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Summary

When a patient in need of a stem cell transplant has no compatible donor within his or her 

closest family, and no matched unrelated donor can be found, a remaining option is to search 

within the patient’s extended family. This situation often arises when the patient is of an 

ethnic minority, originating from a country that lacks a well-developed stem cell donor 

program, and has HLA haplotypes that are rare in his or her country of residence. Searching 

within the extended family may be time-consuming and expensive, and tools to calculate the 

probability of a match within groups of untested relatives would facilitate the search.

We present a general approach to calculating the probability of a match in a given relative, or 

group of relatives, based on the pedigree, and on knowledge of the genotypes of some of the 

individuals. The method extends previous approaches by allowing the pedigrees to be 

consanguineous and arbitrarily complex, with deviations from Hardy-Weinberg equilibrium.  

We show how this extension has a considerable effect on results, in particular for rare 

haplotypes. The methods are exemplified using freeware programs to solve a case of practical 

importance.

Keywords: Donor search; pedigree calculations; consanguinity

Introduction

Genetically matching stem cell donors can be found by searching within the patient’s family, 

or by searching in bone marrow donor registries. The former approach is advantageous 

because relatives found to match the patient at tested HLA loci are much more likely to share 

the entire haplotypes with the patient than are matched unrelated donors, and this may 

improve the prognosis.1 For patients with rare genotypes, searching within the family may be 

the only option. Consanguinity within the patient’s pedigree, or sometimes occurrence of such 

events as two brothers marrying two sisters, may make finding a matching relative reasonably 

probable even when the patient’s genotype is extremely rare. In fact, it might be this very 

consanguinity that has contributed to the occurrence of the rare genotype of the patient. 
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Rare haplotypes frequently complicate the search for donors to patients of ethnic minorities. 

Searching within the patient’s extended family may be complex and expensive, as it may be 

scattered over several countries, and some family members may be difficult to reach and test. 

Thus it becomes important to optimize the search in terms of cost. An important part of such 

optimization is probability calculations. In particular, we need to (1) calculate the probability 

that another specified relative will match, i.e., share the relevant parts of the genotype of the 

patient, and (2) calculate the probability that at least one person in a specified group of 

relatives will match. The second calculation is important because a sensible search strategy 

typically involves testing relatives in groups, before re-evaluating the search plan. 

Similar problems have been considered previously under simplifying assumptions, i.e., when 

the pedigrees have certain specified forms, when there is no inbreeding, and when the Hardy-

Weinberg Equilibrium (HWE) holds. Methods, examples and a computer program called 

ExtFam have been described by Schipper et. al1, see also Kollman2 and Kaufman.3

We have found that methods and programs originally developed in forensic genetics can be 

applied to the present donor-matching problem, yielding solutions with greater generality and 

fewer assumptions.4,5,6 This paper presents such methods and programs for doing the 

necessary probability calculations. We show how probabilities are changed considerably

compared to those obtained with more simplistic methods, in particular when the haplotype 

frequencies are low. 

Methods

Let R be a fixed pedigree, in which n persons nxx ,...,1  have been tested, and let 1x  denote the 

patient. Let g(x) represent the genotype of person x, and let ngg ,...,1  be the (known) 

genotypes of individuals nxx ,...,1 . We need to calculate the probability that a given relative 

xn+1 matches, i.e. 

( )RgxggxggxgP nnmatchn ,)(,...,)(|)( 111 ===+
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where gmatch may represent g1, or a genotype sufficiently close to g1. It follows immediately 

from the definition of conditional probability that

( )
( )

( )RgxggxgP

RgxggxggxgP
RgxggxggxgP

nn

nnmatchn

nnmatchn

|)(,...,)(

|)(,...,)(,)(
,)(,...,)(|)(
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111

==
===

=

===
+
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(1)

Thus we would like to compute quantities of the form 

( )RgxggxggxgP kk |)(,...,)(,)( 2211 === , (2)

the probability of the occurrence of specified genotypes for k individuals within a given 

pedigree. Under the assumptions that there is no recombination within the relevant haplotypes 

in the pedigree, that the haplotypes involved can be deduced from the pedigree, that HWE 

holds, and that haplotype frequencies are available, (2) is possible to compute using standard 

probability calculations. Note that, in consanguineous pedigrees in particular, such 

computations can become quite complex, and disregarding the consanguinity leads to 

considerable errors. Although it is possible to derive formulas for each particular pedigree, it 

may be more practical to use a program implementing a Bayesian Network algorithm, which 

can handle any pedigree (see the Appendix). 

