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Abstract

Time to event data differ from other types of data because they are censored. Most of

the related estimation techniques assume that the censoring mechanism is non-informative

while in many applications it can actually be informative. The aim of this work is to intro-

duce a class of flexible survival models which account for the information provided by the

censoring times. The baseline functions are estimated non-parametrically by monotonic P-

splines, whereas covariate effects are flexibly determined using additive predictors. Parameter

estimation is reliably carried out within a penalised maximum likelihood framework with inte-

grated automatic multiple smoothing parameter selection. We derive the
√
n-consistency and

asymptotic normality of the non-informative and informative estimators, and shed light on

the efficiency gains produced by the newly introduced informative estimator when compared

to its non-informative counterpart. The finite sample properties of the estimators are investi-

gated via a Monte Carlo simulation study which highlights the good empirical performance

of the proposal. The modelling framework is illustrated on data about infants hospitalised for

pneumonia. The models and methods discussed in the paper have been implemented in the R

package GJRM to allow for transparent and reproducible research.
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1 Introduction

Time to event data are different from other types of data because of censoring. This means that

the response of interest, the time until a particular event occurs, can not be totally observed. As

a result, models must be used to relate the observed and unobserved parts of the data since the

recorded observations alone can not provide direct information on the event of interest. Most

of the related estimation techniques assume that the censoring scheme is independent and non-

informative conditional on covariates (e.g., Cox, 1972; Ma et al., 2014; Scheike & Zhang, 2003;

Xue et al., 2018; Younes & Lachin, 1997). In many applications, however, these assumptions can

at least be questioned (e.g., Chen, 2010; Huang & Zhang, 2008; Li & Peng, 2015; Lu & Zhang,

2012; Slud & Rubinstein, 1983; Wang et al., 2015; Xu et al., 2017, 2018; Zheng & Klein, 1995;

Zeng et al., 2004).

Censoring is independent when the hazard rate of the event of interest for the censored ob-

servations is equal to the hazard rate for the uncensored ones, otherwise it is called dependent

(Kalbfleisch & Prentice, 2002). If the event and censoring times are assumed to be dependent,

then survival models accounting for this feature of the data face a problem of identification. In

general, without additional assumptions, it is not possible to identify the survival distribution from

the censored data alone or testing whether the censoring and survival mechanisms are independent

(Cox, 1959; Tsiatis, 1975).

Censoring is informative when the censoring times, say T2, contain information on the parame-

ters of the distribution of the event variable, say T1 (Lagakos, 1979; Kalbfleisch & Prentice, 2002).

In particular, let us write the hazard functions for the event and censored times as hT1(t|xT1 ;θT1)

and hT2(t|xT2 ;θT2). If the vector of parameters θT1 and θT2 have components in common then cen-

soring is informative. In this case, the observable data (Y, δ) = {min(T1, T2), I(T1 < T2)}, where

I is the usual indicator function, provide sufficient information to identify the marginal survival

functions of T1 and T2 (Kalbfleisch & Prentice, 2002).
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Although dependent censoring is a well studied problem in the survival analysis and compet-

ing risk literature (e.g., Crowder, 2012; Emura & Chen, 2018), the specific literature analysing the

problem of informative censoring is scarce, even though ignoring it may have detrimental conse-

quences on inferential conclusions (e.g., Siannis et al., 2005; Lu & Zhang, 2012). In a seminal

work, Koziol & Green (1976) proposed an informative survival model where the hazard functions

of T1 and T2 satisfy hT2(t) = phT1(t), for some constant 0 < p < 1. Since this model did not

incorporate covariates, it was further extended. For instance, Yuan (2005) introduced a semipara-

metric Cox model estimated via profile likelihood in which, for a given vector of covariates x,

hT2(t|x) = %(t, x; θ)hT1(t|x), where % is a function known up to a finite-dimensional parameter, θ.

The purpose of % was to capture the possible information contained in the censoring times. Lu &

Zhang (2012) proposed a semi-parametric informative survival model where the baseline hazards

are estimated non-parametrically and the covariate effects parametrically. In their approach, the

hazard functions of T1 and T2 conditional on x are modelled using hTυ(t|x) = h0,Tυ(t) exp(x>ϕυ),

where x>ϕυ = x>1 ϑ0 + x>2 ϑυ, for υ = 1, 2.

In this article we deal with informative censoring. In particular, we develop a flexible, gen-

eral and tractable survival modelling framework where the baseline functions are estimated non-

parametrically via means of monotonic P-splines, covariate effects are flexibly determined using

additive predictors, and informative censoring is accounted for. Model fitting is based on an op-

timization scheme that allows for the reliable simultaneous penalized estimation of all model’s

parameters as well as for stable and fast automatic multiple smoothing parameter selection. We

provide the
√
n-consistency and asymptotic normality of the non-informative and informative es-

timators, and show that the newly introduced informative estimator is more efficient than its non-

informative counterpart. A Monte Carlo simulation study highlights the merits of the proposal, and

the modelling framework is illustrated on data about infants hospitalised for pneumonia. The mod-

els and methods introduced in the article have been implemented in the R package GJRM (Marra

& Radice, 2019) to allow for transparent and reproducible research. To the best of our knowl-

edge, there are no alternative flexible survival models with informative censoring, nor respective

software implementations, of the type proposed here. Given that the assumption of absence of in-

formative censoring is often made for convenience, the proposed methodology is likely to appeal
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the wider audience wishing to estimate possibly more realistic survival models or at least assess

whether allowing for informative censoring can produce more plausible results.

The article is organized as follows. In the next section, the proposed model and its theoretical

properties are discussed. In Section 3, the effectiveness of the proposed methodology is explored

by means of a simulation study. In Section 4, the framework is illustrated on data about infants

hospitalised for pneumonia. Section 5 concludes the paper with a discussion.

2 Methodology

In this paper, the case of right censored data is considered; the true event time is not always

observed, in which case censoring (lower) times are observed. For individual i, where i = 1, . . . , n

and n represents the sample size, let T1i and T2i denote the true event and censoring times. Let

also z>νi = (zν1i, . . . , zνKν i) be a vector of baseline covariates of dimension Kν , where z> stands

for the transpose of a vector z, ν = 1, 2 and z>i = (z1i, z2i). It is assumed that the (T1i, zi), for

i = 1, ..., n, are independently and identically distributed (i.i.d.). The censoring times, T2i, are also

assumed to be i.i.d. The distribution of T2 depends on z. In addition, we assume that T1i and Ti2

are conditionally independent given zi, and that Ti1 is informatively right censored by Ti2 through

some covariates (Andersen & Keiding, 2006). We observe (Yi, zi, δ1i), where Yi = min{T1i, T2i}

and δ1i = I(T1i ≤ T2i). We also define δ2i = [1− δ1i]. Finally, θ is a generic vector of parameters.

2.1 Survival functions

The survival function of Tνi taking values in (0, 1), conditional on zνi and θν , can be expressed as

P (Tνi > tνi|zνi;θν) = Sν(tνi|zνi;θν) = Gν [ξνi(tνi, zνi;θν)], (1)

where, for ν = 1, 2, θν and zνi represent generic vectors of coefficients and covariates, re-

spectively. The survival functions are modelled using generalised survival or link-based func-

tions models (Younes & Lachin, 1997; Liu et al., 2018). That is, Sν(tνi|zνi;θν) is defined as

Gν [ξνi(tνi, zνi;θν)], where Gν is an inverse link function. The set up of the two ξ predictors is

4
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discussed in the detail in the next section. As conveyed by the notation, ξ1i and ξ2i must include

baseline functions of time. Different choices for function Gν [ξνi(tνi, zνi;θν)] can be specified;

some common examples are shown in Table 1 reported in Supplementary Material A. The cumu-

lative hazard function, Hν , and the hazard function, hν , are given by

Hν(tνi|zνi;θν) = − log Gν [ξνi(tνi, zνi;θν)],

hν(tνi|zνi;θν) = −G
′
ν [ξνi(tνi, zνi;θν)]
Gν [ξνi(tνi, zνi;θν)]

∂ξνi(tνi, zνi;θν)
∂tνi

,
(2)

where G ′ν [ξνi(tνi, zνi;θν)] = ∂Gν [ξνi(tνi, zνi;θν)] / ∂ξνi(tνi, zνi;θν).

2.2 Additive predictors

This section provides some details on the set up of the two model’s predictors for the cases of in-

formative and non-informative censoring. Note that these must include baseline functions of time.

To make the presentation simpler, the same design matrix is set up for the two additive predictors.

Also, tνi can be treated like a covariate. The main advantages of using additive predictors are that

various types of covariate effects can be dealt with and that such effects can be flexibly determined

without making strong parametric a priori assumptions regarding their forms (e.g., Wood, 2017).

Let us consider a generic predictor ξνi ∈ R (where the dependence on the covariates and

parameters is momentarily dropped), and the overall baseline covariate vector xνi, which contains

zνi and tνi. The additive predictors for the censoring and event times can be defined generically as

ξνi = αν0 +
Kν∑
kν=0

sνkν (xνkν i), i = 1, . . . , n. (3)

In (3), αν0 ∈ R is an overall intercept, xνkν i denotes the kthν sub-vector of the complete vector xνi

and the Kν functions sνkν (xνkν i) represent generic effects which are chosen according to the type

of covariate(s) considered. Note that, in (3), kν starts from 0 since the summation also includes a

smooth function of time.

If censoring is informative, some covariates in x1i must also appear in x2i. In particular, let

us define the vectors of informative and non-informative covariates of dimensions Q and Qν as

5
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x0
i
>

= (x0
1i, . . . , x

0
Qi) and x1

νi
>

= (x1
ν1i, . . . , x

1
νQν i

), where Kν = Q + Qν . Informative censor-

ing implies that some components of
∑K1

k1=1 s1k1(x1k1i) must appear in
∑K2

k2=1 s2k2(x2k2i). With-

out loss of generality, we assume that the first Q components in
∑K1

k1=1 s1k1(x1k1i) appear in∑K2

k2=1 s2k2(x2k2i). That is,

K1∑
k1=1

s1k1(x1k1i) =

Q∑
q0=1

sq(x0
qi) +

Q1∑
q1=1

s1q1(x1
1q1i

)

K2∑
k2=1

s2k2(x2k2i) =

Q∑
q=1

sq(x0
qi) +

Q2∑
q2=1

s2q2(x1
2q2i

)

. (4)

Therefore, using (4), equation (3) becomes

ξνi = αν0 +

Q∑
q=1

sq(x0
qi) +

Qν∑
qν=0

sνqν (x1
νqν i), (5)

where x0
qi and x1

νqν i denote the informative and non-informative sub-vectors of the complete vectors

x0
i and x1

νi respectively, and sνqν (x1
νqν i) = sν0(tνi) when qν = 0.

In (5), the smooth functions are represented using the penalised regression spline approach

(e.g., Wood, 2017). Specifically, each sνqν (x1
νqν i) can be approximated as a linear combination

of Jνqν non-informative basis functions Qνqνjνqν (x1
νqν i) and regression coefficients ανqνjνqν ∈ R.

In a similar manner, each sq(x0
qi) can be approximated as a linear combination of Jq informa-

tive basis functionsQqjq(x0
qi) and regression coefficients α0qjq ∈ R. More specifically, sq(x0

qi) and

sνqν (x1
νqν i) are given by sq(x0

qi) =
∑Jq

jq=1 α0qjqQqjq(x0
qi) and sνqν (x1

νqν i) =
∑Jνqν

jνqν=1 ανqνjνqνQνqνjνqν (x1
νqν i),

and therefore (5) can be written as

ξνi = αν0 +

Q∑
q=1

Qq(x0
qi)
>α0q +

Qν∑
qν=0

Qνqν (x1
νqν i)

>ανqν , (6)

where Qq(x0
qi)
>α0q =

∑Jq
jq=1 α0qjqQqjq(x0

qi) , Qνqν (x1
νqν i)

>ανqν =
∑Jνqν

jνqν=1 ανqνjνqνQνqνjνqν (x1
νqν i),

Qq(x0
qi) = {Qq1(x0

qi), . . . ,QqJq(x0
qi)}>, Qνqν (x1

νqν i) = {Qνqν1(x1
νqν i), . . . ,QνqνJνqν (x1

νqν i)}
>,α0q =

(α0q1, . . . , α0qJq)
> and ανqν = (ανqν1, . . . , ανqνJνqν )>. To write equation (6) in a more compact

way, we define Q0>
i α0 =

∑Q
q=1 Qq(x0

qi)
>α0q and Q1>

νi αν =
∑Qν

qν=0 Qνqν (x1
νqν i)

>ανqν , where

α0 = (α01, . . . ,α0Q)>, αν = (αν0,αν0, . . . ,ανQν )
>, Q0

i = {Q1(x0
1i)
>, . . . ,QQ(x0

Qi)
>}> and

6
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Q1
νi = {1,Qν0(x1

ν0i)
>, . . . ,QνQν (x1

νQν
)>}>. Therefore,

ξνi = Q0>
i α0 + Q1>

νi αν . (7)

If Q > 0 then censoring is informative and
∑Q

q=1 sq(x0
qi) can be estimated using the information

from both the censoring and event times. If Q = 0 (i.e., the components in
∑K1

k1=1 s1k1(x1k1i) and∑K2

k2=1 s2k2(x2k2i) are assumed all distinct) then (6) reduces to the model with non-informative

censoring and hence we would have

ξνi = γν0 +
Kν∑
kν=0

Qνkν (xνkν i)>γνkν ,

where Qνkν (xνkν i) = {Qνkν1(xνkν i), . . . ,QνkνJνkν (xνkν i)}> and γνkν = (γνkν1, . . . , γνkνJνkν )>.

Furthermore, if Q>νiγν =
∑Kν

kν=0 Qνkν (xνkν i)>γνkν , γν = (γν0,γν0, . . . ,γνKν )
> and Qνi =

{1,Qν0(xν0i)
>, . . . ,QνKν (xνKν )>}>, we obtain

ξνi = Q>νiγν . (8)

Note that, for the case in which Q = 0, we have introduced the new parameter vector γν to

stress the difference between the parameters of the informative and non-informative models. Some

methods for determining the value of Q are discussed in Supplementary Material F.

The vectors of parameters α0q and ανqν have associated quadratic penalties λqα>0qD0
qα0q and

λνqνα
>
νqνD

1
νqνανqν used in fitting, whose role is to enforce specific properties on the respective

functions, such as smoothness. It is important to note that D0
q and D1

νqν only depend on the choice

of the basis functions. Smoothing parameter λνkν ∈ [0,∞) controls the trade-off between fit and

smoothness, and plays a crucial role in determining the shape of ŝνkν (xνkν i). The overall penalty

can be defined as α>ν Dναν , where Dν = diag(λ1D0
1, . . . , λQD0

Q, 0, λν0D1
ν0, . . . , λνQνD1

νQν ).

