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Geometrically designed, variable 
knot regression splines: Variation 
diminishing optimality of knots

by

Vladimir K. Kaishev*, Dimitrina S. Dimitrova, Steven Haberman 
and Richard Verrall

 Cass Business School, City University, London

Summary
A new method for Computer Aided Geometric Design of variable knot regression splines, named GeDS, has
recently  been  introduced  by  Kaishev  et  al.  (2006).  The  method  utilizes  the  close  geometric  relationship
between  a  spline  regression  function  and  its  control  polygon,  with  vertices  whose  y-coordinates  are  the
regression  coefficients  and  whose  x-coordinates  are  certain  averages  of  the  knots,  known  as  the  Greville
sites. The method involves two stages, A and B. In stage A, a linear LS spline fit to the data is constructed,
and viewed as the initial position of  the control  polygon of  a higher  order  (n > 2) smooth spline curve.  In
stage B, the optimal set of knots of this higher order spline curve is found, so that its control polygon is as
close to the initial polygon of stage A as possible, and finally the LS estimates of the regression coefficients
of  this  curve  are  found.  In   Kaishev  et  al.  (2006)  the  implementation  of  stage  A  has  been  thoroughly
addressed and the pointwise asymptotic properties of the GeD spline estimator have been explored and used
to construct asymptotic confidence intervals.

In this paper, the focus of the attention is at giving further insight into the optimality properties of the knots
of  the  higher  order  spline  curve,  obtained  in  stage  B  so  that  it  is  nearly  a  variation  diminishing  (shape
preserving)  spline  approximation  to  the  linear  fit  of  stage  A.  Error  bounds  for  this  approximation  are
derived.  Extensive numerical examples are provided,  illustrating the performance of  GeDS and the quality
of  the  resulting  LS  spline  fits.  The  GeDS  estimator  is  compared  with  other  existing  variable  knot  spline
methods  and  smoothing  techniques  and  is  shown  to  perform  very  well,  producing  nearly  optimal  spline
regression  models.  It  is  fast  and  numerically  efficient,  since  no  deterministic  or  stochastic  knot
insertion/deletion and relocation search strategies are involved. 

Keywords:  spline  regression,  B-splines,  Greville  abscissae,  variable  knot  splines,  control  polygon,  asymp-
totic confidence interval
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1. Introduction. 

Consider the problem of nonparametric spline regression estimation in which, a response
variable y  is related to an independent variable x œ @a, bD , through the functional relation-
ship 

(1)y = f HxL + e ,
where  e  is  a  random error  variable  with  zero  mean  and  f H ÿ L  is  an  unknown  function,
approximated with a n-th order (degree n - 1) polynomial spline f Htk,n; xL . The latter is
defined on the set of knots 

(2)tk,n = 8t1 = ... = tn = a < tn+1 < ... < tn+k < tn+k+1 = b = ... = t2 n+k<
as

(3) f Htk,n; xL = q ' NnHxL = ⁄i=1
p qi Ni,nHxL , 

where  q = Hq1, ..., qpL '  is  the  vector  of  regression  coefficients  and
NnHxL = HN1,nHxL, ..., Np,nHxLL ' ,  p = n + k ,  are  the  B-splines  of  order  n .  B-splines  are
defined on tk,n  through the Mansfield-De Boor-Cox recurrence relation

Ni,1HtL = 9 1
0

     
if

   
ti § t < ti+1

otherwise
,

(4)Ni,nHtL = t-tiÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅti+n-1-ti
 Ni,n-1HtL + ti+n-tÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅti+n-ti+1

 Ni+1,n-1HtL .
from which it can be seen that Ni,nHtL = 0 for t – @ti, ti+nD . In the sequel, where necessary,
we will  emphasize the  dependence  of  the  spline  regression f Htk,n; xL  on q  by using the
alternative notation f Htk,n, q; xL . The nonparametric spline regression problem is then to
estimate the degree of the spline,  n ,   the number of the knots,  k ,  their  location and the
regression  coefficients  q ,  based  on  a  sample  of  observations  8yi<i=1

N  at  some  design
points 8xi<i=1

N .

Several  different  nonparametric  spline  approximation  methods  can  be  outlined.  Under
the direct approach, n  and k  are considered fixed (but unknown), and the knots tk,n  are
assumed to be unknown parameters which have to be estimated by solving a non-linear
least  squares  optimization  problem  (see  DeBoor  and  Rice  (1968),  Jupp  (1978),  Hu
(1993)  and  Lindstrom  (1999)),  based  on  the  sample  8yi, xi<i=1

N .  There  are  a  number  of
difficulties  related  to  this  approach  which  have  been  pointed  out  by  Jupp  (1978)  and
Lindstrom (1999). All these difficulties have been shortly summarized by Carl DeBoor ,
who writes, "...it is essentially impossible to characterize a best approximation, that is to
give a computationally useful criteria by which a best approximation can be recognized
and distinguished from other approximations" (see DeBoor 2001, page 239). 

As an alternative to the non-linear approach, adaptive knot selection procedures, such as
step-wise  knot  inclusion/deletion  strategies,  have  been  developed  by  Smith  (1982),
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Friedman and Silverman (1989), Friedman (1991), Stone et al. (1997) and more recently
by  Zhou  and  Shen  (2001),  where  some drawbacks  of  this  approach  have  been  pointed
out.

Another group of works applies reversible jump Markov chain Monte Carlo (RJMCMC)
based methods to  develop Bayesian adaptive  splines,  such as those of  Smith and Kohn
(1996),  Denison  et  al.  (1998)  and  Biller  (2000),  in  the  context  of  generalized  linear
models.  These  procedures  simulate  tens  of  thousands  of  spline  models,  which  are  then
averaged point-wise, to produce a resulting estimate of f . These methods are thus associ-
ated with a high computational cost and the inconvenience of having the resulting model
in a non-explicit  form. A stochastic  optimization algorithm for  free-knot  splines, called
adaptive genetic splines (AGS), was recently proposed by Pittman (2002) but the related
computational cost is also a concern, as noted by the author.

Smoothing spline fitting  methods,  involving a smoothing penalty in the objective func-
tion have also been proposed in the statistical literature. We will mention here the hybrid
adaptive splines (HAS) of Luo and Wahba (1997) and the penalized splines, considered
by  Eubank  (1988),  Wahba  (1990),  Marx  and  Eilers  (1996),  Rupert  and  Carroll  (2000),
Rupert  (2002)  and  Wood  (2003).  Some asymptotic  results,  related  to  spline  regression
estimation are due to Agarwal and Studden (1980) and more recently to Huang (2003),
where  other references can be found.

Recently,  a  geometrically  motivated  method  of  variable  knot  spline  regression  estima-
tion,  which is new and very different  from the existing methods, has been proposed by
Kaishev  et  al.  (2006).  It  is  based  on  the  so  called  Schoenberg's  variation  diminishing
spline  (VDS)  approximation  scheme,  applied  to  the  knot  selection  problem.  The  VDS
approximation  has  some  nice  geometric  properties  such  as  shape  preservation,  which
have  made  it  fundamental  in  developing  the  Computer  Aided  Geometric  Design
(CAGD)  methodology.  These  properties  have  been  essential  in  developing  the  new
variable-knot spline regression estimation method of Kaishev et al. (2006),  called Geo-
metrically  Designed  (GeD)  spline  estimation  or  simply  GeDS.  The  latter  produces  a
spline fit which is a least squares estimate with respect to its regression coefficients, but
whose knots are placed in such a way that  the fit  has also the characteristics  of a VDS
approximation.

The purpose of this paper is to give some further insight into the optimality properties of
the  knot  placement  proposed by Kaishev et  al.  (2006),  to  explore  further  the  pointwise
asymptotic properties and related confidence intervals and the numerical performance of
the proposed GeD spline estimator and compare it with other existing spline estimators.

The  paper  is  organized  as  follows.  In  Sections  2  we  recall  some  important  geometric
properties  of  the  B-spline  regression  which  have  motivated  the  introduction  of  GeD
spline estimation and are related to the Schoenberg's variation diminishing splines. Thus,
Section 2.2 summarizes and extends the discussion presented in Kaishev et al. (2006), of
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the  fact that a spline regression function has a control polygon, and by manipulating the
position of its vertexes it is possible to estimate the location of the knots and the regres-
sion coefficients.  Section 3 gives a brief  outline of the two stages A and B of the GeD
spline  regression  estimation  method  and  provides  further  comments  on  the  solution  of
the constrained minimization problem of stage B. The optimality properties of the knots
of  the  higher  order  spline  regression  model,  obtained  in  stage  B  are  discussed  and
explored in Section 4. These knots are such that their related higher order spline curve is
nearly a variation diminishing approximation to the control polygon of stage A. Bounds
for its deviation from the variation diminishing approximation are established by Theo-
rem  1  and  its  Corollaries  1.1  and  1.2,  in  Section  4.  In  Section  4.1  the  averaging  knot
location  method,  proposed  in  Kaishev  et  al.   (2006),  which  gives  good  approximate
values  of  the  optimal  knots  of  stage B,  is  revisited.  It  is  shown that  it  leads  to  bounds,
given  by  Theorem  2  and  Corollaries  2.1  and  2.2,  which  are  sharper  than  those  estab-
lished  by  Theorem  1  and  its  corollaries.  Section  5  gives  a  summary  of  the  pointwise
asymptotic  properties  of  GeDS,  including  the  construction  of  asymptotic  confidence
intervals.  In  Section  6,  six  numerical  examples  are  presented,  on  which  the  GeDS
method  is  thoroughly  tested  and  compared  with  other  existing  spline  approximation
methods. Proofs of the theorems and their corollaries are given in the Appendix.

2. Geometric interpretation of the spline regression estimation.

Since our main purpose in this paper is to explore the optimality properties of the knots,
placed according to the GeD spline regression method of Kaishev et al. (2006), we will
first  review  its  basic  characteristics  and  give  a  short  description  of  it.  The  method   is
motivated  by the observation that the spline regression f Htk,n, q; xL  introduced in (3) as
a  function  of  an  independent  variable  x œ @a, bD  can  be  viewed  as  a  special  case  of  a
parametric spline curve. A parametric spline curve QHtL  is given coordinate-wise as

QHtL = 8xHtL, yHtL< = 8⁄i=1
p xi Ni,nHtL, ⁄i=1

p qi Ni,nHtL< ,

where  t  is  a  parameter,  and  xHtL  and  yHtL  are  spline  functions,  defined  on  one  and  the
same set of knots tk,n . In view of the identity 

(5) xHtL = ⁄i=1
p xi

* Ni,nHtL = t , 
known as linear precision property, with xi

*  defined as the averages

(6)xi
* = Hti+1 + ... + ti+n-1L ê Hn - 1L , i = 1, ..., p .

of  the n - 1  consecutive  knots ti+1, ..., ti+n-1 ,  we can express  a  spline regression func-
tion f Htk,n, q; tL , t œ @a, bD , as

(7)Q*HtL = 8t, f Htk,n, q; tL< = 8⁄i=1
p xi

* Ni,nHtL, ⁄i=1
p qi Ni,nHtL< ,
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i.e.,  f Htk,n, q; xL ,  x œ @a, bD  can  be  equivalently  expressed  in  a  parametric  form  as  a
spline regression curve Q*HxL . 
The  values  xi

*  given  by  (6)  are  known  as  the  Greville  abscissae.  We will  alternatively
use  the  notation  x*Htk,nL ,  to  indicate  the  dependence  of  the  set  of  Greville  sites
x* = 8x1

*, ..., xp
* < ª x*Htk,nL  on the knots tk,n .