The HWE assumption implies that if one of the haplotypes of a person is known, the 

probability distribution for the second haplotype remains unchanged. This is typically not the 

case when the parents of the person are on the average more related than two randomly 

selected persons from the population. Motivated by forensic applications, a practical way of 

dealing with such population substructure has been described by Balding and Nichols.7 An 

important parameter is the “coancestry coefficient”, or FST, which is the correlation between 

two haplotypes sampled from different individuals within a subpopulation. A positive 

correlation implies that the probability of observing a haplotype in a founder of a pedigree 

increases with every observation of this haplotype in the same or another founder. More 

precisely, if s founder haplotypes have been observed, and r of these are of type A, then the 

model implies that the probability for the next one to be of type A is 
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ST

STAST

Fs

FprF

)1(1

)1(

−+
−+

(3)

 For instance, the homozygote probability 2
Ap  is replaced by ))1(( ASTSTA pFFp −+ . Observe 

that 0=STF  corresponds to HWE while positive values of FST increase the homozygote 

probability. The assumption of HWE has been implicit in previous treatments.1,3

The genotypes used in the computations could in principle be any set of allelic markers; the 

most relevant in this context are of course HLA haplotypes. Because of the extreme 

polymorphism of the HLA region, population frequencies can be very hard to estimate in the 

relevant populations. Consequently, it is of interest to discuss how to find probability bounds 

without using haplotype probabilities; in effect, finding the probability for a donor whose 

haplotypes are identical by descent within the pedigree to those of the patient. Standard 

probability calculations can be applied to this problem; see the Results section for an example. 

Finally, let us return to the problem of calculating the probability of at least one match within 

a group of relatives. Let knn xx ++ ,...,1  be k relatives in the pedigree R in addition to the n

considered above, and for ki ,...,1=  denote by im  the event that matchin gxg =+ )( , i.e., that this 

relative has the required genetic match. Then we would like to compute

).,)(,...,)(|...( 1121 RgxggxgmmmP nnk ==∪∪∪ (4)

Again, this can be computed in terms of quantities like (2), see the Appendix for details. 

Results

We present three examples. First, the impact of deviation from HWE is studied. Then a 

practical case with a complex pedigree is studied assuming haplotype frequencies to be 

known. The last example expands on the second by assuming that the relevant haplotype 

frequency is unknown, but close to zero. 
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The effect of population substructure

For illustrative purposes, let us consider the case where a mother is considered as a donor for 

a homozygote AA child. When HWE is assumed, the probability for a match is Ap , the 

population frequency of A. When FST is nonzero, it follows from (1) and (3) that

2 (1 )
(mother matches)

1
ST A ST

ST

F p F
P

F

+ −
=

+
,      (5)

and the ratio of (5) to pA is  

ST

ST

A

ST

ST F

F

p

F

F +
−

+
+ 1

1

1

2
.

Although FST  is difficult to estimate and varies considerably among populations, a typical and 

conservative value could be 0.01.8 When pA is much larger than FST the ratio above is close to 

1, and the adjustment does not matter. But when pA is approximately equal in size to FST, as it 

may very well be for many HLA haplotypes, the ratio is around 3, indicating the necessity of 

estimating and using correct FST values in calculations. 

