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Abstract

It has recently been shown how to formulate complex problems of forensic identification
inference, such as occur in disputed paternity cases, in terms of Bayesian networks [1][2].
This makes it possible to use available software, such as the free program XBAIES [5] or
commercial systems such as HUGIN (4], to analyse such problems efficiently and accurately.
However, while specifying an appropriate network for a specific problem is not difficult,
current Bayesian network software is ill-suited both to the task of editing the many local
conditional probability tables — whose values are determined by the standard Mendelian
model of genetic inheritance — and in combining the evidence from several genetic markers.

Here I introduce two software tools, called FINEX and FINEXGUI, that enable users to
quickly specify and analyse such problems, and that free the user of the tedious task of
editing conditional probabilities.

Keywords Bayesian networks, genetic markers, forensic identification.

1 Introduction

Consider the following simple case of disputed paternity. A mother m claims that the father
of her daughter ¢ is a certain male, but he denies this; we denote this putative father by pf.
DNA evidence in the form of measurements on genetic markers is available on all three parties.
The problem of determining whether the putative father, pf is the true father (labelled by tf)
can be viewed as a problem of model selection. In one model pf is taken to be the true father,
while in a second model some other person (who we shall assume in our example is drawn
randomly from the general population) is taken to be the true father. For both models the joint
probability distribution for the possible genetic make-ups of all parties prior to taking the DNA
evidence into account is established. From these the likelihood of the available DNA evidence
is evaluated for each model, and on the basis of their relative values a conclusion is drawn as to
whether to accept or reject the mother’s accusation that pf is the father of child c.

In the following sections I will describe how the problem described above may be analysed
by using Bayesian networks, and describe a purpose written program to analyse this and similar
problems. The plan of the paper is as follows. Section 2 gives a brief resumé of the ideas
and basic probabilistic results about DNA and genetic inheritance required for this paper.
Section 3 presents the above paternity example as a standard forensic diagram, and describes
how it may be represented by a Bayesian network which may be used to find a likelihood ratio
for paternity. Section 4.1 introduces a forensic indentification specification language using the
above example. Section 4.2 describes the program FINEX, which takes a specification script as
input, and performs the required probability calculations. FINEX differs from other specialist
forensic software, such as familias[3], in being based upon general Bayesian network software
and inference algorithms. In Section 4.3 the program FINEXGUI is introduced, which the user
can use to create a specification script using simple graphical manipulations.
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2 Some background information on genetics

Every cell of a person contains 46 chromosomes, which can be grouped into 23 distinguishable
pairs of homologous chromosomes. For each homologous pair, one chromosome is inherited from
the person’s mother, the other from the person’s father. However these inherited chromosomes
are not copies of the parents’ chromosomes. This is because sperm and egg cells are produced
by a cell-division process called meiosis, during which each homologous pair of chromosomes
randomly splits and recombines in a process called crossover, to create a new pair of chromo-
somes. One chromosome from each of these crossover pairs is represented in the gamete (sperm
or egg), which thus has 23 unpaired chromosomes. Such cells are called kaploid. When two
haploid cells combine the resulting zygotic cell has 23 pairs of chromosomes; such cells are called
diploid. Thus a child will inherit, for each of its father’s 23 pairs of homologous chromosomes,
only one of the two crossover chromosomes, each with equal probability; the same goes for the
mother’s 23 pairs of chromosomes. During cell division of a fertilized egg these chromosomes are
replicated. Hence almost any cell in the body may be used for forensic identificiton. However,
it is not possible to tell solely from an individual’s chromosome which parent it came from.

Each chromosome consists of a sequence of large molecules called neucleotides, there being
four neucleotides in all. (These are adenine, cytosine, guanine and thymine, referred to by the
letters A,C,G and T respectively). Genes are particular subsequences in the paired chromo-
somes; any specific gene is associated with a specific chromosome at a particular position called
a locus (hence there are two genes at a locus of a chromosome pair). A gene used in forensic
identification at a particular locus is called a marker. A marker may have one of a number
of alternative chemical compositions, called alleles. The number of possible alleles will vary
according to the particular marker. An unordered pair of alleles is associated with each marker
measured by a forensic laboratory, an allele from each of the two homologous chromosomes
associated with the marker. One of these is inherited from the father, and is called the paternal
gene, the other is inherited from the mother and is called the maternal gene. This pair is called
the genotype. (I shall not go into the details of how the laboratory measurements of genotypes
are performed.) Mendel’s first law dictates the form of the probabilities of individual genes
being passed on from parent to offspring.