Based on this  parametric  interpretation,  it  has  been noted by Kaishev et  al.  (2006) that
Q*HtL  can be characterized by a polygon CQ* , which is closely related to it and is called
its  control  polygon.  The  vertices  of  the  control  polygon,  called  control  points,  are  the
points, ci , whose x- and y-coordinates are correspondingly the Greville sites xi

*  and  the
B-spline regression coefficients  qi ,  i.e., ci = Hxi

*, qiL , i = 1, ..., p .  This close relationship
between the spline regression curve and its control points is discussed and illustrated in
Section 2.2. Due to the partition of unity property of B-splines,

 ⁄i= j-n+1
j Ni,nHtL = 1,  for any t œ @t j, t j+1L , j = n, ... , n + k ,

every point of the spline regression curve Q*HtL  of order n  is a convex combination of n
control points ci , i.e., Q*HtL = ⁄i= j

n+ j-1  ci Ni,nHtL  for t œ @tn+ j-1, tn+ jD , j = 1, ..., k + 1. This
means that each polynomial segment of Q*HtL  lies within the convex hull of the n  control
points,  c j, ..., c j+n-1 ,  j = 1, ..., k + 1,  defining  it  (see  Section  2.2).  The  convex hull  of
c j, ..., c j+n-1  is the smallest convex polygon, enclosing these points.

In  fact,  the  control  polygon CQ*  with  vertices  ci = Hxi
*, qiL  is  itself  a  linear  spline  func-

tion, and hence can be expressed as

(8)CQ*HtL = 8⁄i=1
p xi

* Ni,2HtL, ⁄i=1
p qi Ni,2HtL< = 8t, ⁄i=1

p qi Ni,2HtL< ª ⁄i=1
p qi Ni,2HtL .

In  (8),  ⁄i=1
p xi

* Ni,2HtL = t  since  Ni,2HtL  are  defined  over  the  knots  tp-2,2 ,  where  t1 ª x1
* ,

tp+2 ª xp
*  and ti+1 ª xi

* , i = 1, ..., p  and the linear precision property (5) applies.

Since Q*HtL  is  a convex combination of its control points,  its graph lies within the con-
vex hull of its control polygon CQ* . Moreover, as has been pointed out by Kaishev et al.
(2006),  the  spline  regression  curve  Q*HtL  lies  close  to  its  control  polygon  CQ*  also
because  Q*HtL  is the shape preserving, Schoenberg's VDS approximation of CQ* . Since
the concept of VDS approximation to a function g , defined on @a, bD  is central in deriv-
ing  the  optimality  properties  of  the  GeDS knots,  we  will  recall  its  definition  and basic
properties.

2.1. Schoenberg's variation diminishing spline approximation.  

Given  a  set  of  knots  tk,n ,  a  function  g ,  defined  on  @a, bD ,  can  be  approximated  by  the
spline function

(9)V @gD HxL = ⁄i=1
p gHxi

*L Ni,nHxL ,
where xi

* , i = 1, 2, ..., p  are the Greville abscissae, obtained from tk,n , using (6).
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The spline V @gD  is  known as  the  Schoenberg's  variation  diminishing spline  approxima-
tion of order n  to g , on the set of knots tk,n . It  is constructed by simply evaluating g  at
the Greville sites (6) and taking the values gHxi

*L  as the B-spline coefficients. The varia-
tion diminishing  character of (9) is due to the fact that V @gD  crosses any straight line at
most as many times as does the function g  itself. The latter suggests the following proper-
ties, which justify the importance of the VDS approximation in CAGD applications.

Property 1 (Shape preservation). The VDS approximation is shape preserving since it
preserves  the  shape  of  the  function  g  it  approximates.  More precisely,  if  g  is  positive,
then  V @gD  is  also  positive;  if  g  is  monotone,  then  V @gD  is  also  monotone;  and  if  g  is
convex, V @gD  is also convex. 

Property 2 (Reproduction of straight lines).  The VDS approximation reproduces any
straight line lHtL ,  t œ @a, bD .  In particular,  V @tD = t ,  which follows from the linear preci-
sion property (5).

We will see in Section 3 that the way knots are found in stage B allows the GeD spline
approximation  to  incorporate  the  features  of  a  VDS approximation.  Properties  1  and  2
are also used in the next section to show the closeness of a spline regression curve to its
control  polygon,  a  fact  essentially  used  to  motivate  the  GeDS estimation  method.  Fur-
ther  details  on  geometric  modelling  with  splines  and  related  results  are  to  be  found  in
Farin (2002).

2.2. The spline regression curve and its control points.

Since the graph of Q*HtL  lies within the convex hull of its control polygon CQ*  and since
Q*HtL  is  the  shape  preserving,  Schoenberg's  VDS  approximation  of  CQ* ,  (as  follows
from Property 1, Section 2.1, taking g ª CQ* ),  the spline regression curve Q*HtL  closely
follows the shape of CQ* . We illustrate the shape preserving and convex hull properties
in Fig. 1 where functional spline regression curves, Q*HtL ,  of order n = 3  and n = 4  and
their  control  polygons,  CQ* ,  are  plotted.  The  grey  areas  in  Fig.  1  are  the  two  convex
hulls,  formed by c4, c5, c6  for  the  quadratic  curve  (left  panel)  and c3, c4, c5, c6  for  the
cubic curve (right panel) within which the corresponding segment of Q*HtL  for t œ @t6, t7D
lie.

Note that a linear spline curve QHtL  (order n = 2) coincides with its control polygon CQ .
In the quadratic case Hn = 3L , the spline curve QHtL , evaluated at the knots t3, t4, ..., tk+4 ,
interpolates CQ  and is tangential to each of its segments, ci, ci+1 , dividing it in a propor-
tion  Hti+2 - ti+1L : Hti+3 - ti+2L ,  i = 1, ..., k + 2.  This  is  illustrated  in  the  left  panel  of  Fig.
1,  for  the  case of  k = 3,  where  D j = t j+1 - t j ,  j = 3, ... k + 3.  In the  cubic  case Hn = 4L ,
the  spline  curve evaluated  at  a  knot,  QHti+3L  is  somewhere within  the  triangle  of  points
ci ,  ci+1 ci+2 ,  i = 1, 2, ..., p ,  as  can  be  seen  from  the  right  panel  of  Fig.  1.  Hence,  the
higher  is  the  degree,  the  stronger  is  the  curve's  deviation  from its  control  polygon CQ ,
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but it still remains within the convex hull of CQ . This suggests that a quadratic B-spline
curve is very well suited as a compromise between smoothness and shape preservation.

x1
*

a=t1=t2=t3

x2
* x3

* x4
* x5

*t4 t5 t6 x6
*

t7=t8=t9=b

q1

q2=q3

q4=q5

q6

D4 D5 D6

c1

c2 c3

c4 c5

c6

D
4

: D
5

D5:D6

x1
*

a=t1=t2=t3=t4

x2
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* x4
* x5

*t5 t6 x6
*

t7=t8=t9=t10=b

q1

q2=q3

q4=q5

q6 c1

c2 c3

c4 c5

c6

Fig. 1. Quadratic (left panel) and cubic (right panel) functional spline curves Q*HtL  and their control
polygons CQ* .

The  close  geometric  relationship  between  the  spline  regression  curve
Q*HxL = 8x, f Htk,n, q; xL< ,  x œ @a, bD ,  and  its  control  polygon  C f Htk,n,q;xL ,  is  the  foundation
of the GeDS method, proposed in Kaishev et al. (2006). Here, we briefly summarize the
logic behind this new geometrically motivated estimation approach. Since the x-coordi-
nates  of  the  vertices  ci = Hxi

*, qiL ,  i = 1, ... p ,  of  C f Htk,n,q;xL  are  the  Greville  sites,  xi
* ,

obtained from tk,n , and the y-coordinates are the regression coefficients qi , estimation of
tk,n  and  q ,  based  on  8yi, xi<i=1

N ,  affects  the  geometric  position  of  the  control  polygon
C f Htk,n,q;xL .  On  the  other  hand,  due  to  the  shape  preserving  and  convex  hull  properties,
C f Htk,n,q;xL  defines the location and the shape of the spline curve f Htk,n, q; xL . So, manipu-
lating the  vertices  ci  of  C f Htk,n,q;xL ,  affects  the  knots  tk,n ,  through (6),  and the  regression
coefficients  q ,  which affects  the position of the regression curve f Htk,n, q; xL  itself.  The
latter conclusion has motivated the construction, in stage A of GeDS, of a control poly-
gon as a linear least squares spline fit to the data, whose knots determine the knots tk,n,
and whose B-spline coefficients,  are viewed as initial  estimate of q ,  which is improved
further in stage B (see Section 3). This is the basis of the approach which has been used
by Kaishev et  al.  (2006) in constructing GeD variable knot spline approximation to the
unknown function f  in (1). The  GeDS method is briefly described in the next Section 3.

3. The GeD spline regression estimation method.

In  this  section  we  will  briefly  outline  the  two  stages  of  the  GeD  spline  regression
method,  introduced in Kaishev et al. (2006), following the considerations of Sections 2.
In stage A an appropriate control polygon in the form of a piece-wise linear LS fit which
captures the shape of the data is constructed by starting with a straight line fit and add-
ing knots where the current fit deviates most from the data. The rule for positioning the
knots,  the  stopping  rule  for  terminating  this  process  and  a  complete  description  of  the
algorithm of stage A are given in Kaishev et al. (2006). The result of stage A is a piece-
wise linear LS spline fit which is viewed as the initial position of the control polygon of
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a smooth, higher order LS spline fit, obtained in stage B. In stage B a smooth LS spline
fit to the data which closely follows the shape of the piece-wise linear fit from stage A is
constructed. To achieve this, the knots of the latter linear fit are used to locate the knots
of a functional spline curve, which is not an LS fit to the data, but which does follow the
shape of the linear fit from stage A in the sense that it is nearly a VDS approximation to
it.  Then,  its  B-spline  coefficients  are  adjusted  in  order  to  ensure  that  it  is  an  LS fit.  In
Kaishev et al. (2006) stages A and B have been given the following more formal defini-
tion as certain optimization problems.

