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BLOCKS WITH NORMAL ABELIAN DEFECT AND ABELIAN p
INERTIAL QUOTIENT

DAVID BENSON, RADHA KESSAR, AND MARKUS LINCKELMANN

ABSTRACT. Let k be an algebraically closed field of characteristic p, and let O be either k
or its ring of Witt vectors W (k). Let G be a finite group and B a block of OG with normal
abelian defect group and abelian p’ inertial quotient L. We show that B is isomorphic to
its second Frobenius twist. This is motivated by the fact that bounding Frobenius numbers
is one of the key steps towards Donovan’s conjecture. For O = k, we give an explicit
description of the basic algebra of B as a quiver with relations. It is a quantised version of
the group algebra of the semidirect product P x L.

1. INTRODUCTION

Let p be a prime number. The purpose of this paper is to bound the Frobenius numbers
and to give a structure theorem for p blocks of finite groups with normal abelian defect
groups and abelian p’ inertial quotients. This extends the results of Benson and Green [2],
Holloway and Kessar [7], Benson and Kessar [3].

We show that these blocks are isomorphic to their second Frobenius twist. By [8], bounding
Frobenius numbers is a key step towards Donovan’s conjecture; see for instance [4], [5]. We
obtain further a complete description of the basic algebra of such a block over a field by
means of quiver with relations.

Our main theorems are as follows. Let k£ be an algebraically closed field of characteristic
p and let W (k) be the ring of Witt vectors over k. Let O € {k,W(k)}. For ¢ a power of p,
the Frobenius automorphism A +— A? of the field £ lifts uniquely to an automorphism of the
ring W (k), and we denote its inverse in both cases by u +— ,ué (see [10, Chapter 3, Theorem
3, Proposition 10, Theorem 8§]).

Recall from [3] that for an O-algebra A, the Frobenius twist A@ is the O-algebra which
equals A as a ring, and where scalar multiplication is twisted via the Frobenius map; that
is, for A € O, and a € A, the action on A@ is given by A - a = Nia.

Theorem 1.1. Let P be a finite abelian p-group, L an abelian p'-subgroup of Aut(P) and
a € H*(L,0%). The twisted group algebra O, (P x L) is isomorphic to its second Frobenius
twist Og(P x L)),

Theorem 1.1 is proved in Section 2.

Theorem 1.2. Let P be a finite abelian p-group, L an abelian p'-subgroup of Aut(P) and
a € H*(L,k*) and 2 the basic algebra of the twisted group algebra ko(PxL). Then ko(Px L)
1s a matriz algebra over A and A has an explicit presentation as a quantised version of the
group algebra of the semidirect product P x L.
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The explicit generators and relations for 2 are given in Theorem 4.14.

By a theorem of Kiilshammer [9], any block of a finite group algebra over O with a normal
defect group is isomorphic to a matrix algebra of a twisted group algebra of the semi-direct
product of the defect group of the block with the inertial quotient of the block. Combining
[9] with the two results above yields the following.

Corollary 1.3. Let B be a block of a finite group algebra over O with a normal defect group
P and abelian inertial quotient L. Then B s isomorphic to its second Frobenius twist and
if O = k, then B is a matrix algebra over a quantised version of the group algebra of the
semadirect product P x L.

Remark 1.4. Tt seems unclear whether the same bound holds for strong Frobenius numbers,
introduced by Eaton and Livesey in [5]. One issue is that we do not have a sufficiently
explicit description of the automorphism ¢ of P x L constructed in Lemma 2.3 below.

Acknowledgement. This material is based on work supported by the National Science
Foundation under Grant No. DMS-1440140 while the authors were in residence at the Math-
ematical Sciences Research Institute in Berkeley, California, during the Spring 2018 semes-
ter. The first author thanks City, University of London for its hospitality during part of
the preparation of this paper. The third author acknowledges support from EPSRC grant
EP/M02525X/1. The authors thank Gunter Malle for a careful reading of the paper.

2. PROOF OF THEOREM 1.1.

For L a group, ¢ € Aut(L) and o : L x L — O*, denote by ®a : L x L — O the map
defined by ¢a(z,y) = a(¢™(z), ¢ (y)) and by (¢, @) — ®« the induced action of Aut(L) on
H?(L,0*). For q a power of p, denote by a!? the map L x L — O* defined by a'? (x,y) =

a(z,y)7 and by a@ the image of o under the induced isomorphism H?(L, 0%) = H*(L, OX).

