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Abstract

We show how probabilistic expert systems can be used to analyse
forensic identification problems involving DNA mixture traces using
quantitative peak area information. Peak area is modelled with con-
ditional Gaussian distributions. The expert system can be used for
ascertaining whether individuals, whose profiles have been measured,
have contributed to the mixture, but also to predict DNA profiles of
unknown contributors by separating the mixture into its individual
components. The potential of our methodology is illustrated on case
data examples and compared with alternative approaches. The ad-
vantages are that identification and separation issues can be handled
in a unified way within a single network model and the uncertainty
associated with the analysis is quantified.
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1 Introduction

Recent work has demonstrated the potential of using probabilistic expert
systems (PES) for evaluating DNA evidence (Dawid et al. 2002). This arti-
cle is concerned with the analysis of mixed traces where several individuals
may have contributed to a DNA sample left on a scene of crime. Mortera
et al. (2003) showed how to construct a PES using information about which
alleles were present in the mixture, and we refer to this article for a general
description of the problem and for genetic background information.

However the results of a DNA analysis are usually represented as an
electropherogram (EPG) measuring responses in relative fluorescence units
(RFU) and the alleles in the mixture correspond to peaks with a given height
and area around each allele, see Figure 1. The band intensity around each
allele in the relative fluorescence units represented, for example, through
their peak areas, contains important information about the composition of
the mixture. This information was ignored by Mortera et al. (2003) but
exploited by e.g. Evett et al. (1998) who emphasized and discussed its rôle
in evidential calculations. Perlin and Szabady (2001) and Wang et al. (2002)
used numerical methods known as Linear Mixture Analysis (LMA) and Least
Square Deconvolution (LSD) for separating mixture profiles using peak area
information.

In this article we build a PES for mixture traces based on conditional
Gaussian distributions for the peak areas, given the composition of the true
DNA mixtures; see Chapter 7 of Cowell et al. (1999) as well as Lauritzen
and Jensen (2001). Such a network enables us to perform evidential calcu-
lation and separation of DNA mixtures in a unified way, yielding a natural
quantification of any possible uncertainty associated with the analysis.

For the sake of simplicity we only consider the case where the mixed trace
contains DNA from exactly two contributors, but we emphasize that the flex-
ibility and modularity of the PES approach enables extension and modifica-
tion of our network to include complications such as an unknown number of
contributors, indirect evidence, etc. along the lines given in Mortera et al.
(2003). An analysis of a mixed trace can have different purposes, several
of which can be relevant simultaneously, making a unified approach partic-
ularly suitable. However, for the sake of exposition we consider the issues
separately. The first focus of our analysis will be that of evidential calcu-
lation, detailed in § 4. Here a suspect with known genotype is held and we
want to determine the likelihood ratio for the hypothesis that the suspect
has contributed to the mixture vs. the hypothesis that the contributor is a
randomly chosen individual. We distinguish two cases: the other contrib-
utor could be a victim with a known genotype or a contaminator with an
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Figure 1: An electropherogram (EPG) of marker VWA from a mixture.
Peaks represent alleles at 15, 17 and 18 and the areas and height of the
peaks express the quantities of each. Since the peak around 17 is high, this
indicates two alleles with repeat number 17. This image is supplied courtesy
of LGC Limited, 2004.
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unknown genotype, possibly without a direct relation to the crime. In § 5,
we show how to use our network for separation of profiles, i.e. identifying
the genotype of each of the possibly unknown contributors to the mixture,
the evidential calculation playing a secondary role. Finally, in § 6 we will
contrast our approach with existing alternatives and discuss perspectives for
further developments.

2 Basic model assumptions

We assume the usual Mendelian genetic model for the allele composition of
the mixture traces with gene frequencies of single STR alleles being those
reported in Evett et al. (1998) and Butler et al. (2003) for U.S. Caucasians,
the latter being used for data taken from Perlin and Szabady (2001)1 and
Wang et al. (2002). The peak area information is included in the analysis
through the relative peak weight. The (absolute) peak weight wa of an allele
with repeat number a is defined by scaling the peak area with the repeat
number as

wa = aαa,

where αa is the peak area around allele a. Multiplying the area with the
repeat number is a crude way of correcting for the fact that alleles with a
high repeat number tend to be less amplified than alleles with a low repeat
number. The relative peak weight ra is obtained by scaling with the total
weight

ra = wa/w+, w+ =
∑
a

wa.

Our simple model for the observed peak weight, Ra, uses a normal distribu-
tion

Ra ∼ N (µa, τ
2), µa = {θn1

a + (1 − θ)n2
a}/2, (1)

where θ is the fraction of DNA in the mixture originating from the first
contributor, ni

a is the number of alleles with repeat number a possessed by
person i, and τ 2 = σ2µa(1−µa)+ω2, where σ2 and ω2 are variance factors for
the contributions to the variation from the amplification and measurement
processes. Unless stated otherwise, we have used σ2 = 0.01 and ω2 = 0.001,
corresponding approximately to a standard deviation for the observed relative
weight of about √

0.01/4 + 0.001 = 0.06

1This dataset has an observed allele 25.2 of the marker FGA. As none of the 302
subjects in Butler et al. (2003) had this allele, we chose to use 1/604=0.00166 as the allele
frequency.
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for µa = 0.5. This is about the variability in peak imbalance that has been
reported in the literature when amplifying DNA from one heterozygous in-
dividual, for which µa = 0.5.

Our model ignores the obvious correlation between weights due to the fact
that they must add up to unity. The model can be seen as a second order
approximation to a more sophisticated model based on gamma distributions
for the absolute scaled peak weights to be discussed elsewhere. The simple
model above seems in any case sufficiently accurate and adequate for the
purposes of the present paper. In general the variance factors may depend
on the marker and on the amount of DNA analysed, but here we use the
values above.