Stage A.  Fix the order  n = 2.  Starting from a straight  line fit  and adding one knot  at  a
time, find the least  squares linear  spline fit  f

`
 Hdl,2, à; xL = ⁄i=1

p ài Ni,2HxL  with a number
of  internal  knots  l ,  number  of  B-splines  p = l + 2  and  with  a  set  of  knots
dl,2 = 8d1 = d2 < d3 < ... < dl+2 < dl+3 = dl+4< ,  such  that  the  ratio  of  the  residual  sums of
squares

RSSHl + qL êRSSHlL = ‚
j=1

N
 Hy j - f

`
 Hdl+q,2; x jLL2 í‚

j=1

N
 Hy j - f

`
 Hdl,2; x jLL2 ¥ aexit

where aexit  is a certain threshold level. This means that f
`

 Hdl,2, à; xL  could not be signifi-
cantly improved if q  more knots are added, q ¥ 1, and therefore f

`
 Hdl,2, à; xL  adequately

reproduces  the  "shape"  of  the  unknown underlying function  f .  The resulting  linear  LS
spline fit  f

`
 Hdl,2, à; xL  is viewed as a control polygon with vertices Hxi, àiL ,  i = 1, ..., p ,

where  xi ª di+1 ,  i = 1, ..., p .  The  fit  f
`

 Hdl,2, à; xL  is  constructed  following  an  algorithm
described in Kaishev et al. (2006). 

Stage B. For each of the values of n = 3, ..., nmax , find the optimal position of the knots
tél-Hn-2L,n , as a solution of the constrained minimization problem

(10)
min

tl-Hn-2L,n,
xi+1< ti+n<xi+n-1,

i=1,...,k

± f
`

 Hdl,2, à; xL - C f Htl-Hn-2L,n,à;xLµ ,

where  ∞g¥ := maxa§x§b » gHxL »  is  the  uniform  (L¶ )  norm  of  a  function  gHxL ,  and  xi ,
i = 1, ..., p  are  the  x-coordinates  of  the  vertices  of  the  control  polygon  f

`
 Hdl,2, à; xL

obtained  in  stage  A.  In  fact,  minimization  in  (10)  is  over  all  polygons  C f Htl-Hn-2L,n,à;xL
which have vertices Hxi

*, àiL , with x-coordinates which are the Greville sites x*Htl-Hn-2L,nL ,
and  y-coordinates,  coincident  with  the  y-coordinates  ài  of  the  vertices  of  the  polygon
f
`

 Hdl,2, à; xL .
Our purpose here will  be to comment on the possibility of solving problem (10) and to
give some further  insight into the optimality of the knots tél-Hn-2L,n  obtained as its solu-
tion. In order to do so, we first note that the two polygons f

`
 Hdl,2, à; xL  and C f Htl-Hn-2L,n,à;xL

have  the  same  number  of  vertices  p = l + 2,  since  the  number  of  internal  knots  in
tl-Hn-2L,n  is l - Hn - 2L . Ideally, it will be desirable to find an optimal set of knots tél-Hn-2L,n
for which the minimum in (10) is zero, i.e., C f Htél-Hn-2L,n,à;xL ª f

`
 Hdl,2, à; xL . In other words,
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one would require that tél-Hn-2L,n  be such that f Htél-Hn-2L,n, à; xL  becomes the VDS approxi-
mation to f

`
 Hdl,2, à; xL ,  or equivalently f

`
 Hdl,2, à; xL  becomes the control  polygon of the

spline function f Htél-Hn-2L,n, à; xL . In this way the knots tél-Hn-2L,n  match best the geometri-
cal form of f

`
 Hdl,2, à; xL  and as a consequence, the geometrical form of the data.

Since the two polygons in (10), C f Htl-Hn-2L,n,à;xL  and f
`

 Hdl,2, à; xL ,  have the same y-coordi-
nates  à ,  they  will  coincide  if  their  x-coordinates  coincide,  i.e.,  if  xi

* ª xi ,  i = 1, ..., p .
The latter  would be fulfilled  if,  for  given Greville  sites  xi

* = xi ,  it  would be possible to
solve the system (6) with respect to tl-Hn-2L,n .

However,  to  find  tél-Hn-2L,n ,  so  that  equations  (6)  are  fulfilled  with  respect  to  xi ,
i = 1, ..., p  is, in general, impossible. This is easily seen from the fact that (6) represents
an  over-determined  system  of  equations,  with  constraints  on  the  knots,  given  by  the
definition  (2)  of  tl-Hn-2L,n .  Since  x1 = a  and  xp = b ,  the  system (6)  contains  l  equations
and  l - Hn - 2L  ordered,  unknown  knots,  Hn > 2L .  Thus,  it  is  in  general  impossible  to
place the knots tél-Hn-2L,n  in such a way that C f Htél-Hn-2L,n,à;xL ª f

`
 Hdl,2, à; xL ,  i.e., xi

* ª xi , for
any  fixed  set  8xi< ,  i = 1, ..., p .  Instead,  what  is  achieved  by  solving  (10)  is  that
C f Htél-Hn-2L,n,à;xL  gets as close to f

`
 Hdl,2, à; xL  as possible, simultaneously with x*  getting as

close  to  x  as  possible.  Note  that  since  we  view  the  x-coordinates  of  the  vertices  of
f
`

 Hdl,2, à; xL ,  xi ,  as  Greville  sites  of  a  higher  order  spline  curve  f Htl-Hn-2L,n, à; xL ,  the
constraints xi+1 < ti+n < xi+n-1 , i = 1, ..., k  in (10), follow from (6).

Since the resulting curve f Htél-Hn-2L,n, à; xL  is the variation diminishing (i.e. shape preserv-
ing) spline approximation of its control polygon C f Htél-Hn-2L,n,à;xL  (see Section 2), and since
the  latter  is  the  best  uniform  (L¶ )  approximation  of  f

`
 Hdl,2, à; xL  in  (10),

f Htél-Hn-2L,n, à; xL  will  closely  follow  the  shape  of  f
`

 Hdl,2, à; xL .  The  fact  that
f Htél-Hn-2L,n, à; xL  is  nearly  a  VDS approximation to  f

`
 Hdl,2, à; xL  is  proved in  Section  4.

However,  as  has  been  noted  in  Kaishev  et  al.  (2006),  f Htél-Hn-2L,n, à; xL  is  not  a  least
squares approximation to the data set. In order to preserve the shape of f Htél-Hn-2L,n, à; xL
and at the same time to make it an LS fit to the data, its optimal knots tél-Hn-2L,n  are pre-
served,  whereas  its  B-spline  coefficients  ài  are  released,  i.e.,  they  are  assumed  to  be
unknown  parameters,  q ,  which  are  estimated  in  the  least  squares  sense,  based  on
8yi, xi<i=1

N .  Thus, for  a fixed n = 3, ..., nmax ,  the least  squares fit  f
`Itél-Hn-2L,n, q

`
; xM  which

solves

min
q

 A‚
j=1

N
 Hy j - f Htél-Hn-2L,n, q; x jLL2E

is found. Finally,  the order nè  whose fit f
`Itél-Hnè-2L,nè , q

`
; xM  has the minimum residual sum

of squares is chosen.

In  Section  4  we  give  results  which  shed  some light  on  the  optimality  properties  of  the
knots,  chosen  according  to  (10).  Since  (10)  is  a  non-linear  optimization  problem,  a
method for its approximate solution, called the averaging knot location method has been

9 V. Kaishev, D. Dimitrova, S. Haberman and R. Verrall



proposed  in  Kaishev  et  al.  (2006).  It  comprises  a  very  important  part  of  GeDS and  its
properties are explored here in Section 4.1.

4. The optimal choice of the knots, tél-Hn-2L,n , in stage B of GeDS.

The optimal choice of the knots, tél-Hn-2L,n , in (10) can be given the following interpreta-
tion.  Consider  the  n-th  order  parametric  spline  approximation  V a@ f

`D  to  the  polygon
f
`

 Hdl,2, à; xL = ⁄i=1
p ài Ni,2HtL  of stage A, given as

V a@ f
`D HtL = 8Vx

a@ f
`D HtL, Vy

a@ f
`D HtL< = 8⁄i=1

p xi Ni,nHtL, ⁄i=1
p  f

`
 Hdl,2, à; xiL Ni,nHtL<

(11)= 8⁄i=1
p xi Ni,nHtL, ⁄i=1

p ài Ni,nHtL<  ,
where  the  B-splines,  Ni,nHtL ,  are  defined  on tél-Hn-2L,n .  The  approximation V a@ f

`D  is  con-
structed  coordinate-wise  by  defining  the  B-splines  Ni,nHtL  on  the  set  of  knots  tél-Hn-2L,n
and  taking  the  x-  and  y-coordinates,  Hxi, àiL ,  of  the  vertices  of  f

`
 Hdl,2, à; xL  as  the

B-spline coefficients  of  the  splines Vx
a@ f

`D HtL  and Vy
a@ f

`D HtL .  Hence,  the  control  polygon,
C

Va@ f
`
D ,  of  the  parametric  spline  approximation  V a@ f

`D HtL ,  coincides  with  the  control

polygon, f
`

 Hdl,2, à; xL , from stage A, i.e., following (8) we have

C
Va@ f

`
D = 8⁄i=1

p xi Ni,2HtL, ⁄i=1
p ài Ni,2HtL< = 8t, ⁄i=1

p ài Ni,2HtL< ª f
`

 Hdl,2, à; xL ,

where  ⁄i=1
p xi Ni,2HtL = t ,  since  the  B-splines  Ni,2HtL  are  defined  on  dl,2 ,  where  d1 ª x1 ,

dp+2 ª xp  and di+1 ª xi ,  i = 1, ..., p  and the  linear  precision  property  (5)  applies.  Note
that Vy

a@ f
`D HtL = ⁄i=1

p ài Ni,nHtL ª f Htél-Hn-2L,n, à; tL  is the spline curve, whose control poly-
gon C f Htél-Hn-2L,n,à;xL  is the best uniform approximation to f

`
 Hdl,2, à; xL  (see stage B, Section

3). 

