, Taiwan Jiaoyan Chen, Xi Chen, Ian Horrocks, Erik B. Myklebust, and Ernesto Jimenez-Ruiz

of DBpedia. These overall results verify the recall analysis on re-
lated entity estimation in Section 5.2. Meanwhile, we find that the
overall results on observed features (Mnp) and latent semantic
embeddings (Mdm andMte) are also consistent with the link pre-
diction analysis in Section 5.3:Mnp has a better filtering effect than
Mdm andMte for DBP-Lit, but worse filtering effect for MED-Ent.

Methods
DBP-Lit MED-Ent

C-Rate Acc C-Rate Acc
Lexical Matching 0.597 0.611 0.149 0.123

Lookup∗ 0.635 0.516 — —
Word2Vec 0.553 0.410 0.089 0.076

REE + LP (Mnp) 0.677 0.677 0.360 0.327
REE + LP (Mdm) 0.635 0.628 0.600 0.588

REE + CV (Mran) 0.671 0.668 0.271 0.239
REE + CV (Mcar) 0.639 0.622 0.164 0.147

REE + CV (Mran+car) 0.677 0.684 0.271 0.246

REE + LP + CV 0.701 0.690 0.609 0.599

Table 4: Optimum correction rate (C-Rate) and accuracy (Acc). REE
denotes Related Entity Estimation: Lookup∗ for DBP-Lit, Edit Dis-
tance for MED-Ent.

5.5 Constraint-based Validation
Besides the positive impact on the overall results mentioned above,
we get several more detailed observations about constraint-based
validation from Table 4. On the one hand, the property range con-
straint plays a more important role than the property cardinality
constraint, while their combination is more robust than either of
them, as expected. Considering the assertion set of MED-Ent, fil-
tering byMran , for example, leads to 62.6% higher accuracy than
filtering byMcar , while filtering byMran+car has 2.9% higher
accuracy and equal correction rate in comparison withMran .

On the other hand, we find constraint-based validation performs
well for DBP-Lit, with higher accuracy and equal correction rate in
comparison with link prediction, but performs worse for MED-Ent.
This is mainly due to the gap between the semantics of the two
target assertion sets and their corresponding KBs: (i) the mined
property ranges of DBP-Lit include 404 hierarchical classes, while
those of MED-DB have only 8 classes and these classes have no
hierarchy; (ii) 23 out of 127 target properties in DBP-Lit have pure
functionality (i.e., Dp

car (k = 1) = 1.0) which plays a key role in the
consistency checking algorithm, while none of the target properties
ofMED-Ent has such pure functionality. The second characteristic is
also a potential reason why filtering by constraint-based validation
with property cardinality only achieves a very limited improvement
over Edit Distance for MED-Ent as shown in Table 4.

We additionally present some examples of the mined soft prop-
erty constraints in Table 5. Most of them are consistent with our
common sense understanding of the properties, although some
noise is evident (e.g., the range Person and Agent of dbp:homeTown),
most likely caused by erroneous property and class assertions.

Property Cardinality Specific Range General Range

dbp:
homeTown

1 : 0.415
2 : 0.422
3 : 0.163

Location: 0.801,
City: 0.280,

Country: 0.268,
Person: 0.228, ...

PopulatedPlace:
0.821, Place: 0.821,
Settlement: 0.299,
Agent: 0.259, ...

dbp:
finalteam

1 : 1.000

BaseballTeam:
0.493, SportsTeam:
0.154, SoccerClub:

0.015, ...

Agent: 0.688,
Organization: 0.665,
SportsTeam: 0.510,

...
Table 5: Soft constraints of two property examples

6 DISCUSSION AND OUTLOOK
In this paper we present a study of assertion correction, an impor-
tant problem for KB curation, but one that has rarely been studied.
We have proposed a general correction framework, which rely on
no KB meta data or external information, and which exploits both
deep learning and consistency reasoning to correct erroneous ob-
jects and informally annotated literals. The framework has been
evaluated by correcting assertions in two KBs: DBpedia with cross-
domain knowledge and an medical KB. We discuss below several
more observations and possible directions for the future work.

Entity relatedness. Our method follows the principle of cor-
recting the object by a related entity rather than an arbitrary entity
that leads to a correct assertion. Relatedness can be due to either
lexical or semantic similarity. Currently, the recall for DBP-Lit and
MED-Ent is 0.882 and 0.797 respectively, which is promising, but
still leaves space for further improvement. One extension for higher
recall but limited noise and sub-graph size is incorporating more
literal attributes of the entity.