Lemma 2.1. Let L be a finite abelian p'-group and let ¢ : L — L be the group automorphism
defined by ¢(x) = aP for all x € L. Then for all o € H*(L,0*), we have *a = aP?),

Proof. 1t is well-known that since L is a finite p’-group, it follows that the canonical map
O — k induces an isomorphism H?(L,0*) = H?(L,k*). Thus we may assume that O = k.
Consider the universal coefficient sequence

0 — Ext'(H(L,Z),k*) — H*(L,k*) — Hom(Hy(L,Z),k*) — 0.

Since k is algebraically closed, k* is divisible, and therefore injective as an abelian group.
So the first term in this sequence is zero. For the third term, we have Hy(L,Z) = A%*(L), the
exterior square in the category of abelian groups. Therefore we obtain an isomorphism

H*(L, k™) = Hom(A*(L), k™)
which by naturality is Aut(L) equivariant and which commutes with the Frobenius morphism
of k. More precisely, if « € H*(L, k*) corresponds to 7 € Hom(A%(L), k*) under the above
isomorphism, then for any ¢ € Aut(L), and any power ¢ of p, Ya corresponds to the
homomorphism ¥7 defined by Y7(x Ay) = (¢ (x) A ¥~1(y)) and '@ corresponds to
the homomorphism 7(@ defined by 7@ (z A y) = 7(z A y)% The result follows since for any

7 € Hom(A?(L), k*) we have (x4 Ay) = 7(z Ay)? = 7(x A y). O
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The isomorphism H?(L,k*) = Hom(A2(L), k) in the above proof can be explicitly de-
scribed as follows. If o € Z?(L, k), then the image of the class of o in Hom(A?(L), k) is
the group homomorphism x A y — a(z,y)a(y,z)~ !, where x, y € L. One can either verify
directly, using the 2-cocycle identity, that this assignment is a group homomorphism in each
component, or one can observe that a(z,y)a(y, )" is equal to the commutator of lifts of
x, y in a central extension determined by «. More precisely, let

1 5k 5L >L—1

be a central extension defined by «. For each z € L, choose an element # € L lifting x.
An easy calculation shows that a(z,y)a(y, z)™! = [Z,9]. This commutator does not depend
on the choices of the lifts # and since L is a central extension of the abelian group L, this
commutator is a group homomorphism in each component. In particular, [2?,y?] = [, §]*",

which explains the statement of the above Lemma.

Lemma 2.2. Let P be a finite p-group and let ®(P) be the Frattini subgroup of P. The
kernel of the natural group homomorphism Aut(P) — Aut(P/®(P)) is a p-group. If P is
homocyclic, then the map Aut(P) — Aut(P/®(P)) is surjective.

Proof. For the first assertion see [6, Chapter 5, Theorem 1.4]. Assume that P is homocyclic
and let {z1,xs,...,2,} be a minimal generating set of P. Let ¢» € Aut(P/®(P)). For each
i, 1 <i <r, pick an element u; € P such that ¢(z;®(P)) = u;$(P). Since P is homocyclic,
there exists a homomorphism 1/; : P — P such that @/;(xz) =u;, 1 <7 < r. Clearly, @Z) lifts ).
Since 1 is an automorphism, Im(1))®(P) = P whence Im(1)) = P and ) € Aut(P). O

Lemma 2.3. Let P be a finite abelian p-group and let L be an abelian p'-group acting on P.
There exists an automorphism ¢ of P x L such that ¢(L) = L and ¢(x) = 2P for all x € L.

Proof. Denote by L' the image of L in Aut(P). Proving the existence of ¢ is equivalent to
showing that there exists 7 € Aut(P) such that 7y7—! = ¢ for all y € L’. Suppose first that
P = P, x P, for L'-invariant subgroups P; and P, of P. If for each i = 1,2, there exists
7 € Aut(P) with 7(ylp)7 " = (ylp)P for all y € L', then the map 7: P — P sending
x1xo to Ty (21)To(22) for 1 € Py, x5 € P, has the required properties. Hence we may assume
that P is indecomposable for the action of L’ and consequently that P is homocyclic (see [6,
Chapter 5, Theorem 2.2]).