Following  (9)  and  (7),  the  VDS  approximation  of  f
`

 Hdl,2, à; xL  on  tél-Hn-2L,n  may  be
expressed in a parametric form as

V @ f
`D HtL = 8Vx@ f

`D HtL, Vy@ f
`D HtL< = 8t, ⁄i=1

p  f
`

 Hdl,2, à; xi
*L Ni,nHtL<  

(12)= 8⁄i=1
p xi

* Ni,nHtL, ⁄i=1
p  f

`
 Hdl,2, à; xi

*L Ni,nHtL<  .
As noted in stage B, Section 3, since the knots tél-Hn-2L,n  are the solution of the minimiza-
tion  problem  (10),  x*Htél-Hn-2L,nL  are  as  close  as  possible  to  the  x-coordinates,  x ,  of  the
vertices  of  f

`
 Hdl,2, à; xL .  Hence,  Vx

a@ f
`D HtL = ⁄i=1

p xi Ni,nHtL  in  (11),  is  as  close  to  the
straight  line  Vx@ f

`D HtL = t = ⁄i=1
p xi

* Ni,nHtL  in  (12),  as  possible.  In  other  words,
Vx

a@ f
`D HtL º t  and one can conclude that V a@ f

`D HtL  is nearly a functional spline approxima-
tion  to  f

`
 Hdl,2, à; xL ,  i.e.,  Vy

a@ f
`D HtL = f Htél-Hn-2L,n, à; tL ,  is  nearly  a  variation  diminishing

(shape  preserving)  spline  approximation  to  f
`

 Hdl,2, à; xL .  This  statement  is  made  more
precise by Corollary 1.1 of Theorem 1, which gives a bound for the error

 ∞Vx@ f
`D HtL - Vx

a@ f
`D HtL¥ = ∞t - ⁄i=1

p xi Ni,nHxL¥  , 

Geometrically designed, variable knot regression splines: Variation diminishing optimality of knots 10



and by Corollary 1.2, which applied to f
`

 Hdl,2, à; xL  gives a bound for the error

 ∞Vy@ f
`D HtL - Vy

a@ f
`D HtL¥ = ∞⁄i=1

p  f
`

 Hdl,2, à; xi
*L Ni,nHtL - ⁄i=1

p  f
`

 Hdl,2, à; xiL Ni,nHtL¥  .

Theorem  1  establishes  a  bound  for  ∞V @gD - V a@gD¥  in  the  general  case  when  g  is  any
continuous function g œ C@a, bD , where V @gD  is the VDS approximation of g , defined in
(9) and V a@gD  is a non parametric (functional) version of (11), defined in (14). 

Theorem  1.  Let  8xi<i=1
p  be  an  ordered  set,  a = x1 < x2 < ... < xp = b ,  and  let  tk,n ,

(p ¥ n ¥ 2, k = p - n), be a set of knots, defined as in (2), with

ti+n = xi+1 ,  i = 1, ..., k , if n = 2

(13)xi+1 < ti+n < xi+n-1 ,  i = 1, ..., k , if  n > 2 .
Then,  for  the  n-th  order  spline  approximation  V a@gD ,  defined  on  tk,n ,  of  a  continuous
function g œ C@a, bD , given by

(14)V a@gD HxL = ⁄i=1
p gHxiL Ni,nHxL  ,

we have

(15)∞V @gD - V a@gD¥ § Hn - 2L wHg; max jœ 81,...,p-1< Hx j+1 - x jLL  ,
where V @gD  is the Schoenberg's VDS approximation, defined on tk,n  following (9) and 

wHg; hL := max 8 » gHxL - gHyL » : » x - y » § h, x, y œ @a, bD<  

is the modulus of continuity of the function g  at h .

Corollary 1.1.  Under the assumptions of Theorem 1 and if  g  is the straight  line t ,  i.e.,
g ª t , we have

(16)∞V @tD - V a@tD¥ = ∞t - ⁄i=1
p xi Ni,nHtL¥ § Hn - 2L max jœ 81,...,p-1< Hx j+1 - x jL .

Corollary  1.2.  Under  the  assumptions  of  Theorem  1  and  assuming  that  g  is  a  linear
spline  function  gHdp-2,2, a; tL = ⁄i=1

p ai Ni,2HtL  with  vertices  Hxi, aiL ,  where  ai œ   and
dp-2,2  is such that d1 ª x1 , dp+2 ª xp , di+1 ª xi , i = 1, ..., p , we have

∞V @gD - V a@gD¥ = ∞⁄i=1
p  gHdp-2,2, a; xi

*L Ni,nHxL - ⁄i=1
p  gHdp-2,2, a; xiL Ni,nHxL¥

(17) § max jœ 81,...,p-Hn-2L< Hmaxqœ 8 j,..., j+Hn-2L< 8aq< - minqœ 8 j,..., j+Hn-2L< 8aq<L  .
Remark  1.  Note  that  in  the  case  when  V a@gD  is  a  quadratic  spline  approximation  to
gHdp-2,2, a; tL , i.e., when n = 3, the bound (17) simplifies to

(18) ∞V @gD - V a@gD¥ § max jœ 81,...,p-1< » a j+1 - a j »  .
Remark 2. It is worth mentioning that the spline approximation scheme V a@gD , defined
in (14), belongs to the class of the so called "quasi-interpolants" which have some nice
approximation properties. For the latter, we refer to De Boor (2001).
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4.1. The averaging knot location method.

The  minimization  problem  (10),  in  stage  B,  is  a  constrained  non-linear  optimization
problem with  respect  to  the  knots  and  although  it  is  related  to  linear  splines,  it  is  still
computationally  involved.  In  addition,  as  with  any  other  non-linear  optimization  prob-
lem, finding the globally  optimal solution is not  guaranteed.  The knots tél-Hn-2L,n ,  which
are the optimal solution, may also be (almost) coalescent and this may cause edges and
corners in the final LS fit in stage B. In order to avoid these undesirable features, but to
preserve the optimality properties of the knots, as described in stage B and Section 4, we
propose  to  place  the  knots  in  stage  B  of  GeDS  according  to  (19),  which  we  call  the
averaging knot location method.

Thus,  the  following  method,  giving  an  easy  to  evaluate,  approximate  solution  to  the
minimization problem (10), is implemented in stage B, so that the final GeD spline fit is
f
`Itèl-Hn-2L,n, q

`
; xM , where tèl-Hn-2L,n  is given by (19). 

The averaging knot location method:  Given the control polygon f
`

 Hdl,2, à; xL  of stage
A, for  each of the values of n = 3, ..., nmax ,  calculate  the knot placement tèl-Hn-2L,n  with
internal  knots,  defined  as  the  averages  of  the  x-coordinates  of  the  vertices  of
f
`

 Hdl,2, à; xL , i.e.,

(19)têi+n = Hxi+1 + ... + xi+n-1L ê Hn - 1L , i = 1, ... , k .
Note  that  xi = di+1 ,  i = 1, ..., k + 2.  The  choice  of  the  knots  tèl-Hn-2L,n  according  to  (19)
makes it  possible  to  significantly  improve the  bounds,  which hold  for  tél-Hn-2L,n  and are
given by Corollaries 1.1 and 1.2. The improved bounds for the set of knots tèl-Hn-2L,n  are
established by Corollaries 2.1 and 2.2 of Theorem 2 given next.

Theorem  2.  Let  8xi<i=1
p  be  an  ordered  set,  a = x1 < x2 < ... < xp = b ,  and  let  tk,n ,

(p ¥ n ¥ 2, k = p - n), be a set of knots, defined as in (2), with

ti+n = Hxi+1 + ... + xi+n-1L ê Hn - 1L , i = 1, ... , k

Then,  for  the  n-th  order  spline  approximation  V a@gD ,  defined  on  tk,n ,  of  a  continuous
function g œ C@a, bD , given by

(20)V a@gD HxL = ⁄i=1
p gHxiL Ni,nHxL  ,

we have

(21)∞V @gD - V a@gD¥ § a Hn-2L2
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ2 Hn-1L q wHg; max jœ 81,...,p-1< Hx j+1 - x jLL  ,

where  `np := min 8z œ  : n § z< ,  V @gD  is  the  Schoenberg's  VDS approximation,  defined
on tk,n  and wHg; hL  is the modulus of continuity of the function g  at h .

Corollary 2.1. Under the assumptions of Theorem 2 and if g  coincides with the straight
line t , i.e., g ª t , then
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(22)∞V @tD - V a@tD¥ = ∞t - ⁄i=1
p xi Ni,nHtL¥ § Hn-2L2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ2 Hn-1L max jœ 81,...,p-1< Hx j+1 - x jL .
Corollary 2.2. Under the assumptions of Theorem 2, with n = 3, and assuming that g  is
a  linear  spline  function  gHdp-2,2, a; tL = ⁄i=1

p ai Ni,2HtL  with  vertices  Hxi, aiL ,  where
ai œ   and dp-2,2  is such that d1 ª x1 , dp+2 ª xp , di+1 ª xi , i = 1, ..., p , we have

∞V @gD - V a@gD¥ = ∞⁄i=1
p  gHdp-2,2, a; xi

*L Ni,3HxL - ⁄i=1
p  gHdp-2,2, a; xiL Ni,3HxL¥

(23) § 1ÅÅÅÅ4  max jœ 81,...,p-1< » a j+1 - a j »  .
In  order  to  illustrate  the  bound  (22)  and  how  accurately  the  averaging  knot  location
method (19) solves system (6) with respect to the knots for given Greville sites, we have
randomly generated abscissa values x j ,  j = 1, ..., p  for  three fixed numbers of  vertices
p ,  equal  respectively  to  6  Hk = 3L ,  11  Hk = 8L  and  23  Hk = 20L .  The  number  of  simula-
tions for  each value of p  is 1000. The corresponding thousand graphs of ⁄i=1

p xi Ni,nHtL ,
t œ @0, 1D , in the quadratic case Hn = 3L , with knots defined by (19), are plotted in Fig. 2
(a), (b) and (c). 
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Fig.  2.  Graphs  of  1000  simulations  of  ⁄i=1
p xi  Ni,3HtL ,  with  tk,3  according  to  (25)  and  estimates  of

è 0.95  and  ¶̀ 0.95  for:  (a)  p = 6  Hk = 3L ,  è 0.95 = 0.17,  ¶̀ 0.95 = 0.18;  (b)  p = 11  Hk = 8L ,  è 0.95 = 0.10,
¶̀ 0.95 = 0.12; (c) p = 23 Hk = 20L , è 0.95 = 0.05, ¶̀ 0.95 = 0.07.

In Fig. 2,  two corridors are also shown. The first,  defined by the dashed lines,  is based
on  the  95  sample  percentile  of  e = ∞t - ⁄i=1

p xi Ni,3HtL¥,  denoted  by  è 0.95 .  The  second
corridor (the solid lines) is based on the 95 sample percentile ¶̀ 0.95  of the bound in (22),
denoted by ¶ . As can be seen from Fig. 2, the maximum deviation of ⁄i=1

p xi Ni,3HtL  from
the straight line t  is reasonable, and rapidly decreases as the number of knots increases.
Thus,  the  higher  the  number  of  knots,  the  more  accurately  the  averaging  knot  location
method (19) solves system (6). Similar conclusions are found to hold for the cubic case
(n = 4), applying both è 0.95  and ¶̀ 0.95 . As seen from Fig. 2, the solid line deviates insig-
nificantly from the dashed line, so that the bound in (22) is nearly sharp for n = 3. 