3 Bayesian networks for DNA mixtures with

peak weights

3.1 Object-Oriented Networks

Object-oriented Bayesian networks (Koller and Pfeffer 1997; Dawid 2003)
have a hierarchical structure where any node itself can represent a (object-
oriented) network containing several instances of other generic classes of
networks. This framework is particularly suited for an application area such
as the present because we can exploit the similarity between elements of the
networks in a modular and flexible construction, making the networks more
and more complex by simply adding new objects which perform different
tasks.

Instances have interface input and output nodes as well as ordinary nodes.
Instances of a particular class have identical conditional probability tables
for non-input nodes. Instances are connected by arrows from output nodes to
input nodes. These arrows represent identity links whereas arrows between
ordinary nodes represent probabilistic dependence (Cowell et al. 1999). Im-
plementation of object-oriented Bayesian networks is supported by the pro-
gram Hugin 62.

3.2 Description of the network classes

Below we describe the different objects used in our construction of the net-
work. In what follows, bold will indicate a network class, and teletype will
indicate a node. In the figures, instances of a certain class are represented by

2See www.hugin.com
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a rounded rectangle, discrete nodes have a single outline, whereas continu-
ous nodes have a double outline. Interface nodes are represented with a grey
ring; input nodes having a dotted outline and output nodes having a solid
outline. Also, dark grey nodes will indicate where possible evidence might be
inserted and black nodes are target nodes or nodes of interest where results
will be read.

3.2.1 The founder class

The network class founder of Figure 2 contains a single node founder with
the relevant repertory of alleles as its states, and an associated probability
table describing their frequencies.

For illustration, we show marker FGA having observed alleles coded A to
C and the aggregation of all unobserved alleles coded as x. The probability
table is shown in Table 1.

Table 1: Gene frequencies for marker FGA as reported in Evett et al. (1998).

Allele A B C x

Frequency 0.187 0.165 0.139 0.509

3.2.2 The genotype class

The network class gt in Figure 3 represents an individual’s genotype gt,
which is given by the unordered pair of paternal and maternal genes, {pg,
mg}. Input nodes pg and mg are copies of node founder of class founder.
The paternal and maternal genes, pg and mg, are chosen independently from
the same population whose allele frequencies are assumed known. Output
node gt is the logical combination of pg and mg.

3.2.3 The query class

The network class whichgt of Figure 4 describes the selection between two
genotypes.

If the Boolean node query? has the value true, then the output node,
outgt, will have identical genotype to the input node, ingt; otherwise it will
be identical to input node othergt. This is written in the Hugin expression
language as: outgt := if(query? == true, ingt, othergt).3

3The function if(A, x, y) takes the value x if condition A is satisfied, otherwise y.
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founder

Figure 2: Network founder for founder gene

mgpg

gt

Figure 3: Network gt for genotype

outgt

ingt

query? othergt

Figure 4: Network whichgt for selecting a genotype
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3.2.4 The joint genotype

The network class jointgt of Figure 5 represents the combined genotype of
two individuals, p1 and p2. Node p1gt&p2gt is simply the logical combina-
tion of the two input genotypes in p1gt and p2gt.

3.2.5 The number of alleles

The network class nalleles shown in Figure 6 counts the number, varying
from 0 to 2, of a certain allelic type in a genotype. Thus, for allele A say, nA
:= if(gt == AA, 2, if (or (gt == AB, gt == AC, gt == Ax), 1, 0)).

3.2.6 The weight of an allele in the mixture

The network class alleleinmix shown in Figure 7 computes whether a certain
allelic type is in the mixture and its mean contribution to the peak area of
the mixture.

Input nodes p1gt and p2gt, the genotypes of the two people, p1 and p2,
contributing to the mixture, have identity links to the input node gt in the
two instances of class nalleles, n1A and n2A. The Boolean node Ainmix? is
true if at least one of the two contributors has allele A. Thus, Ainmix? :=
if(and (n1A nA == 0, n2A nA == 0), false, true), where n1A nA and n2A nA

refer to the output nodes of the two instances of class nalleles, n1A and n2A.
Input node frac represents the fraction of DNA contributed by p1, de-

noted by θ in § 2. The states of node frac are on a discrete scale ranging
from [0, 5] for convenience. The scale of node frac can easily be modified to
a finer grid. Output node meanA:= n1A nA * frac + n2A nA * (5 - frac). This
differs from the expression for the mean in (1) by a scale factor of 10 which
is appropriately corrected for throughout.

3.2.7 The peak weight

The network class peakweight shown in Figure 8 represents the observable
peak weight.

The input node mean is identified, for example, with output node meanA

of class alleleinmix. The intermediate continuous node weight, with dis-
crete parent mean, has a mean given by the values of node mean and variance
equal to 0.01 ∗ mean ∗ (10 − mean), representing variations in the amplifica-
tion process. The observed peak weight is modelled by the continuous node
weightobs to allow for additional measurement error of the true weight, in
node weight. Thus this network class is representing the Gaussian part of
the model (1).
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p2gtp1gt

p1gt&p2gt

Figure 5: Network jointgt for genotype pairs

nA

gt

Figure 6: Network nalleles for counting the number of alleles

n2An1A

p2gtp1gt

meanA

frac

Ainmix?

Figure 7: Network alleleinmix for alleles in mixture
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3.2.8 The target class

The network class target shown in Figure 9 has two Boolean output nodes
p1=s? (p2=v?) with true, false states, representing whether contributor p1
(p2) is the suspect (victim) or not. The black target node is the logical
conjunction of the nodes p1=s? and p2=v?. These nodes are given a uniform
prior distribution so that target node has a uniform prior distribution over
its states. This enables the computation of the likelihood ratio as described
in Mortera et al. (2003).

