
              

City, University of London Institutional Repository

Citation: Jansson, A., Bittner, R. M., Ewert, S. & Weyde, T. (2019). Joint singing voice 

separation and F0 estimation with deep U-net architectures. 2019 27th European Signal 
Processing Conference (EUSIPCO), 2019-S, doi: 10.23919/EUSIPCO.2019.8902550 

This is the accepted version of the paper. 

This version of the publication may differ from the final published version. 

Permanent repository link:  https://openaccess.city.ac.uk/id/eprint/23669/

Link to published version: https://doi.org/10.23919/EUSIPCO.2019.8902550

Copyright: City Research Online aims to make research outputs of City, 

University of London available to a wider audience. Copyright and Moral Rights 

remain with the author(s) and/or copyright holders. URLs from City Research 

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study, 

educational, or not-for-profit purposes without prior permission or charge. 

Provided that the authors, title and full bibliographic details are credited, a 

hyperlink and/or URL is given for the original metadata page and the content is 

not changed in any way. 

City Research Online



City Research Online:            http://openaccess.city.ac.uk/            publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk


Joint Singing Voice Separation and F0 Estimation
with Deep U-Net Architectures

Andreas Jansson
City, University of London / Spotify Inc.

New York, USA

Rachel M. Bittner
Spotify Inc.

New York, USA

Sebastian Ewert
Spotify Inc.

London, UK

Tillman Weyde
City, University of London

London, UK

Abstract—Vocal source separation and fundamental frequency
estimation in music are tightly related tasks. The outputs of vocal
source separation systems have previously been used as inputs
to vocal fundamental frequency estimation systems; conversely,
vocal fundamental frequency has been used as side information
to improve vocal source separation. In this paper, we propose
several different approaches for jointly separating vocals and
estimating fundamental frequency. We show that joint learning
is advantageous for these tasks, and that a stacked architecture
which first performs vocal separation outperforms the other
configurations considered. Furthermore, the best joint model
achieves state-of-the-art results for vocal-f0 estimation on the
iKala dataset. Finally, we highlight the importance of performing
polyphonic, rather than monophonic vocal-f0 estimation for many
real-world cases.

Index Terms—music, voice, singing, fundamental frequency
estimation, pitch, melody, source separation, multitask learning

I. INTRODUCTION

The singing voice plays a major role in most music cultures
around the world. In music signal processing, two common
tasks related to the singing voice are vocal separation (recov-
ering a recording of the singing voice from a complete song)
and vocal f0 estimation (estimating the fundamental frequency
of the singing voice over time). As demonstrated in [17],
there are dependencies between the two tasks, which allowed
for improving the performance on one task by integrating
information obtained via a method designed for the other.
These dependencies can be modeled in different ways. For
example, the fundamental frequency can be estimated and
employed as side information in the separation process [10],
[17]. Alternatively, an estimate of the clean singing voice can
be used as input to simplify the estimation of the fundamental
frequency of the voice [4]. Given that both directions were
successfully exploited in the past, it remains unclear how these
dependencies should be modeled, especially given that prior
work typically solves one task independently of the other
and conditions the other on the resulting point estimate —
eliminating the potential benefits of circular influence. Attempts
have been made to learn both tasks iteratively, in an alternating
fashion [7]. Learned joint pitch and separation models have
been proposed for speech [19]. However, we are not aware of
prior work in music that jointly performs vocal separation and
vocal melody estimation.

Another important aspect of combining models for different
tasks is the issue of a resulting mismatch between the data
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Fig. 1. Performance of pYIN [11], Crepe [9], and Deep Salience [2] on
the iKala [3] dataset. pYIN and Crepe are run on clean iKala vocals and on
vocals computed by running a source separation algorithm (“Source Only” in
Figure 3) from iKala mixtures as input. Deep Salience and Melodia are run
on iKala mixtures as input. Boxplots show the distribution of OA and RPA
over each track in the dataset.

