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Abstract

It is often stated in papers tackling the task of inferring Bayesian network structures
from data that there are these two distinct approaches: (i) Apply conditional independence
tests when testing for the presence or otherwise of edges; (ii) Search the model space using
a scoring metric.

Here I argue that for complete data and a given node ordering this division is a myth,
by showing that cross entropy methods for checking conditional independence are mathe-
matically identical to methods based upon discriminating between models by their overall
goodness-of-fit logarithmic scores.

Keywords Bayesian networks; structural learning; conditional independence test; scoring met-
ric; cross entropy.

1 Introduction.

In this paper I consider learning Bayesian network structures on a finite set of discrete variables,
under the restrictions of complete data and a given node-ordering. The following quote (Cheng
et al. 1997) is typical of statements made in articles either introducing a novel algorithm or
reviewing current algorithms for learning Bayesian networks.

Generally, these algorithms can be grouped into two categories: one category of
algorithms uses heuristic searching methods to construct a model and then evaluates
it using a scoring method. ... The other category of algorithms constructs Bayesian
networks by analyzing dependency relationships between nodes.

While on the face of it these two approaches appear quite different, I will argue that model
search methods based upon maximizing a local log-score can be expressed as equivalent search
methods employing local conditional independence tests.

The plan of the paper is as follows. The next section introduces notation together with some
theoretical results. Section 3 states the assumptions made in later sections. Section 4 considers
learning structure from a known distribution, which is equivalent to learning from an infinite
data set. Section 5 considers the more realistic case of inferring model structure from finite
data, from both a classical and a Bayesian perspective.

2 Notation and background results.

I will assume that readers are familiar with the notion of a Bayesian network; for a recent
monograph see Cowell et al. (1999). I consider a finite set X = {X1,...,X,} of n (finite)
discrete random variables taking values in the state space X = {Xy,...,X,} = xP X If
A CV :={1,...,n} denotes some index set, then X, will denote the subset of variables
{Xa : a € A} and will take values in X4 := XqcaX,. Where convenient a variable X, may be
referred to by its index v. Particular configurations will be denoted using lower case letters, for
example, z = (21,... ,%p), Or T4 € X4.
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In this paper I consider search algorithms constrained by a given node ordering; without
loss of generality T will take the node ordering to be (X1,...,X,). Let G, denote the set of
directed acyclic graphs (dags) on X, such that X; can be a parent of X; only if ¢ < j.

For g € Gn let P, denote the set of distributions directed Markov with respect to g. This
means that for any P, € P,, the probability mass function factorizes as

pg(x) = H pg(zv Izpa(v:g))v (1)
veEV

where X,,(y.q) denotes the set of parents of the vertex v in g.
Let P(X) and Q(X) be two probability distributions over X. The Kullback-Leibler diver-
gence between P and @ is defined to be

K(P,Q) =Ep [log

] pr)logp( z)

TEX
It takes a non-negative value measuring the similarity or closeness of the distribution Q to that
of P, vanishing if and only if the distributions are identical.

It was shown by Cowell (1996) (see also Cowell et al. (1999)) that for a given graph g € G,
the distribution Py € P, which minimizes K (P, P,) for some fixed distribution P(X) assigns to
every vertex v € V,

(X IXpa(v :g) ) ( ’Xpa(v :9) ) (2)

Let A, B and C be disjoint index subsets of V, and let P(X) be some distribution over X.
Then the cross-eniropy of X4 and Xp is defined to be

p(Xa,Xp) ]
p(X4)p(Xp)

whilst the cross-entropy of X4 and Xp conditional on X¢, or conditional cross entropy, is
defined as

Hp(X4,Xp) =Ep [Iog

Xa,Xp|X
HP(XAaXB |XC) — EP |:10g p( As Bl C) :|

p(Xa|Xc)p(Xp | Xo)
We say X4 is conditionally independent of Xp given X¢ under the distribution P, written
as X4 llpXp|Xc, if and only if p(Xa,Xp | X¢) = p(X4 | Xc)p(Xp | Xc) (Dawid 1979). The
notation 1l p will be abbreviated to 1L when the distribution P under consideration is clear
from the context. Note that if X4 LpXp|X¢, then Hp(X4,Xp|Xc) =

For g € G any distribution Py € P, has the directed Markov property, that is, any node is
conditionally independent of its non-descendants given its parents in g:

X J-]-‘Xnd(v :g) | -Xpa(v :g)-

Note in particular that this implies Hp, {Xy, Xna(yg) | Xoa(v:g)) = 0.
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3 Assumptions made in learning a network.