3.2.9 The marker class

The network class marker in Figure 10 is an upper level network containing
several instances of the classes defined above. This class is made to repre-
sent information related to a particular marker. Here it is illustrated for a
marker having three alleles represented in the mixture. Input nodes spg,
smg, u1pg, u1mg, vpg, vmg, u2pg and u2mg are all copies of node founder of
class founder; u1 and u2 are two unspecified individuals. Input nodes p1=s?
and p2=v? are identified with the corresponding output nodes of class tar-
get. The nodes sgt, u1gt, vgt and u2gt are all instances of class gt; p1gt
and p2gt are instances of whichgt and when p1=s? is true (false), p1gt
will be identical to sgt (u1gt). A similar relationship holds between nodes
p2=v?, p2gt, vgt and u2gt. The node jointgt is an instance of jointgt;
Amean, Bmean, Cmean and xmean are instances of class alleleinmix; Aweight,
Bweight, Cweight and xweight are instances of class peakweight. Input
node frac is identified with the corresponding node in the master network
described below.

3.2.10 The master network

Figure 11 gives the master network used for both identification and separa-
tion of DNA mixtures from two contributors. It refers to the data from Evett
et al. (1998) shown in Table 2.

D8, D18, FGA, and THO1 are all instances of network class marker; D21
and VWA are instances of a simple modification of network class marker and
the other network classes it calls, in order to account for 4 observed alleles.
D8, D18, FGA, THO1, D21 and VWA each have 8 founder instances with their
appropriate gene frequencies as input to the 8 input nodes of class marker.
The frac node is connected to all the markers showing their dependence
via this quantity. target, an instance of class target is connected to each
marker via its output nodes p1=s? and p2=v?. Once constructed, the master
network can be used to insert and propagate case evidence in the appropriate
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mean

weight

weightobs

Figure 8: Network peakweight for peak weight

p1=s? p2=v?

target

Figure 9: Network target
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Table 2: Evett data showing mixture composition, peak areas and relative
weights from a 10:1 mixture of two individuals, with suspect’s genotype spec-
ified.

Marker Alleles Peak area Relative weight Suspect

D8 10 6416 0.4347 10
11 383 0.0285
14 5659 0.5368 14

D18 13 38985 0.8871 13
16 1914 0.0536
17 1991 0.0592

D21 59 1226 0.0525
65 1434 0.0676
67 8816 0.4284 67
70 8894 0.4515 70

FGA 21 16099 0.5699 21
22 10538 0.3908 22
23 1014 0.0393

THO1 8 17441 0.4015 8
9.3 22368 0.5985 9.3

VWA 16 4669 0.4170 16
17 931 0.0884
18 4724 0.4747 18
19 188 0.0199
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internal nodes, and the marginal posterior probabilities of the quantities of
interest can be read from the corresponding nodes.

3.2.11 Amelogenin marker

In the analysis of DNA mixtures the determination of the sex of the two
contributors, based on the amelogenin marker, is extremely important. To
build a network for amelogenin one needs to make the following changes to
the previous classes. No founder class is needed and the genotype class has
a single output node gt with states XX for female and XY for male, with
equal prior probabilities. The query and jointgt classes only need trivial
modifications to reduce their state spaces. The allele counting class nalleles,
for a male contributor, gt== XY, (for a female contributor, gt== XX) has
nX==1 (2) and nY== 1 (0). The network class that gives the weight of an
allele in the mixture is similar to alleleinmix of § 3.2.6, except Xinmix? is
always set to true. All other network classes remain unchanged.
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jointgt

xweightCweightBweightAweight

xmeanCmeanBmeanAmean

p2gtp1gt

u2gtvgtsgt u1gt

frac

u2pg u2mgvpg vmgu1pg u1mgspg smg

p2=v?p1=s?

Figure 10: Network marker
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Figure 11: Master network for identification and separation of mixtures
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3.3 MAIES: An expert system for analysing mixed
traces

In parallel to the development of the object-oriented networks described in
§ 3.2 an alternative computer program Maies— Mixture Analysis In Expert
Systems — was developed to provide an independent check of the calculations
as well as a flexible environment for specification and input or output of data
to allow for experimentation with different methods.

In Maies, information concerning allele frequencies of markers, and geno-
typic information (if available) about the potential contributors, is entered
via simple popup dialog boxes activated by menu selections. The main pro-
gram interface displays three user-selectable tabbed windows. One window
is used for entering the peak area measurements obtained from the EPG. A
second tabbed window displays the graphical model generated on the basis
of the marker data, which can be used for entering or retracting evidence on
individual nodes (if desired) and for showing the marginal distributions on
nodes as bar charts or density curves. The third window is a simple text area
that is used to display the marginal distributions of the nodes in the network
- the contents of this window may be saved to a file, or cut-and-pasted to
other applications, if desired.

After entering peak area information and available genetic profiles on
people, the user constructs — by mouse clicking — a single Bayesian net-
work on which the probability calculations are performed. In constructing
the Bayesian network the user may specify the scale σ2 of the amplification
error variance, the measurement error variance ω2, and the granularity in the
discrete states of a node that represents the true fraction of DNA originating
from individual 1 (again through a popup dialog box). Sensitivity analysis
may be performed in a simple, straightforward manner by varying these three
inputs. Peak areas are automatically converted to normalized weights by the
program, and entered as evidence in the relevant nodes.

The user can temporarily retract or reinstate evidence on the two po-
tential contributors to the mixture by use of menu selections, thus allowing
an evidential calculation to be converted to one of deconvoluting a mixture
arising from two unknown contributors, or vice versa.

The Bayesian network generated by Maies may be considered equivalent
to an “unfolded” version of the object-oriented networks described earlier
§ 3.2. An example of a network generated for a single marker with two alleles
observed in the mixture is shown in Figure 12. The structure is similar to the
network shown in Figure 10, and like the object-oriented network described
earlier there are several distinct modules of repetition that can be seen in the
figure: indeed it is this repetitive structure that makes it possible for Maies
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to create the much larger Bayesian networks required to analyse mixtures
on several markers. We now describe these various structures and how they
interrelate.

8_inmix?