Moreover, smooth functions are typically subject to centering (identifiability) constraints. The set

up described above allows for several types of covariate effects such as linear, non-linear, spatial,

random and functional effects, to name but a few. We refer the reader to Wood (2017) for the exact

definitions of the spline bases and penalties of the above mentioned cases.
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To give a concrete example, consider the informative additive model

gν{Sν(tνi|z0
i , z

1
νi)} = gν{Sν0(tνi)}+

Q∑
q=1

Qq(z0
qi)
>α0q +

Qν∑
qν=1

Qνqν (z1
νqν i)

>ανqν , (9)

where gν : (0, 1) → (−∞,∞) is a differentiable and invertible link function (see Table 1 in Sup-

plementary Material A), Sν0(tνi) is a baseline survival function, and gν{Sν0(tνi)} is represented

using a smooth function of time, sν0(tνi). When the log-log link is chosen, equation (9) yields the

proportional hazards model

log{Hν(tνi|z0
i , z

1
νi)} = log{Hν0(tνi)}+

Q∑
q=1

Qq(z0
qi)
>α0q +

Qν∑
qν=1

Qνqν (z1
νqν i)

>ανqν ,

where Hν(tνi|z0
i , z1

νi) = − log{Sν(tνi | z0
i , z1

νi)} and log{Hν0(tνi)} = − log{Sν0(tνi)} is the cu-

mulative baseline hazard function. Analogously, equation (9) yields the proportional odds model

when the -logit link is chosen.

The models considered in this paper are fundamentally parametric but flexible. It is worth

noting that the more extensive use of parametric survival models in applications has been encour-

aged by Cox; see the discussion in Reid (1994). Moreover, as pointed out for instance by Hjort

(1992), parametric approaches simplify somewhat model estimation and comparison, easily allow

for the visualization of the estimated baseline hazard and survival functions, and allow to calcu-

late several quantities of interest and their variances which would otherwise be difficult to obtain

with a non-parametric approach. Another important advantage is that there is no necessity to use

numerical integration methods to estimate the cumulative hazard function.

2.3 Estimation framework

The data consist of {Yi, δ1i, zi}, where Yi = min{T1i, T2i} and δ1i = I(T1i ≤ T2i), for i =

1, . . . , n. Let f(t1, t2|z) be the conditional joint distribution of (T1, T2) given z. We can write

P (Yi, δ1i = 1|zi) =
∫∞
yi
f(yi, t2|zi)dt2 and P (Yi, δ1i = 0|zi) =

∫∞
yi
f(t1, yi|zi)dt1. Therefore, the

8
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conditional likelihood function of (Yi, δ1i) given zi, for all i = 1, ..., n, is

L =
n∏
i=1

{∫ ∞
yi

f(yi, t2|zi)dt2
}δ1i {∫ ∞

yi

f(t1, yi|zi)dt1
}δ2i

.

Below we provide the relevant details for the cases of informative and non-informative censor-

ing, which highlight the differences between the two estimators and that are also required for the

theoretical derivations in Section 2.4.

If it is assumed that T1i and Ti2 are conditionally independent given zi, then
∫∞
yi
f(yi, t2|zi)dt2 =

f1(yi|z1i;γ1)S2(yi|z2i;γ2) and
∫∞
yi
f(t1, yi|zi)dt1 = f2(yi|z2i;γ2)S1(yi|z1i;γ1) when censoring

is non-informative. However, if censoring is informative γ1 and γ2 would have some compo-

nents in common. Since it was assumed that the first Q components of γ1 are the same as the

first Q components of γ2, we have Q>νiγν = Q0>
i α0 + Q1>

νi αν . Using (1), (2), (7), (8), and

ξνi(γν) and ξνi(α0,αν) as the shorthand notation for ξνi(yi, zνi;γν) and ξνi(yi, zνi;α0,αν), the

non-informative and informative log-likelihood functions can be written, respectively, as

`(γ) =
n∑
i=1

{
log G1 [ξ1i(γ1)] + δ1i log

{
−G

′
1 [ξ1i(γ1)]

G1 [ξ1i(γ1)]

∂ξ1i(γ1)

∂yi

}}
+

n∑
i=1

{
log G2 [ξ2i(γ2)] + δ2i log

{
−G

′
2 [ξ2i(γ2)]

G2 [ξ2i(γ2)]

∂ξ2i(γ2)

∂yi

}}
,

`(α) =
n∑
i=1

{
log G1 [ξ1i(α0,α1)] + δ1i log

{
−G

′
1 [ξ1i(α0,α1)]

G1 [ξ1i(α0,α1)]

∂ξ1i(α0,α1)

∂yi

}}
+

n∑
i=1

{
log G2 [ξ2i(α0,α2)] + δ2i log

{
−G

′
2 [ξ2i(α0,α2)]

G2 [ξ2i(α0,α2)]

∂ξ2i(α0,α2)

∂yi

}}
.

(10)

To ensure that the hazard functions in (10) are positive, [∂ξνi(θν) / ∂yi], for ν = (1, 2), must

be positive. To this end, we model the time effects using B-splines with coefficients constrained

such that the resulting smooth functions of time are monotonically increasing. In particular, we

define sν0(yi) =
∑Jν

jν=1 ϑν0jν0Mν0jν0(yi), where the Mν0jν0(yi) are B-spline basis functions of

at least second order built over the interval [a, b], based on equally spaced knots, and ϑν0jν0 are

spline coefficients. A sufficient condition for [∂sν0(yi) / ∂yi] ≥ 0 over [a, b] is that ϑν0jν0 ≥

ϑν0j−1ν0 , ∀j (Leitenstorfer & Tutz, 2006). Such condition can be imposed by re-parametrising

the spline coefficient vector so that ϑν0 = Γν0β̃ν0, where β>ν0 = (βν01, βν02, . . . , βν0Jν0), β̃>ν =

9
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(βν01, exp(βν02), . . . , exp(βν0Jν0)) and Γν0[κν01, κν02] = 0 if κν01 < κν02, and Γν0[κν01, κν02] = 1

if κν01 ≥ κν02. Following Pya & Wood (2015, Section 2.2.1), the penalty term is set up to penalise

the squared differences between adjacent βν0jν0 , starting from βν02, using Dν0 = D�>ν0 D�ν0, where

D�ν0 is a (Jν0−2)×Jν0 matrix made up of zeros except that D�ν0[κν0, κν0 +1] = −D�ν0[κν0, κν0 +

2] = 1 for κν0 = 1, . . . , Jν0−2 . Therefore, the non-informative and informative additive predictors,

that ensure positive hazard functions in (10), are

ξνi = γν0 + Qν0(yi)
> Γν0γ̃ν0 +

Kν∑
kν=1

Qνkν (xνkν i)>γνkν ,

ξνi = αν0 + Qν0(yi)
> Γν0α̃ν0 +

Q∑
q=1

Qq(x0
qi)
>α0q +

Qν∑
qν=1

Qνqν (x1
νqν i)

>ανqν .

(11)

Our model specification allows for a high degree of flexibility in modelling survival data. If an un-

penalised estimation approach is employed to estimate γ = (γ>1 ,γ
>
2 )> and α = (α>0 ,α

>
1 ,α

>
2 )>,

then the resulting smooth function estimates are likely to be unduly wiggly (e.g., Wood, 2017).

Therefore, to prevent over-fitting, the following functions are maximized

`p(γ) = `(γ)− 1

2
γ>Sγ, (12)

`p(α) = `(α)− 1

2
α>Sα, (13)

where `p(γ) and `p(α) are the non-informative and informative penalized log-likelihoods. More-

over, S = diag(D1,D2), and D1 and D2 are overall penalties which contain λ1, λ2. The smooth-

ing parameter vectors can be collected in the overall vector λ = (λ>1 , λ>2 )>. Estimation of the

models’ parameters and smoothing coefficients is achieved by using a stable and efficient trust

region algorithm with integrated automatic multiple smoothing parameter selection (see Supple-

mentary Material C for details). This required working with first and second order analytical

derivatives which have been tediously derived as well as verified using numerical derivatives.

Their structures are shown below. Note that these results were also required for the theoretical

proofs presented in Section 2.4.

10
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When censoring is non-informative, the gradient of (12) can be obtained as

∇γ`p(γ) = ∇γ`(γ)− γS,

where ∇γ`(γ) =
(
∇γ1`(γ)>, ∇γ2`(γ)>

)>. The components of ∇γν`(γ) can generically be

calculated using the following expression

∇γνkν
`(γ) =


∑n

i=1

[
∆νiQ4ν0(yi) + ΩνiQ4

′

ν0 (yi)
]

if γνkν = γν0,∑n
i=1

[
∆νiQνkν (xνkν i)

]
otherwise.

(14)

In (14), Q4ν0(yi) and Q4
′

ν0 (yi) are design vectors. Furthermore, Ωνi = δνi

(
∂ξνi
∂yi

)−1

and ∆νi =[
G ′ν
Gν

+δνi

(
G ′′ν
G ′ν
− G

′
ν

Gν

)]
, for all ν = 1, 2. The non-informative penalized Hessian can be calculated

as

∇γγ`p(γ) = ∇γγ`(γ)− S,

where

∇γγ`(γ) =

∇γ1γ1`(γ) 0

0 ∇γ2γ2`(γ)

 .
Further, the elements of ∇γνγν`(γ) are calculated using

∇γνkνγν0
`(γ) =

n∑
i=1

[
Qνkν (xνkν i)ΦνiQ4ν0(yi)

>
]
,

∇γν0γνsν `(γ) =
n∑
i=1

[
Q4ν0(yi)ΦνiQνsν (xνsν i)>

]
,

∇γνkνγνsν
`(γ) =

n∑
i=1

[
Qνkν (xνkν i)ΦνiQνsν (xνsν i)>

]
,

∇γν0γν0`(γ) =
n∑
i=1

[
Q4ν0(yi)ΦνiQ4ν0(yi)

> + ∆νiQ44ν0 (yi)−Q4
′

ν0 (yi)ΨνiQ4
′

ν0 (yi)
> + ΩνiQ44

′

ν0 (yi)
]
.

(15)
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In these sub-matrices Φνi = δνi

(
G ′′′ν
Gν
−G

′′2
ν

G ′2ν
−G

′′
ν

Gν
+
G ′2ν
G2
ν

)
and Ψνi =

[
δνi

(
∂ξνi
∂yi

)−2
]

. In addition,

Q44ν0 (yi) and Q44
′

ν0 (yi) are design diagonal matrices.

If the censoring is informative, the gradient of (13) can be calculated as

∇α`p(α) = ∇α`(α)−αS,

where ∇α`(α) =
(
∇α0`(α)>,∇α1`(α)>,∇α2`(α)>

)>. To obtain ∇α0`(α) and ∇αν`(α), we

use

∇α0`(α) =
n∑
i=1

[
Q0

i (∆1i + ∆2i)
]
,

∇ανkν
`(α) =


∑n

i=1

[
∆νiQι4

ν0 (yi) + ΩνiQι4′

ν0 (yi)
]

if ανkν = αν0,∑n
i=1

[
∆νiQνkν (xνkν i)

]
otherwise,

(16)

where Qι4
ν0 (yi) and Qι4′

ν0 (yi) are design vectors. The informative penalized Hessian can be ob-

tained as follow

∇αα`p(α) = ∇αα`(α)− S,

where

∇αα`(α) =


∇α0α0`(α) ∇α0α1`(α) ∇α0α2`(α)

∇α1α0`(α) ∇α1α1`(α) 0

∇α2α0`(α) 0 ∇α2α2`(α)

 .
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Furthermore, ∇α0α0`(α) and the components of ∇ανα0`(α) and ∇α0αν`(α) are obtained using

∇α0α0`(α) =
n∑
i=1

[
Q0

i (Φ1i + Φ2i)Q0
i

>
]
,

∇α0ανqν `(α) =


∑n

i=1

[
Q0

iΦνiQι4
ν0 (yi)

>
]

if ανqν = αν0,∑n
i=1

[
Q0

iΦνiQνqν (x1
νqν i)

>] otherwise,

∇ανqνα0`(α) =


∑n

i=1

[
Qι4

ν0 (yi)ΦνiQ0
i

>
]

if ανqν = αν0,∑n
i=1

[
Qνqν (x1

νqν i)ΦνiQ0
i

>
]

otherwise.

(17)

Finally, the elements of ∇αναν`(α) are calculated using

∇ανqναν0`(α) =
n∑
i=1

[
Qνqν (x1

νqν i)ΦνiQι4
ν0 (yi)

>
]
,

∇αν0ανqν `(α) =
n∑
i=1

[
Qι4

ν0 (yi)ΦνiQνqν (x1
νqν i)

>
]
,

∇ανqνανrν `(α) =
n∑
i=1

[
Qνqν (x1

νqν i)ΦνiQνrν (x1
νrν i)

>
]
,

∇αν0αν0`(α) =
n∑
i=1

[
Qι4

ν0 (yi)ΦνiQι4
ν0 (yi)

> + ∆νiQι44
ν0 (yi)−Qι4′

ν0 (yi)ΨνiQι4′

ν0 (yi)
> + ΩνiQι44′

ν0 (yi)
]
.

(18)

As before, Qι44
ν0 (yi) and Qι44′

ν0 (yi) represent design diagonal matrices.

The derivations of the results reported here as well as some algorithmic details are given in

Supplementary Materials B and C.

Remark 1. The scores and Hessian components described in this section have been implemented

in a modular way, hence no substantial programming work will be required to incorporate link

functions not considered in this article. Furthermore, quantities such as those defined in (14), (15),

(16), (17) and (18), are needed for the theoretical proofs of the next section.
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2.4 Theoretical properties

In this section, we derive the
√
n consistency and asymptotic normality of the non-informative and

informative estimators, and shed light on the efficiency gains produced by the newly introduced

informative estimator when compared to its non-informative counterpart. As far as the number of

basis functions is concerned, we use the fixed-knot asymptotic framework since it is closer to prac-

tical statistical modelling (e.g., Vatter & Chavez-Demoulin, 2015, and references therein). In what

follows, we define Ŝν0(θ̂ν0) = Gν0[s(θ̂ν0)] as the short notation for Ŝν0(yi, θ̂ν0) = Gν0[s(yi, θ̂ν0)]

and θ> as the true vector of parameters.

The informative penalized maximum log-likelihood estimator (IPMLE) can be defined as

α̂ = argmax
α∈Θ

`p(α),

and the non-informative counterpart (NPMLE) as

γ̂ = argmax
γ∈Θ

`p(γ).

Theorem 1 (Asymptotic properties of the IPMLE estimator). If the set of Assumptions 1 and 2 in

Supplementary Material D hold then

(i) the informative penalized maximum log-likelihood estimator α̂ exists, is
√
n-consistent and

√
n(α̂−α>)

d→ N
{
0, [I(α>)]−1

}
,

where I(α>) = E[−∇αα`(w;α>)].

(ii) Ŝ10(α̂10) is asymptotically independent of Ŝ20(α̂20) and

√
n[Ŝν0(α̂ν0)− Sν0(α>

ν0)]
d→ N

{
0,Σα>

ν0

}
, ν = 1, 2,

where Σα>
ν0

= G ′ν0[s(α>
ν0)]∇αν0s(α

>
ν0)[I(α>

ν0)]−1∇αν0s(α
>
ν0)>G ′ν0[s(α>

ν0)] and I(α>
ν0) =

E[−∇αν0αν0`(w;α>
ν0)].
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Theorem 2 (Asymptotic properties of the NPMLE estimator). If the set of Assumptions 1 and 2

in Supplementary Material D hold then

(i) the non-informative penalized maximum log-likelihood estimator γ̂ exists, is
√
n-consistent

and
√
n(γ̂ − γ>)

d→ N
{
0, [I(γ>)]−1

}
,

where I(γ>) = E[−∇γγ`(w;γ>)].