Remark 3. Note that, as seen from the bounds (16) and (22), the quality of the reconstruc-
tion  of  f

`
 Hdl,2, à; xL ,  in  stage  B,  using  either  C f Htél-Hn-2L,n,à;xL  or  C f Htèl-Hn-2L,n,à;xL ,  depends  on

the maximal distance between the knots dl,2 , obtained in stage A. By adding more knots
at appropriate sites, the maximal distance may be decreased, which will make the bound
(22) smaller. However, such an addition should be done in such a way that the geometry
of f

`
 Hdl,2, à; xL  is preserved. To achieve this, one may apply the Boehm's knot insertion
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formula  (see  e.g.,  Farin  2002)  and  add  a  knot  at  the  middle  of  the  interval,  where
max jœ 81,...,p-1< Hx j+1 - x jL  is  attained.  It  is  worth  pointing  out  that,  based  on  our  experi-
ence with GeDS, the reconstruction in stage B is quite satisfactory and such knot inser-
tion has not been implemented.

Remark 4. The choice of the knots tèl-Hn-2L,n  in (19) can also be given an interpretation,
related  to  the  problem of  optimal  recovery  of  a  function  g ,  by  interpolating  it  at  some
fixed points, with an n-th order spline on a set of knots tk,n .  The problem is to find the
optimal  set  of  knots,  tk,n

opt  for  which  the  bound  on  the  interpolation  error  is  minimized
over  all  possible  choices  of  tk,n .  Such  optimal  interpolation  has  been  considered  by
Michelli, Rivlin and Winograd (1976). An approximate solution to this optimal recovery
problem has been proposed by De Boor (2001). In our case, if  we apply this scheme to
the  polygon  f

`
 Hdl,2, à; xL  and  view  its  vertices  Hxi, àiL  as  given  data  points,  then  the

approximate  solution  of  this  optimal  interpolation  problem,  as  proposed  by  De  Boor
(2001), is the set of knots tèl-Hn-2L,n  in (19).

5. Asymptotic properties of GeDS and related inference.

Pointwise  asymptotic  properties  of  the  proposed  GeD  spline  estimation  method  have
been  explored  in  Kaishev  et  al.  (2006)  where  related  large  sample  statistical  inference
has also been provided. To investigate the pointwise asymptotic behaviour of the GeDS
estimation error f

`Itèl-Hn-2L,n, q
`
; xM - f HxL   its decomposition

f
`Itèl-Hn-2L,n, q

`
; xM - f  HxL

= A f
`Itèl-Hn-2L,n, q

`
; xM - E f

`Itèl-Hn-2L,n, q
`
; xME + AE f

`Itèl-Hn-2L,n, q
`
; xM - f HxLE

has  been  considered,  where  the  first  and  the  second  terms  on  the  right-hand  side  are
correspondingly referred to as the variance and the bias terms. In the asymptotic analy-
sis,  carried  out  in  Kaishev  et  al.  (2006),  as  the  sample  size,  Ni ,  grows  to  infinity  with
i = 1, 2, ... , under some mild assumptions with respect to the sequences of design points
8x j< j=1

Ni , it has been shown that the knots tèli-Hn-2L,n , n ¥ 2, obtained by the GeDS estima-
tion method, have global mesh ratios 

Mtèi

HrL = maxn§ j§li+1+n-rHtêi, j+r-têi, jLÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅminn§ j§li+1+n-rHtêi, j+r-têi, jL ,   r ¥ n

which  form  a  sequence,  bounded  in  probability  by  a  constant  g > 0,  i.e.,  Mtèi

HrL § g ,
except on an event whose probability tends to zero as Ni Ø ¶   (see Lemmas 2 and 3 of
Kaishev et al. 2006).

Based  on  these  results,  and  on  a  theorem  from  approximation  theory  establishing  the
stability of the L¶  norm of the L2  projections onto the linear space of splines Stk,n , two
asymptotic  properties  of  the  GeDS estimator  have  been  established.  Thus,  Theorems  1
and 2 from Kaishev et al.  (2006) give a bound for the bias term and a sufficient condi-
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tion for it to be of negligible magnitude compared to the variance term. After its appropri-
ate  standardization,  f

`Itèl-Hn-2L,n, q
`
; xM  has  been  shown  (see  Theorem  3  of  Kaishev  et  al.

2006) to converge to a standard normal distribution, given that a suitable value of aexit

in the stopping rule of Stage A has been chosen. This characteristic of GeDS allows for
the construction of 100 H1 - aL % asymptotic confidence intervals

(24)f
`Itèl-Hn-2L,n, q

`
; xM ≤ z1-aê2

"#################################################VarI f
`Itèl-Hn-2L,n, q

`
; xM … x”÷ M , 

where z1-aê2 = F-1H1 - a ê2L , n ¥ 2 , x”÷ = Hx1, ..., xNL ,
VarI f

`Itèl-Hn-2L,n, q
`
; xM … x”÷ M = s2 Nn

' HxL 8XF 'Hx”÷ L, FHx”÷ L\<-1 NnHxL H1 + oPH1LL ,
and  the  matrix  FHx”÷ L = HNnHx1L, ..., NnHxN LL .  In  the  next  section,  numerical  tests  of  the
proposed GeD spline estimator are performed and confidence intervals around the final
fits are constructed, using the above results. 

6. GeDS in action.

The proposed GeDS method has  been implemented using Mathematica  5.0 and a  stan-
dard PC (Pentium IV, 1.4 Ghz, 512 RAM) has been used for all test examples.

In  order  to  obtain  a  GeDS estimate,  most  often  it  is  necessary  to  input  only  the  set  of
data 8xi, yi<i=1

N . The two parameters, aexit œ H0, 1L  and b œ @0, 1D , defined in steps 10 and
5 of stage A of GeDS (see Appendix A of Kaishev et al. 2006), by means of which the
exit  from  GeDS  can  be  controlled,  have  default  preassigned  values,  which  in  general
need not be re-set. The parameter aexit  is related to the stopping rule, which determines
when to exit from stage A, i.e., it determines the number and location of the knots, dl,2 ,
of f

`
 Hdl,2, à; xL  and hence the number and location of the knots of the final higher order

LS  spline  fit  f
`Itèl-Hn-2L,n, q

`
; xM .  The  parameter  b  is  related  to  the  cluster  weights  of  the

clusters of residuals  of same signs, as defined in step 5 of stage A of GeDS  (see Appen-
dix  A  of  Kaishev  et  al.  2006).  Its  choice  depends  on  the  wiggliness  of  the  recovered
function f  and the level of the noise e . In the Normal case, e ~ H0, se

2L , the noise level
is  defined  by  the  variance  se

2 .  As  will  be  illustrated,  for  most  of  the  examples  GeDS
gives  very  good  results  with  the  default  values  aexit = 0.9,  b = 0.5.  Our  experience
shows that choices of aexit œ H0, 0.7L  may cause exit  after  the first  few steps which, for
most functions, does not lead to an adequate resulting fit.

The  choice  of  b  depends  on  the  level  of  the  signal-to-noise  ratio  (SNR),
SNR = HvarH f LL0.5 ê se  and on the degree of smoothness of f . As will be seen, in most of
the numerical examples, the appropriate value of b  was 0.5, which means that the with-
in-cluster mean residual value and the cluster range can be considered equally important
components  of  the  weights  w j ,  j = 1, ..., l ,  (see  Appendix  A  of  Kaishev  et  al.  2006).
However,  based  on  our  experience,  when  the  SNR  is  high  and  f  is  smooth,  recom-
mended  values  are  b œ @0.5, 0.6D ,  aexit = 0.9.  If  the  SNR  is  high  and  f  is  a  wiggly
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function  then  the  recommended  choice  is  b œ @0.5, 0.6D ,  aexit œ @0.99, 0.999D ,  since
otherwise  underfitting  may result.  In  the  case  when  SNR is  low and  f  is  smooth,  one
may use b œ @0.4, 0.5D , aexit œ @0.9, 0.99D . It is known that, when the SNR is low and the
underlying  function  is  very  unsmooth,  recovering  f  is  very  difficult  and  different
choices of b  and aexit  may need to be attempted.

In  order  to  facilitate  comparison  of  GeDS  with  existing  smoothing  methods,  we  have
simulated  data  using  the  functions  given  in  Table  1,  which  have  been  widely  used  in
testing other existing smoothing procedures.

Table 1. Summary of test functions.

Function Specification

1 f1 HxL = H4 x - 2L + 2 ‰-16 H4 x-2L2

2 f2 HxL = sin H8 x - 4L + 2 ‰-16 H4 x-2L2

HeaviSine f3 HxL = 4 sin H4 p xL - sgn Hx - 0.3L - sgn H0.72 - xL
Doppler f4 HxL =

è!!!!!!!!!!!!!!!!!x H1 - xL sin I 2 p H1+eLÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅHx+eL M, e = 0.05

Bumps f5 HxL = ‚
j
h j I1 + ° x-s jÅÅÅÅÅÅÅÅÅÅÅÅw j

•M-4, 8h j< = 84, 5, 3, 4, 5, 4.2, 2.1, 4.3, 3.1, 5.1, 4.2<
8s j< = 80.1, 0.13, 0.15, 0.23, 0.25, 0.40, 0.44, 0.65, 0.76, 0.78, 0.81<
8w j< = 80.005, 0.005, 0.006, 0.01, 0.01, 0.03, 0.01, 0.01, 0.005, 0.008, 0.005<

Blocks f6 HxL = ‚
j
h j

1+sgn Hx-s jLÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ2 , 8h j< = 84, -5, 3, -4, 5, -4.2, 2.1, 4.3, -3.1, 2.1, -4.2<
8s j< = 80.1, 0.13, 0.15, 0.23, 0.25, 0.40, 0.44, 0.65, 0.76, 0.78, 0.81<

The data sets, used to test GeDS were simulated by adding noise, e ~ H0, se
2L , to each

of the six functions, as given in Table 2. 

Table 2. Summary of examples used to test GeDS.

Example
No

Function
HdataL

Interval Sample
size, N

Data
xi, i = 1, ..., N

Noice level,
se

SNR

1 f1 HxL @0, 1D 256
150

U  H0, 1L 0.6, 0.4, 0.25
0.25

2, 3, 5
5

2 f2 HxL @0, 1D 256 U  H0, 1L 0.3 3
3 HeaviSine @0, 1D 2048 xi = Hi - 1L ê2047 1 7
4 Doppler @0, 1D 2048 xi = Hi - 1L ê2047 1 7
5 Bumps @0, 1D 2048 xi = Hi - 1L ê2047 1 7
6 Blocks @0, 1D 2048 xi = Hi - 1L ê2047 1 7

As can be seen,  we have included examples testing GeDS for different  values of SNR,
and for various characteristics of the data set: small and large sample sizes, x-values in a
grid or uniformly generated within different  intervals,  x œ @a, bD .  Note also that the test
functions  possess  different  smoothness  properties:  some of  them are  relatively  smooth,
while others are very wiggly. 
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In  order  to  compare  the  quality  of  the  fits  produced  by  GeDS to  those  given  by  other
authors,  we use the mean square error (MSE),  defined with respect to the true function
f , rather than to the data, i.e., 

MSE = 9‚
i=1

N
 I f HxiL - f

`Itèl-Hn-2L,n, q
`
; xiMM

2= í N .

