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Abstract

Bayesian approaches to learn the graphical structure of Bayesian Belief
Networks (BBNs) from databases share the assumption that the database
is complete, that is, no entry is reported as unknown. Attempts to relax
this assumption often involve the use of expensive iterative methods to
discriminate among different structures. This paper introduces a deter-
ministic method to learn the graphical structure of a BBN from a possibly
incomplete database. Experimental evaluations show a significant robust-
ness of this method and a remarkable independence of its execution time
from the number of missing data.
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1. INTRODUCTION

A Bayesian Belief Network (BBN) [9] is a direct acyclic graph where nodes represent stochas-
tic variables and arcs represent conditional dependencies among these variables. A condi-
tional dependency links a child variable to a set of parent variables and is defined by the
conditional distributions of the child variable given the configurations of its parent variables.

Although in their original concept BBNs were designed to rely on human experts to
provide the graphical structure and assess the conditional probabilities, during the past
few years an increasing number of efforts has been addressed toward the development of
methods able to directly construct BBNs from databases. Early results in this quest were
based on non Bayesian approaches [13], but a seminal paper by Cooper and Herskovitz [4]
gave rise to a stream of research within a Bayesian framework [1, 7]. Along this approach, the
learning process involves two main tasks: the induction of the graphical model best fitting
the database and the extraction of the conditional probabilities defining the dependencies
in the graphical model.

Methods to perform the first task, known as model selection, typically involve two
components: a search procedure to explore the space of possible graphical models and
a scoring metric to assess the goodness-of-fit of a particular model. Current approaches
exploit heuristics to reduce the search space and use the scoring metric to drive the search
process. Although the task of extracting a BBN from a database in known to be NP-Hard
for the general case [2], under certain assumptions these methods are able to extract quite
large BBNs from databases of thousands of cases. One of these assumptions is that the
database is complete, that is, no entry in the database is reported as unknown.

The reason for this assumption is that a key step in the Bayesian learning process
is the computation of the marginal likelihood of the database given a graphical model.
This computation can be performed efficiently when the database is complete using exact
Bayesian updating, but it becomes intractable when data are missing. Therefore, methods
to approximate the marginal likelihood of the data have to be used. Current approaches [3]
exploit the EM algorithm [5] or Markov Chain Monte Carlo methods, such as Gibbs Sampling
[6]. The basic strategy underlying these methods is based on the Missing Information
Principle [8]: fill in the missing observations on the basis of the available information. EM
performs this task by replacing the missing entries with’the maximum likelihood estimates
extracted from the available data and proceeds by iteratively estimating and replacing
until stability is reached within a certain threshold. Gibbs Sampling generates a value for
the missing data from some conditional distributions and provides a stochastic estimation
of the posterior probabilities. Unfortunately, these methods are usually highly resource
demanding, their convergence rate may be slow, and their execution time heavily depends
on the number of missing data.

Ramoni and Sebastiani [11] introduced a deterministic method to estimate the condi-
tional probabilities defining the dependencies in a BBN which does not rely on the Missing
Information Principle. This method, called Bound and Collapse (BC), starts by bounding the
set of possible estimates consistent with the available observations in the database and then
collapses the resulting interval to a point via a convex combination of the extreme estimates
with weights depending on the assumed pattern of missing data. The intuition behind BC is
that the information available in the database induces a set of possible estimates and that
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the pattern of missing data can be used to select a single distribution within this set. The
pattern of missing data may be either provided by an external source of information or may
be estimated from the available information under the assumption that data are missing
at random. Experimental evaluations [11] show clearly that the estimates provided by BC
are very similar to those provided by Gibbs Sampling when data are missing at random,
and they are more robust to departure from the true pattern of missing data. On the other
hand, BC reduces the cost of estimating a conditional distribution to the cost of an exact
Bayesian updating and a convex combination for each state of the distribution.