I shall make the following assumptions for the remaining sections.

L. I will be looking for good predictive models, selected according to a log-scoring rule, and
choosing the simplest model among equally good predictive models.

2. The dataset is complete.
3. Without loss of generality, the node ordering (X1, ... ,Xy) is given.

4. There are no logical constraints between the various conditional probability tables to be
estimated.

Assumption 1 emphasizes that I am not looking to construct causal models from data,
but simply seeking good predictive models. The log scoring rule is unique in that it is (for
multi-attribute variables) the only proper scoring rule whose value is determined solely by the
probability attached to the outcome that actually occurs (Bernardo 1979). The final part of
Assumption 1 is Occam’s razor: without it I could choose the saturated model, that is, the
complete graph, which would fit the data perfectly. Scoring based search methods usually try
and balance these two aspects — by penalizing a model’s predictive score with some measure
of the model’s complexity — as a way of reducing overfitting.

Assumption 2 is made for simplicity, to avoid approximations being made to handle missing
data, or having to account for the pattern of missing data. It also implies that the logarithmic
score of a dag decomposes additively into functions of the node families of the dag, thus making
local search possible by enabling independent optimizations of each node’s parent set.

Assumption 3 implies that the dag I obtain might not exhibit all of the conditional inde-
pendence properties of the data, but only those consistent with the ordering.

Assumption 4 states that I am assuming local meta-independence of the conditional proba-
bilities associated with the families of any given graph considered (Dawid and Lauritzen 1993).
These conditional probabilities will be taken as parameters to be estimated.

4 Learning networks from a known distribution.

In this section, I assume that the joint distribution P(X) is known; this as equivalent to recov-
ering P(X) from its maximum likelihood estimate (mle) for the saturated model in the limit of
an infinite amount of data drawn from P(X). The task is to find the simplest model g € G,
such that Py(X) = P(X).

4.1 Model selection via conditional independence tests.
Given the ordering (Xi,... ,Xy), the joint distribution P(X) may be factorized as

PX) =[] PO | X1, -, Xin).

i=1
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The goal of the model search using conditional independence tests is to find for each node X; a
minimal set X559 € {X1,.-.,Xi_1}, such that

P(Xi| Xpai)) = P(Xi | X150, Xica)s 3)
which is equivalent to the independence statement
XL {Xq,... yXiciH\ Xpa.(z') IXpa(i)'

The minimal set X,,(; may then be taken as the set of parents of node X; in the sought for
graph. If found for each X;, the joint distribution will factorize as (1). Let us write R; :=
{X1,-++ s Xi1} \ Xpagi), and X7 = {X1,..., X;}. Then using the identity P(X;, R; | Xpa)) =
P(X; | Ri, Xpa(i)) P (Ri | Xpags))s we have

P(Ti, 73 | Tpagsy) ]
Hp(X;, R | X os)) = T3y T4y Tpg (i) ) 10} {
P(Xi, Ri| Kpagi) %:p( vali)) 108 P(%i | Tpa(i))P(ri | Tpa(i))

p(l'i | Tiy zpa(i)):|
p(Ei | Tpay) 1

O]
=" p(®,Ti, Tpa(s)) log {
Ty

When (3) holds the conditional cross entropy (4) vanishes, and conversely. Hence (4) forms
the basis of a conditional independence test. Note that if X; I R; | Xpa(i), then for any subset
Si C R; it is also true that X; 1LS; | Xpa(), and

P(Zi | 55, Tpags))
Hol(X:. Si | X)) = E : . ) P\ ] 9 Ppali))
P( 11} Si | pa(z)) p(a:,, Siy zpa('z)) lOg [ p(ﬁﬂi | zpa(z‘)) (5)

will vanish also (and conversely). In principle, one could perform an exhaustive search over all
possible sets R; to find the largest such set for which the cross entropy vanishes. In practice,
this is not usually possible because the search space is too large. Thus heuristic searches are
normally applied, usually based upon evaluating (5) with S; singleton sets. An ezample of such
a search is:

L. Set Xpa() =0 and R; = {X1,..., X1}

2. WHILE X;1LR; | Xpy(;) is FALSE do
* Select S; € R; such that Hp(X;,S;| Xpa(;)) is maximized.
* Remove S; from R; and add it to Xpq(;).