8_weightobs

8_weight

p2_8

p1gt

p1_frac

jointgt

9_weightobs

9_weight

p2_9

9_inmix?

p2_xp1_9p1_8 p1_x

 p1 = s?

target

smg

sgt

sym

spg

p2gt

u2gt

u1pgu1mg

u1gt

 p2 = v?

u2pgu2mg

x_inmix?

vpgvmg

vgt

x_weightobs

x_weight

Figure 12: The structure of a Bayesian network generated by MAIES for a
single marker, in which two allele peaks (8 and 9) were observed.

3.3.1 Founding people

Maies currently assumes that DNA from two individuals are in the mixture.
Thus it sets up nodes for four founding individuals who are paired up, prefixed
by s (for suspect), v (for victim), and u1 and u2 representing two unspecified
persons from the population. Corresponding to each of these individuals is a
triple of nodes representing their genotype on the marker, and the individuals’
paternal and maternal genes. They are joined up as in Figure 3 and their
function is the same. The probability tables associated with the maternal and
paternal genes contain the allele frequencies of the observed alleles, whilst
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the conditional probability table associated with the genotype node is the
logical combination of the maternal and paternal gene.

3.3.2 Actual contributors to the mixture

The genotypes on the marker of the two individuals p1 and p2 whose DNA
is in the mixture are the nodes labelled p1gt and p2gt. Node p1gt has
incoming arrows from nodes u1gt, sgt and a (yes,no) valued binary node
labelled p1 = s?. The function of this latter node is similar to the query?

node of Figure 4, namely to set the genotype of node p1gt to be that of sgt
if p1 = s? takes the value yes, otherwise set the genotype of node p1gt

to be that of u1gt. An equivalent relationship holds between the genotype
nodes p2gt, vgt, u2gt and p2 = v?.

The node labelled target represents the four possible combinations of
values of the two nodes p1 = s? and p2 = v? as in Figure 9 and described
in § 3.2.8.

The network also has a node representing the joint genotypes of individ-
uals p1 and p2, which is labelled jointgt, with incoming arrows from p1gt

and p2gt; the function of this part of the network is equivalent to the object
shown in Figure 5.

3.3.3 Allele counting nodes

On the level below the genotype nodes for p1 and p2 is a set of nodes rep-
resenting the number of alleles (taking the value of 0, 1 or 2) of a certain
type in each individual. Thus, for example, the node p1 8 counts the num-
ber of alleles of repeat number 8 in the genotype of individual p1 for the
given marker: this value only depends upon the genotype of the individual
p1 and hence there is an arrow from p1gt to p1 8. These nodes model the
ni

a variables introduced in (1).

3.3.4 Repeat number nodes

On the level below the allele counting nodes are the repeat number nodes,
labelled 8 inmix?, 9 inmix? and x inmix?. These are (yes,no) binary
valued nodes representing whether or not the particular alleles are present in
the mixture: thus for example allele 8 is present in the mixture if either of
the allele counting nodes p1 8 or p2 8 takes a non-zero value. For the node
x inmix? the x refers to all of the alleles in the marker that are not observed.
When using repeat number information as evidence in calculations, this will
be given the value no, the other repeat number nodes will be given the value
yes.

Cass Business School 18 Statistical Research Paper 25



3.3.5 True and observed weight nodes

These nodes are represented by the rounded rectangle shapes. The nodes
8 weight, 9 weight and x weight represent the true relative peak weights
r8, r9 and rx respectively of the alleles 8, 9 and x in the amplified DNA
sample; the nodes 8 weightobs, 9 weightobs and x weightobs represent
the measured weights. The observed weight is given a conditional-Gaussian
distribution with mean the true weight, and variance ω2. Each true-weight
node is given a conditional-Gaussian distribution with mean µa = {θn1

a+(1−
θ)n2

a}/2, where the fraction θ of DNA from p1 in the mixture is modelled
in the network by a discrete distribution in the node labelled p1 frac. The
variance is taken to be σ2µa(1 − µa), as specified in § 2. The sym node is
only used for separating a mixture of two unknown contributors, and will be
described later in § 5.2.

3.3.6 Networks with more than one marker

The network displayed in Figure 12 generated by Maies is for a single
marker; for mixture problems involving several markers the structure is sim-
ilar but more complex because the number of nodes grows with the number
of markers (in the Graham example, see § 4.1 below, there are 325 nodes).
In such a network the nodes shaded in Figure 12 occur only once. The un-
shaded nodes are replicated once for each marker, with each node having text
in their labels to identify the marker that the allele or genotype nodes refer
to. There will also be extra repeat number, allele counting and allele weight
nodes in each marker having more than two observed alleles in the mixture,
extending the pattern for the one-marker network in the obvious manner.

4 Evidence calculations

All evidence calculations reported have been made using Maies, combined
with strategic independent checks using Hugin. The variable describing the
mixture ratio has been discretized to having 101 states 0, 0.01, 0.02, . . . , 0.99, 1,
but experiments indicate very low sensitivity to the discretization as long as
it is not far too rough and 10-20 states would probably be fully appropriate.

4.1 Genotype of suspect and victim available

This example is taken from Wang et al. (2002), stating P. Graham of the
Texas Department of Public Safety as the data source. Table 3 displays the
measured peak area, the relative weight, and DNA mixture composition on
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9 markers, together with the genotypes of two potential contributors, here
named suspect and victim. We will in the following refer to this data as the
Graham data.

The evidence in this table is now entered into the network and the infor-
mation propagated. Taking appropriate ratios in the posterior probabilities
associated with the target node yields the likelihood ratio in favour of the
hypothesis that the victim and suspect vs. that of the victim and a random
individual being the contributors to the mixture. Table 4, column “Areas”
displays the logarithm of this likelihood ratio, and column “Alleles” the cor-
responding ratio when only the evidence on the repeat number of the alleles
is used. The last columns show the log-likelihood ratio when the mixture
ratio θ is assumed known at given values.