This paper describes how BC can be used to estimate the marginal likelihood of a
database given a model thus extending the principle underlying BC from the task of learning
the conditional probabilities to the task of extracting the graphical model of a BBN from
an incomplete database. The reminder of this paper is structured as follows: Section 2
introduces the technical background, Section 3 describes the new method, Section 4 reports
some results of a preliminary ezperimental evaluation, and Section 5 summarizes the relevant
results.

2. BACKGROUND

A BBN is defined by a set-of variables X = {X1,..., X} and a direct acyclic graph iden-
tifying a model M of conditional dependencies among these variables. A conditional de-
pendency links a child variable X; to a set of parent variables II;, and is defined by the
conditional distributions of the child variable given the configurations of its parent vari-
ables. We shall consider discrete variables only, and denote by ¢; the number of states of
X;, and ¢; the number of states of II;. The model M yields a factorization of the joint
probability of a particular set of values of the variables in X, say =y = {z1k,... Z1x}, a8

1
p(X =z M) = [] p(Xi = 2T = mi5, M), 1)
i=1

where 7;; is the state of Il; in zx. We will denote X; = z; by zs, and II; = m;; by ;.
Suppose we are given a database of n cases D = {z1,...,z,} from which we wish to

select a model M of conditional dependencies among the variables in the database. We
adopt a Bayesian approach, so that if p(M) is our prior belief about a particular model M,
we can use the information in the database D to compute the posterior probability of M
given the data:
p(M, D)

p(D) '
and then we choose the model which has the highest posterior probability. When the
comparison is between two rival models M; and My with p(M;) = p(My), this is equivalent
to choosing M; if the Bayes factor:

p(DIMy) _ p(M1,D)
p(D\M3)  p(M, D)’

p(M|D) =

is greater than one. It is well known [4], that p(M,D) can be easily computed if the
conditional probabilities defining M are regarded as random variables 6;;; whose prior
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distribution represents the observer’s beliefs before seeing any data. The joint probability
of a case i can then be written in terms of the random vector 6 = {6;;,} as: p(xx|0) =
Hz 1 05k This parameterization of the probabilities defining M allows us to write:

PM, D) = p(M) [ p(8M)p(DI6)d0 @

where p(f|M) is the prior density of 6, and p(D|f) is the sampling model. A solution of
(2) exists in closed form if: 1. The database is complete; 2. The cases are independent,
given the parameter vector 6 associated to M; 3. The prior distribution of the parameters
is conjugate to the sampling model p(D|6); 4. The parameters are marginally independent.

Let n(zik|my;), ¢ = 1,..,1,5 = 1,...,4i,k = 1,...,c;, be the frequency of cases in the
database with z|mi;, so that n(my) = 5L n(ziklm;) is the frequency of cases with ;.
Assumptions 1 and 2 lead to

p(DI6) = H H I1 o3 +ms).

i=1j=1k=1

A prior distribution on the parameters that satisfies 3 and 4 is a product of Dirichlet
distributions. Thus, if we denote by 6;; = (641, ..., 64jc;) the vector of parameters associated
to the conditional distribution of X;|m;;, we have 6;; ~ D(04j1, ..., 04j¢;). The prior hyper-
parameters o, can be regarded as frequencies of the imaginary cases needed to formulate
the prior distribution. As a matter of fact, the marginal probability of z|m;; is ik /iy,
and aj; = 221:1 Qi is the prior precision on 6;;. Under the assumptions 1 — 4, the posterior
distribution of 6 is still a product of Dirichlet distributions [12], and

635|D ~ D(ouj1 + nlzaa|mig), -, Qige; + n{@se | mi5)).
Thus, the standard Bayesian estimate of p(x;x|mi;) is the posterior ezpectation of 6;jy:

Qijk + n(Tip|mig)-

E(6;54|D) = aij + n(m;)

(3)

and the posterior precision on 6;; is oy; + n(my;). Furthermore, the integral (2) has the
solution:

pM) f[ ﬁ ﬁ T(0)T (atgjk + @i miz))