distributions at training and test time. Consider performing
vocal f0 estimation by first applying a source separation
algorithm to a mixed signal and then running a standard pitch
tracker. Pitch trackers are typically designed based on two
assumptions: the signal being pitch tracked has little to no noise
or interference, and is monophonic. Due to these assumptions,
pitch tracker performance can suffer from artifacts introduced
by source separation, which can include residual sounds that are
pitched or other interference in the background. Figure 1 shows
the performance of three different pitch tracking algorithms —
Crepe [9], pYIN [11], and Deep Salience [1] on both clean
and source-separated vocals in the iKala dataset [3]. The
Overall Accuracy (OA) and Raw Pitch Accuracy (RPA) metrics
(standard metrics in pitch tracking, see [15] for a description)
considerably decrease for all three algorithms when applied
to source separated instead of clean vocals. Additionally, for
songs containing more than one singing voice, many current
source separation systems tend to isolate all singing voices; the
resulting polyphonic signal can severely reduce the accuracy
of pitch trackers.

Given this interdependent nature of the two tasks, it is an
open question how to design a joint estimator, and whether such
a system would actually yield benefits. As a first contribution in
this paper, we demonstrate that incorporating “oracle” (ground



TABLE I
DEFINITIONS OF RECURRING NOTATIONS

Notation Description
ym, yv mixture and vocal audio signals
Ym, Yv magnitude STFT of mixture and vocal audio

Sv vocal f0 salience produced by Deep Salience on Yv [1]
Ŷv , Ŝv model estimate of Yv , Sv

M̂v model estimated ratio mask

truth) information for both pitch and separated vocals can
indeed improve the learned results for the other task. As a
second contribution, we then design, implement and evaluate
different model architectures that estimate pitch and vocals
individually or jointly in a variety of ways, each reflecting
a different perspective on the interdependency of the two
tasks. Finally, inspired by end-to-end unfolding techniques
for representing iterative re-estimation processes of dependent
components inside a network [18] as well as stacking networks
[12], we propose an architecture which resolves the task
dependencies within a sequential re-estimation model.

II. INPUT AND OUTPUT REPRESENTATIONS

We make use of an internal dataset of roughly 2500 pairs of
music audio signals ym and corresponding isolated vocal audio
signal yv from a number of musical genres, including pop, rock
and rap vocals. All singing voices present in the mixture ym are
included in the isolated vocals signal yv , meaning that yv may
— and often does — contain more than one active voice at a
time (e.g. a lead singer and background harmonies). ym and yv
are converted to mono with a sample rate of 22050 Hz. Let Ym

and Yv be the magnitude of the Short Time Fourier Transform
(STFT) spectrogram of ym and yv respectively. STFTs are
computed with a hop size of 256 and with 1024 points in the
FFT, as shown in Figure 2 (left) and (middle) respectively.

Our dataset does not contain ground truth vocal f0 annota-
tions. As a proxy for ground truth f0, we run the Deep Salience
multiple-f0 estimation model [1] on the isolated vocals yv in
our training set. Deep Salience predicts a matrix Sv of f0
salience values — i.e. the likelihood of an f0 value being
present over a grid of time-frequency points (see Figure 2,
right). Note that this algorithm does not assume the audio is
monophonic — if multiple pitches are present at the same time,
there can be multiple high-likelihood f0 bins. Sv is the target
output for the vocal f0 estimation (pitch) component of our
models. Note that we are training a model to reproduce the
output of another trained model (Deep Salience), similar to a
teacher-student training paradigm [6]. One notable difference
is we are training our model to produce Sv given mixtures
as input, while the pre-trained Deep Salience model is given
isolated vocals as input. This also means that the performance
of our model will likely be upper bounded by the performance
of Deep Salience on isolated vocals.

The largest public datasets with mixtures, corresponding
isolated vocals and annotated vocal f0 are iKala [3] (≈ 2
hours) and MedleyDB [2] (≈ 3 hours, since only half of the
tracks contain vocals). Because Deep Salience was trained using
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Fig. 2. An example of the input and output representations used for training.
(Left) Input magnitude STFT of the mixture audio. (Middle) Target magnitude
STFT of the isolated vocal audio. (Right) Target vocal salience produced by
the Deep Salience algorithm [1]. The top row shows an example where there is
one solo singer, while in the bottom row, three singers are singing in harmony.

MedleyDB, we evaluate the performance of our models on
iKala. We compare vocal f0 outputs with iKala’s f0 annotations
using the mir_eval [13] implementation of standard melody
metrics [15]. Vocal source separation outputs are evaluated
using the Signal-to-Distortion Ratio (SDR) metric1 from the
mir_eval implementation of BSS Eval [16].