We claim that it suffices to prove the result for the case that P is elementary abelian.
Indeed, let U be the kernel of the map Aut(P) — Aut(P/®(P)). By Lemma 2.2, U is a
p-group. Let L' be the image of L' in Aut(P/®(P)) and suppose that there exists 7 €
Aut(P/®(P)) such that 7971 = nP for all n € L. By Lemma 2.2, there exists 7 € Aut(P)
lifting 7. Since L'U is the full inverse image of L in Aut(P), and L’ is 7-invariant, 7L/Ur~! =
L'U. Hence L' and 7L'7~! are both complements to the normal Sylow p-subgroup U of L'U.
By the Schur-Zassenhaus theorem, there exists v € U such that uL’u~! = 7L'7~!. Replacing
7 by v~ 17 we may assume that 7L/t~ = L. Then for any y € L', 7y/7! and y/'? are elements
of the p/-group L’ lifting the same element of L. The claim follows by Lemma 2.2.

By the discussion above we may assume that P is elementary abelian and that P is
an indecomposable, faithful F,L’-module. Since L’ is an abelian p’-group, P is in fact
an irreducible F,L-module and L’ is cyclic. Let L' = (y) and let f(X) € F,[X] be the

characteristic polynomial of y as an element of Endg, (P). Since f(y?) = f(y)? = 0, f(X)
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is also the characteristic polynomial of y?. Thus, y and y? are conjugate in GL(P)
Aut(P).

O

Proof of Theorem 1.1. Let ¢ be as in Lemma 2.3. Then ¢ induces an O-algebra isomorphism
Ou(P x L) =2 Os,(P x L). The result follows by Lemma 2.1 since for any power ¢ of p,
Ou(P x L) D =2 O, (P x L) as O-algebras. O

3. ON CHARACTERS OF GROUPS OF CLASS TWO

For a finite group H denote by Irr(H) the set of ordinary irreducible characters of H. If N
is a normal subgroup of H and x € Irr(N), denote by Irr(H | x) the subset of Irr(H) covering
X- Recall that if H/N is abelian, then the group of irreducible (i.e. linear) characters of
H/N acts on Irr(H | x) via multiplication and this action is transitive.

Proposition 3.1. Let H be a finite group which is nilpotent of class 2. Let x be a faithful
irreducible character of Z := [H, H]. Set m = +/|H : Z(H)|.

(i) For any ¢ € Irr(Z(H) | x), ¢tH = m7y for some 7, € Irr(H). In particular, m =
75(1) is an integer.

(ii) The map ¢ — 714, ¢ € Irr(Z(H)|x), is a bijection between Irr(Z(H)|x) and
Irr(H | ).

(iii) The actions of Irx(H/Z) on Trr(H | x) and of Tre(Z(H)/Z) on Irr(Z(H) | x) are
compatible with the bijection in (ii). More precisely, let n € Irr(H/Z), and let
¢ € Irr(Z(H) | x). Then Tolzane = NTe- Consequently, Nty = 74 1f and only if n
restricts to the trivial character of Z(H).

Proof. Let 7 be an irreducible character of H covering x. We claim that 7(z) = 0 for all
x € H\ Z(H). Indeed, since Z(H) is the intersection of all maximal abelian subgroups of H,
it suffices to prove that if A is a maximal subgroup of H, then 7(z) = 0if x ¢ A. So, let A be
a maximal abelian subgroup of H. Then Z(H) < A and since H is of class 2, A is normal in
H. Let ¢ be an irreducible constituent of the restriction of 7 to A and suppose that g € H is
such that 99 = +). Then for all a € A, ¥(gag™') = ¢ (a) and so ¥(gag~ta~') = 1. Since the
restriction of 1) to Z equals x, we have that x(gag 'a™') =1 for all @ € A. The faithfulness
of x and the maximality of A now imply that g € C(A4) = A. Consequently, 7 = ¢t and
7(z) =0 for all z ¢ A, proving the claim.

Let ¢ be the unique linear character of Z(H) covering x and which is covered by 7. Since
¢ is linear, the restriction of 7 to Z(H) consists of 7(1) copies of ¢. By the claim above,

1 7(1)? 7(1)?
1= {rn) =g ¥ rlor ) =T 3 el = T
c€Z(H) xeZ(H)
Thus 7(1) = m and
T(m = |H : Z(H)| = p1"(1).
On the other hand, by Frobenius reciprocity the multiplicity of 7 as a constituent of ¢1#
equals 7(1). So ¢t = mr. Setting 74 = 7 proves part (i) of the proposition. Part (ii) is
immediate from (i) and the fact that every element of Irr(H | x) covers a unique element
of Irr(Z(H)|x). By the induction formula, n(¢17) = (nlzm)¢)1, hence (i) gives that
Tolzauné = NTg- Now (i) yields that n7y = 74 if and only if nlzm ¢ = ¢ if and only if nlzm)
is trivial. 0]
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4. THE BASIC ALGEBRA.