D(aj + nmy))T(cujk)

and therefore
% c

D|M H H H au Ofzjlc + n(zik|7rij)) (4)

i=1j=1k=1 al] + n(”l]))r(aijk)

is the marginal likelihood of D given M. Note that p(D|M) depends on the updated hyper-
parameters of 6;;|D, and the posterior precision on 8;;. The probability (4) is the base for
the algorithm proposed by Cooper and Herskovitz [4] to induce the model from a database.
Suppose we have a partial order on the variables so that X; < X; if X; cannot be parent
of X;. Let P; be the set of current parents of X;, thus P; is the empty set if X; is a root
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node. Then the local contribution of a node X; and its parents II; to the joint probability
of (M, D) is measured by

gi G

o(Xi,P) H H I( ozzj a,]k + 1@kl mi5)) (5)
(3] i N
J=1k=1 ale (o5 + n(miz))

The algorithm proceeds by adding a parent at a time and computing g(X;,P;). The set
P; is expanded to include the parent nodes that give the largest contribution to g(X;, P;),
and stops if the probability does not increase any longer. This greedy search strategy has
been shown to be extremely cost-effective when the number of variables is large. When the
database is complete, (4) can be efficiently computed using the hyper-parameters ok +
n(z;x|m;;) and the precision o5 + n(my;) of the posterior distribution of 6;;.

Suppose now that we are given the incomplete database D; = D, U Dy,, where Dy,
denotes the part of D; with missing entries. The exact probability of (M, D;) is

where the sum is over all possible complete databases D, consistent with the available data.
Clearly, as the number of missing entries increases, the exact calculation of p(M,D;) is
infeasible, and some approximation is needed.

3. METHOD

In this section, we will show that it is possible to approximate the hyper-parameters of the
posterior distributions of 6;;, from which we derive an estimate of the marginal likelihood
given in (4).

Let p;;x be an estimate of the posterior expectation of 6;j, and é&;; be an estimate of the
posterior precision of ;;. Then the distribution D(6s51, ..., GijPizc;) Will have precision
&;; and expectation pijx, k = 1,---,c;. Thus a moment-matching approximation of the
posterior distribution of 6;; is:

0i5|D ~ D(&sjbist, ---, Gujise;)- (6)
From (6) we can then derive an estimate of (4):
% i

D|M H H H az] az]p($1k|7ru)) (7)

i=1j=1k=1 ;)T (G45)

which can be also used to extend the algorithm in [4] to incomplete databases by estimating
(5) as:
qi G

[(eig)T (Gujp(@ik|mis))
X“fpl | l | I J J. J . 8
icrier D@ (ouge) -

Clearly the goodness of the approximation depends on the goodness of the estimates of p;,
and &;;. In the reminder of this section we will show how to use the BC method to estimate
the posterior expectation of 6;;;, and the posterior precision of 8;;.

4



Learning Bayesian Networks from Incomplete Databases

case | X; X2 Xs

I 1 2 2

I 2 7 1

T3 ? 1 2

T4 ? 7 1

z5 1 ? ?

4

n*(z31](1,1)) =2 n®(zz1](1,2)) =2
n®(z31](2,1)) =2 n®(z51((2,2)) =2
n®(z32](1,1)) =2 n®(z3(1,2)) =1
n®*(z32/(2,1)) =1 n®(z32](2,2)) =0

Figure 1: Completions n®(zsk|z1,z2) consistent with the incomplete database.

3.1 POSTERIOR EXPECTATION

Let M be a model of conditional dependencies, specifying for each X; the parent variable
II;;. BC estimates the conditional probabilities defining the dependencies in M by first
bounding the set of possible posterior distributions of 6;; consistent with the database, and
then collapsing the extreme distributions in one single Dirichlet using the assumed pattern
of missing data.