3. WHILE 3Y € Xp,(;) such that X; 1Y | Xpa(i) \ {Y'} is TRUE do
* Xpa(i) = Xpagi) \ {Y'}.

This is similar to the ‘thickening and thinning’ algorithm of Cheng et al. (1997). More generally,
S; could represent a restricted set of subsets of R;, not just singleton sets.
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4.2 Model selection via Kullback—Leibler divergence.

Given a graph g € Gy, the distribution directed Markov with respect to g which has minimum
Kullback-Leibler divergence from P(X) obeys (2) for each node in the graph. In principle,
one could perform an exhaustive search over all possible graphs g € Gy, finding their closest
matching distributions Fy(X) in terms of Kullback-Leibler divergence from P(X), selecting
those graphs for which the Kullback-Leibler divergence vanishes, and selecting among these
graphs the one having the fewest number of edges.

Consider a graph g € Gn, and it associated distribution P,(X) which satisfies (2). The
Kullback-Leibler divergence is given by

Svtos | [ 2 5 S o[l ]

z i (i lzpa (4: g (z; |$pa (i: g))

Note that (6) decomposes into a sum of terms, one for each node, where the g-dependence of
the term on each node depends upon the family in g of that node. In fact for the same graph
g, the ith term in the summation (6) is identical to the cross entropy expression (4). Thus,
an ezhaustive search based upon conditional independence is equivalent to an ezhaustive search
which minimizes Kullback-Leibler divergence.

Suppose in a stepwise search algorithm that g is our current model and a candidate model
¢’ differs from g in one node X; for which Xpa(izg) O Xpa(irg)- Then the difference in Kullback-
Leibler divergence of the two models is found from (6) to be

A(g,g’) = HP(XiaXpa(i:g’) \ pa(ig) [ X, pa(i: y)) (7)

which is (5) with S; := X4(;:/) \ Xpa(izg)- Thus choosing the ¢’ differing from g by one or more
edges which maximizes (7) is equivalent to choosing g’ O g which minimizes K (P, Py). After
adding parents to X; until no further decrease in Kullback-Leibler divergence is possible (on
adding yet further nodes as parents), one could thin the parents of node X;, by removing nodes
for which A(g, ¢') remains zero.

More generally, a decision criterion in the search algorithm which moves to a model ¢'
from a submodel g based upon the consideration of a set of possible sets S; and their associated
conditional independence tests could be used to give the same result (or move) based upon the
consideration of the same S; and the changes in Kullback-Leibler divergence, because the numer-
ical quantities entering into the decision process upon which the decision is based are identical
in the two search frameworks.

Put another way, for every search heuristic based upon using conditional independence tests,
there is an equivalent search heuristic based upon using changes in Kullback-Leibler divergence,
and vice versa. There is no fundamental difference between the two approaches, only a difference
in interpretation.
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5 Learning networks from finite data

5.1 Model selection via conditional independence tests.

The directed Markov property, and the completeness of the data, allows conditional indepen-
dence tests to be performed locally on each node. The conditional independence tests employ
mles. However due to sampling variability the tests are not sharp, so typically the requirement
of the exact vanishing of (conditional) cross entropy expressions is relaxed.

Thus for example, suppose that g is our current model, with node X; having parents Xpa(ig)s
and from the data one obtains the mles P(Xi,Xpa(i:g)). Furthermore, suppose that for some
node or set of nodes S; € X711 \ Xpa(iyg) One evaluates the mles P(Xi,Xpa(,;:g),Si) and the
conditional cross entropy

Y (@i Tpagisg), 5) X log [M‘M] ) ®)
TiyTpa(i:g) i p(-’L‘i | zpa(i:g)

where H(%; | Zpa(ig) = B(Ti, Tpa(izg)) /P(Tpa(ing)) €tc. Then a search heuristic would employ a
decision rule which on the basis of the value of (8) would either accept or reject the hypothesis
that X; 11.8;| Xpag;), and if the latter, which among the candidate S; to add to Xpa(s) for the
next iteration of the search algorithm. Two common decision heuristics are: (i) if the value of
(8) is below a fixed threshold value € then accept the conditional independence; (ii) perform a
classical significance test, using the null hypothesis of conditional independence, under which
a suitable multiple (8) will have a x? distribution for some suitable k. Each of these has a
counterpart in search heuristics based upon a log-score.