Note  that,  in  practice,  the  underlying  function  is  unknown and  a  set  of  observations  is
fitted.  For  this  reason,  we  give  also  the  L2 -error  of  approximation,  defined  as  è!!!!!!!!!RSS .
However,  for  a  fair  comparison  between  the  smoothing  methods,  one  would  need  all
model parameter values, such as, the number of knots (regression functions) and degree
of the spline fits etc., which often are not reported in full. In order to compare the speed
of  computation  on  equal  grounds,  one  would  need  to  implement  all  of  the  available
methods  using  the  same  hardware  and  software,  and  test  them  on  entirely  identical
simulated data sets. Such a comparison is outside the scope of this paper.

Stage  A  of  the  GeD  spline  estimator  has  been  thoroughly  illustrated  in  Kaishev  et  al.
(2006). Here we concentrate on the final GeD spline fit resulting from stage B.

We have run GeDS with 400 simulated data sets for Examples 1 and 2, and 31 data sets
for  Examples  3-6  as  has  been  done  by  other  authors  in  testing  their  methods  (see,  for
example,  Luo  and  Wahba,  1997).  This  allows  us  to  compute  the  median  of  the  MSE,
obtained  using  GeDS,  and  compare  it  with  the  MSE  medians  given  by  other  authors.
However,  in  order  to  illustrate  how  GeDS  performs,  in  each  example  we  have  used  a
single data set randomly chosen among the simulated data sets.

We compare most of our results with those of Luo and Wahba (1997) since, along with
the  median  MSE  values  for  their  fits,  they  give  also  the  order  and  the  number  of  the
basis functions. The Bumps and Blocks have been excluded from the comparison, since
Luo and Wahba (1997) use versions of these functions which differ from ours, i.e., from
those proposed by Donoho and Johnstone (1994). The GeD fits in Examples 1 and 2 are
compared  with  the  optimal  spline  fits,  produced  following  the  standard  LS  non-linear
optimization  approach  and  its  penalized  version,  developed  by  Lindstrom  (1999).  The
latter  has  been  implemented,  using  the  transformation  of  the  knots,  proposed  by  Jupp
(1974)  and  the  Mathematica  function  NMinimize,  which  attempts  to  find  the  global
minimum. Due to the drawbacks of the non-linear optimization approach, it has not been
feasible to produce optimal spline fits for the spatially inhomogeneous functions, recov-
ered in Examples 3-6 from large data sets, using Mathematica, and a standard PC.

Example  1.  This  smooth  function  first  appears  as  a  test  example  in  Fan  and  Gijbels
(1995). It has been used later by Luo and Wahba (1997), Denison et al. (1998) and Zhou
and  Shen  (2001)  to  test  their  fitting  procedures.  With  this  example,  we  illustrate  that
GeDS  works  well  for  data  sets  with  different  sample  sizes  and  various  noise  levels,
assuming e  is  normally  distributed.  It  takes  between  0.89  sec  and  1.66  sec  to  compute
the GeDS fits, given in Table 3. 
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Table 3. (Example 1) Summary of fits produced by GeDS.

Fit
No

Graph N se n k Internal knots aexit, b L2 - error, MSE

1 Fig. 3, HaL 150 0.25 3 4 80.37, 0.46, 0.54, 0.62< 0.9, 0.5 2.87, 0.001282
2 Fig. 3, HbL 256 0.25 3 4 80.38, 0.46, 0.54, 0.63< 0.9, 0.5 4.01, 0.001359
3 Fig. 3, HcL 256 0.4 3 4 80.38, 0.46, 0.54, 0.60< 0.95, 0.5 6.17, 0.006573
4 Fig. 3, HdL 256 0.6 3 5 80.26, 0.39, 0.51, 0.55, 0.62< 0.95, 0.5 9.03, 0.021918

The  L2 -errors  of  all  the  fits  are  within  the  noise  level  and  their  visual  quality  is  very
good,  as  can  be  seen  from  Fig.  3.  The  95%  confidence  intervals  given  in  Fig.  3  have
been calculated using (24) with the corresponding known ('oracle') se .
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Fig. 3.  (Example 1) Graphs of the final quadratic B-spline fits and confidence intervals, produced
by GeDS: (a) N = 150, s = 0.25; (b) N = 256, s = 0.25; (c) N = 256, s = 0.4; (d) N = 256, s = 0.6;
The dotted function is the true function.

Note that the first two fits in Table 3 are obtained with aexit = 0.9 and b = 0.5. Since the
noise  levels  for  fits  No  3  and  4  are  higher  than  for  fits  No  1  and  2,  aexit  has  been
increased to 0.95, because,  in the case of a smooth function and a high noise level,  the
relative improvements in RSS from one step to another would be smaller and more steps
would be needed to recover the function. 

In  the  case  se = 0.4,  we  have  compared  the  quadratic  GeD  spline  fit  (No  3,  Table  3)
with  the  optimal  quadratic  spline  fits  obtained  applying  the  LS non-linear  optimization
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method (NOM) and its penalized version (PNOM), due to Lindstrom (1999). The results
are summarized in Table 4. As can be seen, the three fits are very close, comparing the
L2 -errors  and  the  location  of  the  knots.  However,  the  GeD  fit  recovers  the  original
function  significantly  better  than  the  fits  NOM  and  PNOM,  as  indicated  by  the  corre-
sponding  MSE  values.  The  NOM  optimal  fit  produces  an  edge  at  0.425  and  visually
deviates  stronger  from the shape of  the  underlying function,  which is  one of  the  draw-
backs noted by Lindstrom (1999). The computation time needed for GeDS is less then a
second, and for PNOM and NOM it is respectively 11 and 20 minutes, using the Mathe-
matica function NMinimize.

Table 4. (Example 1) The fits produced by GeDS, PNOM and NOM.

Fit
No

Method n k Internal knots L2 - error, MSE

1 GeDS 3 4 80.38, 0.46, 0.53, 0.60< 6.17, 0.006573
2 PNOM 3 4 80.40, 0.44, 0.52, 0.62< 6.16, 0.007364
3 NOM 3 4 80.42, 0.43, 0.53, 0.60< 6.14, 0.010285

A frequency plot of the number of internal knots and box plots for the three linear GeD
spline  fits  for  data  sets  with  N = 150,  se = 0.25,  N = 256,  se = 0.25  and
N = 256, se = 0.4, over the 400 GeDS runs are presented in Fig. 4 (a) and (b). 
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Fig. 4. (a): A frequency plot of the number of knots of the 400 linear GeD spline fits; (b): Box plots
of the MSE values of the 400 linear GeD spline fits;

As  can  be  seen  from  Fig.  4  (a),  the  number  of  knots  of  the  GeD  fits  for  higher  noise
level  (se = 0.4) is  more dispersed over the range of values 3  to 7,  than for  the case of
lower noise level  Hse = 0.25L  as is natural  to expect.  On the other hand, as can be seen
from the box plots  in  Fig 4 (b),  GeDS performs best  in  the case of   larger  sample size
and  lower  noise  level  (N = 256, se = 0.25 ).  The  median  MSE  value  of  the  400  linear
fits,  for  se = 0.4,  with  median  number  of  internal  knots  k = 5,  is  0.009.  This  is  lower
than the MSE value 0.012  of Luo and Wahba (1997),  and is equal  to that of Zhou and
Shen  (2001),  both  obtained  using  cubic  splines  with  a  higher  number  of  regression
functions (e.g., 13 for the fit of Luo and Wahba, 1997).
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Example 2. The function f2  (see Table 1) appears as a test example in Fan and Gijbels
(1995), Luo and Wahba (1997), Denison et al. (1998) and Zhou and Shen (2001). Using
the  GeDS algorithm we have  produced linear,  quadratic  and cubic  fits  which  are  illus-
trated in Fig. 5 and whose details are given in Table 5. 
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Fig. 5. (Example 2) Graphs of the final spline fits and confidence intervals, produced by GeDS: (a)
linear; (c) quadratic; (d) cubic; (b) the values of the a-ratio - black dots and the values of RSS/N -
grey dots, at each iteration in stage A; The dotted function in (a), (c), (d) is the true function.

Table 5. (Example 2) Summary of fits produced by GeDS.

Fit
No

Graph n k Internal knots aexit, b L2 - error, MSE

1 Fig. 5, HaL 2 6 80.30, 0.40, 0.50, 0.60, 0.63, 0.83< 0.9, 0.5 4.60, 0.009931
2 Fig. 5, HcL 3 5 80.35, 0.45, 0.55, 0.61, 0.73< 0.9, 0.5 4.63, 0.005961
3 - 4 4 80.40, 0.50, 0.57, 0.69< 0.9, 0.5 4.99, 0.019523
4 - 3 6 80.33, 0.37, 0.45, 0.55, 0.61, 0.73< 0.95, 0.5 4.53, 0.006153
5 Fig. 5, HdL 4 5 80.35, 0.42, 0.50, 0.57, 0.69< 0.95, 0.5 4.51, 0.004258

The SNR of the sample data is 3, as for fit No 3 of Example 1. Since f2  is also relatively
smooth we have used aexit = 0.95  and b = 0.5  in  order  to  obtain the cubic  fit  in  Fig.  5
(d), which has very good visual quality and low MSE value. The GeD spline fits No 1-3
of Table 5, with number of regression functions k + n = 8, are obtained with the default
values  aexit = 0.9  and  b = 0.5.  The  cubic  fit,  No  3,  with  four  knots,  underfits  the  data
while, as seen from Fig. 5 (a) and (c), the linear and quadratic fits are sufficiently accu-
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rate.  Adding  one  more  knot  by  running  GeDS  with  the  higher  value  of  aexit = 0.95
improves the cubic fit as illustrated by Fig. 5 (d). The 95% confidence intervals given in
Fig 5 have been calculated using (24) with the known ('oracle') se . The behavior of the
stopping rule  of  stage A, is  illustrated in  Fig. 5  (b).  It  can be seen that  with aexit = 0.9
the  algorithm  exits  with  6  internal  knots  for  the  linear  fit  and  the  RSS  is  21.17.  This
means that the RSS of the linear fit with 8 knots is at least 90% of the value 21.17, i.e.,
the  residual  sum of  squares  has  stabilized  for  three  consecutive  steps  at  which  models
with  6,  7  and  8  knots  have  been computed.  If  aexit = 0.95  the  algorithm exits  one step
later,  with 7 internal  knots for the linear fit  and RSS = 20.38  since the improvement in
RSS  for  the  next  two  consecutive  steps  is  less  than  5%  of  20.38.  So,  we  see  that  the
stopping rule, based on the idea of exiting upon reaching a certain level of stabilization
in RSS, tends to select models with the appropriate number of knots. 