Table 1 shows the alleles for the marker HBGG, which is routinely used in forensic identifica-
tion, and their (possible) frequency of occurence in a (specific) population. Such frequencies —
typically obtained from a forensic analysis of many individuals — together with the Mendelian
law of gene inheritance, define all of the probabilities that will enter into the genetic inheritance
models considered later.

3 Forensic diagrams

The disputed paternity scenario outlined in Section 1 is illustrated diagrammatically in Figure 1.
In such diagrams males are represented by rectangles, females by circles. Time order is top to
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Table 1: Alleles and illustrative population frequencies of the marker HBGG.

Allele A B C
Freq. in Pop. | 0.53 0.45 0.02

bottom, so that nodes on a lower level in the diagram represent later generations. The shaded
nodes indicate that forensic measurements are available on those individuals. The question that
the diagram asks, is whether pf if the true father tf of the child c.

?

Figure 1: Diagram of a simple paternity dispute

Following [1][2] we model this diagram of disputed paternity by the paternity network
Figure 2, which describes the inhertance pathways of alleles. Genotype nodes have labels ending
with gt while paternal and maternal gene nodes have labels ending with pg and mg respectively.
Finally, the figure includes a query node, tf=pf?, whose function we shall describe later.

Figure 2: Paternity network corresponding to Figure 1.

Let us look at the semantics of Figure 2, which is an example of a Bayesian network. First
note that each genotype node has no graphical child in the graph.! Furthermore each genotype

'Unfortunately, the terms parent and child have a specific meaning for Bayesian networks which are apt to
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node has two graphical parents, one a paternal gene and one a maternal gene — recall that
the genotype is an unordered pair of maternal and paternal genes. The conditional probability
table associated with a genotype node will consist of ones and zeroes, indicating the logical
possibility or impossibility of a given genotype being a combination of the given maternal and
paternal genes.

Next consider those pg nodes which have graphical parents (excluding for now the tfpg
and tfmg nodes). Again there are exactly two graphical parents: one, the father’s maternal
gene, the other the father’s paternal gene. Similarly those mg nodes which have parents in the
graph also have exactly two graphical parents: the mother’s maternal and paternal genes. The
conditional probability tables associated with these nodes are readily deduced from the law of
Medelian inheritance, and will have entries consisting only of the values 0, 0.5 and 1.

Now consider those mg and pg nodes which do not have graphical parents; in reality the
individuals represented by such nodes will have real parents, grandparents, etc. For the purposes
of the paternity network such individuals are ignored (unless there is DNA information about
them or their other descendants). For these nodes the associated unconditional probabilities
are simply the allele frequencies as for example in Table 1.

The query node tf=pf? has two states, yes and no. This node has no parents, and its
unconditional probability table takes values (0.5,0.5). Now consider the node tfpg, which
has the graphical parents pfpg and tf=pf?. For the state yes of tf=pf?, the true father’s
paternal gene will be identical to the putative father’s paternal gene. This is represented by the
conditional probability table P(tfpg|pfpg, (tf = pf?) = yes) taking values of zero unless the
state of tfpg is the same as that of pfpg, in which case the value is unity. However, for the
state no of tf=pf?, the putative father’s paternal gene is irrelevant to the true father’s paternal
gene, in which case the conditional probability table P(tfpg | pfpg, (tf = pf?) = no) is taken
to be that of the distribution of genes in the population. Similar remarks apply to the node
tfmg.

Having set up the Bayesian network model for a particular marker, we may now enter and
propagate the evidence known about the genotype nodes cgt, mfgt, and pfgt, and then read
of the posterior probabilities on the node tf=pf?. These give us the likelihoods of the two
paternal hypotheses because of the uniform prior place on this node. If we repeat this for a
number of different markers which are on distinct homologous chromosomes, (we will require for
each such marker a different Bayesian network having the same structure, however the states of
the nodes and their associated probability tables will depend upon the marker), then because
of the independence in the inheritance of these chromosomes, the individual likelihoods may be
multiplied together to give a joint likelihood over all markers. Finally, an overall likelihood ratio
of the two hypotheses may be calculated, upon which a judgement about the disputed paternity

conflict with the more natural familial meanings of the terms for the individuals that we are modelling. To avoid
confusion, when referring to a parent or child in the Bayesian network sense, I will use the terms graphical parent
and graphical child. respectively
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may be made.