5.2 Model selection via maximum likelihood.

Let us write n(z4) for the marginal count of the number of cases in the dataset for which
X4 = z4. For g € G, the log-likelihood of the data decomposes as

IOgL(pg) = Z H n(xi,mpa(i:g)) log (pg(zi |zpa(i:g))) )

L BiTpaig)
which yields the mle

n(zi, xpa(i:g))

f?g(l‘i ! zpa(i:g)) - n(l'pa(i'g))

)

Suppose, as in Section 4.2, that g is our current model and ¢’ differs from g in one node X; for
which Xpa(i.g) O Xpa(irg)- Then the difference in the log-likelihoods of the two models evaluated
at their mles is given by
L(py)
L(ﬁi) = Y n(#iTpaggy) log

TixTpa(igl)

n(zia zpa(i:g’))/'"’(zpa(i:g’))
n(x;, zpa(i:g))/'”'(5"';)3‘(1':9))

log (10)

Thus one could decide to move from g to g’ in the model search if this quantity is positive.
However, this will generally be the case with finite data, because the larger model will fit the
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data better by virtue of having extra parameters, hence the significance of the better fit needs
assessing. One simple heuristic is to set a threshold € such that if the change is greater than e
the difference is taken to be significant — to do this we must first normalize (10) by the total
number of cases N = > n(z) in the dataset. Doing this yields

1. L(By) R (i | Zpaingy)
—lo R (i, Tparion ) 1) ALp—g—,
N & L(Py) Z (i palig )) 8 Dz | zpa(i:g))

Pi:%pa(irg’)
where p represents the (marginal of the) mle of the saturated model. This is identical to (8),
with S; = Xpa(izg') \ Xpa(izg)-

A more formal approach would be based on hypothesis testing. Note that twice the value of
(10) is the difference in the deviances of the two models, which under the assumption that the
larger model is true, and that the smaller model is also true, will have a x2 distribution with &
equal to the difference in the degrees of freedom of the two nested models. Thus we perform the
same test, and obtain the same result, as the formal conditional independence test described at
the end of Section 5.1. Alternatively, one could penalize the deviance by some function of the
number of parameters, for example by using the Akaike Information Criterion (AIC; see Akaike
(1973)).

More generally, because of the equality of (8) and (9) it follows as in the last paragraph
of Section 4.2, that for every search heuristic based upon testing for conditional independence,
there is an equivalent search heuristic based upon using changes in log-maximum-likelihood, and
vice versa. There is no fundamental difference between the two approaches, only a difference in
interpretation.

5.3 The Bayesian approach.

Many belief network search algorithms using a scoring metric tend to employ the Bayesian
formalism, with the score being the log-marginal likelihood. The advantages are that for smaller
data sets, where the asymptotic distribution results required for the tests in Section 5.1 and
Section 5.2 may not apply, the results tend to be more robust and, furthermore, generally less
sensitive to the presence of zeroes in marginal counts.

The Bayesian approach requires a prior on the space of graphical structures — usually this
is taken to be uniform, but there are other alternatives (Heckerman 1998). For each graphical
structure a prior on the probability parameters is also required — usually these are taken to be
locally independent Dirichlet priors.

Under these assumptions and complete data the marginal likelihood may be evaluated ex-
plicitly and decomposes into a product of terms, one for each node. An early and important
paper is Cooper and Herskovits (1992), who gave an explicit formula for the marginal likelihood
under these conditions.

A common feature of the analyses given in Section 5.1 and Section 5.2 is that the global
scores factorize into local contributions from each node, and, moreover, that in comparing two
similar graphs their score difference is identical to quantities which arise when testing conditional
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independence using cross entropy measures. I shall now show that a similar circumstance arises
in a Bayesian approach when globally independent priors (Cowell et al. 1999) are employed.
The key feature is that global independence is preserved under updating with complete data.