Sample calculations in a consanguineous pedigree

Consider the family extending over four generations shown in Figure 1. The parents of the 

homozygote AA patient, IV1 and IV2, are cousins and so are the parents of the father, III3 

and III4. Note that some persons in the pedigree are present only to define family relations, 

they are not available as potential donors. The patient’s immediate family has been tested 

without finding a match. 

We consider initially the patient’s four grandparents as possible donors. Table 1 compares 

match probabilities for III1-III4 at different values of pA. First, one calculates the match 

probability for a grandparent disregarding consanguinity (i.e., generations I and II are 

removed from the pedigree). Then, this is compared to the correct pedigree using FST=0, and 

using FST=0.01, for each of the four grandparents. The results were obtained using the 
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Familias program (see the Appendix). We see that disregarding the known ancestry of the 

grandparents can affect match probabilities substantially in both directions. Disregarding 

Hardy-Weinberg disequilibrium tends to lead to underestimation.

As an illustration, we also compute the probability that at least one of the grandparents, or at 

least one of the uncles, will match. Table 2 shows this probability for different values of pA

and under different hypotheses. See the Appendix on how the values have been obtained. 

A lower bound on the probability of finding a matching donor in a consanguineous pedigree

Knowing about consanguinity within the pedigree may either increase or decrease the match 

probability for individual potential donors, as we saw above. However, persons who are 

inbred within the pedigree (i.e., whose two haplotypes may have been inherited from a single 

haplotype in the pedigree) generally increase their match probabilities to a homozygote 

patient substantially, in particular when pA is low.  In the example of Figure 1, consider the 

potential donors IV3-IV6. If the patient inherited one or both of her haplotypes A from a 

haplotype of I1 or I2, then any of IV3 to IV6 may have inherited two copies of A to become 

homozygous AA. Thus these persons have a match probability above a certain lower bound 

no matter how small pA is. 

In fact, the lower bound for the probability of at least one of IV3-IV6 being a matching donor, 

is

4
1 3

1 0.076.
9 4

  − =  
   

(6)

Table 2 shows matching probabilities at different pA's, and under different hypotheses. The 

effect of considering consanguinity, and the presence of a lower bound, is very clear. To 

obtain the number given in (6), we first compute the probability that both III3 and III4 carry 

the A haplotype. As pA may be arbitrarily low, we may disregard the possibility that A occurs 

more than once among the pedigree founders. Thus Figure 2 illustrates the ways A may have 

spread in the pedigree. A counting argument shows that the probability of both III3 and III4 
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carrying a copy of A is 1/9; see the Appendix for details. Simple Mendelian computations 

then give the result in (6). 

Discussion

The examples above show that some care must be taken in computations, in order to get 

reliable numbers for match probabilities within the extended family. We have focused on 

including in the computations parts of the pedigree indicating consanguinity, and using an 

adjustment for population substructure. Below, we discuss some additional possible 

extensions of computational methods. 

We have assumed that haplotypes have been observed, and have used these as data. However, 

the haplotypes are not directly observed, only the alleles at each of the usually three markers 

used in the HLA region. As the markers are very polymorphic and we generally start with 

data coming from several generations, it is usually possible to deduce the phase of the markers 

(assuming no recombinations have taken place). But in some examples, this may be 

impossible (e.g., if the mother, father, and child all have the same two markers in a locus). It 

is not too hard to extend computational methods to such cases: We just need to sum 

probabilities over the different possible haplotypes compatible with the observed data. 

Even though the recombination probabilities between HLA loci are small,9 a crossover will 

occur in a significant proportion of the pedigrees of extended families we consider. Such 

crossovers may not always be possible to deduce from the allelic data we observe. However, 

even undetected crossovers may have a decisive influence on the probability of finding a 

match in untested parts of the pedigree. A possible solution is to include the possibility of 

crossovers in the inheritance model. This is not too difficult in principle, but would require 

some reprogramming of existing tools. As the probability of undetected crossovers is low, the 

effect on the final result is likely to be limited. 