III. MODEL OVERVIEW AND TRAINING

The models presented in the subsequent sections are com-
posed of one or more U-Nets [14]. We use the same architecture
as in [8] for estimating both vocal separation Ŷv and vocal
f0 salience Ŝv . The vocal separation network produces a soft
ratio mask M̂v from where we derive the vocal magnitude
STFT Ŷv = M̂v � Ym, and is optimized by minimizing the L1
loss

∥∥∥Ŷv − Yv

∥∥∥
1
. The isolated vocal signal ŷv is synthesized by

applying the phase of the original complex mixture spectrogram
to the estimated magnitude spectrogram, and transforming to
the time-domain by means of the Inverse Short Time Fourier
Transform (ISTFT). The salience network outputs Ŝv directly
and is optimized with L2 loss

∥∥∥Ŝv − Sv

∥∥∥
2
.

In the case of monophonic targets (e.g. as in iKala), f0 time
series are generated from Ŝv by returning the frequency with
maximum likelihood at each time frame. The voicing (when the
voice is active/inactive) is determined by a simple threshold on
the maximum likelihood at each time frame; frames where the
likelihood falls below the threshold are reported as “unvoiced”.
In the results from our models, we fix the voicing threshold
to 0.4. For the comparison models (Crepe, Melodia, etc.), we
compute performance for a full grid of possible thresholds,
and report the performance for the threshold that maximizes
performance in each case (“oracle” threshold).

IV. BASELINES AND ORACLE EXPERIMENTS

As a baseline, we first train separate models, shown in
Figure 3 (left): Pitch only which estimates f0 salience given
mixtures as inputs, and Source only which performs vocal

1Signal-to-Interference and Signal-to-Artifact Ratios followed the same
trends as SDR and are therefore not included.
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Fig. 3. (Left) Baseline models take the mixture magnitude STFT Ym as input,
and output vocal f0 salience Ŝv in “Pitch Only”, and the vocal magnitude
STFT Ŷv “Source Only”. (Right) Oracle models which are given “perfect”
input information. “Oracle Source” is given isolated vocals magnitude STFTs
Yv as input and trained to output Sv . “Oracle Pitch” is given Ym and oracle
vocal f0 salience Sv as input and trained to output Yv .

source separation. These models are completely independent
and do not share weights. As an upper bound, we train models
that receive oracle information — Oracle Vocals which esti-
mates vocal salience Ŝv given ground truth vocals Yv as input,
and Oracle Pitch which estimates the vocal spectrogram
magnitudes Ŷv given the mixture Ym and ground truth f0
salience Sv as inputs, as shown in Figure 3 (right). Oracle
Vocals tells us how well we can estimate f0 performance given
perfect information, i.e. the performance reported provides an
estimate for the upper bound achievable with this architecture
and number of parameter. Oracle Pitch tells us how much
it helps source separation performance to have f0 salience as
side information, and similarly gives us an upper bound on
source separation performance.

The results in Figure 4a clearly show that a vocal pitch esti-
mator trained on clean vocals Yv (Oracle Vocals) performs
better than one trained on mixtures Ym (Pitch only). This is
consistent with Figure 1 where pitch trackers with clean vocals
as input outperform pitch trackers that operate on mixtures. A
similar effect can be seen for vocal separation in Figure 4b,
where the inclusion of ground truth pitch salience Sv improves
the source separation metric.

V. JOINT MODELS

In the following section, we present a series of different
architectures that perform both vocal source separation and
f0 salience estimation. Figure 5 gives an overview of the
architectures we compare; they share information in various
ways, either through weight sharing (treating the problem in a
standard multitask setup) or by directly giving the outputs of
one stage of the model as input to the next.

A. Conventional Multitask Models

We first experiment with architectures that share weights
for both tasks. The Shared Encoder model, Figure 5 (top
left), shows the simplest such architecture, which has one
encoder that is shared and separate decoders for each task.
The results for this experiment show that the shared encoder
model is inferior to disjoint models for both vocal f0 estimation
(Figure 4a) and vocal separation (Figure 4b). One potential
explanation for this result is that the shared encoder reduces
the number of parameters in the network by 25%.
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Fig. 4. Performance comparison of our experiments, oracle, and baseline
models, evaluated on iKala. (Top) Single-f0 metrics. (Bottom) Vocal source
separation metrics.