The posterior distribution of the mixture ratio θ is displayed in Figure 13.
Note that the likelihood ratio is essentially constant in the region 0.3 < θ <
0.4 which is the plausible region in the light of the data. Note also that
this posterior distribution has its maximum around 0.34, close to the value
reported in Wang et al. (2002).

The inclusion of area information is indeed strengthening the evidence
against the suspect, increasing the logarithm of the likelihood ratio from
12.93 to 14.48, approximately corresponding to a factor 36. This is a modest
increase and reflects the fact that when information about the genotype of the
victim is available, peak area does not make much difference to the likelihood
ratio as genotypes themselves are very informative.

4.2 Only genotype of suspect available

Our next example is taken from Evett et al. (1998) and has only informa-
tion of the genotype from one potential contributor, here named the suspect,
whereas the other contributor is a contaminator. The data is displayed in
Table 2 and is henceforth referred to as the Evett data. Table 5 displays the
logarithm of this likelihood ratio together with the corresponding ratio when
peak weights are ignored, and the ratios when the mixture ratio θ is assumed
known at given values.

Note that the strengthening of evidence against the suspect is more dra-
matic when information on the contaminator is absent: the logarithm of
the likelihood ratio changes from 4.4 to 8.23, corresponding to an additional
factor around 6000, as compared to a factor 36 above.

Also here the likelihood ratio is essentially constant over a region which
completely covers the plausible 0.85 < θ < 0.95. The posterior distribution
of the mixture ratio θ is displayed in Figure 14. The maximum occurs around
the value 0.89 which is a little off the true 10:1 mixture proportion.
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Table 3: Graham data showing mixture composition, peak areas, relative
weights, suspect’s and victim’s profiles.

Marker Alleles Peak area Relative weight Suspect Victim

D3 15 1242 0.3361 15
16 657 0.1897 16
17 1546 0.4742 17 17

D5 7 486 0.0999 7
12 512 0.1804 12
13 1886 0.7198 13

D7 10 614 0.3232 10
11 1169 0.6768 11

D8 12 1842 0.6166 12
13 490 0.1777 13
16 461 0.2057 16

D13 8 734 0.3128 8
9 1068 0.5120 9 9

11 299 0.1752 11
D18 12 440 0.1724 12

13 1503 0.6380 13
15 387 0.1896 15

D21 30 842 0.3087 30
30.2 490 0.1808 30.2
31.2 509 0.1941 31.2
32.2 804 0.3164 32.2

FGA 22 850 0.3483 22
23 468 0.2005 23
24 681 0.3045 24
25 315 0.1467 25

VWA 16 616 0.1900 16
17 2021 0.6625 17
18 425 0.1475 18
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Table 4: Logarithm of the likelihood ratios of s&v vs. u&v for the Graham
data.

Areas Alleles Assumed known mixture ratio

θ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Log10LR 14.48 12.93 11.07 13.65 14.48 14.47 11.10 4.5 -5.51 -22.84 -59.52
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Figure 13: Posterior distribution of the mixture ratio for the Graham data
using both the suspect’s and the victim’s genotype.
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Table 5: Logarithm of the likelihood ratios of s&u vs. 2u for the Evett data.

Areas Alleles Assumed known mixture ratio
θ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Log10LR 8.23 4.40 -272.78 -167.52 -97.42 -41.88 5.07 8.03 8.53 8.53 8.53
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Figure 14: Posterior distribution of the mixture ratio for the Evett data using
the suspect’s genotype.
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The absolute value of the likelihood ratios are slightly different from those
given by Evett et al. (1998), who report a logarithm of the likelihood ratio
of 7.3. This discrepancy is most likely due to slight differences between our
model and the model used by Evett et al. (1998). On the other hand, they
report a likelihood ratio based on allele presence alone of 5800, whereas we
find a ratio around 25000, and this appears to be somewhat strange, as we
have used the gene frequencies reported in their paper.

5 Separation of mixtures

Deconvolution of mixtures or separating a mixed DNA profile into its compo-
nents has been studied by Perlin and Szabady (2001) and Wang et al. (2002),
among others. A mixed DNA profile has been collected and the genotypes
of one or more unknown individuals who have contributed to the mixture is
desired, for example with the purpose of searching for a potential perpetrator
among an existing database of DNA profiles.

The easiest case to consider is clearly that of separation of a single un-
known profile, i.e. when the genotype of one of the contributors to the mixture
is known. The case when both contributors are unknown is more difficult.
In the latter situation this is only possible to a reasonable accuracy when the
contributions to the DNA mixture has taken place in very different propor-
tions.

We have chosen to show two alternative methods for predicting the geno-
type of the unknown contributor(s). In the first method we report the
most probable genotype (or pair of genotypes) of the unknown contribu-
tor(s) for each marker separately. This result is obtained directly from the
standard propagation method in the probabilistic expert system, known as
sum-propagation. Note that this genotype is not necessarily the jointly most
probable across markers. We therefore also report the joint probability of
the genotypes chosen in this way. If this happens to be larger than 0.5, the
most probable genotype has clearly been identified.

The second method calculates, by a method termed semimax -propagation,
the most likely joint configuration of all unobserved discrete nodes, given the
evidence available, and reports the genotypes of the unknown contributor(s)
associated with this configuration. The semimax propagation first integrates
over all unobserved continuous variables and then performs max-propagation
as described in Cowell et al. (1999), Section 6.4.1, to identify the most prob-
able configuration. Note again that this may not be the most probable geno-
type across markers. There is no general efficient method for calculating the
latter, but identifying the two configurations above and reporting their joint
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probabilities would be fully satisfactory for most purposes as they are most
interesting when their joint probability is high.

The two methods generally give results that agree quite closely, the dif-
ference largely being due to correlations between the markers originating
from the fact the fraction of DNA supplied by each contributor is unknown.
When this fraction is well determined by the evidence, the markers are close
to being independent. In such cases the two methods tend to given identical
results. It then also holds that the joint posterior probability of the geno-
types of the unknown contributors is approximately equal to the product of
those probabilities for each marker separately.