Let n®(z;x|mi;) be the frequency of cases with X; = z, given the parent configura-
tion 7, which have been obtained by completing the incomplete cases. A case may be
incomplete because of either a missing observation in the parent configuration or a missing
observation of the child variable. An example is given in Figure 1 for the model

X1
AV X; binary, 1=1,2,3.
X2 — X3
For each incomplete case, let ¢;;; be the probability of a completion:

Gijk = p(Tiglmiz, Xi =7). (9)

When data are missing at random, and therefore D, is a representative sample of the
complete but unknown database D, the probability of a completion can be estimated from
D, as

@ijk + (i 75)
i + o n(Tin|miz)

In this case, the BC estimate p(zik|mij, Ds, ¢ijk) of E(fik|D;) becomes:

Gijr =

3 dijipie @iklmij, Di) + digip® (winlmig, Di) (10)
1k
where .
i + n(ik|mig) + 1 (zaklmiz)
aij + 2p n(zan|mig) + n®(zaxlmig)

p*(zik|m55, Ds) =

5
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a4 nzig|mig)
i + o M(@anlmig) + 00 (zalmig)
The value p*(zig}mi;, D;) is the upper bound of p(z|mij, D;), which is achieved when all
incomplete cases in the database which could be completed as z;i|m;; are assigned to zg|m;j,
and the other incomplete cases are assigned to zj|m;, any k, and { # j. Thus, each
maximum probability p®(z:x|mi;, D;) is obtained from a Dirichlet distribution

Die(Zik|mij, Ds) =

Dy (a1 + n(zalms), . ., ougr + n{Tik}mis) +
n®(Zik|miz), - - -, Aije; + (T, I735))

which identifies a unique probability pge(z|mij, D;) for the other states of the variable X;
given m;; from which pye(zik|mij, D;) is obtained. The estimates B(Tik| iz, Ds, dizr), k =
1,..., ¢, so found define a probability distribution since Y5 ; p(ws|msj, Di, dijr) = 1.

As the number of missing entries in D; decreases, p*(zik|mij, D;) and pia(zik|mij, D:)
approach (ajx + n(Tjk|mi;))/(cij + n(mi;)) so that, when the database is complete, (10)
returns the exact estimate E(6;;x|D;). As the number of missing entries increases then both
cf)ijk and the estimate (10) approach the prior probability o/, so that the estimation
method is coherent and no updating is performed when data are totally missing.

If n®(zk|mi;) = ny;, as for instance when data are missing only on the child variable,
(10) simplifies to

ik + n(zik|myy) + Sijend;
i + Lp M(@anlmig) + 0y

which is a consistent estimate of the ezpected posterior expectation

(11)

gk + n(Tik|mig) + niidise
Qg5 + o n($¢h|7rij) + n;j )

If oy = 0, then (11) is the classical maximum likelihood estimate of 6;j; [8]. Experimental
comparisons [11] have shown that, when data are missing at random, the estimates com-
puted by the BC method are very close to those obtained by Gibbs Sampling, and are more
robust to departures from the true pattern of missing data.

Although BC is able to incorporate the assumption that data are missing at random, in
the general case it is not limited to it, since the parameters ¢;;; may be used to encode any
pattern of missing data. For instance, when no information on the mechanism generating
the missing data is available and therefore any pattern is equally likely, then ¢, = 1/c;.
Furthermore, BC provides a new measure of the information available in the database when
we consider that the extreme probabilities pio(zik|mij, Ds), | = 1,---,¢; lead to a lower
bound of p(zx|mij, D;) — that is, pe(Tik|mij, Ds) = ming{pe(zik|mij, Ds)} — and therefore
the interval [pe(zik|mi5, D), p* (€ik|mi5, D;)] contains all posterior estimates of 6;;; that would
be obtained from the possible completions of the database, thus providing a measure of the
quality of information conveyed by D; about ;5% [10].

3.2 POSTERIOR PRECISION

The value in (10) is an estimate of E(6;;x|D;). We now derive an estimate of the posterior
precision of §;;. Suppose we have n(m;;) cases completely observed on m;, so that n —
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Generating Structure Variables Cases
X1(2)X2(2)
X X X 1000
Ml 1= Ay = A3 .X3(2)
X1(2)X3(2)
XXy = X 1000
Mo 1 2 3 X5(3)
X5 +— X3 X4 h X1(2)X2(2)
Ms N e X3(3) 5000
X1 o X X4(2)X5(2)
X5 + X X4 X1(3)X2(3)
My N 7 X5(3) 10000
X, — X X4(3)X>(4)

Table 1: Generating structures used in the experimental evaluations. The number next to
each variable reports the number of states.