Lemma 4.1. Let 1 - A — B — C — 1 be a short exact sequence of abelian groups and
let m: D — A be a surjective homomorphism of abelian groups. For each o € C, choose a
pre-image u, in B. Then there exists a 2-cocycle (o, 5) — fap from C x C to D such that

T(fap) = uglugluaﬁ and fop = faa for al a,p e C.

Proof. 1t is well-known that Ext;(C, A) = {0} for n > 2, and hence the connecting homomor-
phism Ext}(C, A) — Ext3(C, ker(r)) = {0} is zero. Thus the map Ext},(C, D) — Ext,(C, A)
induced by 7 is surjective. In particular, the element in Ext;(C, A) represented by the given
short exact sequence lifts to an element in Ext;(C, D). Rephrased in terms of extensions this
means that there is a commutative diagram of abelian groups with exact rows of the form

1 D B C 1
1 A B C 1

Note that 7 is surjective and restricts to the map 7 on D. For o € C, choose a preimage vq
of u, in B and set f, 3 = vlglv;lva/g for all a, 8 € C. Clearly, f,3 € D. Since B is abelian,
f8.a = fap- Thus (o, B) — fa s is a 2-cocycle with the properties as stated. O

We recall the following result on the structure of twisted group algebras.

Lemma 4.2. Let G be a finite group and let « € H*(G,k*). Then there exists a central
extension
1=-Z—-G—G—1

with Z a finite cyclic p'-group and a linear character x: Z — k* such that k,G = kGe
where e = |—é| Yowez x(z7Yz is the idempotent of kZ corresponding to x. Moreover, Z may

be chosen to be contained in [G, G).
Proof. This is well known, but for completeness we provide a proof. Let m be the order of
the cohomology class a. Since k is algebraically closed, £ is a divisible group. So we have
a short exact sequence

0= py, > kX =k =0,

where (1, denotes the subgroup of m-th roots of unity in £*. Note that pu,, has order m as m
is relatively prime to p. Consider the corresponding maps of universal coefficient sequences

0 — Ext'(H\(G,Z), pin) — H*(G, 1) — Hom(Hy (G, Z), i) — 0

0 —— Ext'(H(G, Z), k*) — H%(G, k*) — Hom(Hs(G, Z), k*) —= 0
0 —— Ext'(H,(G, Z), k*) — H*(G, k*) — Hom(Hs(G, Z), k*) —= 0
We have Ext' (H,(G,Z), k*) = 0 since k* is divisible, so H(G,k*) — Hom(Hy(G,Z), k*) is

an isomorphism. Since « has order m, its image in Hom(H2(G,7Z), k™) lifts to a surjective
5



element of order m in Hom(Hy(G, Z), i) An inverse image & € H*(G, p,,) again has order
m. Let

127Z—-G—=G—=1

be a central extension corresponding to &, with Z = p,,.
Now choose a presentation of G by generators and relations

1-R—-F—G-—1.

By freeness, the identity map on G lifts to a map F' — G. This map sends R into Z, and
[F, F] into [G, G]. It has [F, R] in its kernel since fpi,,, is central. This gives us a map

Hy(G.Z) = (RN [F, F))/|F.R] — Z

which is the lift of a in Hom(Hy (G, Z), jt,,). This map is surjective, but it lands in ZN |G, G]
and hence Z C [G, G.

The formula for the idempotent e can be found in the statement and proof of Thévenaz
[11, Chapter 2, Proposition 10.5]. The linear character x sends each element z € Z to its
image under Z = p,, — k*. ([l

Let P be an abelian p-group, L an abelian p’-subgroup of Aut(P) and o € H*(L, k). Let
Z, G and x be as in the conclusion of Lemma 4.2 applied to G = P x L and with « regarded
as an element of H?(G, k™) via the pull back along G — G/P. Let H be the full inverse
image of L in G. Then G = P x H and e is a central idempotent of H.