It would generally seem appropriate to report a list of probable genotypes
for the unknown contributor(s), with their associated probabilities, but this
would demand a slightly more sophisticated calculation and is beyond the
scope of this particular paper.

5.1 Separating a single unknown profile

Our next example is using data from Perlin and Szabady (2001), henceforth
referred to as the Perlin data, displayed in Table 6.

The two individuals contributing to the mixture are here named suspect
and victim and Table 7 displays the predicted genotype of the suspect, using
information from the victim alone.

As in Perlin and Szabady (2001) the genotype of the unknown contributor
is essentially determined exactly and the posterior distribution of the mixture
ratio concentrates around the true value of 0.7, as displayed in Figure 15.
For comparison we have also made a similar calculation for the other two
examples. The results are displayed in Table 8 and Table 9.

Here the situation for the Graham data is similar to the Perlin data:
all markers are correctly identified, with probabilities very close to 1 in all
cases. Analysis of the Evett data also yield probabilities close to 1 on all
markers, but not so close as the for Perlin and Graham data. Evett et al.
(1998) does not contain the genotype of the second contributor so we do not
know whether there are classification errors for this example. Figure 14 and
Figure 16 display the posterior distribution of the mixture ratio for these two
cases.
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Figure 15: Posterior distribution of the mixture ratio for the Perlin data,
using genotypic information on the victim only.
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Figure 16: Posterior distribution of mixture ratio for Graham data using
genotypic information from the victim only.
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Table 6: Perlin data showing mixture composition, peak areas, relative
weights, suspect’s and victim’s genotypes from a 7:3 mixture of the two
individuals.

Marker Alleles Peak area Relative Weight Suspect Victim
D2 16 0.3190 0.1339 16

18 0.6339 0.2992 18
20 0.3713 0.1947 20
21 0.6758 0.3722 21

D3 14 1.0365 0.5010 14 14
15 0.9635 0.4990 15 15

D8 9 0.7279 0.2832 9
12 0.2749 0.1426 12
13 0.6813 0.3829 13
14 0.3160 0.1913 14

D16 11 1.4452 0.6801 11
13 0.2889 0.1607 13
14 0.2660 0.1593 14

D18 12 0.3443 0.1504 12
13 0.6952 0.3290 13
14 0.6755 0.3443 14
17 0.2850 0.1764 17

D19 12.2 0.6991 0.3109 12.2
14 0.6060 0.3092 14
15 0.6949 0.3799 15

D21 27 0.2787 0.1289 27
29 0.7876 0.3913 29
30 0.9337 0.4798 30 30

FGA 19 1.0580 0.4621 19 19
24 0.2830 0.1561 24

25.2 0.6589 0.3817 25.2

THO1 6 0.3178 0.1268 6
7 1.0074 0.4691 7 7
9 0.6749 0.4041 9

VWA 17 1.4755 0.7265 17
18 0.5245 0.2735 18
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Table 7: Predicted genotype of suspect for the Perlin data, using genotype
information for victim only. All markers are correctly identified by both sum
and semi-max propagation.

Marker Genotype Probability

D2 18 21 1

D3 14 15 1

D8 9 13 1

D16 11 11 1

D18 13 14 1

D19 12.2 15 1

D21 29 30 1

FGA 19 25.2 1

TH01 7 9 1

VWA 17 17 1

Table 8: Predicted genotype of suspect for Graham data, using genotype for
victim only. All markers are correctly identified by both sum and semi-max
propagation.

Marker Genotype Probability

D3 16 17 0.997638

D5 7 12 1

D7 10 10 0.999464

D8 13 16 1

D13 9 11 0.999607

D18 12 15 1

D21 30.2 31.2 1

FGA 23 25 1

VWA 16 18 1
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Table 9: Predicted genotype of contaminator for Evett data, using informa-
tion from suspect. Identical results are obtained using sum and semi-max
propagation. The number in brackets is the product of individual marker
probabilities.

Marker Genotype Probability

D8 11 14 0.904607

D18 16 17 1

D21 59 65 1

FGA 21 23 0.922646

TH01 9.3 9.3 0.926062

VWA 17 19 1

joint 0.7757173 ( 0.772921)
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5.2 Separating two unknown profiles

We now turn to the problem of separating a mixture into two components,
using peak area and repeat number information but no information regarding
the two contributors to the mixture. Using only this information will lead to
an identifiability problem in assigning genotype combinations to each person,
because of the symmetry between the individuals p1 and p2 in the network
of Figure 12 or in the equivalent object-oriented network Figure 10.

To remove this problem it is sufficient to enter evidence that the propor-
tion of DNA in the sample from individual p1 is at least one half of the total
DNA in the sample. (The alternative, that individual p1 contributes at most
half of the DNA to the mixture sample could as equally well be used to break
the symmetry.) Using Hugin this symmetry breaking may be achieved by
entering likelihood evidence directly into the fraction node; in Maies direct
entering of likelihood evidence is not possible, so instead this is achieved by
entering evidence on the sym node mentioned in § 3.3.5. The node sym has
two possible states, θ ≥ 0.5 and θ ≤ 0.5. Selecting one state as evidence
breaks the symmetry (the user does this via a menu selection).

Our first example uses the Evett data, ignoring the information on the
suspect. The posterior distribution of the mixture ratio θ is displayed as
the solid curve in Figure 17. The distribution is similar in shape to that in
Figure 14, which uses the suspect genotype information. The broken curve
in Figure 17 shows the posterior using the larger variance factor σ2 = 0.1.
We note that this change of variance has a notable effect on the posterior
distribution of mixture ratio.

The predicted genotypes of the two contributors are shown in Table 10,
with the suspect’s profile being predicted correctly for both choices of vari-
ance even though the probability of the chosen genotype is strongly reduced.

