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Abstract
This paper presents a coherent probabilistic framework for taking

account of allelic dropout, stutter bands and silent alleles when in-
terpreting STR DNA profiles from a mixture sample using peak size
information arising from a PCR analysis. This information can be
exploited for evaluating the evidential strength for a hypothesis that
DNA from a particular person is present in the mixture. It extends
an earlier Bayesian network approach that ignored such artifacts. We
illustrate the use of the extended network on a published casework
example.
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1 Introduction

When interpreting the output from a PCR analysis of a DNA mixture, the
peak sizes obtained provide useful information regarding the relative amounts
of DNA in the mixture originating from the contributors. This information
can be exploited to make inferences regarding the genetic profiles of un-
known contributors to the mixture, or for evaluating the evidential strength
for a hypothesis that DNA from a particular person is present in the mixture.
However, a variety of complications may occur during the PCR amplification
process, collectively referred to in the forensic genetics literature as artifacts.
The presence of such artifacts makes it difficult to carry out these inference
tasks. In this paper we describe Bayesian networks for analysing complex
DNA mixtures which incorporate possible allelic dropout, stutter bands, and
silent alleles in a comprehensive and fully probabilistic analysis of such mix-
tures.

Gill et al. (2006) give recommendations on DNA mixture interpretation
including some general guidelines for handling artifacts such as dropout and
stutter bands. In a recent paper Gill et al. (2008) illustrate a method to
interpret complex DNA profiles where peak height information is used in the
preprocessing of PCR output to identify potential stutter bands and other
artifacts. In contrast, we present a probability model that handles these
artifacts simultaneously.

The plan of the paper is as follows. In the next section we briefly describe
the Bayesian network of Cowell et al. (2007a) for modelling peak area values
in the absence of artifacts. Then in § 3 we show how to extend this model
to handle silent alleles, dropout and stutter bands. In § 4 we analyze the
two mixtures taken from casework presented by Gill et al. (2008) using our
extended model. Concluding remarks and suggestions for future work are
given in § 5.

2 Gamma model

In this section we present an overview of the basic model for peak areas. For
a detailed exposition of this model and the implementation as a Probabilistic
Expert System (PES) (Cowell et al. 1999) we refer the reader to Cowell et
al. (2006, 2007a, 2007b).

The gamma model of Cowell et al. (2007a) considers I potential contrib-
utors to a DNA mixture. Let there be M markers to be used in the analysis
of the mixture with marker m having Am allelic types, m = 1, . . . ,M . Let θi
denote the proportion of DNA from individual i prior to PCR amplification,
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with θ = (θ1, θ2, . . . , θI) denoting the vector of proportions from all contribu-
tors. Thus

∑I
i=1 θi = 1. It is assumed that this pre-amplification proportion

of DNA is constant across markers.
For a specific marker m, the model is describing the peak weight W+a at

allele a which here is the peak height ha multiplied by a. We have earlier
used the peak area instead of peak height, but this makes little practical
difference. The model makes the following further assumptions:

• W+a is approximately proportional to the amount of DNA of type a
after PCR amplification.

• If Wia denotes the contribution of individual i to peak weight at allele
a, then W+a =

∑
iWia.

• Each contribution Wia from individual i to peak weight at allele a has
a gamma distribution, Wia ∼ Γ(ργinia, η), where:

– γi = γθi is the amount of DNA from individual i in the mixture,
γ being the total amount of DNA;

– nia is the number of alleles of type a carried by individual i;

– η determines scale and ρ is the amplification factor. Both may be
marker dependent.

It follows from properties of the gamma distribution assumption that

W+a =
∑
i

Wia ∼ Γ

(
ρ
∑
i

γinia, η

)
and since

∑
a

∑
i θinia = 2, that

W++ =
∑
a

W+a =
∑
a

∑
i

Wia ∼ Γ(2ργ, η).

By scaling the weight of each allele by the total marker weight we obtain
relative weights Ra:

Ra = W+a/W++ ∼ Dir(ρBa).

Here Ba =
∑

i γinia is the weighted allele number, and B+ = 2γ is twice
the total amount of DNA γ and is marker independent. It follows that,
observed values ra of Ra give a contribution to the likelihood of

L(µ|W ) ∝
∏
a

r
µa(1/σ2−1)
a

Γ{µa(1/σ2 − 1)} (1)
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where µa = Ba/B+ =
∑

i θinia/2 and σ2 = 2ργ, where we call σ2 the variance
factor.