(ii) Ŝ10(γ̂10) is asymptotically independent of Ŝ20(γ̂20) and

√
n[Ŝν0(γ̂ν0)− Sν0(γ>

ν0)]
d→ N

{
0,Σγ>

ν0

}
, ν = 1, 2,

where Σγ>
ν0

= G ′ν0[s(γ>
ν0)]∇γν0s(γ

>
ν0)[I(γ>

ν0)]−1∇γν0s(γ
>
ν0)>G ′ν0[s(γ>

ν0)] and I(γ>
ν0) =

E[−∇γν0γν0`(w;γ>
ν0)].

Theorem 3 (Efficiency of the IPMLE estimator). For ν = 1, 2, let γν = (γιν ,γ
nι
ν )> be the infor-

mative and non-informative parameters of the non-informative model, respectively. Under the set

of Assumptions 1 and 2 in Supplementary Material D, and if we further assume that γnιν0 = αν0,

then

ACov(α̂0) < ACov(γ̂ιν),

ACov(α̂ν) < ACov(γ̂nιν ),

where ACov(α̂0) = Σα>
0

, ACov(α̂ν) = Σα>
ν

, ACov(γ̂ιν) = Σγ>ι
ν

, and ACov(γ̂nιν ) = Σγ>nι
ν

represent the asymptotic covariance matrices of α̂0, α̂ν , γ̂ιν and γ̂nιν respectively.

The proofs of Theorems 1, 2 and 3 are given in Supplementary Material D.

Remark 2. The fact that the informative and non-informative survival functions are orthogonal

(part (ii) of Theorems 1 and 2) suggests that the estimation algorithm will yield more accurate

parameter vector updates throughout the iterations (e.g., Nocedal & Wright, 2006). Moreover,

Theorem 3 shows that under informative censoring it is possible to estimate the model’s coeffi-

cients more efficiently since more information is exploited by the informative model.
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Remark 3. As far as the construction of confidence intervals and p-values are concerned, for

practical purposes it is convenient to adapt to the current context the results discussed in Marra

et al. (2017). Supplementary Material E provides more details on this.

3 Simulation study

This section provides evidence on the empirical effectiveness of the proposed methodology in re-

covering true linear effects, non linear effects and baseline functions under informative censoring

for three Data Generating Processes (DGPs). The performance of the informative penalized max-

imum log-likelihood estimator against that of its non-informative counterpart was also examined.

(i) DGP1 (z1i non-informative, z2i informative and censoring rate of about 78%). Event times,

T1i, were generated from a proportional hazard model, while censored times, T2i, were

generated from a proportional odd model. These, defined on the survival function scale, are

given by

log [− log {S10(t1i)}] + α01 + α11z1i + s11(z2i),

log

[
{1− S20(t2i)}

S20(t2i)

]
+ α02 + α12z1i + s12(z2i),

(19)

where S10(t1i) = 0.72 exp (−0.4t2.41i )+0.28 exp (−0.1t1.01i ) and S20(t2i) = 0.99 exp (−0.1t2.22i )+

0.01 exp (−0.4t1.12i ) (Crowther & Lambert, 2013). Covariate z1i was generated using a bino-

mial distribution and z2i using a uniform distribution. As for the smooth functions, we

used s11(z2i) = s12(z2i) = −0.2 exp(3.2zi), whereas the parametric coefficients were:

α01 = 0.25, α02 = 0.85, α11 = −2.0 and α12 = 1.8.

Sample sizes were set to 500, 1000 and 4000, and the number of replicates to 1000. Repli-

cates in which the models did not converge were discarded and replaced with additional

ones. The models were fitted using gamlss() in GJRM by employing the proportional haz-

ard link ("PH") for the event times and the proportional odd link ("PO") for the censoring

times (see Supplementary Material A for some software details). The smooth components

of z2 were represented using penalized low rank thin plate splines with second order penalty
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and 10 bases (the default in GJRM), and the smooths of times using monotonic penalized

B-splines with penalty defined in Section 2.3 and 10 bases. Note that smooth terms of

explanatory variables can also be represented using different spline definitions (see Supple-

mentary Material A). In the case of one-dimensional smooth functions, all definitions lead

to virtually the same result as long as the amount of smoothing is selected in a data-driven

manner (e.g., Wood, 2017). For each replicate, curve estimates were constructed using 200

equally spaced fixed values in the (0, 8) range for the baseline functions and (0, 1) otherwise.

Results: Regarding the estimates for α11 (the parameter of the non-informative covariate),

Figure 4 (in Supplementary Material G) and Table 1 show that overall the mean estimates

for the IPMLE and NPMLE are very close to the respective true values and improve as the

sample size increases, and that the variability of the estimates decreases as the sample size

grows large.

As for the smooth effect of the informative covariate, Figures 6 and 7 (in Supplementary

Material G), and Table 1 show that overall the true functions are recovered well by the

proposed estimation methods and that the results improve in terms of bias and efficiency as

the sample size increases. However, the IPMLE is more efficient than the NPMLE for all

sample sizes examined in the simulation study; for example, for n = 500, 1000 the RMSE

for the NPMLE is more than twice as large as the IPMLE. Some gains in efficiency are also

observed for the baseline functions.

(ii) DGP2 (z1i informative, z2i informative and censoring rate of about 74%). As for DGP1, T1i

and T2i were generated using the model defined in (19). However, in this case, the baseline

survival functions were defined as S10(t1i) = 0.75 exp (−0.4t2.41i ) + 0.25 exp (−0.1t1.01i ) and

S20(t2i) = 0.99 exp (−0.1t2.22i )+0.01 exp (−0.4t1.12i ). The informative covariates, z1i and z2i,

were generated using binomial and uniform distributions, respectively. Finally, s11(z2i) =

s12(z2i) = −0.2 exp(3.2zi), α01 = 0.25, α02 = 0.85 and α11 = α12 = −1.5.

Results: Similarly to DGP1, Figures 5, 8 and 9 and Table 3 (in Supplementary Material G)

show that overall the mean estimates for the two estimators are very close to the respective

true values and improve as the sample size increases. The variability of the estimates also
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(a) Informative Penalized Maximum Log-likelihood Estimator (IPMLE)
Bias RMSE

n = 500 n = 1000 n = 4000 n = 500 n = 1000 n = 4000

α11 -0.047 -0.013 -0.001 0.369 0.239 0.118
s11 0.036 0.028 0.013 0.161 0.114 0.061
h10 0.095 0.069 0.034 0.336 0.245 0.104
S10 0.027 0.024 0.018 0.071 0.054 0.033

(b) Non-informative Penalized Maximum Log-likelihood Estimator (NPMLE)
Bias RMSE

n = 500 n = 1000 n = 4000 n = 500 n = 1000 n = 4000

α11 -0.079 -0.015 -0.005 0.360 0.245 0.116
s11 0.085 0.069 0.046 0.383 0.206 0.118
h10 0.120 0.070 0.034 0.427 0.292 0.121
S10 0.034 0.025 0.017 0.086 0.068 0.039

Table 1: Bias and root mean squared error (RMSE) for the IPMLE and NPMLE
obtained by applying the gamlss() to informative survival data simulated ac-
cording to DGP1 characterised by a censoring rate of about 78%. Bias and
RMSE for the smooth terms are calculated, respectively, as n−1s

∑ns

i=1 |¯̂si − si| and

n−1s

∑ns

i=1

√
n−1rep

∑nrep

rep=1 (ŝrep,i − si)2, where ¯̂si = n−1rep

∑nrep

rep=1 ŝrep,i, ns is the num-
ber of equally spaced fixed values in the (0, 8) or (0, 1) range, and nrep is the number of
simulation replicates. In this case, ns = 200 and nrep = 1000. The bias for the smooth
terms is based on absolute differences in order to avoid compensating effects when taking
the sum.

decreases as the sample size grows large. However, the IPMLE is significantly more efficient

than the NPMLE for all cases considered.

Computing times for the proposed approach were on average 8 seconds for n = 4000 and

around 5 seconds for n = 1000, 500. A third DGP with a different smooth function for z2i and with

a censoring rate of about 47% was explored (see Supplementary Material G). This DGP suggested

the perhaps expected result that the gain in efficiency of the IPMLE tends not to be too significant

when a mild censoring rate is considered. Finally, for the above DGPs, we explored the ability of

information criteria such as the Akaike information criterion (AIC) and the Bayesian information

criterion (BIC), defined in Supplementary Material F, to select the correct model. When doing this,

we also considered the informative estimator with incorrectly chosen set of informative covariates

(e.g., for DGP1, in estimation, z1 was assumed to be informative instead of z2). For all sample

sizes and cases considered both AIC and BIC always chose the correct model.
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4 Empirical illustration

The modelling framework is illustrated using the data employed by Lu & Zhang (2012), where the

aim was to assess how several factors affect the contraction of pneumonia in infants in the pres-

ence of informative censoring. According to the World Health Organization (WHO), pneumonia

accounted for 16% of all deaths of children under five years old in 2015. The data set consists of

3470 annual personal interviews conducted for the National Longitudinal Survey of Youth from

1979 through 1986 (NLSY, 1995). The response variable, Yi, is the age, in months, at which the

infant was hospitalised for pneumonia, and 97.9% of this variable is right censored.

The covariates considered in the modeling were age of the mother in years (mthage), urban

environment (urban = 1, rural = 0), region (1 = north-east, 2 = north central, 3 = south, 4 =

west), poverty (1 = yes, 0 = no), whether the infant had a normal birth weight as defined by

weighting at least 5.5 pounds (wmonth = 1 if yes and 0 otherwise), race (1 = white, 2 = black,

3 = other), education (years of school of mother), month the child started to be on solid food

(sfmonth), average number of cigarettes smoked per week during pregnancy (smoke = 0, 1 or

2) and alcohol used by mother during pregnancy (0, 1, 2), where the higher the number the

higher the frequency of alcohol consumption. To capture the effect of housing crowding (since

pneumonia is a communicable disease), number of siblings of the child (nsibs) was considered

and grouped in three categories (0 for infants without siblings, 1 for infants with one to three

siblings, and 2 for more than three siblings.

To assess whether the censoring mechanism was informative, we employed the AIC, BIC, and

K-Fold Cross validation (ΥKCV) withK = 20 (decreasing or increasing this value did not alter the

conclusions); see Supplementary Material F for their definitions. Since several combinations of

covariates and link functions had to be considered, a number of models were tried out and the final

models selected using the above mentioned criteria. Table 2 in Supplementary Material F shows

the results for the chosen models and supports the presence of informative censoring through the

alcohol and region variables (Model 3). Table 2 and Figure 1 present the results for Model 3

and Model 1 (the latter neglects informative censoring).

Main findings: From a quick overall look at Table 2, the results exhibit a smaller estimation uncer-

tainty for the informative model. Analysing the table in more detail, the coefficients of wmonth,
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Figure 1: Smooth function estimates and their corresponding 95% intervals for Model 1 (non-informative model) and
Model 3 (informative model) obtained by applying gamlss() in GJRM to pneumonia data. The intervals have been
obtained using the approach described in Supplementary Material E.

nsibs1, nsibs2 are statistically significant for both models. For instance, the expected hazard

for infants with one to three siblings is 2 times that for infants without siblings. Similarly, the ex-

pected hazard is 6.4 times higher in infants with more than 3 siblings as compared to infants with

no siblings. The parameters of categories alcohol1 and region4 of the respective variables

are statistically significant at the 10% level for the informative model and are not significant for

the non-informative model. The implication of this result is that using the non-informative model

the variables alcohol and region would most likely be removed from the model, hence miss-

ing out on some potentially important behavioral and geographical patterns. The table also shows

that the smooth functions estimates for s(u) and s(mthage) are statistically significant for

both models, whereas Figure 1 displays their estimated functional forms along with the survival

and hazard curves. The plots show, for instance, that, after a certain point, the hazard to contract

pneumonia decreases with mother’s age. The survival and hazard curves are every similar across

the two models with the main difference that the informative approach yields considerably less

variable estimates. Our results are consistent with those of Lu & Zhang (2012) who found that

the censoring mechanism is informative in this dataset, and that the informative model provides a

better fit as compared to its non informative counterpart.
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(a) Model 1 (NPMLE)

Linear Covariates Estimate Standart Error Z-value P-value

intercept -71.28 45.52 -1.566 0.117

alcohol1 0.364 0.310 1.174 0.240

alcohol2 -0.130 0.336 -0.386 0.700

nsibs1 0.696 0.258 2.695 0.007 >>

nsibs2 1.833 0.761 2.408 0.016 >

region2 -0.004 0.343 -0.012 0.991

region3 -0.489 0.343 -1.426 0.154

region4 -0.698 0.438 -1.595 0.111

wmonth -0.767 0.293 -2.617 0.009 >>

Smooth Variables EDF Ref.DF Chi-square P-value

s(u) 7.776 8.640 101.94 <2e-16 >>>

s(mthage) 2.503 3.171 10.41 0.019 >

(b) Model 3 (IPMLE)

Linear Covariates Estimate Standart Error Z-value P-value

intercept -71.50 45.51 -1.571 0.116

alcohol1 0.086 0.046 1.859 0.063 �

alcohol2 0.022 0.046 0.472 0.637

nsibs1 0.687 0.257 2.670 0.008 >>

nsibs2 1.860 0.760 2.448 0.014 >

region2 -0.063 0.056 -1.135 0.256

region3 -0.017 0.052 -0.325 0.745

region4 -0.107 0.059 -1.814 0.070 �

wmonth -0.761 0.291 -2.616 0.009 >>

Smooth Variables EDF Ref.DF Chi-square P-value

s(u) 7.776 8.640 101.59 <2e-16 >>>

s(mthage) 2.466 3.127 9.501 0.026 >

Table 2: Estimation results of the non-informative and informative models (Models 1
and 3, respectively, in Table 5 in Supplementary Material F) applied to pneumonia data.
The models were fitted using gamlss() in GJRM by employing the "PH-PH" link
functions combination. Furthermore, EDF and Ref.DF refer to the effective degrees
of freedom and reference degrees of freedom of the smooths. More details can be
founded in Supplementary Materials C and E.
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5 Discussion

In this article, we have introduced generalized link-based additive survival models with infor-

mative censoring and their potential illustrated using simulated and real data. The proofs of the
√
n-consistency and asymptotic normality of the non-informative and informative estimators have

been provided. Further, we showed that the newly introduced informative estimator is more effi-

cient than its non-informative counterpart.

Important features of the modelling framework are that: the survival models can account for in-

formative censoring; the baseline functions are estimated non-parametrically via means of mono-

tonic P-splines, which allows one to obtain coherent estimated survival functions; covariate effects

are flexibly determined using additive predictors; the optimization scheme allows for the reliable

simultaneous penalized estimation of all model’s parameters as well as for stable and fast auto-

matic multiple smoothing parameter selection; the models can be easily utilized using the freely

available GJRM R package which allows for several modelling choice as well as for transparent

and reproducible research. Given that the assumption of absence of informative censoring is of-

ten made for mathematical convenience as well as lack of software, the proposed methodology is

likely to appeal researchers in various fields wishing to estimate possibly more realistic survival

models.