The  median  MSE  value  for  the  400  linear  and  quadratic  fits  are  equal  to  0.0075  and
0.0095  respectively,  and  are  comparable  with  those  produced  by  other  authors.  For
example,  Luo  and  Wahba  (1997)  report  MSE = 0.007  and  number  of  basis  functions
equal  to  13  for  their  HAS models.  For  all  400  linear  fits  the  number  of  internal  knots
used by GeDS is between 5 and 7. It takes 1.58 seconds to compute fits No 1-3 and 1.88
seconds to compute fits No 4 and 5 of Table 5.

Based on the L2 -errors,  given in  Table  5,  it  can be seen that  the best  GeDS fit  for  this
particular  function  is  the  cubic  one,  No  5  in  Table  5.  We  have  compared  it  with  the
optimal cubic  spline fits  PNOM and NOM with the same number of knots.  The results
are summarized in Table 6. As in Examples 1, the GeD fit is significantly better in terms
of MSE and visual quality. The location of the knots is similar for GeDS and PNOM (fit
No  2),  both  avoiding  replicate  knots.  However,  the  optimal  fit  NOM  (fit  No  3)  has  3
replicate  knots  at  0.5  and hence,  produces  an edge and visually  deviates  more strongly
from the  shape  of  the  underlying  function.  The  computation  time  needed,  for  GeDS is
less then two seconds and for PNOM and NOM it is, respectively, 1.1 hour and 1.9 hour,
using the Mathematica function NMinimize.

Table 6. (Example 2) The fits produced by GeDS, PNOM and NOM.

Fit
No

Method n k Internal knots L2 - error, MSE

1 GeDS 3 5 80.35, 0.42, 0.50, 0.57, 0.69< 4.51, 0.004258
2 PNOM 3 5 80.33, 0.44, 0.50, 0.55, 0.76< 4.47, 0.005216
3 NOM 3 5 80.32, 0.50, 0.50, 0.50, 0.78< 4.43, 0.006598

Example 3. The HeaviSine function is one of the four functions introduced by Donoho
and Johnstone (1994) and widely used as test examples by other authors, see for exam-
ple  Fan  and  Gijbels  (1995),  Luo  and  Wahba  (1997),  Denison  et  al.  (1998),  Zhou  and
Shen (2001),  Lee (2000),  Pittman (2002).  It  is a smooth function with two discontinui-
ties  at  x = 0.3  and  x = 0.72.  It  takes  55  seconds  to  obtain  simultaneously  the  linear,
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quadratic and cubic GeD spline fits, given in Table 7. In this and the following examples
of  spatially  inhomogeneous  curves,  we  have  set  the  value  for  aexit  at  0.99,  to  prevent
GeDS from producing a spline approximation which is too smooth for adequately repre-
senting the 'shape' of the data.

Table 7. (Example 3) Summary of fits produced by GeDS.

Fit
No

Graph n k Internal knots aexit, b L2 - error
MSE

1 - 2 18 80.10, 0.13, 0.18, 0.29, 0.30, 0.30, 0.32, 0.38, 0.44,
0.57, 0.63, 0.71, 0.71, 0.72, 0.74, 0.83, 0.84, 0.99<

0.99, 0.5 46.56
0.2203

2 Fig. 6 3 17 80.11, 0.16, 0.23, 0.29, 0.30, 0.31, 0.35, 0.41, 0.50,
0.60, 0.67, 0.71, 0.72, 0.73, 0.79, 0.84, 0.92<

0.99, 0.5 43.42
0.0482

3 - 4 16 80.14, 0.20, 0.26, 0.30, 0.31, 0.33, 0.38, 0.46, 0.55,
0.64, 0.69, 0.72, 0.73, 0.77, 0.81, 0.89<

0.99, 0.5 44.82
0.0942

For the quadratic GeDS fit (No 2 in Table 7), illustrated in Fig. 6, the median number of
regression functions k + n  is only 20  while the median MSE value 0.057, is comparable
with  0.04  given  by  Luo  and  Wahba  (1997)  for  their  cubic  spline  model  with  50  basis
functions.  Our  GeDS  algorithm  uses  between  17  and  21  internal  knots  to  fit  the  31
simulated data sets in the linear case. Based on the L2 -errors for the linear, quadratic and
cubic fits given in Table 7, the best GeDS fit for this particular function is of degree 2.
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Fig. 6. (Example 3) Graph of the quadratic GeD spline fit. The dotted function is the true function.

Example  4.  This  function  is  known  as  the  Doppler  function.  It  is  highly  oscillating,
especially  near  the  origin,  where  most  of  the  procedures  fail  to  recover  it.  Using  the
GeDS algorithm we have obtained six different fits for the same data set with SNR equal
to  7.  Fits  No 1-3,  given  in  Table  8,  are  calculated  simultaneously  in  304 seconds  with
aexit = 0.99.  The  quadratic  one  (No  2)  has  46  knots  and MSE = 0.13.  For  comparison,
the HAS cubic fit,  produced by Luo and Wahba (1997) has MSE = 0.10  with 120 basis
functions.  Based  on  the  quadratic  GeD spline  fits,  obtained  for  31  simulated  data  sets,
the median MSE value is 0.089  and median number of knots is 62, using aexit = 0.999.
The number of knots for the 31 quadratic fits is between 50 and 78.
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Fig. 7. (Example 4) Graph of the quadratic GeD spline fit. The dotted function is the true function.

Comparing the L2 -errors of the fits of degree 1, 2 and 3, summarized in Table 8 the best
fit  for the Doppler function is the quadratic one. The GeDS fit No 5, given in Fig. 7, is
seen to fit very well the Doppler function near the origin, avoiding oversmoothing.

Table 8. (Example 4) Summary of fits produced by GeDS.

Fit
No

Graph n k aexit, b L2 - error, MSE

1 - 2 47 0.99, 0.5 48.24, 0.199802
2 - 3 46 0.99, 0.5 46.77, 0.125328
3 - 4 45 0.99, 0.5 49.04, 0.233945
4 - 2 74 0.999, 0.5 45.21, 0.114633
5 Fig. 7 3 73 0.999, 0.5 44.92, 0.060037
6 - 4 72 0.999, 0.5 46.10, 0.106811

Example  5.  The Bumps function  is  very  wiggly  and also difficult  to  fit.  Following the
prescription for choosing aexit  in the case of fitting wiggly functions with high SNR, we
have set  aexit = 0.99  and have obtained the GeDS fits  whose details  are summarized in
Table 9. 

Table 9. (Example 5) Summary of fits produced by GeDS.

Fit
No

Graph n k aexit, b L2 - error, MSE

1 - 2 83 0.99, 0.5 48.59, 0.283631
2 - 3 82 0.99, 0.5 56.03, 0.631448
3 - 4 81 0.99, 0.5 66.44, 1.198390
4 Fig. 8 2 103 0.999, 0.5 44.51, 0.140580
5 - 3 102 0.999, 0.5 47.96, 0.264664
6 - 4 101 0.999, 0.5 52.29, 0.445403

Looking  at  the  L2 -errors  we  see  that  the  fit  with  the  lowest  L2 -error  is  the  linear  one,
which is illustrated in Fig. 8. A linear fit  for Bumps is given also by Lee (2000) whose
MDL procedure automatically chooses the order of the fit within the range 1 to 4. Based
on 31 simulated data  sets  the  median MSE value  for  the linear  fit  is  0.22,  for  the qua-
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dratic  fit  it  is  0.51  and  the  median  number  of  knots  is  90.  The  GeDS estimator  places
between  79  and  102  knots  for  these  31  fits.  For  comparison,  the  median  MSE  value
reported by Pittman (2002) for the cubic AGS fit is 0.4001, for a certain median number
of knots, which is not reported.

As  fits  No  1-6  in  Table  9  indicate,  by  increasing  the  aexit  parameter  it  is  possible  to
improve the quality of the final fit,  allowing GeDS to add more knots where necessary.
Fits  No 1-3  are  obtained  simultaneously  in  795 seconds,  whereas  fits  No 4-6 are  com-
puted in 1255 seconds.

0 0.2 0.4 0.6 0.8 1

0

10

20

30

40

50

Fig. 8. (Example 5) Graph of the linear GeD spline fit. The dotted function is the true function.

Example 6. For the Blocks function, in order to obtain fits No 1-4 given in Table 10, we
have  run  GeDS  with  aexit = 0.99  and  aexit = 0.999.  The  details  of  the  linear  and  qua-
dratic  fits  for  both values of  aexit ,  are  presented in Table  10.  The best  fit,  produced by
GeDS is linear, No 3, and it is illustrated in Fig 9.
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Fig. 9. (Example 6) Graph of the linear GeD spline fit. The dotted function is the true function.

Fits No 1-2 are obtained in 344 seconds and No 3-4 in 856 seconds. Our median MSE
value, based on 31 runs with aexit = 0.999  is 0.12  with 83 median number of knots. For
comparison, the median MSE value given by Zhou and Shen (2001) is 0.08, who do not
report the number of knots of their SARS fit.
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Table 10. (Example 6) Summary of fits produced by GeDS.

Fit
No

Graph n k aexit, b L2 - error, MSE

1 - 2 53 0.99, 0.5 55.63, 0.642906
2 - 3 52 0.99, 0.5 59.80, 0.860989
3 Fig. 9 2 85 0.999, 0.5 42.43, 0.082962
4 - 3 84 0.999, 0.5 43.68, 0.126953

7. Discussion and conclusions.

Based on the results of Section 4, we can conclude that the knots of GeDS, placed accord-
ing to the knot averaging method, approximate very well the optimal variation diminish-
ing  knots  of  stage  B  (see  Section  3).  Thus,  based  on  its  variation  diminishing  (shape
preserving) character,  the GeD spline estimator has been shown in Section 6 to be suc-
cessful  in  fitting  both  smooth  and  spatially  inhomogeneous  functions.  Its  large  sample
statistical  properties, such as asymptotic normality, established in Kaishev et al. (2006)
facilitates  the  construction  of  asymptotic  confidence  intervals  with  respect  to  the
unknown function f , illustrated in Examples 1 and 2 of Section 6. 