32 n(mij) is the number of cases partially observed on the parent variable II;. Let 6; =
(61, ...,0s,) be the parameters associated to the joint probability distribution of II;, and
let D{B;1, ..., Big;) be the prior distribution, so that §; = 3°; 8;; is the prior precision. If
we knew the probability distribution of m;; we could distribute the incomplete cases across
the states of II;, so that the expected precision of the posterior distribution of 8;; would be
aij +n{miz) + p(mij)(n — T, n(my;). Thus if f(m;5|D;) is an estimate of p(my;), an estimate
of the posterior precision is

&ij = agj + n(mig) + P(mig| Di) (n — D n(mij)). (12)
J
Clearly, &;; is the exact posterior precision when the database is complete and, as the
number of missing entries increases, the accuracy of &;; heavily depends on p{m;;|D;). We
can apply the BC method to obtain the estimate f(m;;|D;). When data are missing at
random, the estimate of ¢;; = p(Il; = 7|1l =7), 7 =1,...,¢s, is

(]3" _ ﬂij+n(7rij)
Y B+ Xpn(ma)
We can then apply (10) to obtain

Qi
Bmi) = D bupie(mi|Ds) + Gijp° (miz|Di)
I#£j=1
where 5 (725 (i)
. 37 + i) +n®{m;
p (7Tij|Di) — ] 17 . 17
Bi + %op nlmn) + n®(my;)
Bij + nlmij)
pua(msy|Dy) =
(Tl D) = B ) + ()’
with n®(m;;) denoting the number of possible completions of the incomplete cases on my;.
As the number of missing entries increases, the estimate é;; tends to ay; + (8;;/0:)n so that

7
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% Induced Model {(DiM) Time

100 | X; — Xo — X3 1437 12
Xy — X3

80 t A 1426 13
Xy

60 Xi Xo— X3 1446 11

40 | X7 — Xo — X3 1447 12

20 Xy — Xo — X3 1414 12

Table 2: Models induced from the database generated from AM; for different percentages
of available entries.

% X1 =hll X2 =H X3 =1
100 0.11 0.78 0.56
80 0.11 0.78 0.57
60 0.12 0.79 0.56
40 0.11 0.79 0.57
20 0.10 0.79 0.60

Table 3: Marginal probabilities induced for the structure M for different percentages of
available entries.

the cases are distributed according to the prior belief about the parameters defining the
BBN.

4. EXPERIMENTAL EVALUATION

The aim of the experiments described in this Section is to evaluate the accuracy of the
estimate (7) as the number of missing entries in the database increases.

4.1 MATERIALS AND METHODS

We considered four different models described in Table 1. From each of these models we
generated a random sample of n cases, and applied the algorithm for the induction of
the model from the data, using an initial order which was consistent with the generating
structure, and assuming uniform prior distributions on the parameters. We then iteratively
deleted 20% of the sample at random, until the database was empty. On each incomplete
database we run our system to induce the model from the data. The algorithm takes as
input a database together with a partial order on the variables occurring in it, and returns
a BBN. The induction of the graphical model uses a greedy search strategy and replaces
the measure (5) with the BC estimate (8). Once the graphical model has been chosen, the
conditional probabilities are estimated using the BC method. This method was implemented
in Common Lisp and the experiments were performed on a Macintosh 7500/100.
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100 80 60 40 20

9(X7) 356 353 367 350 324
9(X2) 531 526 519 512 506
9(Xs) 690 692 689 689 678
9(X2,X1) | 519 512 520 511 483
9(X3,X1) | 691 692 692 684 667
9(Xs,X2) | 562 560 560 586 607
9(Xs,(X1,X3)) | 564 554 566 593 609

Table 4: Estimate of —logg(X;,II) for different percentages of available entries in the
database generated from M.