Our methods, in the way we have described them, do not separate between haplotypes 

identical to those of the patient, and haplotypes merely identical in the three loci, even if the 

difference between these types can be one of the motivations for searching for a donor in the 

extended pedigree. It is however possible to treat these differently: We are then faced with 
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computing the probability of different kinds of matches, some considered better than others. 

Indeed, in cases where the probability of finding a match in all three systems is very low, one 

might want to search for a one-mismatch donor. The computations and methods for doing this 

would be more or less unchanged: One would just widen the definition of genetic match.

Throughout we have assumed fixed values for parameters, i.e., haplotype frequencies and 

STF . These fixed values may be replaced by probability distributions. The resulting answers 

would then include parameter uncertainty. This might be a relevant way to handle cases where 

population frequencies are very difficult to estimate. In cases where analytical formulae are 

available the extension is easy, whereas more general cases might require an extended 

Bayesian network to be programmed, or the application of simulation methods.

We have shown in this paper that computational models with fairly high complexity are 

necessary to obtain reliable numbers for donor match probabilities in some cases. In practical 

cases, it is then central to have available software tools making such computations feasible for 

the practitioner. The freely available program Familias10 is one alternative, and a webpage 

with help for its use for the donor match application is available.11 However, any tool 

implementing Bayesian Network computations could be used. Such general tools might 

supply answers to some questions more efficiently, but they might also require a more 

experienced user, in particular in implementing Hardy-Weinberg disequilibrium. 

Unfortunately, no program we know of is directly tailored for the applications in this paper, 

and making such an adaptation would be desirable. 
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Appendix

In this Appendix, we provide some details on how to obtain the results in Tables 1 and 2 using 

various computer programs. We also add some detail to the computations leading to the result

in (6). 

Using the familias program

Familias4,5 was developed primarily to investigate complex paternity cases, and other cases 

with competing pedigree hypotheses. However, it can also be used to compute quantities like 

(2), with a given value for FST. All the values in Table 1 were obtained according to Equation 

(1) as a quotient of two values computed by Familias. 

It is unfortunately not as easy to obtain values like those in Table 2. A general approach to 

computing the probability of unions of events, as in Equation (4), is to use the Inclusion-

Exclusion principle.12 Let

( )
( )

( )∑

∑
∑

<<<

<

•=

•=

•=

k

k
iii

iiik

ii
ii

i
i

mmmPS
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|,...,,
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where “• ” is short for the available genotype information nn gxggxg == )(,...,)( 11  and 

pedigree structure R. Then

( ) k
k

k SSSmmmP 1
2121 )1(...|... +−++−=•∪∪∪ . (7)

The 12 −k  terms in this result can easily become too many for manual computation, although 

useful bounds could be obtained by truncating to the first few terms. One simplification 

occurs if individuals 1,...,s are independent of s+1,...,k, for then
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In many cases there might be other simplifying circumstances: For example, to compute the 

results on the left side of Table 2, we can use that at most one parent of each of IV1 and IV2 

can be a match. Thus Equation (7) reduces to the sum of the match probabilities for each of 

the grandparents III1-III4, minus the probabilities for the 4 possible double matches: III1 and 

III3; III1 and III4; III2 and III3, and III2 and III4. The right part of table 3 can also be 

computed similarly, although all 15 terms of the original formula (7) must now be included. 

An alternative is to first compute the probability for the five possible relevant genotypes for 

III3 and III4: (AA, AB), (AB, AB), (AX, AB), (AB, AA), and (AB, AX), where X is any 

haplotype different from A and B. In the first and third of these cases, the probability for a 

match among IV3-IV6 is ( )42
11− , while in the second and fourth case, it is ( )44

31− . A 

webpage11 is available for further details about applying Familias to the problems of this 

paper. 