4 A specification language

4.1 The simple paternity example

Using the simple paternity example I shall now illustrate a specification language for forensic
identification which can be interpreted by the program FINEX to calculate the required like-
lihoods. Let us suppose that the following observations on the marker FESFPS have been
collected: for the mother m, alleles 10 and 12; for the putative father pf, alleles 10 and 12; and
for the child ¢, alleles 12 and 12. With this data, Figure 3 shows a specification of the paternity
problem intended for the FINEX interpretor.

genepool gp < "genepool.data" ;

female m < ;

male tf < gp ;

male pf < gp : tf ;

union u < m + tf ;
female ¢ < u ;

data pf < "FESFPS" "o" v
data m < "FESFPS" "io" "an
data c < "FESFPS" n"ion "o
likelihood ;

Figure 3: Specification of simple paternity problem.

Each command ends with a semicolon. The first line declares a variable gp to be of type
genepool — currently FINEX expects data on population allele frequencies to be stored in
textfiles — so the first line says to read the data held in the file genepool.data into the
variable gp. The ‘<’ symbol is an assignment operator. Note that in the previous diagrams
the background population genepool was implicit; here the specification language for FINEX
requires that it be defined explicitly. This has the bonus that several different ethnic groups
may be modelled explicitly.

The second line declares mf to be of type female, and that she inherits her alleles from
gp, the population genepool. The third line in a similar manner declares the true father tf
to be of type male, again drawn from gp. The fourth line declares pf, the putative father,
to be of type male, but with his genes drawn either from the general population genepool or
from tf. The question mark flags pf to be used for generating the query node, the composite
symbol ‘7 <’ being called a query-assignment. There may be several terms on the right of the
query-assignment, each separated by a colon, but there can be only one person declared using
a query-assignment statement.

Now the child needs to be declared; before doing this another data type is first introduced,
called a union. (A union corresponds to a marriage node in genetics.) A union represents
all the possible children that a couple can have (so a union is equivalent to a subpopulation
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genepool), hence on the right the two individuals making up the couple are specified: must be
one male and the other female, but they may be specified in any order. After declaring the
union u, the child ¢ is declared to be of type female, drawing her genes from the union u.

An important constraint is that a variable occurring on the right-hand-side of an assignment
or query-assignment statement must have been declared in some previous line.

The next three lines specify the data available on the individuals; note that data on several
markers may be given. The final line 1ikelihood is a command to evaluate the likelihoods of
the various queries based upon the specified data. An alternative form of this command is to
write likelihood followed by a subset of names of observed markers. Individual likelihoods
based upon these markers, and overall likelihood-ratios, are then evaluated.

The above example shows all of the datatypes of the specification language. An interesting
aspect is that the specification of even this simple problem is not unique. Figure 4 shows an
alternative specification.

%enepool gp < "genepool.data" ;
emale m < gp ;

male pf < gp ;

male tf ?7< gp : pf ;

union u < m + tf ;

female ¢ < u ;

data pf < "FESFPS" "io" "
data m < "FESFPS" "i0" wia2w
data ¢ < "FESFPS" "y v
likelihood ;

Figure 4: Alternative specification of the simple paternity problem

These two specifications differ in the questions that are being posed. The specification of
Figure 3 asks of pf: Is pf the true father, or someone else from the general population (excluding
c and m)? The alternative specification in Figure 4 asks the different question: Is tf, the true
father, the same person as the putative father, pf, or someone else from the general population?
The first form asks a question about pf, the second asks a logically equivalent question about
tf — for the problem of determining if ¢ is the child of pf by m the questions are the same. Yet
another way of posing the paternity question is to place the emphasis of question onto the child
¢, as shown in Figure 5, where now we replace the node tf by af, meaning alternative male.
The question then posed is not one of identity but one of the child’s origins: Is ¢ a child ¢1 by
af or a child ¢2 by pf ? (This specification also describes the following scenario: A woman m
has two daughters, c1 by af and ¢2 by pf. Both daughters have disappeared, but a body ¢ is
found which is known to be one of the two daughters. DNA evidence is available on m, pf and
¢. Which of the two daughters is ¢?)