100 80 60 40 20
X1 X3 X, 1577 1570 1575 1552 1508
X; — X3 Xo | 1579 1571 1578 1546 1491
X; Xo— X3 | 1450 1439 1446 1448 1437
X1 — X3+ Xo | 1452 1432 1452 1455 1438
X; - Xo X3 | 1565 1557 1576 1551 1485
Xy X7 — X5 | 1566 1557 1578 1545 1469
X1 = Xo — X3 | 1437 1425 1447 1447 1414
X1 - Xq
I} 1439 1419 1452 1454 1416
X3

Table 5: — log #(D;| M) for all possible models consistent with X3 < X5 < X1, for different
percentages of available entries generated from M.

4.2 RESULTS AND DISCUSSION

Tables 2 and 6 show the models induced from the databases generated from the two models
My and My, the estimates of —log p(D;| M) for different percentages of available entries,
and the total run time, in seconds, taken to extract the graphical model and estimate the
parameters of the BBN. Tables report — logp as [. The marginal probabilities are displayed
in Tables 3 and 7. The initial order on the variables was in both cases X3 < X3 < Xj.

The models learned from the database generated from M, are the correct ones when
40% and 20% of the entries in the database are available, and coherently the model of
independence is induced from the empty database. With 60% and 80% of the entries,
the induced models differ from the generating structure in one link. Run times show a
remarkable independence from the percentage of missing data in the database.

Table 4 gives the estimates —log §(X;,II;;) computed in each step of the algorithm.
When 80% of the entries is available, — log §(X3, (X1, X2) = 554 and — log §(X3, X2) = 560,
so that the model induced from the incomplete database is exp(—554 + 560) = 403.4 times
more likely than the generating structure, if we assume that the prior distribution on the
eight possible models consistent with the order X3 < Xp < X; is uniform. The strong
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% Induced Model | I(D;|M) Time

100 | X; — X9 — X3 1869 12
Xy — X3

80 T+ A 1855 13
X

60 | X1 — Xo — X3 1865 11
X2 — X3

40 T A 1825 12
X1

20 | X7 — X — X3 1770 12

Table 6: Models induced from the database generated from M, for different percentages
of available entries.

evidence against the model used to generate the database can be due to the fact that
p(X3 = 1|X3 = 2) = 0.1 and p(X, = 2) = 0.77 in the generating structure. In the complete
database n(X3 = 1|X2 = 2) = 22 which becomes 11 when 20% of entries are deleted, so
that the small number of entries may cause the imprecision of the estimate — log p(D;|M).
The conditional probabilities estimated for the model selected are p(X3 = 1|X; = 1,Xp =
1) = 0.77 and p(X3 = 1|{X; = 2,X, = 1) = 0.70, p(X3 = 1|X; = 1,X; = 2) = 0.12 and
p(X3 = 1|X; = 2,X, = 2) = 0.11, so that the estimate of the marginal probability of
X3 = 1 differs from the estimate obtained from the complete database by 1%. When 60%
of the entries are available —log §{X2) = 519 and — log §(X2, X;) = 520 so that the model
induced from the data is only 2.7 times more likely than the generating structure. Again the
marginal probabilities computed from the induced network are very similar to the marginal
probabilities found in the model induced from the complete database: thus the choice of a
slightly different model has little effect on the predicting power of the network.

Table 5 gives the estimate — log f(D;|M) for the eight possible models consistent with
the initial ordering of the variables. These estimates can be computed from the values in
Table 4 by adding relevant terms. The estimates are very accurate until 40% of the entries
are retained. When only 20% of the entries is available, the error of the estimate increases,
but nonetheless the model induced from the database is equal to the generating structure.
If we assume that the set of possible models is limited to the eight models consistent with
the order X3 < Xo < X1, and that they are a priori equally likely, then from the values in
Table 5 we can compute the marginal probability of D and of the four incomplete databases
D; from which we can compute the posterior probabilities of all possible models. The
posterior probability of the model induced from the database with 80% of the entries is
0.9987, against a probability 0.0012 for the generating structure. The other models have
posterior probabilities near 0. With 60% of the entries, the posterior probability of the
induced model is 0.6699, against 0.3258 for the generating structure.