KB variation. Although both constraint-based validation and
link prediction improve overall performance, their impact varies
from DBpedia to the medical KB. The effectiveness of constraint-
based validation depends on the richness of the KB schema, such as
property functionality, the complexity of property range, etc. The
more complex the schema is, the better performance constraint-
based validation achieves. The impact of link prediction is more
complicated: the path and node features perform better on DBpedia
which has many more properties, while the semantic embeddings
by DistMult and TransE are more suitable for the medical KB which
has less properties but higher density. Integrating link prediction
and constraint-based validation, even with simple score averaging,
can improve performance, but further study is needed for a better
integration method that is adapted to the given KB.

Property constraints. On the one hand, the evaluation indi-
cates that the mined property constraints are effective for assertion
validation and can be independently used in other contexts like
online KB editing. On the other hand, unlike the link prediction
model, the constraints as well as the consistency checking algorithm
are interpretable. One benefit is that explicitly defined or external
TBox constraints can easily be injected into our framework by
overwriting or revising the constraints. For example, the mined
specific range Person: 0.228 in Table 5, which is inappropriate for
the property dbp:homeTown, can be directly removed.

1546

Correcting Knowledge Base Assertions WWW ’20, April 20–24, 2020, Taipei, Taiwan

ACKNOWLEDGMENTS
This work was supported by the AIDA project (Alan Turing Insti-
tute), the SIRIUS Centre for Scalable Data Access (Research Council
of Norway), Samsung Research UK, Siemens AG, and the EPSRC
projects AnaLOG (EP/P025943/1), OASIS (EP/S032347/1) and UK
FIRES (EP/S019111/1). Data of MED-Ent, GPU resources and Xi
Chen’s contribution were supported by Jarvis Lab Tencent.

REFERENCES
[1] Dörthe Arndt, Ben De Meester, Anastasia Dimou, Ruben Verborgh, and Erik

Mannens. 2017. Using Rule-based Reasoning for RDF Validation. In International
Joint Conference on Rules and Reasoning. Springer, 22–36.

[2] Sören Auer, Christian Bizer, Georgi Kobilarov, Jens Lehmann, Richard Cyganiak,
and Zachary Ives. 2007. DBpedia: A Nucleus for A Web of Open Data. In The
Semantic Web. Springer, 722–735.

[3] Antoine Bordes, Nicolas Usunier, Alberto Garcia-Duran, Jason Weston, and Ok-
sana Yakhnenko. 2013. Translating Embeddings for Modeling Multi-relational
Data. In Advances in Neural Information Processing Systems. 2787–2795.

[4] Jiaoyan Chen, Ernesto Jiménez-Ruiz, and Ian Horrocks. 2019. Canonicalizing
Knowledge Base Literals. In International Semantic Web Conference.

[5] Michalis Chortis and Giorgos Flouris. 2015. A Diagnosis and Repair Framework
for DL-LiteA KBs. In European Semantic Web Conference. Springer, 199–214.

[6] Gerard De Melo. 2013. Not quite the same: Identity constraints for the web of
linked data. In Twenty-Seventh AAAI Conference on Artificial Intelligence.

[7] Jeremy Debattista, Christoph Lange, and Sören Auer. 2016. A Preliminary Inves-
tigation towards Improving Linked Data Quality Using Distance-based Outlier
Detection. In Joint International Semantic Technology Conference. Springer, 116–
124.

[8] Antonin Delpeuch. 2019. OpenTapioca: Lightweight Entity Linking for Wikidata.
arXiv preprint arXiv:1904.09131 (2019).

[9] Anastasia Dimou, Dimitris Kontokostas, Markus Freudenberg, Ruben Verborgh,
Jens Lehmann, Erik Mannens, Sebastian Hellmann, and Rik Van de Walle. 2015.
Assessing and Refining Mappings to RDF to Improve Dataset Quality. In Interna-
tional Semantic Web Conference. Springer, 133–149.

[10] John Domingue, Dieter Fensel, and James A Hendler. 2011. Handbook of Semantic
Web Technologies. Springer Science & Business Media.

[11] Michael Färber, Frederic Bartscherer, Carsten Menne, and Achim Rettinger. 2018.
LinkedDataQuality of DBpedia, Freebase, Opencyc,Wikidata, and Yago. Semantic
Web 9, 1 (2018), 77–129.

[12] Luis Galárraga, Geremy Heitz, Kevin Murphy, and Fabian M Suchanek. 2014.
Canonicalizing Open Knowledge Bases. In Proceedings of the 23rd ACM Interna-
tional Conference on Information and Knowledge Management. ACM, 1679–1688.

[13] Birte Glimm and Chimezie Ogbuji. 2013. SPARQL 1.1 Entailment Regimes. W3C
Recommendation (2013).