Based on the results presented in the present  paper and also in Kaishev et al. (2006) we
can conclude that the GeDS method  is a fast, stable, automatic statistically viable estima-
tion  procedure  with  an  appropriate  geometric  interpretation  which  allows  to  follow the
entire fitting process. The existence of the two parameters aexit  and b  combines automa-
tion  with  some  flexibility  in  tuning  GeDS  to  cope  with  the  particular  noise  level,  and
smoothness characteristics of the underlying function. The numerical results of Section 6
show  that  the  GeD  spline  regression  models  are  comparable  with  those  obtained  with
other  methods,  including  the  penalized  non-linear  optimization  method  of  Lindstrom
(1999).  In  particular,  in  Examples  1  and  2,  GeDS  managed  to  find  knot  placements
which are nearly optimal but avoiding replicate knots, as seen from Tables 4 and 6.
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Appendix

Proof of Theorem 1.  Note that,  for n = 2, xi ª xi
* ,  i = 1, ..., p ,  hence V a@gD ª V @gD  and

the bound in (22), which is zero, is sharp. For n > 2, from (6) it follows that x1
* ª a ª x1

and xp
* ª b ª xp ,  and from the definitions of V @gD  and V a@gD ,  (9) and (14) respectively,

we have 
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∞V @gD - V a@gD¥ = maxtœ@a,bD » ⁄i=1
p HgHxi

*L - gHxiLL Ni,nHtL »
§ maxtœ@a,bD ⁄i=1

p » HgHxi
*L - gHxiLL » Ni,nHtL

§ maxtœ@a,bD ⁄i=1
p 8max jœ 82,...,p-1< » gHx j

*L - gHx jL »< Ni,nHtL
§ max jœ 82,...,p-1< » gHx j

*L - gHx jL » maxtœ@a,bD ⁄i=1
p Ni,nHtL

(25)= max jœ 82,...,p-1< » gHx j
*L - gHx jL » ,

where  the  last  equality  follows  from  the  partition  of  unity  property  of  B-splines  (See
Section 2). Applying the definition of the modulus of continuity to (25) we have

(26)∞V @gD - V a@gD¥ § max jœ 82,...,p-1< » gHx j
*L - gHx jL »

(27)§ wHg; max jœ 82,...,p-1< » x j
* - x j »L .

From (13), it follows that x j-Hn-2L < t j+1  and t j+n-1 < x j+Hn-2L , j = 2, ..., p - 1. From the
definition (6) of the Greville sites xi

*  we have t j+1 < x j
* < t j+n-1 , j = 2, ..., p - 1, where

we  define  x1-l := a  and  xp+l := b ,  l = 1, 2, ... ,  to  avoid  difficulties  in  notation.  Hence,
x j-Hn-2L < x j

* < x j+Hn-2L ,  j = 2, ..., p - 1.  Applying  the  latter  inequalities  and  assuming
that the maximum in (27) is achieved for some j = j m , in the case x j m

* > x j m , we have 

(28)» x j m
* - x j m » § x j m+Hn-2L - x j m § Hn - 2L max jœ 8 j m,..., j m+Hn-2L-1< Hx j+1 - x jL

and if x j m
* < x j m  we have

(29)» x j m
* - x j m » § x j m - x j m-Hn-2L § Hn - 2L max jœ 8 j m-Hn-2L,..., j m-1< Hx j+1 - x jL .

It  is  not  difficult  to  see  that  both  maximums  in  (28)  and  (29)  are  bounded  by
Hn - 2L max jœ 81,...,p-1< Hx j+1 - x jL , so, from (27), we obtain

∞V @gD - V a@gD¥ § wHg; » x j m
* - x j m »L

(30)§ wHg; Hn - 2L max jœ 81,...,p-1< Hx j+1 - x jLL .
Using the fact that wHg; hL  is a monotone function in h  and that it is also subadditive in
h , i.e., wHg; h + wL § wHg; hL + wHg; wL , from (30) we finally obtain

∞V @gD - V a@gD¥ § Hn - 2L wHg; max jœ 81,...,p-1< Hx j+1 - x jLL  .
This completes the proof of Theorem 1.Ñ

Proof  of  Corollary  1.1.  This  follows  directly  from  (15)  and  from  the  definition  of
wHg; hL , i.e.,

∞V @tD - V a@tD¥ = ∞t - ⁄i=1
p xi Ni,nHtL¥ § Hn - 2L max jœ 81,...,p-1< Hx j+1 - x jL .Ñ

Proof of Corollary 1.2. From (26) we have

∞V @gD - V a@gD¥ § max jœ 82,...,p-1< » gHx j
*L - gHx jL »
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 = max jœ 82,...,p-1< » ⁄i=1
p ai Ni,2Hx j

*L - ⁄i=1
p ai Ni,2Hx jL »

 = max jœ 82,...,p-1< » ⁄i=1
p ai Ni,2Hx j

*L - a j »

(31) = max jœ 82,...,p-1< … ⁄i= j-Hn-2L
j+Hn-2L ai Ni,2Hx j

*L - a j …
since,  as  shown  in  the  course  of  the  proof  of  Theorem  1,  x j-Hn-2L < x j

* < x j+Hn-2L ,
j = 2, ..., p - 1. In the last equality we have defined x1-l := a  and xp+l := b , l = 1, 2, ... .
Since  g  is  a  linear  spline,  we  know  that  if  xq § x j

* § xq+1 ,  j - Hn - 2L § q < j + Hn - 2L
then ⁄i= j-Hn-2L

j+Hn-2L ai Ni,2Hx j
*L = aq Nq,2Hx j

*L + aq+1 Nq+1,2Hx j
*L ,  which is  a  convex combination

of  only  two  B-spline  coefficients.  Assuming that  the  maximum in  (31)  is  achieved  for
some j = j m , in the case when x j m < xq § x j m

* § xq+1 , j m § q < j m + Hn - 2L  we have

max jœ 82,...,p-1< … ⁄i= j-Hn-2L
j+Hn-2L ai Ni,2Hx j

*L - a j … = … ⁄i=q
q+1 ai Ni,2Hx j m

* L - a j m …

(32)§ Hmaxqœ 8 j m,..., j m+Hn-2L< 8aq< - minqœ8 j m,..., j m+Hn-2L< 8aq<L
and if xq § x j m

* § xq+1 § x j m , j m - Hn - 2L § q < j m  we have

max jœ 82,...,p-1< … ⁄i= j-Hn-2L
j+Hn-2L ai Ni,2Hx j

*L - a j … = … ⁄i=q
q+1 ai Ni,2Hx j m

* L - a j m …

(33)§ Hmaxqœ 8 j m-Hn-2L,..., j m< 8aq< - minqœ8 j m-Hn-2L,..., j m< 8aq<L  .
It is not difficult to see that both differences on the right-hand sides of the inequalities in
(32) and (33) are bounded by

 max jœ 81,...,p-Hn-2L< Hmaxqœ 8 j,..., j+Hn-2L< 8aq< - minqœ 8 j,..., j+Hn-2L< 8aq<L  .
Hence, from (31), we obtain

∞V @gD - V a@gD¥ §
max jœ 81,...,p-Hn-2L< Hmaxqœ 8 j,..., j+Hn-2L< 8aq< - minqœ 8 j,..., j+Hn-2L< 8aq<L

This completes the proof of Corollary 2.1.Ñ

Proof of Theorem 2. Consider the max jœ 82,...,p-1< » x j - x j
* »  and assume it is achieved for

some j m , n § j m < p - n . We can express x j m
*  in terms of x j m ,  using the definitions (6)

and (19). After some algebra it is not difficult to see that

» x j m - x j m
* »

(34)= 1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅHn-1L2 … ⁄i=1
n-2 i Hx j m+Hn-1-iL + x j m-Hn-1-iLL - Hn - 1L Hn - 2L x j m …

and if we now rearrange the terms in the sum in (34), we obtain

(35)» x j m - x j m
* » = 1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅHn-1L2 … ⁄i=1

n-2 i HHx j m+Hn-1-iL - x j mL - Hx j m - x j m-Hn-1-iLLL …  .
Assume  that  ⁄i=1

n-2 i Hx j m+Hn-1-iL - x j mL > ⁄i=1
n-2 iHx j m - x j m-Hn-1-iLL .  In  this  case,  it  is  not

difficult to see that (35) is bounded by

… x j m - x j m
* … § 1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅHn-1L2 ⁄i=1

n-2 i Hx j m+Hn-1-iL - x j mL
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§ 1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅHn-1L2
Hn-2L Hn-1LÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ2 Hx j m+Hn-2L - x j mL

§ Hn-2LÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ2 Hn-1L  Hx j m+Hn-2L - x j mL

(36)§ Hn-2L2
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ2 Hn-1L  max jœ 81,...,p-1< Hx j+1 - x jL  .

Similarly,  it  can  be  shown that  if  ⁄i=1
n-2 i Hx j m+Hn-1-iL - x j mL § ⁄i=1

n-2 iHx j m - x j m-Hn-1-iLL  the
bound in (36) also holds. Thus, from (36) and (27) we have

(37)∞V @gD - V a@gD¥ § wIg; Hn-2L2
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ2 Hn-1L  max jœ 81,...,p-1< Hx j+1 - x jLM

Using the monotonicity and subadditivity of wHg; hL  in h , from (37) we finally obtain

∞V @gD - V a@gD¥ § a Hn-2L2
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ2 Hn-1L q wHg; max jœ 81,...,p-1< Hx j+1 - x jLL

where  `np := min 8z œ  : n § z< .  Applying  similar  reasoning,  one  can  show  that  the
bound  (21)  holds  also  in  the  case  when  2 § j m < n  or  p - n § j m < p - 1.  This  com-
pletes the proof of Theorem 2.Ñ

Proof  of  Corollary  2.1.  This  follows  directly  from  (37)  and  from  the  definition  of
wHg; hL , i.e.,

∞V @tD - V a@tD¥ = ∞t - ⁄i=1
p xi Ni,nHtL¥ § Hn-2L2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ2 Hn-1L max jœ 81,...,p-1< Hx j+1 - x jL  .Ñ

Proof of Corollary 2.2. From (31) we have

(38)∞V @gD - V a@gD¥ § max jœ 82,...,p-1< … ⁄i= j-1
j+1 ai Ni,2Hx j

*L - a j …  .
We  need  to  consider  the  cases  when  x j-1 < x j

* § x j ,  2 § j § p  and  x j § x j
* < x j+1 ,

1 § j § p - 1. In the first case, applying the Mansfield-De Boor-Cox recurrence formula
(4) to express Ni,2Hx j

*L  in the maximum in (38) we have

 max jœ 82,...,p< » a j-1 N j-1,2Hx j
*L + a j N j,2Hx j

*L - a j »

= max jœ 82,...,p< … a j-1
x j-x j

*

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅx j-x j-1
+ a j

x j
*-x j-1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅx j-x j-1

- a j
x j-x j-1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅx j-x j-1

…

= max jœ 82,...,p< … Ha j-1 - a jL … I x j-x j
*

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅx j-x j-1
M

< max jœ 82,...,p< À Ha j-1 - a jL À J
1ÅÅÅÅ4 Hx j-x j-1LÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅx j-x j-1

N

(39)= 1ÅÅÅÅ4 max jœ 82,...,p< » Ha j-1 - a jL »  ,
where  we  have  expressed  x j

*  in  terms  of  x j ,  using  (6)  and  the  definition  of  ti+n ,
i = 1, ..., k  in  Theorem  2,  and  have  used  the  fact  that  x j - x j-1 > x j+1 - x j  to  arrive  at
the last inequality. Similarly, it is not difficult to see that the same bound as in (39) holds
in the case when x j § x j

* § x j+1 . This completes the proof of Corollary 2.2.Ñ
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