Corresponding to each of these three representations will be three different Bayesian net-
works, but they all give the same likelihoods regarding the paternity of c. (Incidentally, the
Bayesian network in Figure 2 corresponds to the specification in Figure 4.)
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genepool gp < "genepool.data" ;

female m < gp ;
male pf < gp ;
male af < gp;
union ul < m + af ;
union u2 < m + pf ;
female c¢1 < ul ;
female ¢2 < u2 ;
female ¢ ?7< ¢l : ¢2 ;
data pf < "FESFPS" "io" "2
data m < "FESFPS" "iQ" "2n
data ¢ < "FESFPS" "i2" "an
likelihood ;

Figure 5: A third specification of the simple paternity problem
4.2 FINEX

FINEX is an interpretor for processing commands in the specification language, and is built upon
the software that drives XBAIES [5]. It can be run interactively at the command line, with the
user typing in commands. However, it is more convenient to prepare a text file containing the
commands, and to have FINEX read this file through standard input redirection.

In general, FINEX takes the specification input and, for each marker that data is available
on and a likelihood is required for: (i) constructs an appropriate Bayesian network; (ii) enters
and propagates the marker evidence; and (iii) evaluates the likelihood for that marker. Overall
likelihood-ratios are also returned (calculated in the case of data on several markers that they
are on distinct homologous chromosomes).

The marker FESFPS has seven possible allele values, labelled by integers from 8 to 14.
However in the simple example only the alleles 10 and 12 were observed. Thus FINEX implements
the procedure described in [2], whereby to increase the efficiency of the likelihood calculations
for each marker all of the unobserved alleles are combined into one unobserved state x. In the
example this leads to a reduction of the largest conditional probability table from a potential
size of 72 = 343 to one of just 27 entries.

The output on passing FINEX the specification in Figure 3, using allele frequencies given
by: p(10) = 0.288, p(12) = 0.258, p(z) = 0.454, is shown in Figure 6. From this we see that
the likelihood ratio of pf being the true father to pf being a person drawn at random from the
general population is almost two, based upon this single maker DNA evidence.

It is worth emphasizing that a user only needs to specify the population allele frequencies;
the user does not need to construct and edit potentially large conditional probabilities tables —
FINEX handles their construction automasically. To reduce the possibility of user error in typing
in the specification commands, either interactively or when creating a script file, the program
FINEXGUI was written which allows a user to diagrammatically build up the specification.
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Marker : FESFPS
"prN"
% pfQN: pfQN

0.340369 ¥ pfQN=gp_? |
0.659631 ¥ pfQN=tf_? |

prob(evid) = 0.00418498

likelihood ratio for the various queries
gp_"7 0.516
tf_7 1.93798

Figure 6: FINEX output based upon the input Figure 2

4.3 FINEXGUI

FINEXGUI is a graphical interface program which allows users to construct a diagrammatic rep-
resentation of commands which would appear in a specification script, and indeed it generates a
specification file from the diagram for interpretation by FINEX. Figure 7 shows in diagrammatic
form the script of Figure 3. It is actually very close to the diagram that a user would construct
using FINEXGUL The only difference is in the query-assignment, which in Figure 7 is illustrated
by the curved line with the question mark nearby crossing the directed edges from gp and tf
to pf. In FINEXGUI, a specific query-person node is formed, which is displayed differently from
the nodes representing other people. Almost all input is mouse driven, using pull down menus,
with data entered on a person by means of a mouse selectable popup-listbox.

Figure 7: FINEX network corresponding to Figures 1 and 3.

Figure 7 can be viewed as an elaboration of Figure 1, with explicit inclusion of the population
genepool and a greater explicitness of the identity question being posed.
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5 Summary

T have introduced two programs, FINEX and FINEXGUI and an associated specification language
for use in problems of forensic identification using genetic markers. The programs automate
a large amount of the specification of the Bayesian networks described in [2], thus saving a
considerable amount of time and eliminating the chances of human error arising in editing
conditional probability tables using currently available Bayesian network software. At present
the program runs on MS Windows 9x and NT operating systems, though porting to other
platforms is underway. It is planned to combine the FINEX and FINEXGUI programs into one,
and to extend the functionality in other ways, such as dealing with genetic mutation. (There is
some limited functionality for modelling mutation at the moment.) It should be stressed that
the specification language is under active development, so that future versions could look quite
different from the format presented in this paper.
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