Future research will focus on extending the proposed informative model to include time vary-

ing covariates along with the incorporation of left and interval censored responses, and on the

construction of efficient schemes for selecting automatically the set of informative covariates. We

will also look into the case of dependent censoring as well as alternative estimation approaches

such as sieve maximum likelihood.
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Supplementary Material: "Generalized Link-Based

Additive Survival Models with Informative

Censoring"

Supplementary Material A: Software

The models proposed in this article can be employed via the gamlss() function in the R package

GJRM (Marra & Radice, 2019). As an example, consider the following call

fl <- list(u ~ s(u, bs = "mpi") + z1 + s(z2), u ~ s(u, bs = "mpi") + z1 + s(z2))

M1 <- gamlss(fl, data = data, surv = TRUE, margin = "PH", margin2 = "PH"

cens = delta, informative = "yes", inform.cov = c("z1"))

where fl is a list containing the two additive predictors of the informative model, and s(u,

bs = "mpi") represents the monotonic P-spline function which models a transformation of

the baseline survival function. As for s(z2), the default is bs = "tp" (penalized low rank

thin plate spline) with k = 10 (number of basis functions) and m = 2 (order of derivatives).

However, argument bs can also be set to, for example, cr (penalized cubic regression spline), ps

(P-spline) and mrf (Markov random field), to name but a few. In the gamlss function, surv =

TRUE indicates that a survival model is fitted. The arguments margin ="PH" and margin2

="PH" specify the link functions for the survival and censoring times, respectively. Table 1 shows

the possible choices for the links that have been implemented for this article. In this example, we

specify the proportional hazard link ("PH") for the two equations. Argument cens = delta is

a binary censoring indicator; this variable has to be equal to 1 if the event occurred and 0 otherwise.

Finally, informative = "yes" indicates that we are fitting a survival model with informative

censoring, and inform.cov = c("z1") specifies the set of informative covariates.
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Model Link g(S) Inverse link g−1(ξ) = G(ξ) G′(ξ)

Prop.hazards ("PH") log {− log(S)} exp {− exp(ξ)} −G(ξ) exp(ξ)

Prop.odds ("PO") − log
(

S
1−S

)
exp(−ξ)

1+exp(−ξ) −G2(ξ) exp(−ξ)

Probit ("probit") −Φ−1(S) Φ(−ξ) −φ(−ξ)

Table 1: Link functions implemented in GJRM. Φ and φ are the cumulative distribution and density func-
tions of a univariate standard normal distribution. Alternative links can be implemented. The first two
functions can be called log-log and -logit links, respectively.

Supplementary Material B: Scores and Hessians

In this section, the detailed derivations of the informative and non-informative Scores and Hessians

are presented.

B.1. Informative and Non-informative Scores

If censoring is informative then γ1 and γ2 would have some components in common. Because the

first Q components of γ1 are the same as the first Q components of γ2, we have

Q>νiγν = Q0>
i α0 + Q1>

νi αν .

Therefore, defining α = (α>0 ,α
>
1 ,α

>
2 )>, the informative penalized log-likelihood function can

be written as

`p(α) = `(α)− 1

2
α>Sα, (1)

where `(α) is defined as

`(α) =
n∑
i=1

{
log G1 [ξ1i(α0,α1)] + δ1i log

{
−G

′
1 [ξ1i(α0,α1)]

G1 [ξ1i(α0,α1)]

∂ξ1i(α0,α1)

∂yi

}}
+

n∑
i=1

{
log G2 [ξ2i(α0,α2)] + δ2i log

{
−G

′
2 [ξ2i(α0,α2)]

G2 [ξ2i(α0,α2)]

∂ξ2i(α0,α2)

∂yi

}}
.

The gradient of equation (1) can be calculated as

∇α`p(α) = ∇α`(α)−αS,

2
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where ∇α`(α) =
(
∇α0`(α)>,∇α1`(α)>,∇α2`(α)>

)>. where ∇α0`(α), ∇α1`(α) and ∇α2`(α)

can be obtained as
∂`(α)

∂α0

=

[
∂`(α)

∂α011

· · · ∂`(α)

∂α0QJQ

]>
,
∂`(α)

∂α1

=

[
∂`(α)

∂α111

· · · ∂`(α)

∂α1Q1J1Q1

]>
and

∂`(α)

∂α2

=

[
∂`(α)

∂α21

· · · ∂`(α)

∂α2Q2J2Q2

]>
. In particular, the scalar derivatives of ∇α0`(α), ∇α1`(α)

and ∇α2`(α) can be calculated as

∂`(α)

∂α0j

=
n∑
i=1

{
G ′1
G1

∂ξ1i
∂α0j

}
+

n∑
i=1

δ1i

{[
−G

′
1

G1
∂ξ1i
∂yi

]−1 [
−G

′′
1

G1
∂ξ1i
∂α0j

∂ξ1i
∂yi

+
G ′21
G21

∂ξ1i
∂α0j

∂ξ1i
∂yi
− G

′
1

G1
∂2ξ1i
∂yi∂α0j

]}

+
n∑
i=1

{
G ′2
G2

∂ξ2i
∂α0j

}
+

n∑
i=1

δ2i

{[
−G

′
2

G2
∂ξ2i
∂yi

]−1 [
−G

′′
2

G2
∂ξ2i
∂α0j

∂ξ2i
∂yi

+
G ′22
G22

∂ξ2i
∂α0j

∂ξ2i
∂yi
− G

′
2

G2
∂2ξ2i
∂yi∂α0j

]}

=
n∑
i=1

{
G ′1
G1

∂ξ1i
∂α0j

+ δ1i

[
G ′′1
G ′1

∂ξ1i
∂α0j

− G
′
1

G1
∂ξ1i
∂α0j

+
∂2ξ1i
∂yi∂α0j

(
∂ξ1i
∂yi

)−1]}

+
n∑
i=1

{
G ′2
G2

∂ξ2i
∂α0j

+ δ2i

[
G ′′2
G ′2

∂ξ2i
∂α0j

− G
′
2

G2
∂ξ2i
∂α0j

+
∂2ξ2i
∂yi∂α0j

(
∂ξ2i
∂yi

)−1]}

=
n∑
i=1

{
∂ξ1i
∂α0j

[
G ′1
G1

+ δ1i

(
G ′′1
G ′1
− G

′
1

G1

)]
+
∂ξ2i
∂α0j

[
G ′2
G2

+ δ2i

(
G ′′2
G ′2
− G

′
2

G2

)]}

=
n∑
i=1

{
∂ξ1i
∂α0j

∆1 +
∂ξ2i
∂α0j

∆2

}
,

(2)

∂`(α)

∂α1j

=
n∑
i=1

{
G ′1
G1

∂ξ1i
∂α1j

}
+

n∑
i=1

δ1i

{[
−G

′
1

G1
∂ξ1i
∂yi

]−1 [
−G

′′
1

G1
∂ξ1i
∂α1j

∂ξ1i
∂yi

+
G ′21
G21

∂ξ1i
∂α1j

∂ξ1i
∂yi
− G

′
1

G1
∂2ξ1i
∂yi∂α1j

]}

=
n∑
i=1

{
G ′1
G1

∂ξ1i
∂α1j

+ δ1i

[
G ′′1
G ′1

∂ξ1i
∂α1j

− G
′
1

G1
∂ξ1i
∂α1j

+
∂2ξ1i
∂yi∂α1j

(
∂ξ1i
∂yi

)−1]}

=
n∑
i=1

{
∂ξ1i
∂α1j

[
G ′1
G1

+ δ1i

(
G ′′1
G ′1
− G

′
1

G1

)]
+

∂2ξ1i
∂yi∂α1j

δ1i

(
∂ξ1i
∂yi

)−1}

=
n∑
i=1

{
∂ξ1i
∂α1j

∆1 +
∂2ξ1i
∂yi∂α1j

Ω1

}
,

(3)

3
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∂`(α)

∂α2j

=
n∑
i=1

{
G ′2
G2

∂ξ2i
∂α2j

}
+

n∑
i=1

δ2i

{[
−G

′
2

G2
∂ξ2i
∂yi

]−1 [
−G

′′
2

G2
∂ξ2i
∂α2j

∂ξ2i
∂yi

+
G ′22
G22

∂ξ2i
∂α2j

∂ξ2i
∂yi
− G

′
2

G2
∂2ξ2i
∂yi∂α2j

]}

=
n∑
i=1

{
G ′2
G2

∂ξ2i
∂α2j

+ δ2i

[
G ′′2
G ′2

∂ξ2i
∂α2j

− G
′
2

G2
∂ξ2i
∂α2j

+
∂2ξ2i
∂yi∂α2j

(
∂ξ2i
∂yi

)−1]}

=
n∑
i=1

{
∂ξ2i
∂α2j

[
G ′2
G2

+ δ2i

(
G ′′2
G ′2
− G

′
2

G2

)]
+

∂2ξ2i
∂yi∂α2j

δ2i

(
∂ξ2i
∂yi

)−1}

=
n∑
i=1

{
∂ξ2i
∂α2j

∆2 +
∂2ξ2i
∂yi∂α2j

Ω2

}
,

(4)

where ξνi = ξνi(α0,αν), ∆ν =

[
G ′ν
Gν

+ δνi

(
G ′′ν
G ′ν
− G

′
ν

Gν

)]
and Ων = δνi

(
∂ξνi
∂yi

)−1
. The last terms

of equations (2), (3) and (4) allow to express ∇α0`(α), ∇α1`(α) and ∇α2`(α) as follow

∇α0`(α) =
n∑
i=1

[
∆1

∂ξ1i
∂α0

+ ∆2
∂ξ2i
∂α0

]
,

∇α1`(α) =
n∑
i=1

[
∆1

∂ξ1i
∂α1

+ Ω1
∂2ξ1i
∂yi∂α1

]
,

∇α2`(α) =
n∑
i=1

[
∆2

∂ξ2i
∂α2

+ Ω2
∂2ξ2i
∂yi∂α2

]
,

where, for all i = 1, ..., n and ν = 1, 2,
∂ξνi
∂α0

=

[
∂ξνi
∂α011

· · · ∂ξνi
∂α0QJQ

]>
,
∂ξνi
∂αν

=

[
∂ξνi
∂αν11

· · · ∂ξνi
∂ανQνJνQν

]>
and

∂2ξνi
∂yi∂αν

=

[
∂2ξνi

∂yi∂αν11
· · · ∂2ξνi

∂yi∂ανQνJνQν

]>
. These expressions can be calculated using the

design vectors defined in Section 2.2 as

∂ξνi
∂α0

=
(
Q1(x0

1i)
>, . . . ,QQ(x0

Qi)
>)> = Q0

i ,

∂ξνi
∂yi

= lim
ε→0

{
Qν0(yi + ε)−Qν0(yi − ε)

2ε

}>
Γν0α̃ν0 = Q′ν0(yi)>Γν0α̃ν0,

∂ξνi
∂ανqν

=


Qι4

ν0 (yi) if ανqν = αν0

Qνqν (x1
νqν i) otherwise,

∂2ξνi
∂yi∂ανqν

=


Qι4′

ν0 (yi) if ανqν = αν0

0 otherwise,

4
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where Q′ν0(yi) can be conveniently obtained using a finite-difference method. Moreover, we

define the design vectors Qι4
ν0 (yi) and Qι4′

ν0 (yi) as

Qι4
ν0 (yi) =



∑Jν0
jν0=1Qν0jν0(yi)[∑Jν0

jν0=2Qν0jν0(yi)
]

exp (αν02)[∑Jν0
jν0=3Qν0jν0(yi)

]
exp (αν03)]

...

Qν0Jν0(yi) exp (αν0Jν0)


Qι4′

ν0 (yi) =



∑Jν0
jν0=1Q′

ν0jν0
(yi)[∑Jν0

jν0=2Q′
ν0jν0

(yi)
]

exp (αν02)[∑Jν0
jν0=3Q′

ν0jν0
(yi)
]

exp (αν03)]

...

Q′
ν0Jν0

(yi) exp (αν0Jν0)


.

On the other hand, when censoring is non-informative the penalized log-likelihood function is

`p(γ) = `(γ)− 1

2
γ>Sγ, (5)

where `(γ) can be written as

`(γ) =
n∑
i=1

{
log G1 [ξ1i(γ1)] + δ1i log

{
−G

′
1 [ξ1i(γ1)]

G1 [ξ1i(γ1)]

∂ξ1i(γ1)

∂yi

}}
+

n∑
i=1

{
log G2 [ξ2i(γ2)] + δ2i log

{
−G

′
2 [ξ2i(γ2)]

G2 [ξ2i(γ2)]

∂ξ2i(γ2)

∂yi

}}
.

The gradient of (5) can be calculated as

∇γ`p(γ) = ∇γ`(γ)− γS,

where ∇γ`(γ) =
(
∇γ1`(γ)>, ∇γ2`(γ)>

)>. In addition, ∇γ1`(γ) and ∇γ2`(γ) can be calcu-

lated as
∂`(γ)

∂γ1
=

[
∂`(γ)

∂γ111
· · · ∂`(γ)

∂γ1K1J1K1

]>
and

∂`(γ)

∂γ2
=

[
∂`(γ)

∂γ211
· · · ∂`(γ)

∂γ2K2J2K2

]>
. Furthermore,

5
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the scalar derivatives of ∇γ1`(γ) and ∇γ2`(γ) can be obtained as

∂`(γ)

∂γ1j
=

n∑
i=1

{
G ′1
G1
∂ξ1i
∂γ1j

}
+

n∑
i=1

δ1i

{[
−G

′
1

G1
∂ξ1i
∂yi

]−1 [
−G

′′
1

G1
∂ξ1i
∂γ1j

∂ξ1i
∂yi

+
G ′21
G21

∂ξ1i
∂γ1j

∂ξ1i
∂yi
− G

′
1

G1
∂2ξ1i
∂yi∂γ1j

]}

=
n∑
i=1

{
G ′1
G1
∂ξ1i
∂γ1j

+ δ1i

[
G ′′1
G ′1

∂ξ1i
∂γ1j

− G
′
1

G1
∂ξ1i
∂γ1j

+
∂2ξ1i
∂yi∂γ1j

(
∂ξ1i
∂yi

)−1]}

=
n∑
i=1

{
∂ξ1i
∂γ1j

[
G ′1
G1

+ δ1i

(
G ′′1
G ′1
− G

′
1

G1

)]
+

∂2ξ1i
∂yi∂γ1j

δ1i

(
∂ξ1i
∂yi

)−1}

=
n∑
i=1

{
∂ξ1i
∂γ1j

∆1 +
∂2ξ1i
∂yi∂γ1j

Ω1

}
,

(6)

∂`(γ)