Figure 1 illustrates the structure of the basic Bayesian network in the
case of two contributors to a mixture in which three peaks are observed on
a single marker.

p2gtp1gt

n2cn1cn1b n2bn1a n2a

µa = (θ1n1a + θ2n2a)/2 µb = (θ1n1b + θ2n2b)/2 µc = (θ1n1c + θ2n2c)/2

Wc∼Γ(ρµc,η)
wc = c×hc

Wb∼Γ(ρµb,η)
wb = b×hb

Wa∼Γ(ρµa,η)
wa = a×ha

θ = (θ1, θ2)

Figure 1: A single marker network for the generation of peak areas from a
mixture of DNA from two people having genotypes p1gt and p2gt, with three
observed alleles a, b and c.

Recently, Cowell (2009) has carried out an analysis of the validity of the
gamma model by comparing with simulations of mixtures using a stochas-
tic procedure presented by Gill et al. (2005). He found that the gamma
model gives a good description of the distribution of peak area values arising
from the PCR process in amplifying moderate to large quantities of (simu-
lated) DNA, but becomes inadequate in the low-copy-template regime where
dropout becomes a significant factor.

3 Artifacts

Here we extend the Bayesian network based on the gamma model to deal with
the possible artifacts of dropout, silent alleles, and stutter. These artifacts
are all handled simultaneously in our PES. An important feature of using the
PES is that it provides posterior probabilities for the presence, absence, or
degree, of the occurrence of such features: it does not have to be assumed at
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the outset of the analysis that such features are definitely present or definitely
not present. For ease of exposition, we will explain how these artifacts may
be incorporated in the PES one at a time as network fragments.

3.1 Dropout

In amplifying a sample of DNA in the PCR apparatus, one of the first steps
is to extract the nuclear DNA from the cells using enzymes, and then to
transfer a sample of the extract (aliquot) to the PCR apparatus. A major
source of dropout, which is particularly acute in the low-template scenario,
is the failure of some alleles to get selected for input into the PCR apparatus.
The differential selection of alleles is also a factor in the stochastic variability
of peak size values. Before presenting our dropout model, we summarize how
dropout arises in the simulation model of Gill et al. (2005).

The selection of DNA material for the PCR apparatus proceeds in two
stages. First, an enzyme is added to the DNA sample to break up the
nuclei of the cells. Then some of the aliquot is taken to be put into the
PCR apparatus. Both allele sampling processes are stochastic and may be
modelled mathematically by binomial sampling. Thus suppose initially there
are n0 alleles of type a in the nuclei of the cells. Let πe be the probability
that a particular allele is extracted into the solution. Further, let πa denote
the probability that a particular allele in the aliquot is put into the PCR
apparatus. Then, with alleles selected independently, the total number N of
alleles of type a in the apparatus is binomially distributed as

N ∼ Bin(n0, πeπa).

The allele will not be selected and hence drop out when N = 0, which hap-
pens with probability P (N = 0) = (1− πeπa)n0 . Gill et al. (2005) estimated
πe = 0.6 and πa = 20/66 for their laboratory procedures, giving πeπa = 0.182,
and hence a dropout of 0.818n0 ≈ exp(−0.2n0).

Our model for pre-PCR dropout assumes for each marker that all the
copies of the maternal allele from a person present in the aliquot are either
all selected or all not selected for amplification, and similarly for the pater-
nal allele. This all-or-nothing selection of the maternal contribution of an
individual of a given marker is assumed to be independent of the selection or
otherwise of the individual’s paternal contribution from the marker, and of
the selection or otherwise of any of the individual’s other marker alleles; more
precisely, this independence is conditional on the total amount of DNA from
the individual in the mixture. Our model can thus be viewed as a crude ap-
proximation to the Gill et al. (2005) model, which models the partial selection
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of alleles in the aliquot. The remaining variation in the number of amplified
alleles is modelled by the gamma distribution of peak heights. Note, how-
ever, the difference that we are modelling allelic selection at an individual
contributor level, whereas in the Gill et al. (2005) model the selection is from
the combined contributions from all of the mixture contributors.