Using Bayesian Network (BN) software

Bayesian networks13 are a type of directed graphical model that captures conditional 

independences between random variables in multivariate stochastic models.  A web site with 

excellent tutorial material on Bayesian networks with a link to a comprehensive list of 

Bayesian network software (for example the commercial package HUGIN and the freeware 

GENIE) that could be used to perform the calculations described in this paper, is maintained 

by Kevin Murphy.14 In using BN software for the problems tackled in this paper, there is 

some freedom in the choice of random variables that can be used to model the pedigree; here 

for simplicity we shall use the genotype representation, in which only the genotypes of the 

people in the pedigree are represented by random variables in the Bayesian network (other 

representations can be much more efficient computationally).15 Figure 3a shows the Bayesian 

network for a first simple example, assuming HWE. The nodes represent the genotypes of the 

grandmother, mother and child. Associated with the grandmother node is the prior distribution 

for the genotype that the grandmother could have. Associated with the mother node is a 

conditional probability for the mother’s genotype given the grandmother’s genotype; a 

distribution with identical values is specified for the child node. After setting the network up 

in a BN, evidence consisting of the child’s genotype is entered on the child node and 
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distributed to the other nodes of the network by a process called ‘propagation’. After this 

(usually automatic) propagation process the marginal posterior distributions of the mother and 

grandmother genotypes are displayed, and from these can be read off the probabilities for the 

mother or grandmother to  individually  match the child.

Figure 3b shows a Bayesian network to calculate these posterior probabilities taking into 

account deviations from Hardy-Weinberg equilibrium.  For this calculation, we need to 

introduce the child’s father and maternal grandfather as extra nodes in the network. In order to 

capture the correlations between haplotypes, at the top of the network is another random 

variable whose states consist of the set of all combinations of the genotypes of the father, 

grandmother and grandfather; there is an associated probability table that models the 

deviations from HWE as described by Balding and Nichols.7 The conditional probabilities 

associated with the father, grandmother and grandfather nodes will take value of either 0 or 1 

to reflect logical constraints, for example, that the genotype of the father in the f node must 

match that in the joint node.  The conditional probabilities specified for the mother and child 

nodes model Mendel’s law of gene inheritance. Using this network the probability that each 

of the mother or grandmother individually matches can be found in exactly the same way as 

for the simpler network of Figure 3a. The complexity of this approach increases substantially 

with the number of observed haplotypes in the marker, and the number of founders in the 

pedigree. For example, to do the calculations in Table 1 in BN software would require a node 

to represent the joint genotype of five founders, the probability table to be specified has 

100,000 entries, and the conditional probability table for each of the five founders given this 

joint variable would have one million entries. Clearly it is not feasible  to specify this 

manually using BN software – some programming would be required. Hence such corrections 

are best evaluated using Familias. (In contrast, assuming HWE, the complexity is much 

smaller, with the largest conditional probability table having 1000 entries, a number that can 

be reduced to 250 using an alternative Bayesian network representation of the pedigree.)

Using BN software to find probabilities like (4) is a two-step process. After setting up the 

pedigree (either a simple network assuming HWE or a more complex network that 

incorporates HWE deviations) one enters the haplotype data on the patient, her three siblings 

and her parents and propagates. BN software returns the probability of this data, ( )•P  as a so-

called normalization constant.  Next one enters as additional  (likelihood) evidence the 

restriction that each of the people in the group is NOT a match; then the normalization 
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constant is ( )•,,...,, 21 kmmmP , the joint probability of the observed genotypes of the six 

haplotyped people and also the restriction that nobody in the group matches the patient. 

Finding the probability of at least one match in the group is then an application of basic 

probability theory:

( ) ( ) ( )
( )•

•
−=•−=•∪∪∪

P

mmmP
mmmPmmmP k

kk

,,...,,
1|,...,,1|... 21

2121 .

That is, the ratio of the second normalization constant to the first, subtracted from 1, will give 

the probability that there is at least one match among the people in the group of interest.