∂γ2j
=

n∑
i=1

{
G ′2
G2
∂ξ2i
∂γ2j

}
+

n∑
i=1

δ2i

{[
−G

′
2

G2
∂ξ2i
∂yi

]−1 [
−G

′′
2

G2
∂ξ2i
∂γ2j

∂ξ2i
∂yi

+
G ′22
G22

∂ξ2i
∂γ2j

∂ξ2i
∂yi
− G

′
2

G2
∂2ξ2i
∂yi∂γ2j

]}

=
n∑
i=1

{
G ′2
G2
∂ξ2i
∂γ2j

+ δ2i

[
G ′′2
G ′2

∂ξ2i
∂γ2j

− G
′
2

G2
∂ξ2i
∂γ2j

+
∂2ξ2i
∂yi∂γ2j

(
∂ξ2i
∂yi

)−1]}

=
n∑
i=1

{
∂ξ2i
∂γ2j

[
G ′2
G2

+ δ2i

(
G ′′2
G ′2
− G

′
2

G2

)]
+

∂2ξ2i
∂yi∂γ2j

δ2i

(
∂ξ2i
∂yi

)−1}

=
n∑
i=1

{
∂ξ2i
∂γ2j

∆2 +
∂2ξ2i
∂yi∂γ2j

Ω2

}
,

(7)

where ξνi = ξνi(γν). The last terms of equations (6) and (7) allow ∇γ1`(γ) and ∇γ2`(γ) to be

expressed as

∇γ1`(γ) =
n∑
i=1

[
∆1

∂ξ1i
∂γ1

+ Ω1
∂2ξ1i
∂yi∂γ1

]
∇γ2`(γ) =

n∑
i=1

[
∆2

∂ξ2i
∂γ2

+ Ω2
∂2ξ2i
∂yi∂γ2

]
,

where
∂ξνi
∂γυ

=

[
∂ξνi
∂γν11

· · · ∂ξνi
∂γνKνJνKν

]>
and

∂2ξνi
∂yi∂γν

=

[
∂2ξνi

∂yi∂γν11
· · · ∂2ξνi

∂yi∂γνKνJνKν

]>
for all

i = 1, ..., n and ν = 1, 2. Furthermore,
∂ξνi(γν)

∂yi
, can be generically calculated using

∂ξνi(γν)

∂yi
= lim

ε→0

{
Qν0(yi + ε)−Qν0(yi − ε)

2ε

}>
Γν0γ̂ν0 = Q′ν0(yi)>Γν0γ̂ν0,

6
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where Q′ν0(yi) can also be calculated using a finite-difference method. The design vectors for
∂ξνi(γν)

∂γν
and

∂2ξνi(γν)

∂yi∂γν
can be obtained using

∂ξνi(γν)

∂γνkν
=


Q4ν0(yi) if γνkν = γν0

Qνkν (xνkν i) otherwise,

∂2ξνi(γν)

∂yi∂γνkν
=


Q4

′

ν0 (yi) if γνkν = γν0

0 otherwise.

Finally, we have that

Q4ν0(yi) =



∑Jν0
jν0=1Qν0jν0(yi)[∑Jν0

jν0=2Qν0jν0(yi)
]

exp (γν02)[∑Jν0
jν0=3Qν0jν0(yi)

]
exp (γν03)]

...

Qν0Jν0(yi) exp (γν0Jν0)


Q4

′

ν0 (yi) =



∑Jν0
jν0=1Q′

ν0jν0
(yi)[∑Jν0

jν0=2Q′
ν0jν0

(yi)
]

exp (γν02)[∑Jν0
jν0=3Q′

ν0jν0
(yi)
]

exp (γν03)]

...

Q′
ν0Jν0

(yi) exp (γν0Jν0)


.

B.2. Informative and Non-informative Hessians

The informative penalized Hessian can be obtained as

∇αα`p(α) = ∇αα`(α)− S,

where ∇αα`(α) is

∇αα`(α) =


∇α0α0`(α) ∇α0α1`(α) ∇α0α2`(α)

∇α1α0`(α) ∇α1α1`(α) ∇α1α2`(α)

∇α2α0`(α) ∇α2α1`(α) ∇α2α2`(α)

 . (8)

7
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In addition, ∇αυακ`(α) =
∂2`(α)

∂αυ∂α>κ
, for all υ = 0, 1, 2 and κ = 0, 1, 2. This expression is

calculated using

∇αυακ`(α) =



∂2`(α)

∂αυ11∂ακ11
. . .

∂2`(α)

∂αυ11∂ακQκJκQκ

. . .
. . . . . .

∂2`(α)

∂αυQυJυQυ∂ακ11
. . .

∂2`(α)

∂αυQυJυQυ∂ακQκJκQκ

 .

Sinceα1 appears only in ξ1i(α0,α1) andα2 only in ξ2i(α0,α2), then ∇α1α2`(α) = ∇α2α1`(α) =

0. Hence, (8) can be written as

∇αα`(α) =


∇α0α0`(α) ∇α0α1`(α) ∇α0α2`(α)

∇α1α0`(α) ∇α1α1`(α) 0

∇α2α0`(α) 0 ∇α2α2`(α)

 . (9)

In equation (9), the scalar derivatives of ∇α0α0`(α), ∇α1α0`(α), ∇α0α2`(α), ∇α1α1`(α) and

∇α2α2`(α), can be calculated as

∂2`(α)

∂α0j∂α0k

=
n∑
i=1

{
G ′′1
G1

∂ξ1i
∂α0j

∂ξ1i
∂α0k

− G
′2
1

G21
∂ξ1i
∂α0j

∂ξ1i
∂α0k

+
G ′′′1
G1
δ1i

∂ξ1i
∂α0j

∂ξ1i
∂α0k

− G
′′2
1

G ′21
δ1i

∂ξ1i
∂α0j

∂ξ1i
∂α0k

− G
′′
1

G1
δ1i

∂ξ1i
∂α0j

∂ξ1i
∂α0k

+
G ′21
G21
δ1i

∂ξ1i
∂α0j

∂ξ1i
∂α0k

+
G ′1
G1

∂2ξ1i
∂α0j∂α0k

+
G ′′1
G ′1
δ1i

∂2ξ1i
∂α0j∂α0k

− G
′
1

G1
δ1i

∂2ξ1i
∂α0j∂α0k

}

+
n∑
i=1

{
G ′′2
G2

∂ξ2i
∂α0j

∂ξ2i
∂α0k

− G
′2
2

G22
∂ξ2i
∂α0j

∂ξ2i
∂α0k

+
G ′′′2
G2
δ2i

∂ξ2i
∂α0j

∂ξ2i
∂α0k

− G
′′2
2

G ′22
δ2i

∂ξ2i
∂α0j

∂ξ2i
∂α0k

− G
′′
2

G2
δ2i

∂ξ2i
∂α0j

∂ξ2i
∂α0k

+
G ′22
G22
δ2i

∂ξ2i
∂α0j

∂ξ2i
∂α0k

+
G ′2
G2

∂2ξ2i
∂α0j∂α0k

+
G ′′2
G ′2
δ2i

∂2ξ2i
∂α0j∂α0k

− G
′
2

G2
δ2i

∂2ξ2i
∂α0j∂α0k

}

=
n∑
i=1

{
∂ξ1i
∂α0j

∂ξ1i
∂α0k

[(
G ′′1
G1
− G

′2
1

G21

)
+ δ1i

(
G ′′′1
G1
− G

′′2
1

G ′21
− G

′′
1

G1
+
G ′21
G21

)]

+
∂ξ2i
∂α0j

∂ξ2i
∂α0k

[(
G ′′2
G2
− G

′2
2

G22

)
+ δ2i

(
G ′′′2
G2
− G

′′2
2

G ′22
− G

′′
2

G2
+
G ′22
G22

)]}

=
n∑
i=1

{
∂ξ1i
∂α0j

∂ξ1i
∂α0k

Φ1 +
∂ξ2i
∂α0j

∂ξ2i
∂α0k

Φ2

}
,

(10)

8
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∂2`(α)

∂α0j∂α1k

=
n∑
i=1

{
G ′′1
G1

∂ξ1i
∂α0j

∂ξ1i
∂α1k

− G
′2
1

G21
∂ξ1i
∂α0j

∂ξ1i
∂α1k

+
G ′′′1
G1
δ1i

∂ξ1i
∂α0j

∂ξ1i
∂α1k

− G
′′2
1

G ′21
δ1i

∂ξ1i
∂α0j

∂ξ1i
∂α1k

− G
′′
1

G1
δ1i

∂ξ1i
∂α0j

∂ξ1i
∂α1k

+
G ′21
G21
δ1i

∂ξ1i
∂α0j

∂ξ1i
∂α1k

+
G ′1
G1

∂2ξ1i
∂α0j∂α1k

+
G ′′1
G ′1
δ1i

∂2ξ1i
∂α0j∂α1k

− G
′
1

G1
δ1i

∂2ξ1i
∂α0j∂α1k

}

=
n∑
i=1

{
∂ξ1i
∂α0j

∂ξ1i
∂α1k

[(
G ′′1
G1
− G

′2
1

G21

)
+ δ1i

(
G ′′′1
G1
− G

′′2
1

G ′21
− G

′′
1

G1
+
G ′21
G21

)]}

=
n∑
i=1

{
∂ξ1i
∂α0j

∂ξ1i
∂α1k

Φ1

}
,

(11)

∂2`(α)

∂α0j∂α2k

=
n∑
i=1

{
G ′′2
G2

∂ξ2i
∂α0j

∂ξ2i
∂α2k

− G
′2
2

G2
2

∂ξ2i
∂α0j

∂ξ2i
∂α2k

+
G ′′′2
G2
δ2i

∂ξ2i
∂α0j

∂ξ2i
∂α2k

− G
′′2
2

G ′22
δ2i

∂ξ2i
∂α0j

∂ξ2i
∂α2k

− G
′′
2

G2
δ2i

∂ξ2i
∂α0j

∂ξ2i
∂α2k

+
G ′22
G22
δ2i

∂ξ2i
∂α0j

∂ξ2i
∂α2k

+
G ′2
G2

∂2ξ2i
∂α0j∂α2k

+
G ′′2
G ′2
δ2i

∂2ξ2i
∂α0j∂α2k

− G
′
2

G2
δ2i

∂2ξ2i
∂α0j∂α2k

}

=
n∑
i=1

{
∂ξ2i
∂α0j

∂ξ2i
∂α2k

[(
G ′′2
G2
− G

′2
2

G22

)
+ δ2i

(
G ′′′2
G2
− G

′′2
2

G ′22
− G

′′
2

G2
+
G ′22
G22

)]}

=
n∑
i=1

{
∂ξ2i
∂α0j

∂ξ2i
∂α2k

Φ2

}
,

(12)
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∂2`(α)

∂α1j∂α1k

=
n∑
i=1

{
G ′′1
G1

∂ξ1i
∂α1j

∂ξ1i
∂α1k

− G
′2
1

G21
∂ξ1i
∂α1j

∂ξ1i
∂α1k

+
G ′′′1
G1
δ1i

∂ξ1i
∂α1j

∂ξ1i
∂α1k

− G
′′2
1

G ′21
δ1i

∂ξ1i
∂α1j

∂ξ1i
∂α1k

− G
′′
1

G1
δ1i

∂ξ1i
∂α1j

∂ξ1i
∂α1k

+
G ′21
G21
δ1i

∂ξ1i
∂α1j

∂ξ1i
∂α1k

+
G ′1
G1

∂2ξ1i
∂α1j∂α1k

+
G ′′1
G ′1
δ1i

∂2ξ1i
∂α1j∂α1k

− G
′
1

G1
δ1i

∂2ξ1i
∂α1j∂α1k

+
∂3ξ1i

∂yi∂α1j∂α1k

δ1i

(
∂ξ1i
∂yi

)−1
− ∂2ξ1i
∂yi∂α1k

∂2ξ1i
∂yi∂α1j

δ1i

(
∂ξ1i
∂yi

)−2}

=
n∑
i=1

{
∂ξ1i
∂α1j

∂ξ1i
∂α1k

[(
G ′′1
G1
− G

′2
1

G21

)
+ δ1i

(
G ′′′1
G1
− G

′′2
1

G ′21
− G

′′
1

G1
+
G ′21
G21

)]

+
∂2ξ1i

∂α1j∂α1k

[
G ′1
G1

+ δ1i

(
G ′′1
G ′1
− G

′
1

G1

)]
− ∂2ξ1i
∂yi∂α1k

∂2ξ1i
∂yi∂α1j

[
δ1i

(
∂ξ1i
∂yi

)−2]

+
∂3ξ1i

∂yi∂α1j∂α1k

[
δ1i

(
∂ξ1i
∂yi

)−1]}

=
n∑
i=1

{
∂ξ1i
∂α1j

∂ξ1i
∂α1k

Φ1 +
∂2ξ1i

∂α1j∂α1k

∆1 −
∂2ξ1i

∂yi∂α1k

∂2ξ1i
∂yi∂α1j

Ψ1 +
∂3ξ1i

∂yi∂α1j∂α1k

Ω1

}
,

(13)

∂2`(α)

∂α2j∂α2k

=
n∑
i=1

{
G ′′2
G2

∂ξ2i
∂α2j

∂ξ2i
∂α2k

− G
′2
2

G22
∂ξ2i
∂α2j

∂ξ2i
∂α2k

+
G ′′′2
G2
δ2i

∂ξ2i
∂α2j

∂ξ2i
∂α2k

− G
′′2
2

G ′22
δ2i

∂ξ2i
∂α2j

∂ξ2i
∂α2k

− G
′′
2

G2
δ2i

∂ξ2i
∂α2j

∂ξ2i
∂α2k

+
G ′22
G22
δ2i

∂ξ2i
∂α2j

∂ξ2i
∂α2k

+
G ′2
G2

∂2ξ2i
∂α2j∂α2k

+
G ′′2
G ′2
δ2i

∂2ξ2i
∂α2j∂α2k

− G
′
2

G2
δ2i

∂2ξ2i
∂α2j∂α2k

+
∂3ξ2i

∂yi∂α2j∂α2k

δ2i

(
∂ξ2i
∂yi

)−1
− ∂2ξ2i
∂yi∂α2k

∂2ξ2i
∂yi∂α2j

δ2i

(
∂ξ2i
∂yi

)−2}

=
n∑
i=1

{
∂ξ2i
∂α2j

∂ξ2i
∂α2k

[(
G ′′2
G2
− G

′2
2

G22

)
+ δ2i

(
G ′′′2
G2
− G

′′2
2

G ′22
− G

′′
2

G2
+
G ′22
G22

)]

+
∂2ξ2i

∂α2j∂α2k

[
G ′2
G2

+ δ2i

(
G ′′2
G ′2
− G

′
2

G2

)]
− ∂2ξ2i
∂yi∂α2k

∂2ξ2i
∂yi∂α2j

[
δ2i

(
∂ξ2i
∂yi

)−2]

+
∂3ξ2i

∂yi∂α2j∂α2k

[
δ2i

(
∂ξ2i
∂yi

)−1]}

=
n∑
i=1

{
∂ξ2i
∂α2j

∂ξ2i
∂α2k

Φ2 +
∂2ξ2i

∂α2j∂α2k

∆2 −
∂2ξ2i

∂yi∂α2k

∂2ξ2i
∂yi∂α2j

Ψ2 +
∂3ξ2i

∂yi∂α2j∂α2k

Ω2

}
,

(14)
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where Φν = δνi

(
G ′′′ν
Gν
− G

′′2
ν

G ′2ν
− G

′′
ν

Gν
+
G ′2ν
G2ν

)
and Ψν =

[
δνi

(
∂ξνi
∂yi

)−2]
. Collecting the last terms

of (10), (11), (12), (13) and (14), we obtain

∂2`(α)

∂α0∂α>0
=

n∑
i=1

{
Φ1

∂ξ1i
∂α0

[
∂ξ1i
∂α0

]>
+ Φ2

∂ξ2i
∂α0

[
∂ξ2i
∂α0

]>}
,

∂2`(α)

∂α0∂α>ν
=

n∑
i=1

{
Φν

∂ξνi
∂α0

[
∂ξνi
∂αν

]>}
,

∂2`(α)

∂αν∂α>ν
=

n∑
i=1

{
Φν

∂ξνi
∂αν

[
∂ξνi
∂αν

]>
+ ∆ν

∂2ξνi
∂αν∂α>ν

− Ψν
∂2ξνi
∂yi∂αν

[
∂2ξνi
∂yi∂αν

]>
+ Ων

∂3ξνi
∂yi∂αν∂α>ν

}
,

where

∂2ξνi
∂αν∂α>ν

=



∂2ξνi(αν)

∂αν11∂αν11
. . .