Shared Encoder

Source → Pitch Pitch → Source

Cross-Stitch
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Mixture

S → P → S → P

Fig. 5. Joint U-Net models. Each model takes the magnitude spectrogram
of the mixture Ym as input and outputs estimates of the vocal magnitude
spectrogram Ŷv and the vocal f0 salience Ŝv . In Pitch→Source model,
Ym is given as additional input to the vocal source separation portion of the
model (indicated by a dotted line), and similarly in the S→P→S→P model,
the first vocal estimate Ŷ ′

v is given as additional input to the second vocal
source separation model. In Separately Trained, each network is trained
separately, first optimizing Ŷv , and then using the optimized Ŷv as input to a
second model that outputs Ŝv .

In the Cross-Stitch model, shown in Figure 5 (top right),
each output has separate encoder-decoders, but the encoders
are concatenated before being passed to the individual decoders.
However, the skip connections are task-specific. This model has
a capacity equivalent to that of the two baseline models, and
should not suffer from the same potential capacity issue of the
Shared Encoder model. Cross-Stitch performs slightly better
than Shared Encoder, but is still worse than the baseline



models on both tasks.

B. Stacked Models

In Figure 5, (bottom left and middle), the tasks are learned
in a cascaded manner. In the Source→Pitch model, a first
U-Net computes Ŷv given Ym, and a second U-Net computes
Ŝv given Ŷv as input. Pitch→Source is similar but in the
reverse order, and with the addition of concatenating Ym and
Ŝv as input to the second U-Net model. This concatenation
was added because there is not enough information in Ŝv alone
to compute Ŷv — the mixture information is needed as well.

As shown in Figure 4a, Source→Pitch outperforms all
of Pitch only, Shared Encoder and Cross-Stitch for
pitch estimation. This is perhaps unsurprising, since the
baseline model trained on clean vocals (Oracle Vocals)
performs better than the baseline trained on mixtures (Pitch
only). However, Pitch→Source does not result in a similar
improvement for vocal separation, even though Oracle Pitch
saw significant improvements. We hypothesize that the lack
of accuracy of pitch estimates from mixture (see Figure 4a)
prevents improvements of the vocal separation on the level of
Oracle Pitch.

C. Stacked Refinement

In our final experiment, we attempt to further refine the
results of Source→Pitch. Stacked Refinement [5] is an
architectural pattern in which a network module is repeated,
feeding the output of a module as input to an identically
designed module, with different weights. We adapt this pattern
to our domain by extending Source→Pitch to a “Source →
Pitch→ Source→ Pitch” (S→P→S→P) network 5 (right). We
notate the output of the first source network Ŷ ′

v and the output
of the first pitch network Ŝ′

v. The second source network is
fed a concatenation of Ŷ ′

v and Ŝ′
v , and it outputs Ŷv , which it

then feeds into the second pitch network to output Ŝv. This
allows higher level modules to learn a refinement function
from initial predictions to cleaner predictions. The scores for
the resulting model are plotted in Figure 4a and Figure 4b. The
stacked refinement model surpasses the performance of all of
our other models for both vocal source separation and vocal
melody estimation.

The second source separation network is presented with an
adequate pitch estimation, which provides additional guidance
to refine the vocal source estimate. It is a somewhat surprising
result that the difference for melody estimation is higher than
the difference for vocal separation, since that implies that the
inputs to the first and second melody estimation networks
have little difference. We hypothesize that the doubled network
capacity might be an important additional factor in explaining
this result.

VI. JOINT VS. SEPARATE TRAINING

We saw in the previous section that Source→Pitch per-
forms better than the other configurations of the same network
capacity. In order to test if the joint training is necessary, we
take the output Ŷv of Source only as input to a model which

TABLE II
VOCAL MELODY ESTIMATION RESULTS ON THE IKALA DATASET

Experiment OA RPA
Melodia 0.766 0.776
Deep Salience 0.695 0.788
Pitch only 0.721 0.751
Shared Encoder 0.717 0.727
Cross-Stitch 0.719 0.736
Source → Pitch 0.800 0.841
Pitch → Source 0.716 0.743
S → P → S → P 0.817 0.851

outputs Ŝv, as shown in Figure 5 (Separately Trained
bottom, 2nd from right). The results, plotted as Separately
Trained in Figure 4a, show that joint optimization is indeed
beneficial for vocal melody estimation. This is possibly because
our pitch model is “borrowing” capacity from the separation
model, or alternatively because the separation results become
more tailored towards pitch estimation.