Our next example uses the Perlin data. The posterior distribution for θ
is shown as the solid curve in Figure 18, with the mode at 0.69 very close to
the value reported of 0.7. The predicted genotypes of the two contributors
is shown in Table 11, with all classifications correct. Still, the joint proba-
bility of the chosen genotype indicates that other plausible explanations are
available, essentially due to uncertainty about the genotype for marker VWA.

Increasing σ2 by a factor of 10 to σ2 = 0.1 yields the posterior distribu-
tion shown by the broken line Figure 18. In this case the effect of choosing
an inflated variance factor is dramatic, also yielding reduced genotype prob-
abilites and several classification errors as shown in Table 12. Note also that
here there is a large discrepancy between probability of the joint genotype
and the product of the probabilities for each marker.

Similar behaviour occurs in our final example that uses the Graham data.
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Figure 17: Posterior distribution of mixture ratio from Evett data using no
genotypic information: solid line σ2 = 0.01, broken line σ2 = 0.1.

Table 10: Predicted genotypes of both contributors for Evett data with σ2 =
0.01 and σ2 = 0.1. Identical results are obtained using sum and semi-max
propagation, with suspect (p1) correct on every marker. The number in
brackets is the product of individual marker probabilities.

σ2 = 0.01 σ2 = 0.1
Marker Genotype p1 Genotype p2 Probability Genotype p1 Genotype p2 Probability

D8 10 14 11 14 0.904607 10 14 11 14 0.669688
D18 13 13 16 17 1 13 13 16 17 0.995388
D21 67 70 59 65 1 67 70 59 65 0.999967
FGA 21 22 21 23 0.922646 21 22 21 23 0.517756
TH01 8 9.3 9.3 9.3 0.926062 8 9.3 9.3 9.3 0.606364
VWA 16 18 17 19 1 16 18 17 19 0.999964

joint 0.7757173 (0.772921) 0.210368 (0.209264)
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Figure 18: Posterior distribution of mixture ratio from Perlin data using no
genotypic information: solid line σ2 = 0.01, broken line σ2 = 0.1.

Table 11: Predicted genotypes of both contributors for Perlin data with
σ2 = 0.01. The number in brackets is the product of individual marker
probabilities. All classifications are correct but the marker VWA is uncertain.

sum prop semi-max
Marker Genotype p1 Genotype p2 Probability Genotype p1 Genotype p2 Probability

D2 18 21 16 20 0.999072 18 21 16 20 0.999072
D3 14 15 14 15 0.998342 14 15 14 15 0.998342
D8 9 13 12 14 0.997656 9 13 12 14 0.997656
D16 11 11 13 14 0.999805 11 11 13 14 0.999805
D18 13 14 12 17 0.999928 13 14 12 17 0.999928
D19 12.2 15 14 14 0.828718 12.2 15 14 14 0.828718
D21 29 30 27 30 0.987463 29 30 27 30 0.987463
FGA 19 25.2 19 24 0.990340 19 25.2 19 24 0.990340
TH01 7 9 6 7 0.969079 7 9 6 7 0.969079
VWA 17 17 18 18 0.537648 17 17 18 18 0.537648
joint 0.4342251 (0.420059) 0.4342251 (0.420059)
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Table 12: Predicted genotypes of both contributors for Perlin data with σ2 =
0.1. The number in brackets is the product of individual marker probabilities.
There are classification errors in markers D3, FGA and VWA (italicized).

sum prop semi-max
Marker Genotype p1 Genotype p2 Probability Genotype p1 Genotype p2 Probability

D2 18 21 16 20 0.349986 18 21 16 20 0.349986
D3 14 15 14 15 0.601826 14 15 15 15 0.149452
D8 9 13 12 14 0.339805 9 13 12 14 0.339805
D16 11 11 13 14 0.371007 11 11 13 14 0.371007
D18 13 14 12 17 0.361439 13 14 12 17 0.361439
D19 12.2 15 14 14 0.214513 12.2 15 14 14 0.214513
D21 29 30 27 30 0.438172 29 30 27 30 0.438172
FGA 19 25.2 19 24 0.444306 19 25.2 24 24 0.114614
TH01 7 9 6 7 0.413837 7 9 6 7 0.413837
VWA 17 18 17 17 0.432392 17 17 18 18 0.0819453

joint 0.000510 (7.1723e-05) 0.000107 (8.7074e-07)
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The posterior distribution of θ is shown as the solid curve in Figure 19,
with a maximum around 0.65; the predicted profiles are shown in Table 13,
with one classification error. However note for this classification error (in
D7, using sum-propagation) the probability assigned to the genotype pair
is around 0.68, with the correct classification (picked out out by the semi-
max method) has a probability of around 0.32. Note that the two chosen
genotypes together account for essentially all of the probability mass.

Increasing the variance factor σ2 to 0.1 yields more classification errors
and also probabilities much lower, as shown in Table 14. The corresponding
posterior distribution of θ is plotted as the broken line in Figure 19.
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Figure 19: Posterior distribution of mixture ratio from Graham data using
no genotypic information: solid line σ2 = 0.01, broken line σ2 = 0.1.

6 Discussion

In the previous sections we have demonstrated how a probabilistic expert
system can be used for analysing DNA mixtures using peak area information,
yielding a coherent way of predicting genotypes of unknown contributors
and assessing evidence for particular individuals having contributed to the
mixture. We emphasize the advantages of using a model-based approach as
ours over numerical separation techniques such as Linear Mixture Analysis
(LMA) (Perlin and Szabady 2001) and Least Square Deconvolution (LSD)
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Table 13: Prediction of two unknown genotypes for Graham data, with
σ2 = 0.01. The number in brackets is the product of individual marker
probabilities. There is a classification error in marker D7 (italicized).

sum prop semi-max
Marker Genotype p1 Genotype p2 Probability Genotype p1 Genotype p2 Probability