[14] Bernardo Cuenca Grau, Ian Horrocks, Boris Motik, Bijan Parsia, Peter F. Patel-
Schneider, and Ulrike Sattler. 2008. OWL 2: The Next Step for OWL. Web
Semantics: Science, Services and Agents on the World Wide Web 6, 4 (2008), 309–
322.

[15] Kalpa Gunaratna, Krishnaprasad Thirunarayan, Amit Sheth, and Gong Cheng.
2016. Gleaning Types for Literals in RDF Triples with Application to Entity
Summarization. In European Semantic Web Conference. 85–100.

[16] Xu Han, Shulin Cao, Xin Lv, Yankai Lin, Zhiyuan Liu, Maosong Sun, and Juanzi
Li. 2018. OpenKE: An Open Toolkit for Knowledge Embedding. In Proceedings of
the 2018 Conference on Empirical Methods in Natural Language Processing: System
Demonstrations. 139–144.

[17] Rudolf Kadlec, Ondrej Bajgar, and Jan Kleindienst. 2017. Knowledge Base Comple-
tion: Baselines Strike Back. In Proceedings of the 2nd Workshop on Representation
Learning for NLP. 69–74.

[18] Holger Knublauch and Dimitris Kontokostas. 2017. Shapes Constraint Language
(SHACL). W3C Recommendation 20 (2017).

[19] Dimitris Kontokostas, Patrick Westphal, Sören Auer, Sebastian Hellmann, Jens
Lehmann, Roland Cornelissen, and Amrapali Zaveri. 2014. Test-driven Evaluation
of Linked Data Quality. In Proceedings of the 23rd International Conference on
World Wide Web. ACM, 747–758.

[20] Piyawat Lertvittayakumjorn, Natthawut Kertkeidkachorn, and Ryutaro Ichise.
2017. Correcting Range Violation Errors in DBpedia.. In International Semantic
Web Conference (Posters, Demos & Industry Tracks).

[21] André Melo and Heiko Paulheim. 2017. An Approach to Correction of Erroneous
Links in Knowledge Graphs. In CEUR Workshop Proceedings, Vol. 2065. RWTH,
54–57.

[22] André Melo and Heiko Paulheim. 2017. Detection of Relation Assertion Errors
in Knowledge Graphs. In Proceedings of the Knowledge Capture Conference. ACM,
22.

[23] Pablo N Mendes, Max Jakob, Andrés García-Silva, and Christian Bizer. 2011.
DBpedia Spotlight: Shedding Light on the Web of Documents. In Proceedings of
the 7th International Conference on Semantic Systems. ACM, 1–8.

[24] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. Efficient Esti-
mation of Word Representations in Vector Space. arXiv preprint arXiv:1301.3781
(2013).

[25] Erik B.Myklebust, Ernesto Jiménez-Ruiz, Jiaoyan Chen, RaoulWolf, and Knut Erik
Tollefsen. 2019. Knowledge Graph Embedding for Ecotoxicological Effect Predic-
tion. CoRR abs/1907.01328. arXiv:1907.01328 http://arxiv.org/abs/1907.01328

[26] Gonzalo Navarro. 2001. A Guided Tour to Approximate String Matching. Comput.
Surveys 33, 1 (2001), 31–88.

[27] Axel-Cyrille Ngonga Ngomo, Mohamed Ahmed Sherif, and Klaus Lyko. 2014.
Unsupervised Link Discovery through Knowledge Base Repair. In European
Semantic Web Conference. Springer, 380–394.

[28] Christina Niklaus, Matthias Cetto, André Freitas, and Siegfried Handschuh. 2018.
A Survey on Open Information Extraction. In Proceedings of the 27th International
Conference on Computational Linguistics. 3866–3878.

[29] Xing Niu, Xinruo Sun, Haofen Wang, Shu Rong, Guilin Qi, and Yong Yu. 2011.
Zhishi.me - Weaving Chinese Linking Open Data. In International Semantic Web
Conference. Springer, 205–220.

[30] Pouya Ghiasnezhad Omran, Kewen Wang, and Zhe Wang. 2018. Scalable Rule
Learning via Learning Representation.. In Proceedings of the 27th International
Joint Conference on Artificial Intelligence. 2149–2155.

[31] Heiko Paulheim. 2017. Knowledge Graph Refinement: A Survey of Approaches
and Evaluation Methods. Semantic web 8, 3 (2017), 489–508.

[32] Heiko Paulheim and Christian Bizer. 2014. Improving the Quality of Linked
Data Using Statistical Distributions. International Journal on Semantic Web and
Information Systems (IJSWIS) 10, 2 (2014), 63–86.