Similar results are found for the models induced from the database generated from M.
The models induced from the databases with 80% and 40% of the entries differs from the
generating structure in one link, and they are respectively exp(—980 + 985) = 148 and
exp(—993 + 995) = 7.4 more likely than the generating structure. The estimates of the

10
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% | X; =1 Xo=1 oY=} X5 =2
100 | 0.11 0.78 0.25 0.30
80 | 0.12 0.78 0.23 0.30
60 | 0.12 0.79 0.23 0.29
0 | 012 0.79 0.23 0.28
20 | 0.10 0.81 0.19 0.30

Table 7: Marginal probabilities in the networks induced from the database generated from
M, for different percentages of available entries.

% Induced Model [(D;i| M) Time
X5 «— X3 X4

100 N Va 25024 183
X1 — Xy
X5 — X3 — X4

80 DS a 24673 191
X1 — Xg
Xy +— X3 X4

60 % a 24871 187
X — X
Xy +— X3 —» X4

40 e N 24814 188
Xl — X2
X5 S X3 X4

20 X 7 25112 185
X1 e/ X2

Table 8: Models induced from the database generated from Mj for different percentages
of available entries.

marginal probabilities are very similar to those obtained in the complete database, again
showing that the consequence of a slightly different model has little effect on the reasoning
process. The estimate of —logp(D;| M) is very accurate until the database contains 40%
of the original entries. The total run times make even clearer that the source of complexity
is the search space and the performances of the method remain insensitive to the number
of missing data. This result is not surprising when we realize that the computational cost
of BC does not depend on the number of missing data. The number of missing data affects
only the storage procedure described in [10] but its effect is limited by taking advantage of
the local independencies of the BBN and by using discrimination trees to store the counters
of observed data and to keep track of the possible completions.

The models induced from the databases generated from Mgj and M are given in Table 8
and 10, respectively. The initial order on the variables was in both cases X5 < X4 < X3 <
X9 < X;. The models induced from the complete database are equal to the generating

11
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% X =1 X, =1 X3=1 Xe=1 Xs=1
100 0.20 0.70 0.39 0.30 0.52
80 0.20 0.71 0.38 0.29 0.53
60 0.21 0.70 0.39 0.29 0.53
40 0.21 0.70 0.39 0.30 0.53
20 0.21 0.69 0.40 0.31 0.54

Table 9: Marginal probabilities in the networks induced from the database generated from
M3 for different percentages of available entries.

structure for both M5 and Mp, and coherently the empty structure is induced when data
are totally missing. Table 9 displays the marginal probabilities computed in the networks
induced from the incomplete databases generated by Ms.

As the number of entries available decreases, at most two extra dependencies are induced
from the database. The only exception is the model induced from the database generated
from My with 80% of the entries available. In this case, four extra dependencies are learned,
and the Bayes factor of the induced model against the generating structure is e'3. However
the conditional probabilities learned are only slightly different, so that the estimates of
the marginal probabilities are extremely robust thus limiting the effect in the subsequent
reasoning process. The estimates of — log p(D;| M) are again extremely accurate.

5. CONCLUSIONS

Missing data represent a challenge for learning methods because they may affect their use
in real-world applications, where databases are often incomplete. Current methods to learn
BBNSs from incomplete databases rely on iterative methods, such as EM or Gibbs Sampling, to
obtain an approximate estimate of the marginal likelihood of the database given a graphical
model, a fundamental step in the process of extracting the graphical structure of a BBN from
a database. This paper introduced a deterministic method able to provide this estimation,
using BC, and to extract the graphical structure from an incomplete database. In this
way, BC can be used to both induce the graphical structure and assess the conditional
probabilities of a BBN from an incomplete database. Preliminary experimental evaluations
show a significant robustness of this method and a remarkable independence of its execution
time from the number of missing data.
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