∂2ξνi(αν)

∂αν11∂ανQνJνQν

. . .
. . . . . .

∂2ξνi(αν)

∂ανQνJνQν ∂αν11
. . .

∂2ξνi(αν)

∂ανQνJνQν ∂ανQνJνQν

 ,

∂3ξνi
∂yi∂αν∂α>ν

=



∂3ξνi(αν)

∂yi∂αν11∂αν11
. . .

∂3ξνi(αν)

∂yi∂αν11∂ανQνJνQν

. . .
. . . . . .

∂3ξνi(αν)

∂yi∂ανQνJνQν ∂αν11
. . .

∂3ξνi(αν)

∂yi∂ανQνJνQν ∂ανQνJνQν

 .

In particular, the design sub-matrices of
∂2ξνi

∂αν∂α>ν
and

∂3ξνi
∂yi∂αν∂α>ν

are calculated using

∂2ξνi(α0,αν)

∂ανqν∂α
>
νsν

=


Qι44

ν0 (yi) if ανqν = ανsν = αν0

0 otherwise,

∂3ξνi(α0,αν)

∂yi∂ανqνα
>
νsν

=


Qι44′

ν0 (yi) if ανqν = ανsν = αν0

0 otherwise,
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where Qι44
ν0 (yi) and Qι44′

ν0 (yi) are defined as

Qι44
ν0 (yi) =


∂2ξνi

∂αν0jν0∂αν0kν0
=
[∑Jν0

jν0
Qν0jν0(yi)

]
exp (αν0jν0) if j = k 6= 1

∂2ξνi
∂αν0jν0∂αν0kν0

= 0 otherwise,

Qι44′

ν0 (yi) =


∂3ξνi

∂yiαν0jν0∂αν0kν0
=
[∑Jν0

jν0
Q′ν0jν0(yi)

]
exp (αν0jν0) if j = k 6= 1

∂3ξνi
∂yiαν0jν0∂αν0kν0

= 0 otherwise.

On the other hand, the non-informative penalized Hessian is

∇γγ`p(γ) = ∇γγ`(γ)− S.

Since ξ1i(γ1) and ξ2i(γ2)) do not have parameters in common, ∇γγ`(γ) can be written as

∇γγ`(γ) =

∇γ1γ1`(γ) 0

0 ∇γ2γ2`(γ)

 ,

where ∇γνγν`(γ) =
∂2`(γ)

∂γν∂γ>ν
. This expression can be obtained using

∇γνγν`(γ) =



∂2`(γ)

∂γν11∂γν11
. . .

∂2`(γ)

∂γν11∂γνKνJνKν

. . .
. . . . . .

∂2`(γ)

∂γνKνJνKν ∂γν11
. . .

∂2`(γ)

∂γνKνJνKν ∂γνKνJνKν

 .
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Furthermore, the scalar derivatives of ∇γ1γ1`(γ) and ∇γ2γ2`(γ) are

∂2`(γ)

∂γ1j∂γ1k
=

n∑
i=1

{
G ′′1
G1

∂ξ1i
∂γ1j

∂ξ1i
∂γ1k

− G
′2
1

G21
∂ξ1i
∂γ1j

∂ξ1i
∂γ1k

+
G ′′′1
G1
δ1i
∂ξ1i
∂γ1j

∂ξ1i
∂γ1k

− G
′′2
1

G ′21
δ1i
∂ξ1i
∂γ1j

∂ξ1i
∂γ1k

− G
′′
1

G1
δ1i
∂ξ1i
∂γ1j

∂ξ1i
∂γ1k

+
G ′21
G21
δ1i
∂ξ1i
∂γ1j

∂ξ1i
∂γ1k

+
G ′1
G1

∂2ξ1i
∂γ1j∂γ1k

+
G ′′1
G ′1
δ1i

∂2ξ1i
∂γ1j∂γ1k

− G
′
1

G1
δ1i

∂2ξ1i
∂γ1j∂γ1k

+
∂3ξ1i

∂yi∂γ1j∂γ1k
δ1i

(
∂ξ1i
∂yi

)−1
− ∂2ξ1i
∂yi∂γ1k

∂2ξ1i
∂yi∂γ1j

δ1i

(
∂ξ1i
∂yi

)−2}

=
n∑
i=1

{
∂ξ1i
∂γ1j

∂ξ1i
∂γ1k

[(
G ′′1
G1
− G

′2
1

G21

)
+ δ1i

(
G ′′′1
G1
− G

′′2
1

G ′21
− G

′′
1

G1
+
G ′21
G21

)]

+
∂2ξ1i

∂γ1j∂γ1k

[
G ′1
G1

+ δ1i

(
G ′′1
G ′1
− G

′
1

G1

)]
− ∂2ξ1i
∂yi∂γ1k

∂2ξ1i
∂yi∂γ1j

[
δ1i

(
∂ξ1i
∂yi

)−2]

+
∂3ξ1i

∂yi∂γ1j∂γ1k

[
δ1i

(
∂ξ1i
∂yi

)−1]}

=
n∑
i=1

{
∂ξ1i
∂γ1j

∂ξ1i
∂γ1k

Φ1 +
∂2ξ1i

∂γ1j∂γ1k
∆1 −

∂2ξ1i
∂yi∂γ1k

∂2ξ1i
∂yi∂γ1j

Ψ1 +
∂3ξ1i

∂yi∂γ1j∂γ1k
Ω1

}
,

(15)

∂2`(γ)

∂γ2j∂γ2k
=

n∑
i=1

{
G ′′2
G2

∂ξ2i
∂γ2j

∂ξ2i
∂γ2k

− G
′2
2

G22
∂ξ2i
∂γ2j

∂ξ2i
∂γ2k

+
G ′′′2
G2
δ2i
∂ξ2i
∂γ2j

∂ξ2i
∂γ2k

− G
′′2
2

G ′22
δ2i
∂ξ2i
∂γ2j

∂ξ2i
∂γ2k

− G
′′
2

G2
δ2i
∂ξ2i
∂γ2j

∂ξ2i
∂γ2k

+
G ′22
G22
δ2i
∂ξ2i
∂γ2j

∂ξ2i
∂γ2k

+
G ′2
G2

∂2ξ2i
∂γ2j∂γ2k

+
G ′′2
G ′2
δ2i

∂2ξ2i
∂γ2j∂γ2k

− G
′
2

G2
δ2i

∂2ξ2i
∂γ2j∂γ2k

+
∂3ξ2i

∂yi∂γ2j∂γ2k
δ2i

(
∂ξ2i
∂yi

)−1
− ∂2ξ2i
∂yi∂γ2k

∂2ξ2i
∂yi∂γ2j

δ2i

(
∂ξ2i
∂yi

)−2}

=
n∑
i=1

{
∂ξ2i
∂γ2j

∂ξ2i
∂γ2k

[(
G ′′2
G2
− G

′2
2

G22

)
+ δ2i

(
G ′′′2
G2
− G

′′2
2

G ′22
− G

′′
2

G2
+
G ′22
G22

)]

+
∂2ξ2i

∂γ2j∂γ2k

[
G ′2
G2

+ δ2i

(
G ′′2
G ′2
− G

′
2

G2

)]
− ∂2ξ2i
∂yi∂γ2k

∂2ξ2i
∂yi∂γ2j

[
δ2i

(
∂ξ2i
∂yi

)−2]

+
∂3ξ2i

∂yi∂γ2j∂γ2k

[
δ2i

(
∂ξ2i
∂yi

)−1]}

=
n∑
i=1

{
∂ξ2i
∂γ2j

∂ξ2i
∂γ2k

Φ2 +
∂2ξ2i

∂γ2j∂γ2k
∆2 −

∂2ξ2i
∂yi∂γ2k

∂2ξ2i
∂yi∂γ2j

Ψ2 +
∂3ξ2i

∂yi∂γ2j∂γ2k
Ω2

}
.

(16)
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The last terms of equations (15) and (16) allow to express ∇γ1γ1`(γ) and ∇γ2γ2`(γ) as

∇γνγν`(γ) =
n∑
i=1

{
Φνi

∂ξνi
∂γν

[
∂ξνi
∂γν

]>
+ ∆νi

∂2ξνi
∂γν∂γ>ν

−Ψνi
∂2ξνi
∂yi∂γν

[
∂2ξνi
∂yi∂γν

]>
+ Ωνi

∂3ξνi
∂yi∂γν∂γ>ν

}
,

where

∂2ξνi
∂γν∂γ>ν

=



∂2ξνi(γν)

∂γν11∂γν11
. . .

∂2ξνi(γν)

∂γν11∂γνKνJνKν

. . .
. . . . . .

∂2ξνi(γν)

∂γνKνJνKν ∂γν11
. . .

∂2ξνi(γν)

∂γνKνJνKν ∂γνKνJνKν

 ,

∂3ξνi
∂yi∂γν∂γ>ν

=



∂3ξνi(γν)

∂yi∂γν11∂γν11
. . .

∂3ξνi(γν)

∂yi∂γν11∂γνKνJνKν

. . .
. . . . . .

∂3ξνi(γν)

∂yi∂γνKνJνKν ∂γν11
. . .

∂3ξνi(γν)

∂yi∂γνKνJνKν ∂γνKνJνKν

 .

In addition, the design sub-matrices of
∂2ξνi(γν)

∂γν∂γ>ν
and

∂3ξνi(γν)

∂yi∂γν∂γ>ν
can be obtained using the

following equations

∂2ξνi(γν)

∂γνkν∂γ
>
νsν

=


Q44ν0 (yi) if γνkν = γνsν = γν0

0 otherwise,

∂3ξνi(γν)

∂yi∂γνkνγ
>
νsν

=


Q44

′

ν0 (yi) if γνkν = γνsν = γν0

0 otherwise,
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where Q44ν0 (yi) and Q44
′

ν0 (yi) can be calculated as

Q44ν0 (yi) =


∂2ξνi

∂γν0jν0∂γν0kν0
=
[∑Jν0

jν0
Qν0jν0(yi)

]
exp (γν0jν0) if j = k 6= 1

∂2ξνi
∂γν0jν0∂γν0kν0

= 0 otherwise,

Q44
′

ν0 (yi) =


∂3ξνi

∂yiγν0jν0∂γν0kν0
=
[∑Jν0

jν0
Q′ν0jν0(yi)

]
exp (γν0jν0) if j = k 6= 1

∂3ξνi
∂yiγν0jν0∂γν0kν0

= 0 otherwise.

15

Page 40 of 66Journal of Computational and Graphical Statistics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review Only

Supplementary Material C: Estimation Algorithm

The optimization method used is the trust region algorithm. At iteration a, for a given vector α

and maintaining λ fixed at a vector of values, equation (13) in the main paper (or generally, any

of the models’ likelihoods considered in the paper) is maximized using

α[a+1] = arg min
ε:‖ε‖≤Ξ[a]

¯̀
p(α

[a]),

where ¯̀
p(α

[a]) = −
{
`p(α

[a]) + ε>gp(α[a]) + 1
2
ε>Hp(α

[a])ε
}

, gp(α[a]) = g(α[a]) − Sα[a],

Hp(α
[a]) = H(α[a])− S. Vector g(α[a]) consists of g0(α

[a]) = ∇α0`(α)|
α0=α

[a]
0

and gν(α[a]) =

∇αν`(α)|
αν=α

[a]
ν

, and H(α[a])l,j = ∇αlαj`(α)|
αl=α

[a]
l ,αj=α

[a]
j

, where l, j = 0, 1, 2 and ν = 1, 2.

The euclidean norm is denoted by ‖·‖, and the radius of the trust region is represented by Ξ[a]

which is adjusted through the iterations. Close to the solution, the trust region algorithms behaves

as a classic Newton-Raphson unconstrained method (Nocedal & Wright, 2006).

Estimation of λ is achieved by adapting the general and automatic multiple smoothing param-

eter estimation method of (Marra et al., 2017) to the context of the proposed survival models. The

smoothing criterion is based on the knowledge of g(α) and H(α). The main ideas and some

useful results are given here.

To simplify the notation, gp(α[a]), g(α[a]), Hp(α
[a]) and H(α[a]) are denoted as g[a]

p , g[a], H[a]
p

and H[a]. First, it is necessary to express the parameter estimator in terms of g[a]
p and H[a]

p . To

achieve this, a first order Taylor expansion of g[a+1]
p about α[a] is used, which yields the following

expression: 0 = g[a+1]
p ≈ g[a]

p (α[a+1] − α[a])H[a]
p . After some manipulations, α[a+1] = (−H[a] +

S)-1
√
−H[a]

[√
−H[a]α[a]+

√
−H[a]

-1
g[a]
]

is obtained, which then becomesα[a+1] = (−H[a]+

S)-1
√
−H[a]Z [a], where Z [a] = υ

[a]
Z + ξ

[a]
Z , υ[a]

Z =
√
−H[a]α[a] and ξ[a]Z =

√
−H[a]

-1
g[a].

Eigenvalue decomposition is used to obtain the square root of −H[a] ant its inverse. Furthermore,

from likelihood theory, ξ ∼ N (0, I) and Z ∼ N (υN , I), where υZ =
√
−Hα0, α0 is the true

parameter vector and I is the identity matrix. υ̂Z =
√
−Hα̂ = BZ is the predicted value vector

for Z , where B =
√
−H(−H + S)-1

√
−H. Since our objective is to estimate λ so that the

smooth terms’ complexity which is not supported by the data is removed, the following criterion

16
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is used

E
(
‖υZ − υ̂Z‖2

)
= E

(
‖Z −BZ‖2

)
− n̄ + 2tr(B), (17)

where n̄ = 2 n and tr(B) represent the number of effective degrees of freedom of the penalized

model. In applications, λ is estimated by minimizing an estimate of equation (17), in other words

‖ ̂υZ − υ̂Z‖2 = ‖Z −BZ‖2 − n̄ + 2tr(B). (18)

The RHS of equation (18) depends on λ through B while Z is associated with the un-penalized

part of the model. Equation (17) is approximately equivalent to the AIC (Akaike, 1973). This

implies that λ is estimated by minimizing what is effectively the AIC with number of parameters

given by tr(B). Holding the model’s parameter vector value fixed atα[a+1], the following problem

λ[a+1] = arg min
λ

‖Z [a+1] −B[a+1]Z [a+1]‖2 − n̄ + 2tr(B[a+1]) (19)

is solved using the automatic efficient and stable computational method proposed by Wood (2004).