Thus suppose each node v of a graph g € G, has an associated (vector) parameterization 6
of the conditional probability table of v, and a globally independent prior distribution over the
parameters 89 := {67 : v € V}. Global independence means that the prior measure factorizes
as dmg(69) = [, dmy(6§). Under these conditions the marginal likelihood of the graph g in the
light of complete data D is

E(g) == p(Dlg) = / po(D5,0)dry(69) =] / IT 2ol @paey, 827 2ra) iy (6).

by Tv,Tpa(v)
(11)

From (11) we see that the marginal likelihood factorizes into terms, one for each node and it par-
ents. As before, let g’ be a graph identical to graph g except for a difference in the parent set of
the X;. Then ¢’ will require a different parameterization and associated prior, (see Cowell (1996),
Heckerman et al. (1995) for alternative strategies for doing this for Dirichlet priors), but we may
take for every node other than X; the same local parameterization and contribution to the prior
as for the graph g (that is, for X, # X, 63 = 69, Py (Xy | Xpaug') 09) = Py(Xy | Xpa(uig): 09)
and dmy(07) = dry (09 ). If, furthermore, we take uniform priors over the alternative graphical
structures (ie, P(g) = P(g")), then after suitable cancellations we obtain the ratio of posterior
probabilities

p(gl | D) p(D | gl) _ fafl H:cilzpa,(i:g/) pgr (:L‘Z | mpa(‘i:g’)veig )n(wiﬂpa(i:gl))dwg: (azg )
p(g| D) p(D|g) fag thzp&(i:g) py(zi | Tpa(ig)s Gf)n(ﬂli»ﬁpa(i:y))dﬂ-g (gf)

(12)

The decision of a local score driven search to stay with graph g or move to graph g' would
depend upon the value of this ratio. Madigan and Raftery (1994) use (the logarithm of) (12)
in a Markov chain Monte Carlo based graphical model search procedure, which they apply to
model selection and model averaging; see also Madigan and York (1994).

I am not aware of papers applying Bayesian tests of conditional independence to Bayesian
network model selection, hence there is not a direct comparison I can make of (12) to results
extant in the current literature. (This is not to say there are none; however Bayesian methods
— based on comparison of posterior probabilities — for testing for independence in contingency
tables do exist, see for example Jeffreys (1961), Good (1965). See also the discussion in Madigan
and Raftery (1994).) However, a formal Bayesian approach would consider the following two



DASS Statistical Research Report 23 10

hypotheses:

Hy : p(Xi, Xpaigry | 670)dm(670)

P(X; | Xpagirg'y: 08 10 (Xpagiog) | B
dr (07 Ydm($7, i)

Hy : p(Xi, Xpaging) |071)dm(671)

DX | Xpa(isg)s 0P (Xpaging) | i)

dn(03)dm (45, 0)-

Hjy corresponds to the saturated model, H; the submodel exhibiting conditional independence,
and ¢ is a parameterization common to the two hypothesis. Then, from the (possibly equal)
priors P(Hp) and P(H,) and the data D, posterior probabilities P(Hy | D) and P(H, | D) are
evaluated and compared. It is left to the reader to verify that this leads to (12). Thus if one
were to do model search based upon local conditional independence tests, then one should use
(12) in conjunction with an appropriate decision rule, and then a complete identification of the
two approaches — score based or conditional independence testing — would follow.

6 Conclusions

Under the conditions of complete data and given node ordering I have shown that conditional
independence tests for searching for Bayesian networks are equivalent to local log-scoring metrics
— they are two ways of interpreting the same numerical quantities. It is possible to relax the
node-ordering constraint by considering arc reversals in addition to arc removals and additions;
then the change in score (which will be local to a pair of nodes) will be a combination of the
terms which would be considered using conditional independence tests. However, in the latter
case, one would have the extra option of deciding if the conditional independence properties
associated with each of the two nodes have been independently locally violated. Thus conditional
independence searching can be more refined than using scoring metrics when considering arc
reversals. However if the individual conditional independence tests were combined into a single
test, then the two procedures would again be equivalent under the same decision rules.
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