D3 16 17 15 17 0.993063 16 17 15 17 0.993063
D5 7 12 13 13 0.999836 7 12 13 13 0.999836
D7 11 11 10 11 0.677898 10 10 11 11 0.321722
D8 13 16 12 12 0.952498 13 16 12 12 0.952498
D13 9 11 8 9 0.997447 9 11 8 9 0.997447
D18 12 15 13 13 0.990162 12 15 13 13 0.990162
D21 30.2 31.2 30 32.2 0.994523 30.2 31.2 30 32.2 0.994523
FGA 23 25 22 24 0.995630 23 25 22 24 0.995630
VWA 16 18 17 17 0.997152 16 18 17 17 0.997152

joint 0.6242217 (0.6251788) 0.2979028 (0.2967021)

Table 14: Prediction of two unknown genotypes for Graham data, using
σ2 = 0.1. There are now classification errors in three markers (italicized).

sum prop semi-max
Marker Genotype p1 Genotype p2 Probability Genotype p1 Genotype p2 Probability

D3 16 17 15 17 0.339087 16 17 15 17 0.339087
D5 7 12 13 13 0.425175 7 12 13 13 0.425175
D7 11 11 10 11 0.375857 10 10 11 11 0.155175
D8 12 13 12 16 0.327032 13 16 12 12 0.279082
D13 9 11 8 9 0.317089 11 11 8 9 0.107251
D18 12 15 13 13 0.310149 12 15 13 13 0.310149
D21 30.2 31.2 30 32.2 0.309763 30.2 31.2 30 32.2 0.309763
FGA 23 25 22 24 0.340326 23 25 22 24 0.340326
VWA 16 18 17 17 0.350301 16 18 17 17 0.350301

joint 1.74778e-04 (6.4358e-05) 7.2491e-05 (7.6696e-06)
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(Wang et al. 2002). Since the results are model based there is a natural and
directly interpretable quantification of all uncertainties associated with the
analysis, and the analysis is extendable to similar but different situations
using the modularity and flexibility of the PES approach.

None of the data used as examples had information on the amelogenin
marker, but this marker can clearly be very informative concering the un-
known fraction of DNA for each contributor when these are of different sex,
in particular when genotypes (including sex) is known for one of the contrib-
utors.

The examples considered have also demonstrated that there are issues
which need further consideration. In particular it appears that the perfor-
mance of the system is sensitive to the scaling factors used to model the
variation in the amplification and measurement processes. This is a serious
problem which needs attention. Preliminary investigations seem to indicate
that this factor depends critically on the total amount of DNA available for
analysis. As this necessarily is varying from case to case, a calibration study
should be performed to take this properly into account. In any case we find
it comforting that the system itself would warn against trusting an uncertain
prediction, by yielding an associated low classification probability.

Methods for diagnostic checking and validation of the model should be
developed based upon comparing observed weights to those predicted when
genotypes are assumed correct. Such methods could also be useful for cal-
ibrating the variance parameters σ2 and ω2. To indicate a possible way
ahead we note that the network can itself be used for predicting peak weight
given a hypothesised composition of the mixture and of the two contributors.
Table 15 gives the predicted peak weights for the Perlin data based on the
repeat numbers in the mixture composition, the true mixture composition,
and on the suspect’s and victim’s genotype. The last two columns show the
limits of the 95% predictive interval [µa − 1.96τ, µa + 1.96τ ] for the weight.
For a 95% predictive interval we might expect about one of the areas of the
table to lie outside of its predicted interval, as 21 of the 31 intervals are
independent (the weights for each marker must necessarily add to one); all
expected areas are within their intervals, indicating that the variance at least
is not too small.

The predicted peak weights are also useful for identifying measurement
errors. For example, if the predicted weight is of the same order of magnitude
as the cut-off threshold, the peak is likely to be missed.

Another issue to be further investigated is the possibility of using a model
based on gamma distributed absolute peak weights, thereby treating the cor-
relation between individual peak areas in a proper way and avoiding the
somewhat unfortunate fact that Gaussian distributions can take negative
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Table 15: Prediction of relative peak weight for Perlin data, using the mix-
ture, the suspect’s and the victim’s DNA composition.

Marker Allele Relative Weight Predicted relative weight
µa − 1.96τ µa + 1.96τ

D2 16 0.1339 0.0565 0.2435
18 0.2992 0.2378 0.4622
20 0.1947 0.0565 0.2435
21 0.3722 0.2378 0.4622

D3 14 0.5010 0.3840 0.6160
15 0.4990 0.3840 0.6160

D8 9 0.2832 0.2378 0.4622
12 0.1426 0.0565 0.2435
13 0.3829 0.2378 0.4622
14 0.1913 0.0565 0.2435

D16 11 0.6801 0.5909 0.8091
13 0.1607 0.0565 0.2435
14 0.1593 0.0565 0.2435

D18 12 0.1504 0.0565 0.2435
13 0.3290 0.2378 0.4622
14 0.3443 0.2378 0.4622
17 0.1764 0.0565 0.2435

D19 12.2 0.3109 0.2378 0.4622
14 0.3092 0.1909 0.4091
15 0.3799 0.2378 0.4622

D21 27 0.1289 0.0565 0.2435
29 0.3913 0.2378 0.4622
30 0.4798 0.3840 0.6160

FGA 19 0.4621 0.3840 0.6160
24 0.1561 0.0565 0.2435

25.2 0.3817 0.2378 0.4622

THO1 6 0.1268 0.0565 0.2435
7 0.4691 0.3840 0.6160
9 0.4041 0.2378 0.4622

VWA 17 0.7265 0.5909 0.8091
18 0.2735 0.1909 0.4091
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values. Ideally the method should be generalised to deal with higher com-
plexity such as the simultaneous analysis of several traces, an unknown but
large number of contributors, etc., and we have not yet made a proper in-
vestigation of the computational complexity issues associated. Finally we
emphasize that for the moment we have not dealt with incorporating arti-
facts such as stutter, pull-up, allelic dropout, etc., but we hope to pursue
this and other aspects in the future.
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