[33] Heiko Paulheim and Aldo Gangemi. 2015. Serving DBpedia with DOLCE – More
than Just Adding A Cherry on Top. In International Semantic Web Conference.
Springer, 180–196.

[34] Thomas Pellissier Tanon, Camille Bourgaux, and Fabian Suchanek. 2019. Learning
How to Correct A Knowledge Base from the Edit History. In The World Wide
Web Conference. ACM, 1465–1475.

[35] Jay Pujara, Eriq Augustine, and Lise Getoor. 2017. Sparsity and Noise: Where
Knowledge Graph Embeddings Fall Short. In Proceedings of the 2017 Conference
on Empirical Methods in Natural Language Processing. 1751–1756.

[36] Petar Ristoski and Heiko Paulheim. 2016. RDF2Vec: RDF Graph Embeddings for
Data Mining. In International Semantic Web Conference. Springer, 498–514.

[37] Alberto Tonon, Michele Catasta, Gianluca Demartini, and Philippe Cudré-
Mauroux. 2015. Fixing the Domain and Range of Properties in Linked Data
by Context Disambiguation. LDOW@WWW 1409 (2015).

[38] Gerald Töpper, Magnus Knuth, and Harald Sack. 2012. DBpedia Ontology En-
richment for Inconsistency Detection. In Proceedings of the 8th International
Conference on Semantic Systems. ACM, 33–40.

[39] Kristina Toutanova and Danqi Chen. 2015. Observed versus Latent Features
for Knowledge Base and Text Inference. In Proceedings of the 3rd Workshop on
Continuous Vector Space Models and their Compositionality. 57–66.

[40] Théo Trouillon, Johannes Welbl, Sebastian Riedel, Éric Gaussier, and Guillaume
Bouchard. 2016. Complex embeddings for simple link prediction. In International
Conference on Machine Learning. 2071–2080.

[41] Shikhar Vashishth, Prince Jain, and Partha Talukdar. 2018. CESI: Canonicalizing
Open Knowledge Bases Using Embeddings and Side Information. In Proceedings of
the 2018 World Wide Web Conference. International World Wide Web Conferences
Steering Committee, 1317–1327.

[42] Denny Vrandečić and Markus Krötzsch. 2014. Wikidata: A Free Collaborative
Knowledge Base. (2014).

[43] Quan Wang, Zhendong Mao, Bin Wang, and Li Guo. 2017. Knowledge Graph
Embedding: A Survey of Approaches and Applications. IEEE Transactions on
Knowledge and Data Engineering 29, 12 (2017), 2724–2743.

[44] Gabriel Weaver, Barbara Strickland, and Gregory Crane. 2006. Quantifying the
Accuracy of Relational Statements in Wikipedia: A Methodology. In Proceedings
of the 6th ACM/IEEE-CS Joint Conference on Digital Libraries, Vol. 6. Citeseer,
358–358.

[45] Tien-Hsuan Wu, Zhiyong Wu, Ben Kao, and Pengcheng Yin. 2018. Towards
Practical Open Knowledge Base Canonicalization. In Proceedings of the 27th
ACM International Conference on Information and Knowledge Management. ACM,
883–892.

[46] Bishan Yang, Wen-tau Yih, Xiaodong He, Jianfeng Gao, and Li Deng. 2014. Em-
bedding Entities and Relations for Learning and Inference in Knowledge Bases.
arXiv preprint arXiv:1412.6575 (2014).

[47] Wen Zhang, Bibek Paudel, Liang Wang, Jiaoyan Chen, Hai Zhu, Wei Zhang,
Abraham Bernstein, and Huajun Chen. 2019. Iteratively Learning Embeddings
and Rules for Knowledge Graph Reasoning. In The World Wide Web Conference.
ACM, 2366–2377.

1547

https://arxiv.org/abs/1907.01328
http://arxiv.org/abs/1907.01328

	Abstract
	1 Introduction
	2 Related Work
	2.1 Assertion Validation
	2.2 Canonicalization
	2.3 Assertion Correction

	3 Background
	3.1 Knowledge Base
	3.2 Problem Statement

	4 Methodology
	4.1 Framework
	4.2 Related Entity Estimation
	4.3 Link Prediction
	4.4 Constraint-based Validation
	4.5 Correction Decision Making

	5 Evaluation
	5.1 Experiment Settings
	5.2 Related Entity Estimation
	5.3 Link Prediction
	5.4 Overall Results
	5.5 Constraint-based Validation

	6 Discussion and Outlook
	Acknowledgments
	References