We have a natural homomorphism

p: H— Hom(H, k™)

sending g to p(g): h — xl[g, h]. The kernel of this map is Z(H) and the image is Hom(H/Z(H), k*).
We denote by
p: H/Z(H) — Hom(H/Z, k™)
the induced isomorphism.
Now P/®(P) is naturally a faithful I, L-module. The extension of scalars k ®g, P/®(P)
gives a kL-module isomorphic to J(kP)/J*(kP). Let v be the character of kL on this

module, and write
v =P
i=1

where r is the rank of P/®(P) and the 1); are one dimensional kL-modules (there may be
repetitions). We choose an H-invariant complement W for J?(kP) in J(kP), and a basis w;
of W so that for g € H we have

(4.3) qw;g~ = ¥;(g)w;.
Since a p’-group of automorphisms of an abelian p-group preserves some decomposition into

homocyclic summands (see for example Chapter 5, Theorem 2.2 in Gorenstein [6]), we may
assume that

kP = k[wy, ..., w]/(w", . w?™)

T

with ny > -+ > n, and |P| = p™* " Thus we have relations

(4.4) w’' = 0.
6



Applying the results of Section 3, the irreducible characters 74 of H lying over x are in
one to one correspondence with the one dimensional characters ¢ of Z(H) lying over x. The
corresponding central idempotents are

(4.5)

hEZ

Choose one of these, say 7 = 74,, and choose a matrix representation Ty, : H — Mat,, (k)
affording 74,. Then for each ¢ choose a one dimensional representation &, of H whose
restriction to Z(H) is ¢¢,"' (and hence whose restriction to Z is trivial) and chosen so
that s, = 1. We assume that these £, have been chosen, one for each ¢, and we define
Ty: H — Mat,, (k) via T,(h) = £4(h).Ty,(h). Then T, is a matrix representation affording
Tg. S0 the map

kHe — Mat,,(k) x --- x Mat,,(k) (|Z(H) : Z]| copies)
he — (T (h), ..., Ty(h),...)
is an isomorphism. Elements of kHe of the form } f;l(h)ed,.h are sent to diagonal elements
(Tyo(R), ..., Ty, (h)), and therefore span a copy of Mat,, (k) in kHe containing e as its identity
element. Let us write 91 for this subalgebra of kHe.
Now for each 1; and each ¢, the character ¢.(1;|z(x)) is some ¢, which we denote ¢); for

convenience. So &Wié’;lw[ !is trivial on Z(H). Thus there exists an element g; , € H such
that

(4.6) P(gi0) = EouiEy 07 1,

where p(gi¢)(h) = x([gi,6, h]). We choose such elements g; ,, one for each 1; and ¢.
On the other hand, using (4.3) and (4.5), we have

> ot Hwih =" G(h )bi(h ) hw;
heZ(H) heZ(H)
and so
(4.7) Wiy = €, W
Lemma 4.8. For h € H we have
(91.0w:) (§o(h) " €g-h) = (&g, (h) ™ e, -h) (g 6w:)-
Thus g; gwiey = gy, Gi pW; commutes with IN.

Proof. Scalars commute with everything, and the ey, being in Z(kH), commute with all
h € H and all g; . By (4.3) we have hw; = 9;(h)w;z, and by (4.7) we have w;ey = ey, Ww;.
We are in kGe, and eg; yh = ex([gi.4, h]) "'hgi s. Putting these together gives

Eo(@) " (gigwi)(eg.h) = E5(h) ™ i (h) " x([gi.0, h) ™ (egu: 1) (gi.owi).

Finally, applying (4.6), the scalar on the right hand side is equal to &4y, (h)™".

For the final statement, we have

(gipwies) <Z§¢/ Jegr- >=(gi,¢wz’)(€¢1(h)€¢-h)

7



= (&5, (P)egy, -h) (gigw:)

= <Z f;,l(h)e¢/.h> (eqﬁwigi,qbwi)' N
¢/

Definition 4.9. Let 2( be the subalgebra of kHe generated by the elements ey and g; yw;eg.
Thus by the lemma, 2 and 9 commute.

We claim that 2( is a basic algebra of dimension |P|- |H : Z(H)|, and that multiplication
in kHe induces an isomorphism

AR M — kHe,
so that kHe = Mat,,(21). For this purpose, we shall use the following.

Lemma 4.10. Let A < B be k-algebras with A an Azumaya algebra (i.e., a finite dimensional
central separable k-algebra). Then the map A ®y Cp(A) — B is an isomorphism.

Proof. See for example Chapter 3, Corollary 4.3, in Bass [1]. O

Remark 4.11. Note that the hypotheses of the lemma include the assumption that the iden-
tity element of A is equal to the identity element of B.