Computing lower bounds for match probabilities

We conclude with some details on the computations leading to the number given in (6). In 

Figure 2, the pedigrees (ii) through (v) have companions where A appears in I2 instead of I1, 

giving a total of 9 possible ways A can spread in the pedigree. What is the probability of 

observing the data in each case? Note that for all persons except the founder it is known 

whether A is the paternal or maternal haplotype; assume first that it is the maternal haplotype 

in the founder. The probability of observing these data is Ap  times Ap−1  to the power of the 

number of other founding haplotypes, which is 9, times ½ to the power of the number of times 

a particular choice of paternal or maternal haplotype must have been made in order to give 

rise to the given data. In example (i) there are 4 such segregation events, so the probability of 

the data is 49 )2/1()1( AA pp − . The case that the founding A haplotype is the paternal 

haplotype of the founder has exactly the same probability, so the probability of observing the 

data indicated in Figure 2(i) is 49 )2/1()1(2 AA pp − . We have in fact also observed that the 

patient’s mother has a B haplotype and that the patient’s father has a C haplotype. The 

mother’s maternal haplotype is a founder haplotype, and by summing over the possibilities for 

how the father’s paternal haplotype may have been inherited, we get that the probability for 

observing the actual data is 

4
7

2

1
)1(2 






− ACBA pppp .
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Exactly the same argument may be repeated for the other pedigrees in Figure 2, so that the 

total probability of observing any of them is

64

9
)1(2

2

1
2

2

1
2

2

1
2

2

1
2

2

1
)1(2 7

77764
7

ACBAACBA pppppppp −=



 ++++− .         (8) 

Of the pedigrees in Figure 2, only in type (v) do the parents III3 and III4 both carry haplotype 

A, so this happens with probability 

64

1
)1(2

2

1
2)1(2 7

7
7

ACBAACBA pppppppp −=− .    (9)

The conditional probability that these parents both carry A, given the observed data, is then 

the ratio of the numbers computed in (8) and (9), thus 1/9.
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Tables

Table 1. Match probabilities for the grandparents III1-III4 from the pedigree in Figure 1 under 
various models.

pA Grandparent

Any III1 III2 III3 III4

Model
Simpli-

fieda
HWE FST =0.01 HWE FST=0.01 HWE FST=0.01 HWE FST=0.01

0.1b 0.05 b 0.00046 0.093 0.18  1.8 0.15 1.6 0.033 0.41
0.3 0.15 0.0041 0.12 0.52  2.1 0.46 1.8 0.10 0.48
1.0 0.5 0.043 0.22 1.7  3.1 1.4 2.7 0.34 0.74
3.0 1.5 0.33 0.64 4.4  5.5 3.8 4.8 1.1 1.5
10 5.0 2.4 2.9 10.7 11.3 9.5 10.1 3.8 4.3

aIn the simplified model, consanguinity is ignored (generations I and II are removed from the 

pedigree),  and HWE is assumed (FST = 0).
bFrequencies and match probabilities are shown as percentages.

Table 2. Match probabilities for at least one of the grandparents III1-III4, or at least one of the 
uncles IV3-IV6, under various models.

pA Match in at least one grandparent Match in at least one of four uncles

Model Model

Simplifieda HWE FST = 0.01 Simplified HWE FST = 0.01
0.1b 0.20b 0.29 3.1 0.068 7.7 8.7
0.3 0.60 0.85 3.6 0.21 7.9 8.9
1.0 2.0 2.8 5.4 0.69 8.6 9.5
3.0 5.9 7.6 9.9 2.1 10 11
10 19 21 23 7.1 16 16

aIn the simplified model, consanguinity is ignored (generations I and II are removed from the 

pedigree), and HWE is assumed (FST = 0).
bFrequencies and match probabilities are shown as percentages.



Figure 1: The family extended over four generations, V4 represents the patient
seeking a donor, with siblings V1-V3 and parents IV1 and IV2 having already
been typed and found not to match.
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Figure 2: Illustrations of the ways in which the allele A could have been passed
down from a single founder in the pedigree.

18



Figure 3: (a) Bayesian network for a simple example, assuming Hardy-Weinberg
equilibrium; (b) Bayesian network to take into account deviations from Hardy-
Weinberg equilibrium.
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