To model this allelic dropout in our network, we introduce nodes nampia

with values in {0, 1, 2}. The various values may occur in the following man-
ner. A value of nampia = 0 arises in two ways: (i) neither the maternal nor
paternal allele is of type a; (ii) one or both of the maternal and paternal
allele is of type a but is not selected for amplification. A value of nampia = 1
indicates that alleles of type a from person i are selected for amplification.
This can happen in two ways: (i) either the person is heterozygotic with one
allele of type a, in which case all of the a allele contribution is amplified; (ii)
the person is homozygote (a, a), in which case only half is amplified. In the
latter case, total dropout does not occur, but the peak height associated with
the a allele is lower than would be expected given the person’s genotype and
his/her relative contribution of DNA to the mixture. A value of nampia = 2
arises if both the maternal and paternal alleles are of type a and they are all
selected for amplification.

The network fragment modelling our dropout process is illustrated in
Figure 2, which for simplicity of display assumes that only two allelic types,
a and b, are seen. The nodes nia and nib are the same as occur in Figure 1,
and count up the number of (maternal or paternal) alleles of type a and b for
person i. Each nia takes values in {0, 1, 2}, with the conditional probability
table P (nia | pigt) having entries 0 or 1. Our dropout nodes nampia depend
on the nia and the amount of DNA. Now as shown above, from Gill et al.
(2005) the sampling dropout probability has the form exp(−0.2n0) in which
n0 is proportional to the amount of DNA. This exponential dependence on
amount is used in our conditional probability table P (nampia |nia, θi) shown in
Table 1, which introduces a new parameter λ. Note the binomial distribution
in the final column, modelling the independent dropout of the maternal and
paternal alleles for profiles homozygote in allele a.

Since
∑

a nia = 2 for every contributor, this implies that
∑

i

∑
a θinia = 2.

This value of 2 was used as a common fixed normalization to the means of
the relative weight in our earlier model, illustrated in Figure 1, but is not
appropriate when taking dropout into account. Instead, with the potential
for dropout, we have that ntot =

∑
i

∑
a θin

amp
ia ≤ 2. The node ntot in Figure 2

stores this sum, conditional on the value of θ and the nia nodes, and is used
for normalization of nodes µa at the bottom of the figure as
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θ = (θ1, θ2) n2bn2a

n1bn1a

p2gtp1gt

namp
2bnamp

2anamp
1b

namp
1a

ntot

µbµa

Figure 2: Illustration of how nodes relate in the dropout network fragment
for a marker with two observed alleles, a and b, in a two person mixture.

Table 1: The conditional probability table P (nampia |nia, θi) quantifying
dropout with δi = exp(−λγθi).

nia
nampia 0 1 2
0 1 δi δ2

i

1 0 1− δi 2(1− δi)δi
2 0 0 (1− δi)2
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µa =

∑
i θin

amp
ia∑

i

∑
a θin

amp
ia

=

∑
i θin

amp
ia

ntot

where we define 0/0 ≡ 0. The likelihood factors (1) are then applied to
the modified mean values.

There is a second source of dropout, in which some alleles are sampled
but their amplified number is below the threshold detection level to register
a distinct peak on the PCR output. Our extended Bayesian network does
not model this source of dropout.

3.2 Silent alleles

A null or silent allele is one that is not recorded by the equipment used.
When this can happen, what appears to be a homozygous genotype at some
marker may not be so: an alternative explanation is that we are seeing
just one band of a heterozygous genotype, the other band being missed.
This phenomenon will clearly affect the evidential interpretation of certain
patterns of DNA mixture profiles. Several papers in the literature have dealt
with genetic aspects of this, see for example Gill et al. (2000). A possible
explanation for a silent or null allele is sporadic failure of the apparatus to
record the correct allele value or primer binding site mutations. Accounting
for the possibility that a silent allele is present can easily be accommodated
by including an additional allele in each marker which never gets amplified,
corresponding to dropout with a probability of 100%. This in turn potentially
affects the normalization ntot =

∑
i

∑
a θin

amp
ia ≤ 2 of the mean nodes as in

the case of dropout and can be handled in exactly the same way.