This approach uses the performance iteration idea of Gu (1992), which is based on Newton’s

method and can evaluate in an efficient and stable way the components in (19) along with their

first and second derivatives with respect to log(λ), because the smoothing parameters can only

take positive values.

The methods for estimating α and λ are iterated until the algorithm satisfies the criterion∣∣`(α[a+1])− `(α[a])
∣∣ / (0.1 +

∣∣`(α[a+1])
∣∣) ≤ (1e− 0.7). Starting values are obtained by fitting

two non-informative models for the survival and censoring times.
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Supplementary Material D: Proofs of the Theorems

This section provides the proofs of Theorems 1, 2 and 3 stated in Section 2.4. First, we establish

the main set of assumptions (regularity conditions and vanishing penalties), then the main results

are presented.

D.1. Assumptions

Since the same set of assumptions are used to proof Theorems 1 and 2, we use θ to represents the

generic vector of parameters. In particular, θ = α in Theorem 1 and θ = γ in Theorem 2. Hence,

the generic log-likelihood function can be written as

`(θ) =
n∑
i=1

log
[
[f1(yi|zi;θ1)S2(yi|zi;θ2)]δ1i [f2(yi|zi;θ2)S1(yi|zi;θ1)]δ2i

]
. (20)

In (20), it has been assumed that z1i = z2i. In what follows `(θ) =
∑n

i=1 logω(wi;θ), where

ω(wi;θ) = ω(y|z;θ) =
[
[f1(yi|zi;θ1)S2(yi|zi;θ2)]δ1i [f2(yi|zi;θ2)S1(yi|zi;θ1)]δ2i

]
and wi =

(yi, z>i )> ∈ R+ × Rp, and R+ = (0,∞). In addition, `(wi;θ) = logω(wi;θ), `n(θ) =

n−1
∑n

i=1 `(wi;θ), ∇θ`(wi;θ) =
∂`(wi;θ)

∂θ
, ∇θ`n(θ) =

∂`n(θ)

∂θ
, ∇θθ`(wi;θ) =

∂2`(wi;θ)

∂θ∂θ>

and ∇θθ`n(θ) =
∂2`n(θ)

∂θ∂θ>
. The penalised likelihood is `p(θ) = `n(θ)− 1

2
θ>Sθ.

Assumption 1 (Regularity Conditions).

(i) The parameter space Θθ is a compact subset of Rp.

(ii) For all wi, ω(wi;θ) is continuous in θ. Furthermore, ω(wi;θ) is measurable in wi for all θ

∈Θθ.

(iii) Identification condition. P[ω(wi;θ) 6= ω(wi;θ
>)] > 0 for all θ 6= θ> ∈Θθ.

(iv) Dominance. E{supθ∈Θθ
|`(wi;θ)|} <∞

(v) The true vector of parameters θ> is in the interior of Θθ, and Θ0 is an open neighbourhood

around θ>.

(vi) For all wi,ω(wi;θ) is three times continuously differentiable in θ in an open neighbourhood

around θ>. That is ω(wi;θ) ∈ C3(Θ0)

18
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(vii)
∫

supθ∈Θ0
‖∇θ`(wi;θ)‖ dwi <∞ and

∫
supθ∈Θ0

‖∇θθ`(wi;θ)‖ dwi <∞.

(viii) For θ ∈Θ0, I(θ>) = Cov{∇θ`(wi;θ)} = E{{∇θ`(wi;θ
>)−E[∇θ`(wi;θ

>)]}{∇θ`(wi;θ
>)−

E[∇θ`(wi;θ
>)]}>} exists and is positive-definite.

(ix) For all 1 ≤ e, f, h ≤ p+ 1, there exist a function φ : R+ ×Rp −→ R such that, for θ ∈Θ0

and wi ∈ R+ × Rp,
∣∣∣∣ ∂3`(wi;θ)

∂θe∂θf∂θh

∣∣∣∣ ≤ φ(wi), with E[φ(wi)] <∞.

Assumption 2. λ = o(n−1/2).

In addition, the following lemmas are required to prove Theorems 1, 2 and 3.

Lemma 1. Let s(w,θ) be a continuously differentiable function, a.s. dw, on θ ∈Θ0.

If
∫

supθ∈Θ0

∥∥∥∥∂s(w,θ)

∂θ

∥∥∥∥ dw <∞, then for θ ∈Θ0,

(i)
∫
s(w,θ)dw is continuously differentiable.

(ii)
∫

[∂s(w,θ)/∂θ]dw = ∂[
∫
s(w,θ)dw]/∂θ.

Proof. Newey & McFadden (1994, Lemma 3.6).

Lemma 2. If Assumption 1 hold, then

(i) E[∇θ`(w;θ>)] = 0

(ii) E[−∇θθ`(w;θ>)] = I(θ>)

Proof.

(i) Since ω(y|z;θ) is a hypothetical density, its integral is unity:

∫
ω(y|z;θ)dy = 1.

This is an identity, valid for any θ ∈ Θθ. Differentiating both sides of this identity with

respect to θ, we obtain

∂

∂θ

∫
ω(y|z;θ)dy = 0.

19
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Then, by Assumptions 1(vi) and 1(vii), and Lemma 1 (the order of differentiation and inte-

gration can be interchanged), the following expression is obtained

∂

∂θ

∫
ω(y|z;θ)dy =

∫
∂

∂θ
ω(y|z;θ)dy. (21)

By the definition of the score, we have ∇θ`(w;θ)ω(y|z;θ) = ∂
∂θ
ω(y|z;θ). Substituting

into (21), we obtain

∫
∇θ`(w;θ)ω(y|z;θ)dy = 0. (22)

This holds for any θ ∈ Θ0, in particular, for θ>. Setting θ = θ>, the following equation is

obtained

∫
∇θ`(w;θ>)ω(y|z;θ>)dy = E[∇θ`(w;θ>)|z] = 0.

Then, applying the Law of Total Expectations, we obtain the required result

E[∇θ`(w;θ>)] = E{E[∇θ`(w;θ>)|z]} = 0.

(ii) Differentiating both sides of identity (22) and by Assumptions 1(vi) and 1(vii), and Lemma

1, we obtain

∫
∂

∂θ>
[∇θ`(w;θ)ω(y|z;θ)]dy = 0. (23)

The integrand of (23) can be written as ∂
∂θ>

[∇θ`(w;θ)ω(y|z;θ)] = ∇θθ`(w;θ)ω(y|z;θ)+

∇θ`(w;θ)∇θ`(w;θ)>ω(y|z;θ). Substituting into (23), we obtain

−
∫

∇θθ`(w;θ)ω(y|z;θ)dy =

∫
∇θ`(w;θ)∇θ`(w;θ)>ω(y|z;θ)dy (24)
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Setting θ = θ>, the following equation is obtained

E[−∇θθ`(w;θ>)|z] = E[∇θ`(w;θ>)∇θ`(w;θ>)>|z].

Then, applying the Law of Total Expectations, we obtain the desired result

E{E[−∇θθ`(w;θ>)|z]} = E{E[∇θ`(w;θ>)∇θ`(w;θ>)>|z]}.

E[−∇θθ`(w;θ>)] = E[∇θ`(w;θ>)∇θ`(w;θ>)>].

E[−∇θθ`(w;θ>)] = I(θ>)

Lemma 3. Let r ∈ R+, and Θr be the surface of a sphere with radius rn−1/2 and center θ>,

that is Θr = {θ ∈ Θθ : θ = θ> + n−1/2r, ‖r‖ = r}. For any ε > 0, there exist r such that

P
(

sup
θ∈Θr

`p(θ) < `p(θ
>)

)
≥ 1− ε, when n is large enough.

Proof. We define n`p(θ)−n`p(θ>) = n`n(θ)−n`n(θ>)− n
2
[θ>Sθ−θ>>Sθ>]. A Third Order

Taylor expansion around θ> yields

n`p(θ)− n`p(θ>) = n∇θ`n(θ>)>(θ − θ>) +
n

2
(θ − θ>)>∇θθ`n(θ>)(θ − θ>)− nθ>>S(θ − θ>)

+
n

6

∑
e

∑
f

∑
h

(θ − θ>)e(θ − θ>)f (θ − θ>)h
∂3`n(θ̄)

∂θe∂θf∂hθ
− n

2
(θ − θ>)>S(θ − θ>).

(25)

Let θ = θ> + n−1/2r ∈Θr. Then (25) becomes in

n`p(θ)− n`p(θ>) = n1/2∇θ`n(θ>)>r +
1

2
r>∇θθ`n(θ>)r +

n−1/2

6

∑
e

∑
f

∑
h

rerfrh
∂3`n(θ̄)

∂θe∂θf∂hθ

− n1/2θ>>Sr − 1

2
r>Sr

n`p(θ)− n`p(θ>) =
5∑
i=1

Cin(r),

where θ̄ lies between θ> and θ> + n−1/2r. For the first term, |C1n(r)| = Op(1) ‖r‖ since

by Lemma 2(i), Assumption 1(vii) and the CLT, n1/2∇θ`n(θ>)
d→ N [0, I(θ>)]. By Lemma

21
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2(ii) and the LLN, n1/2∇θθ`n(θ>)
p→ −I(θ>), which (by the continuous mapping theorem)

yields C2n(r)
p→ −1

2
r>I(θ>)r. Thus, by Assumption 1(viii), C2n(r) ≤ −1

2
ζmin ‖r‖2, where

ζmin > 0 is the smallest eigenvalue of I(θ>). By Assumption 1(ix) and the LLN,
∣∣∣∣ ∂3`n(θ̄)

∂θe∂θf∂θh

∣∣∣∣ ≤
1
n

∑n
1 φ(wi)

p→ E[φ(wi)] <∞. This fact and the Cauchy-Schwarz inequality imply that |C3n(r)| p→

0. Finally, by Assumption 2 we have that |C4n(r)| p→ 0 and |C5n(r)| p→ 0. Therefore, combining

all of these results, we have

n`p(θ)− n`p(θ>) ≤ Op(1) ‖r‖ − 1

2
ζmin ‖r‖2 (26)

for large enough n. Since the choice of θ was arbitrary, (26) becomes in

sup
θ∈Θr

n`p(θ)− n`p(θ>) ≤ C,

where C = Op(1) ‖r‖ − 1
2
ζmin ‖r‖2. This implies that P

(
sup
θ∈Θr

`p(θ) < `p(θ
>)

)
≥ P (C < 0).

Therefore, because for all ε > 0, there exists a ‖r‖ ∈ R+ such that P [C < 0] ≥ 1 − ε, we obtain

P
(

sup
θ∈Θr

`p(θ) < `p(θ
>)

)
≥ 1− ε, as required.

Lemma 4. (Delta Method). Suppose that θn is a sequence of k-dimensional random vectors and

θ> be a constant k-vector such that
√
n(θn − θ>)

d→ N (0,Ω) for some k × k matrix Ω. Let

g : Rk → Rl be continuously differentiable at θ>. Then

√
n(g(θn)− g(θ>)

d→ N (0, GΩG>)

where G =
∂g(θ)

∂θ>

∣∣∣∣
θ=θ>

is the l × k Jacobian matrix.

Proof. Hayashi (2000, Lemma 2.5).

D.2. Theorems

Theorem 1 (Asymptotic properties of the IPMLE estimator).

Proof. Under Assumptions 1(i), 1(ii) and Gourieroux & Monfort (1995, Property 24.1), there ex-

ists a well defined random variable (measurable function) α̂ that solves the optimization problem

22
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in equation (13). Due to Lemma 3, the informative penalized log-likelihood function has a local

maximum α̂ in the interior of a sphere centered on α>. Then, ‖α̂−α>‖ = Op(n−1/2), implying

that α̂ is a
√
n-consistent estimator. Furthermore, by Assumption 1(iii) and Newey & McFadden

(1994, Lemma 2.2), α> is the unique maximizer of Q>(α) = E[`(wi;α)].

(i) To prove the asymptotic normality of the informative penalized likelihood estimator, we

take the derivative of the log-likelihood function in equation (13) to obtain

0 = ∇α`n(α̂)− Sα̂. (27)

Applying a second order Taylor expansion in equation (27) yields

0 = ∇α`n(α>)− Sα> + ∇αα`n(α>)(α̂−α>)− S(α̂−α>) + ∆, (28)

where the last term is defined as

∆ =


(α̂−α>)>[∇2∇α`n(ᾱ)]1(α̂−α>)

...

(α̂−α>)>[∇2∇α`n(ᾱ)]p(α̂−α>)

 , (29)

and ᾱ lies between α> and α̂, therefore ‖ᾱ−α>‖ ≤ ‖α̂−α>‖. We can rewrite equation

(28) to obtain

0 = ∇α`n(α>)− Sα> + ∇αα`n(α>)(α̂−α>)− S(α̂−α>) + ∆p(α̂−α>), (30)

where ∆p is defined as

∆p =


(α̂−α>)>[∇∇αα`n(ᾱ)]1

...

(α̂−α>)>[∇∇αα`n(ᾱ)]p

 .

23
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Multiplying the right hand side of equation (30) by
√
n, leads

[∇αα`n(α>)− S + ∆p]
√
n(α̂−α>) =

√
n[Sα> −∇α`n(α>)] (31)

By assumption 2, S p→ 0 and Sα> p→ 0. Furthermore, by assumption 1(ix), ∆p
p→ 0.

As earlier mentioned, by Lemma 2(i), Assumption 1(vii) and the CLT, n1/2∇α`n(α>)
d→

N [0, I(α>)], and by Lemma 2(ii) and the LLN, n1/2∇αα`n(α>)
p→ −I(α>). Finally, by

Slutsky’s theorem, we obtain

√
n(α̂−α>)

d→ N
{
0, [I(α>)]−1

}
,

as required.

(ii) Under Theorem 1,
√
n(α̂ − α>)

d→ N {0, [I(α>)]−1}. In particular, for α̂ν0 ∈ α̂ we

have
√
n(α̂ν0 − α>

ν0)
d→ N {0, [I(α>

ν0)]
−1}. In addition, S : Rk → R is continuously

differentiable at α>
ν0, with gradient defined as ∇αν0S(α>

ν0) = G ′ν0[s(α>
ν0)]∇αν0s(α

>
ν0).

Then, we can applied Lemma 4 to obtain

√
n[Ŝν0(α̂ν0)− Sν0(α>

ν0)]
d→ N

{
0,G ′ν0[s(α>

ν0)]∇αν0s(α
>
ν0)[I(α>

ν0)]
−1∇αν0s(α

>
ν0)
>G ′ν0[s(α>

ν0)]
}
.

Furthermore, we know that ∇α1α2`(α) = 0, therefore E[−∇α1α2`(α0)] = 0. This also

implies that E[−∇α10α20`(α0)] = 0, which means that α10 and α20 are independent. Then,

S(α10) and S(α20) are also independent, as required.

Theorem 2 (Asymptotic properties of the NPMLE estimator).

Proof. This proof follows similar arguments of Theorem 1.

Theorem 3 (Efficiency of the IPMLE estimator).