We display 2 as kQ/I where @Q is a quiver and I < J?(kQ) is an ideal of relations. The
quiver @ has |Z(H) : Z| vertices labelled [¢] corresponding to the idempotents ey € kZ(H)
lying over x, and directed edges labelled with the w; corresponding to

9i,pWi€o = Cpu; Ji,pWi = C€¢yp; i, WiCo-
going from [¢] to [¢1);]. For brevity, we can illustrate these vertices and directed edges as
[¢] —— [¢w]-
Lemma 4.12. (i) For suitable elements z; ;, € Z(H), we have
9j.ppi Giso = Gispip; Jisd i
(ii) The following relations hold in A:
(Gi.gwiWi€sw,)(GigWies) = Gij.o(Giow; Wiess,; ) (9 0wies)
where ¢; ;o = ¢(2ij0) € K*.
(i) By changing the choices of g; s by elements of Z(H), we may ensure that z; j 5 € Z
and Gij.p = X(Zij0)-
Proof. (i) By (4.6), we have
()00 9i.6) = P(95.06.)P(i0)
= (Eppu; o, 07 ) Epui5 0T
= Egpin; €5 07 T
This is symmetric in 72 and 7, and so
P(Gi.0:9i0) = P(Giow; 95.0)-
Since the kernel of p is Z(H) it follows that for some element z; ;4 € Z(H) we have

9j.¢v: Gisp = Gi,ep; 95,6 Zij,¢-
8



(ii) This follows from the fact that we have z; j 4 e = ¢(2i)6)€0-

(iii) We apply Lemma 4.1 with A = Irr(H/Z(H)), B =Irr(H/Z), C =Irr(Z(H)/Z), the
map from B to C' the restriction map, D = H/Z, m the composition of the natural surjection
H/Z — H/Z(H) with p and u, = &ugy, o« € Iir(Z(H)/Z). Let fo3 € H/Z be as in the
conclusion of the lemma, and let fa75 € H be any lift of f, 3 to H. Denote also by v; the
restriction of ¥; to Z(H). So v 'uy, is an element of Irr(H/Z(H)). Choose an element
g; € H such that p(g;) = ¢; 'uy, and set

9it = 9if 00,

Then
P(gi,¢>> = wi_luwip(f¢i7¢¢gl)
~1 1, 1
=i Uy, U g g1 Uipipoy
=7y
and

i 962 = 93, st 9l pivo1 2
= 959if p; 605" F oo Z
= 93911y, duvisst Losgt
= 959if 45 0051 F o005 0
= 9395114, 005 Fou 0,051 2
= Gig; Gip - -

Lemma 4.13. For each i and each ¢ we have
(gi7¢¢f"i—1wi€¢¢f7li—1) e (gz‘,wg wz‘%aﬁf)(%@% Wiegy, ) (gip wiey) = 0.

Here, we have written down the only composable sequence of arrows in ) beginning with ey
with each arrow involving w;, and there are p™ terms in the product:

6] —— [p0h:] —— [$pF] —— - —— [pyr"].

Proof. Relations (4.3) and (4.7) allow us to push the w; terms past the other terms so that
they are directly multiplied together. Then we can use relation (4.4) to conclude that we
get zero. 0

Theorem 4.14. The relations on the quiver algebra kQ) given by

(97,60 Wj €00, ) (Gi g WiCs) = i j.o(Gi g, Wiy, ) (gj pWiey)
and
(G i1 Wiy ymi—1) -+ (Gi g2 Wieyy2 ) (Gigu; Wics,)(gip wiey) =0

as in Lemmas 4.12 and 4.13 are a complete set of relations among the arrows g; yw;eqs of @
to define the quotient 2. Thus A =2 kQ/I where I < J*(kQ) is the two-sided ideal generated

by these relations.
9



Proof. Using Lemmas 4.12 and 4.13, we have an obvious homomorphism from the algebra
kQ/I given by these generators and relations to 2(. Now kQ/I is a finite dimensional algebra
whose socle elements are products which involve p™ — 1 arrows of type i for each 7. Such an
element maps to something of the form (element of H)(w! ~'...wP" ~'eys) in A, and such

an element is non-zero in kG. U
Theorem 4.15. The multiplication in kGe induces an isomorphism A @ 9 — kGe.

Proof. Applying Lemma 4.10 with A = 9t and B the subalgebra generated by 21 and 9t, we
see that the given map is injective. The dimensions are given by dim() = |Z(H) : Z| - | P|,
dim(9M) = |H : Z(H)| and dim(kGe) = |G : Z|, so dim(kGe) = dim() - dim(9) and the

map is an isomorphism. O

Corollary 4.16. The algebra kGe is isomorphic to Mat,,(2). In particular, 2 is the basic
algebra of kGe, and is Morita equivalent to it. ([l
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