3.3 Stutter

Following Gill et al. (1998) and Walsh et al. (1996), stutter bands are under-
stood to be allelic in origin and arise from slippage of the Taq polymerase
enzyme. Only a single stutter band is typically observed and is four bases
shorter than the associated “true” peak allele band, i.e., stutters are one re-
peat unit (allele value) less than the associated peak. In amplifying normal
amounts of DNA, stutter tends to be less than 15% of the size of the asso-
ciated allelic peak (Gill et al. 2006), but if the amount of DNA is small, as
in Low Template Analysis, this figure can be larger, and in very rare cases a
stutter peak can be greater than the peak of the allele from which it arose.

In DNA mixtures a stutter peak could be indistinguishable from the minor
contributor’s allele peak or could be masked by a “true” allele peak thus
leading to a higher allele peak size.
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The proportion of stutter band increases with the length of the allele
so that the longer allele in heterozygous sample has a higher percentage of
stutter than the shorter allele (Butler 2005). For simplicity, we consider
the prior distribution of stutter percentage to be constant across alleles and
markers.

µa+1µaµa−1 sa+1sasa−1

µ∗a+1µ∗aµ∗a−1

Figure 3: Network fragment for modelling stutter. The mean µa is affected by
stuttering in two ways: (i) a reduction due to part of type a alleles amplifying
to type a− 1; (ii) an increase due to part of type a+ 1 alleles amplifying to
type a.

Figure 3 shows a fragment of the Bayesian network that represents our
stutter model. The layer of mean nodes µa at the top are augmented by
stutter nodes sa. The stutter node sa gives the proportion that is lost by
stuttering of allele a and contributes to the peak for the allele one repeat
value lower, increasing the mean µa−1.

Without stutter, the mean value at allele a is µa. With stutter, then two
things can happen: (i) part of the DNA of allele type a is amplified as stutter,
so this decreases the effective mean of the measured peak weight associated
with a and increases that associated with a− 1; (ii) the allele a+ 1 can also
stutter and increase the mean associated with a. Thus the effective mean µ∗a
depends on the stutter losses sa and sa+1 and the values of µa, µa+1 as

µ∗a = (1− sa)µa + sa+1µa+1.

Having found the µ∗a values, the likelihood factors in (1) should now refer
to µ∗ rather than µ.

4 Application to a case

We shall apply our model to the challenging example presented by Gill et al.
(2008), who describe the case background as follows.

“An incident had occurred in a public house where the deceased had spent
the evening with some friends. There was an altercation in the car park
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between the deceased (K1) and several others resulting in the death of the
victim. The alleged offenders then left the scene and went to another public
house where they were seen to go into the lavatory to clean themselves.”

The defendant, K3, and a known individual, K2, alleged to be present at
the time of the offence, were typed and their profiles together with that of
the victim K1 are shown in Table 2: all were males.

Table 2: Profiles of the victim K1, another known individual K2, and the
defendant K3 for the ten markers.

K1 K2 K3

D2 23 24 24 24 16 17
D3 15 18 17 17 17 19
D8 13 16 13 14 10 11
D16 12 12 11 12 11 13
D18 14 16 14 14 12 16
D19 13 14 15 16.2 14 15
D21 30 31 29 30 28 30
FGA 24 26 21 22 20 23
TH0 7 8 9 9 9.3 9.3
VWA 14 18 16 16 15 19

Two blood stains, called MC18 and MC15 were found at the public
house lavatory and were typed using the SGM plus system. The results of
the typing are show in Table 3 and Table 4. Both blood stains indicated that
they were DNA mixtures of at least three individuals.

In the following we focus attention on the case where the specific hypoth-
esis Hp entertained by the prosecution is that the contributors to the mixture
are exactly the individuals K1, K2 and K3. The defence hypothesis Hd might
be that the stains originate from three unknown individuals U1, U2, and U3

but there are several other possibilities. We also discuss the question whether
or not the defendant K3 has contributed to the traces, but prior distributions
for various scenarios must be specified for this to be answered.

Under the prosecution hypothesis Hp, ten of the allele peaks in Table 3
would need to be interpreted as stutter alleles, for example allele 22 in marker
D2, as none of the three individuals possess this allele. Also, if there are
at most three contributors there must be stutter peaks in markers D8 and
FGA, as seven alleles are observed. Similarly, for mixture MC15 in Table 4
seven of the peaks would have to be stutter peaks. In addition the following
alleles, assumed to belong to K2, would have to have dropped out: 16.2(D19),
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22(FGA) and 9(TH0). There are also other alleles in MC18 that are not
present in MC15.