Proof. For ν = 1, 2, we define γν = (γιν ,γ
nι
ν )> so that Q>i γν = Q0>

i γ
ι
ν + Q1>

νi γ
nι
ν . Where

γιν = (γι>ν1 , ...,γ
ι>
νQ)> and γnιν = (γnι>ν(Q+1), ...,γ

nι>
νQν

)> are the informative and non-informative
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parameters of the non-informative model respectively. Thus, under Assumption 1(viii) and Lemma

2(ii), I(γ>) can be written as

I(γ>) =



Iγι1 Iγι1γnι1
0 0

Iγnι1 γ
ι
1
Iγnι1

0 0

0 0 Iγι2 Iγι2γnι2

0 0 Iγnι2 γ
ι
2
Iγnι2


, (32)

where Iγιν = I(γ>ι
ν ), Iγnιν = I(γ>nι

ν ) and Iγινγnιν = I(γ>nι
ν ,γ>ι

ν ). Taking the inverse of (32), we

obtain

[I(γ>)]−1 =



Σγ>ι
1

Σγ>ι
1 γ>nι

1
0 0

Σγ>nι
1 γ>ι

1
Σγ>nι

1
0 0

0 0 Σγ>ι
2

Σγ>ι
2 γ>nι

2

0 0 Σγ>ι
2 γ>nι

2
Σγ>nι

2


, (33)

where Σγ>ι
ν

= [Iγιν−Iγινγnιν I
−1
γnιν
Iγnιν γιν ]−1, Σγ>ι

ν γ
>nι
ν

= −Σγ>ι
ν
Iγινγnιν I

−1
γnιν

, Σγ>nι
ν γ>ι

ν
= −I−1γnιν Iγnιν γινΣγ>ι

ν

and Σγ>nι
ν

= I−1γnιν + I−1γnιν Iγnιν γινΣγ>ι
ν
Iγινγnιν I

−1
γnιν

.

On the other hand, also by Assumption 1(viii) and Lemma 2(ii), I(α>) can be written as

I(α>) =


Iα0 Iα0α1 Iα0α2

Iα1α0 Iα1 0

Iα2α0 0 Iα2

 , (34)

where Iα0 = I(α>
0 ), Iαν = I(α>

ν ), Iα0αν = I(α>
0 ,α

>
ν ) and Iανα0 = I(α>

ν ,α
>
0 ). Taking the

inverse of (34), yields

[I(α>)]−1 =


Σα>

0
Σα>

0 α
>
1

Σα>
0 α

>
2

Σα>
1 α

>
0

Σα>
1

0

Σα>
2 α

>
0

0 Σα>
2

 , (35)

where Σα>
0

= [Iα0−Iα0α1I−1α1
Iα1α0−Iα0α2I−1α2

Iα2α0 ]
−1, Σα>

0 α
>
ν

= −Σα>
0
Iα0ανI−1αν , Σα>

ν α
>
0

=
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−I−1αν Iανα0Σα>
0

and Σα>
ν

= I−1αν + I−1αν Iανα0Σα>
0
Iα0ανI−1αν .

Thus, by (14), (15), (16), (17), (18) and using that γnιν0 = αν0, we obtain Iα0 = Iγι1 + Iγι2 ,

Iα0αν = Iγινγnιν , Iανα0 = Iγnιν γιν and Iαν = Iγnιν . This and the fact that Σ−1
α>

0

and Σ−1
γ>ι
ν

are

positive definite matrices, imply that [Σγ>ι
ν
− Σα>

0
] is positive definite. Therefore, Σα>

0
< Σγ>ι

ν
.

Using this reasoning, we conclude that Σα>
0 α

>
ν
< Σγ>ι

ν γ
>nι
ν

, Σα>
ν α

>
0
< Σγ>nι

ν γ>ι
ν

and Σα>
ν
<

Σγ>nι
ν

, as required.

The proof of Lemma 3 in the context of informative and non-informative censoring models

was adapted from Xingwei et al. (2010) and Vatter & Chavez-Demoulin (2015). The proofs of

the asymptotic normality (part (i) of Theorems 1 and 2) are based on Vatter & Chavez-Demoulin

(2015).
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Supplementary Material E: Confidence Intervals

At convergence, point-wise intervals for linear and non-linear functions for both the non-informative

and informative models’ parameters can be obtained using the following Bayesian large sample

approximation

θ ∼ N (θ̂,Σθ̂), (36)

where Σθ̂ = [Hp(θ̂)]-1. For generalised additive models, intervals derived using equation (36)

have good frequentist properties, since they account for both smoothing bias and sampling vari-

ability (Marra & Wood, 2012). For the non-informative and informative models, equation (36)

can be verified using the distribution of Z (described in Supplementary Material C), making the

large sample assumption that H(θ) can be treated as fixed, and making the usual prior Bayesian

assumption for smooth models θ ∼ N (0,S-1), where S-1 is the Moore-Penrose pseudoinverse of

S (Silverman, 1985; Wood, 2017). In equation (36), smoothing parameter uncertainty is neglected.

Nevertheless, according to Marra & Wood (2012) this is not problematic if heavy over-smoothing

is avoided so that the smoothing bias is not a large proportion of the sampling variability. See also

Marra et al. (2017) for an application of this approach to a more general smoothing spline context.

Following Pya & Wood (2015), confidence interval estimates for the monotonic smooth terms

in the models can be obtained using the distribution of β̃ν0 (defined in Section 2.3 of the main

paper) since all smooth components would then depend linearly on β̃ν0. Such distribution is

β̃ν0 ∼ N ( ˆ̃βν0,Σβ̃ν0
),

where Σβ̃ν0
= diag(Γν0) [Hp(β̂ν0)]

-1 diag(Γν0). The derivation of this result can be found in Pya

& Wood (2015).

P-values for the smooth components in the non-informative and informative models are ob-

tained by adapting the results discussed in Wood (2013) to the present context, where Σβ̃ν0
is used

for the calculations. The reader is referred to the above citation for the definition of reference

degrees of freedom.
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Supplementary Material F: Model Selection

In practical situations, it is important to detect if
∑K1

k1=1 s1k1(x1k1i) and
∑K2

k2=1 s2k2(x2k2i) have

components in common. This is basically a model selection problem and, to this end, we propose

using the AIC, BIC and K-Fold Cross validation criterion
(
ΥKCV

)
. The AIC and BIC can be

defined as

AIC = −2`(θ̂) + 2 EDF,

BIC = −2`(θ̂) + log(n) EDF,

where the log-likelihood is evaluated at the penalized parameter estimates and EDF = tr(B̂) with

B̂ defined in Supplementary Material C.

As for ΥKCV (Stone, 1974), we first randomly divide the set of observations in K groups (folds)

of approximately equal size. Each fold is then in turn treated as a validation set, and the IPMLE for

a given model is used to estimate the vector of parameters α using the remaining K−1 folds. The

so obtained estimates are denoted as α̂\k0 and α̂\kν , and the log-likelihood function is calculated as

`k(α̂
\k) =

log G1
[
ξ1i(α̂

\k
0 , α̂

\k
1 )
]

+ δ1i log

−G
′
1

[
ξ1i(α̂

\k
0 , α̂

\k
1 )
]

G1
[
ξ1i(α̂

\k
0 , α̂

\k
1 )
] ∂ξ1i(α̂\k0 , α̂\k1 )

∂yi




+

log G2
[
ξ2i(α̂

\k
0 , α̂

\k
2 )
]

+ δ2i log

−G
′
2

[
ξ2i(α̂

\k
0 , α̂

\k
2 )
]

G2
[
ξ2i(α̂

\k
0 , α̂

\k
2 )
] ∂ξ2i(α̂\k0 , α̂\k2 )

∂yi


 ,

and ΥKCV given by

ΥKCV =
K∑
k=1

`k(α̂
\k). (37)

We choose the model which maximizes (37). The same procedure is used when ΥKCV is calculated

for the non-informative model. In such a case we have

`k(γ̂
\k) =

log G1
[
ξ1i(γ̂

\k
1 )
]

+ δ1i log

−G
′
1

[
ξ1i(γ̂

\k
1 )
]

G1
[
ξ1i(γ̂

\k
1 )
] ∂ξ1i(γ̂\k1 )

∂yi




+

log G2
[
ξ2i(γ̂

\k
2 )
]

+ δ2i log

−G
′
2

[
ξ2i(γ̂

\k
2 )
]

G2
[
ξ2i(γ̂

\k
2 )
] ∂ξ2i(γ̂\k2 )

∂yi


 ,
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and therefore ΥKCV =
∑K

k=1 `k(γ̂
\k).

Model Non-Inf.Covariates Inf.Covariates Link T1i Link T2i AIC ΥKCV BIC

1 s(wmonth) s(mthage) · · · PH PH 13775.68 -6924.20 14015.53

region alcohol nsibs

2 s(wmonth) s(mthage) · · · PO PH 13776.87 -8396.57 14016.51

region alcohol nsibs

3 s(wmonth) s(mthage) alcohol PH PH 13772.60 -6922.63 13981.42

nsibs region

4 s(wmonth) s(mthage) alcohol PO PH 13773.80 -8392.31 13982.51

nsibs region

Table 2: Values of three model selection criteria (AIC, BIC and ΥKCV) for the best informative and non-informative models fitted
to the real data application of this paper. The models were fitted using gamlss() in GJRM by employing different combinations
of covariates and link functions.
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Supplementary Material G: Additional simulation results for

DGP1 and DGP2 and findings from a simulation study with mild

censoring rate

In the DGP presented in this section (DGP3), z1i is informative, z2i is informative and a mild

censoring rate (about 47%) is considered. T1i and T2i were generated using the model defined

in equation (19) of the main paper. The baseline survival functions were defined as S10(t1i) =

0.8 exp (−0.4t2.51i ) + 0.2 exp (−0.1t1.01i ) and S20(t2i) = 0.99 exp (−0.05t2.32i ) + 0.01 exp (−0.4t1.12i ).

The informative covariates, z1i and z2i, were generated using a binomial and a uniform distribution

respectively. Also, s11(z2i) = s12(z2i) = sin(2πzi), α01 = −0.10, α02 = −0.25 and α11 = α12 =

−1.5.

The main findings are:

• Figure 1 and Table 4 show that overall the mean estimates for the two estimators are very

close to the respective true values and improve as the sample size increases. However, even

though the variability of the estimates (IPMLE and NPMLE) decreases as the sample size

grows large, the IPMLE is slightly more efficient than the NPMLE in recovering the true

linear effects for all sample sizes examined here. In particular, the RMSE of the IPMLE is

slightly smaller than the RMSE of the NPMLE for all sample sizes considered.

• Figures 2 and 3, and Table 4 show that overall the true functions are recovered well by

the IPMLE and NPMLE and that the results improve in terms of bias and efficiency as the

sample size increases. Furthermore, the IPMLE is slightly more efficient than the NPMLE

in recovering the non-linear covariate effects for all sample sizes examined in this section

(Table 4). However, this gain in efficiency by the IPMLE is not too significant when a mild

censoring rate (47%) is examined.
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Figure 1: Linear coefficient estimates obtained by applying gamlss() to informative survival data simulated accord-
ing to DGP3 characterised by a censoring rate of about 47%. Circles indicate mean estimates while bars represent
the estimates’ ranges resulting from 5% and 95% quantiles. True values are indicated by black solid horizontal lines.
Black circles and vertical bars refer to the results obtained for n = 500, whereas those for n = 1000 and n = 4000
are given in dark gray and blue, respectively.
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Figure 2: Smooth function estimates for the IPMLE obtained by applying gamlss() to informative survival data
simulated according to DGP3 characterised by a censoring rate of about 47%. True functions are represented by black
solid lines, mean estimates by dashed lines and pointwise ranges resulting from 5% and 95% quantiles by shaded
areas. The results in the first row refer to n = 500, whereas those in the second and third rows to n = 1000 and
n = 4000.

(a) Informative Penalized Maximum Log-likelihood Estimator (IPMLE)
Bias RMSE

n = 500 n = 1000 n = 4000 n = 500 n = 1000 n = 4000

α11 -0.024 -0.014 -0.006 0.138 0.100 0.049
s1 0.039 0.025 0.012 0.154 0.114 0.059
h10 0.084 0.048 0.035 0.262 0.144 0.083
S10 0.028 0.020 0.017 0.063 0.050 0.031

(b) Non-informative Penalized Maximum Log-likelihood Estimator (NPMLE)
Bias RMSE

n = 500 n = 1000 n = 4000 n = 500 n = 1000 n = 4000

α11 -0.045 -0.017 -0.007 0.208 0.144 0.071
s1 0.085 0.068 0.044 0.191 0.206 0.111
h10 0.085 0.057 0.033 0.195 0.292 0.083
S10 0.027 0.021 0.015 0.058 0.068 0.033

Table 3: Bias and root mean squared error (RMSE) for the IPMLE and NPMLE obtained
by applying the gamlss() to informative survival data simulated according to DGP2
characterised by a censoring rate of about 74%. Further details are given in the caption of
Table 1.
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Figure 3: Smooth function estimates for the NPMLE obtained by applying gamlss() to informative survival data
simulated according to DGP3 characterised by a censoring rate of about 47%. Further details are given in the caption
of Figure 2.

(a) Informative Penalized Maximum Log-likelihood Estimator (IPMLE)
Bias RMSE

n = 500 n = 1000 n = 4000 n = 500 n = 1000 n = 4000

α11 -0.012 -0.006 0.003 0.121 0.058 0.045
s1 0.031 0.021 0.015 0.124 0.091 0.051
h10 0.040 0.027 0.026 0.135 0.088 0.058
S10 0.003 0.008 0.015 0.057 0.047 0.030

(b) Non-informative Penalized Maximum Log-likelihood Estimator (NPMLE)
Bias RMSE

n = 500 n = 1000 n = 4000 n = 500 n = 1000 n = 4000

α11 -0.022 0.001 0.007 0.140 0.100 0.050
s1 0.036 0.027 0.014 0.142 0.104 0.055
h10 0.037 0.027 0.027 0.131 0.089 0.056
S10 0.004 0.008 0.017 0.065 0.047 0.032

Table 4: Bias and root mean squared error (RMSE) for the IPMLE and NPMLE obtained
by applying gamlss() to informative survival data simulated according to DGP3 charac-
terised by a censoring rate of about 47%. Further details are given in the caption of Table
1.
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Figure 4: Linear coefficient estimates obtained by applying gamlss() to informative survival data simulated ac-
cording to DGP1 which is characterised by a censoring rate of about 78%. Further details are given in the caption of
Figure 1.
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Figure 5: Linear coefficient estimates obtained by applying gamlss() to informative survival data simulated ac-
cording to DGP2 which is characterised by a censoring rate of about 74%. Further details are given in the caption of
Figure 1.
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Figure 6: Smooth function estimates for the IPMLE obtained by applying gamlss() to informative survival data
simulated according to DGP1 characterised by a censoring rate of about 78%. Further details are given in the caption
of Figure 2.
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Figure 7: Smooth function estimates for the NPMLE obtained by applying gamlss() to informative survival data
simulated according to DGP1 characterised by a censoring rate of about 78%. Further details are given in the caption
of Figure 2.
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Figure 8: Smooth function estimates for the IPMLE obtained by applying gamlss() to informative survival data
simulated according to DGP2 characterised by a censoring rate of about 74%. Further details are given in the caption
of Figure 2
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Figure 9: Smooth function estimates for the NPMLE obtained by applying gamlss() to informative survival data
simulated according to DGP2 characterised by a censoring rate of about 74%. Further details are given in the caption
of Figure 2
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