VII. DISCUSSION

A. Vocal Melody Estimation from Mixtures

The fusion of vocal source separation and vocal salience
estimation results in system that is able to estimate vocal
melody from musical mixtures. As we saw in Section I, vocal
pitch trackers that take isolated vocals as input have higher
accuracy than systems that estimate vocal melody directly
from a mixture. We now pose the question of whether our
jointly trained vocal separator and multi-f0 estimator can
predict single-f0 vocal melody as well as pitch trackers that
were explicitly trained to predict single-f0 from mixtures.
Table II shows the standard melody metric averages on the
iKala dataset for our models and two strong baseline models,
Melodia [15] and Deep Salience [1]. We see that our best
model (S→P→S→P) does indeed perform better than both
other models on vocal melody estimating from polyphonic
mixtures.

B. Qualitative Analysis

To build an intuition of the characteristics of the model’s
pitch estimates, we zoom in on a few bars of the 1965 pop song
“Turn! Turn! Turn!” by The Byrds. Figure 6 shows the final
pitch estimation using S→P→S→P, with a voicing threshold
set to 0.4. Since we do not have vocal melody ground truth
for this track, we only show the model outputs. While there
are a few scattered false positives, the majority of the pitch
estimates appear to belong to vocal notes. The likelihoods for
sustained notes sometimes drop below the voicing threshold,
leaving only activations at the initial note onset transient.

It is also instructive to visualize the raw estimated pitch
salience, before applying the voicing threshold. Figure 7
show vocal salience matrices, estimated on the first phrase
of the example above, using our model (left) and Crepe
(right). The most striking difference is our model’s ability
to predict multiple simultaneous vocal parts, while Crepe
oscillates between the two notes. Despite the fact that our
model is presented with a full mixture, and Crepe with vocals



Fig. 6. Vocal f0 estimation from S→P→S→P on an excerpt from the pop
song “Turn! Turn! Turn!” by The Byrds.

isolated by the source separation output of our model, our
model produces a cleaner salience matrix, with fewer artifacts.
It appears that during the joint training procedure, the vocal
melody estimation module learns to ignore source separation
artifacts, despite the fact that artifacts are present in this excerpt.
It should also be noted that our model is less precise than Crepe,
lacking some of the fine-grained sharpness of the vibratos that
Crepe more accurately captures.
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Fig. 7. Estimated salience matrix Ŝv . Left: our S→P→S→P model, predicted
from mixture Ym. Right: Crepe, predicted from estimated vocal source Ŷv .
The excerpts begins with one voice, and a second voice enters at 1:29.

VIII. CONCLUSIONS AND FUTURE WORK

In this work, one of the biggest challenges was in assessing
why certain models performed better or worse than others, and
in this paper we suggested hypotheses with possible reasons.
Future work includes testing these specific hypotheses to obtain
better insights about the specific advantages and disadvantages
of these architectures. Beyond this, we would like to explore
applying joint f0 and source separation models to other types
of pitched sources beyond the singing voice, such as the
piano. We think the same ideas could also be applied to drum
separation and drum transcription. Overall, we explored a
number of different architectures for jointly separating vocals
and estimating fundamental frequency in a single data driven
system based on deep U-Net neural network architectures. We
saw that including oracle information improves performance,
in particular for vocal-f0 information. A joint stacked model
that first performs vocal source separation followed by vocal
f0 estimation approaches the performance of the oracle models,
and outperformed conventional multitask architectures, which
underscores the value of incorporating domain knowledge
when designing models. Additionally, we showed that the
model achieves state-of-the-art results for vocal-f0 estimation
on the iKala dataset. Finally, we highlighted the importance
of performing polyphonic, rather than monophonic vocal-f0
estimation for many real-world cases.
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