Table 3: Blood stain MC18, showing alleles a, and peak heights ha for ten
markers.

a ha a ha a ha a ha a ha
D2 D8 D18 D21 TH0

16 189 10 241 12 187 28 304 7 670
17 171 11 192 13 87 29 134 8 636
22 55 12 127 14 997 30 1146 9 99
23 638 13 1092 15 80 31 734 9.3 348
24 673 14 127 16 744 FGA

D3 15 58 20 99 VWA
14 50 16 808 D19 21 49 14 876
15 715 12 57 22 76 15 249
16 67 D16 13 775 23 145 16 274
17 479 11 534 14 818 24 412 17 97
18 638 12 1786 15 159 25 39 18 967
19 136 13 265 16.2 76 26 349 19 251

We shall analyse these stains in turn, both individually beginning with
MC18, and in combination. In all the analyses we use the following pa-
rameters. The vector of contributor fractions θ = (θ1, θ2, θ3) is uniform
on the set of positive coordinates which add to 1, discretized with inter-
vals of size 0.1. To get parameters for the dropout probabilities we argue
as follows. For n0 = 20 molecules the estimates in Gill et al. (2005) give
a probability that none are selected of (1 − 0.182)20 = 0.0179. We then let
λγ ≈ − loge(0.0179) ≈ 4. The frequency of a silent allele has been set to 0.005
in all markers. The stutter nodes are crudely modelled with three states: (No
stutter, 5%, 10%) having prior probability distribution (0.98, 0.01, 0.01). We
used σ2 = 0.03 for the variance factor, and the allele frequencies are based on
the Caucasian population in Appendix II of Butler (2005). For each single
mixture and the combined mixture analyses, we considered the eight differ-
ent possible scenarios involving exactly three contributors. For each of these,
the ratio of the likelihood of the prosecution hypothesis Hp to that of the
scenario was evaluated.
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Table 4: Blood stain MC15, showing alleles a, and peak heights ha for ten
markers.

a ha a ha a ha a ha a ha
D2 D8 D18 D21 TH0

16 64 10 152 12 99 28 120 7 727
17 96 11 140 13 61 29 89 8 625
23 507 12 76 14 707 30 1010 9.3 165
24 534 13 929 15 107 31 783

14 58 16 930
15 84 VWA

D3 16 901 FGA 14 1036
14 79 D19 20 90 15 98
15 993 D16 12 53 21 52 16 163
17 286 11 256 13 546 23 103 17 79
18 689 12 1724 14 655 24 556 18 746
19 135 13 109 15 98 26 392 19 85

4.1 Evidential analysis of MC18

This would appear to be the simplest of the two blood samples to analyse
since, although stutter peaks must be present under Hp, there is no overt
dropout. However, in our analyses we assumed the potential presence of all
three artifacts in our PES model: stutter, dropout and silent alleles. The
second column of Table 5 shows the likelihood ratio of the prosecution hy-
pothesis Hp to the other seven alternative scenarios involving exactly three
people. From this table we see that the most likely scenarios, by a wide
margin, are those that assume both the victim K1 and the defendant K3

contributed to the mixture whereas it is less definite whether K2 has con-
tributed to the mixture. Assuming the defence hypothesis involves K3 not
contributing to the mixture, the most favourable scenario for the defence is
that the mixture consists of contributions from K1 and two unknown per-
sons. The likelihood ratio in favour of the prosecution hypothesis Hp when
compared to this scenario is equal to 3.74× 108. Alternatively, if we assume
a uniform prior over the scenarios so that it is assumed every contributor
is independently either in or out of the mixture with equal probability, the
posterior probability that K3 is not in the mixture is found to be 1.89×10−9,
rendering it extremely unlikely that K3 did not contribute to the trace.
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4.2 Evidential analysis of MC15

This would appear to be the more challenging of the two stains as both
dropout and stutter must be involved under Hp. We analysed this mixture
for the same scenarios as the MC18 mixture. The likelihood ratio in favour of
the prosecution hypothesis against each of the seven alternative scenarios are
shown in column three of Table 5. The most likely scenarios by a wide margin
are those that assume both the victim K1 and the defendant K3 contributed
to the mixture, the same conclusion as reached for MC18. The overall most
likely scenario is that the mixture consists of contributions from the victim
K1, suspect K3, and an unknown person. We note that this scenario is about
twice as likely as the original prosecution hypothesis Hp. The likelihood ratio
of the prosecution hypothesis to the least favourable defence scenario K1U1U2

is 1.14×105. Using again a uniform prior over the hypotheses as in § 4.1, the
posterior probability that K3 is not in the mixture is 1.24 × 10−8, yielding
strong evidence against the defendant.

4.3 Combined evidential analysis of MC15 and MC18

Cowell et al. (2008) showed that combining peak information from two mix-
tures having some contributors in common can strongly enhance the mixture
analysis. Here we apply this idea to a combined evidential analysis of the
two mixtures MC15 and MC18. Figure 4 illustrates the combined analysis
of a pair of three-person mixtures. Each mixture has its own vector, θ and
φ, of pre-amplification proportion of DNA from the three contributors. We
have initially based the analysis on the assumption that the two traces have
the same three contributors. The corresponding likelihood ratios in favour
of the prosecution hypothesis versus the other seven scenarios are displayed
in the final column of Table 5. Assuming once more a uniform prior over the
hypotheses, the posterior probability that K3 has not contributed to both
mixtures is 1.88× 10−10, a smaller posterior probability that obtained from
each mixture analysed separately.

Notice however that the likelihood ratio for Hp compared to the most
favourable defence scenario K1U1U2 is now 1.40× 103 which is a lot smaller
than when each mixture was analysed separately. This weakening of the
evidence in favour of Hp when combining the traces reflects that it is highly
unlikely that K2 has contributed to both traces, contrary to the prosecution
claim. Indeed the likelihood ratio in favour of the scenario that K1, K3

and an unknown individual were the contributors against Hp, is 1/2.62 ×
10−7 = 3.82 × 106, yielding the prosecution hypothesis Hp quite unlikely. If
K1K3U1 were the prosecution hypothesis, the combined analysis would lead
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to a strengthening of the evidence when compared to individual mixture
analyses and yield a likelihood ratio of 5.34 × 109 for K1K3U1 compared to
the most favourable defence scenario K1U1U2. Indeed, the combined analysis
clearly identifies K1K3U1 as the likely scenario.

p1 gt p2 gt p3 gt

MC18MC15

θ = (θ1, θ2, θ3) φ = (φ1, φ2, φ3)

Figure 4: Schematic modelling of a pair of three-person mixture samples that
simultaneously share DNA from the same three contributors, but in possibly
different proportions θ and φ.

It is worth emphasizing that our simultaneous analysis of a pair of mix-
tures does not require that an allele present in one mixture is also present
in the other, even though we assume that the contributors to the two traces
are the same. This is in contrast to the interpretation of duplicated STR
analyses of low copy number (LCN) STR samples using the conventional
consensus approach (Gill et al. 2000).

4.4 Other scenarios

In the combined analyses of the previous section, we assumed that each
mixture had the same three contributors. This is not an essential requirement
of our PES, we merely imposed this to limit the number of scenarios under
consideration to a manageable number. Table 6 shows some further combined
analyses, in which the contributors to the mixtures were not all assumed to
be identical.

The likelihoods for some of these combined mixture analyses may be
found from the likelihoods of individual mixture analyses by exploiting con-
ditional independence properties of the networks. This applies for example
to the first combination of Table 6, because the peak areas in the two mix-
tures are independent given K1 and K3, and both K1 and K3 are known.
Similarly, the likelihood for the second combined analysis can be found from
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Table 5: Likelihood ratios of the prosecution hypothesis Hp that K1, K2 and
K3 are the mixture contributors, against alternative scenarios Ha involving
contributions from exactly three persons. The ratios are given both for the
two single-mixture analyses, and for the simultaneous analysis. The Ui (i =
1, 2, 3) refer to contributors whose profiles are not known.

Ha MC18 MC15 MC15 and MC18
K1K2K3 1 1 1
K1K2U1 6.07× 109 4.88× 109 7.29× 108

K1K3U1 2.00 1.41× 10−3 2.62× 10−7

K2K3U1 6.59× 1013 8.79× 1013 9.08× 1013

K1U1U2 3.74× 108 1.14× 105 1.40× 103

K2U1U2 1.43× 1023 1.94× 1023 3.28× 1022

K3U1U2 6.84× 1013 6.22× 1010 1.19× 107

U1U2U3 4.90× 1021 3.06× 1018 4.19× 1016

Table 6: Likelihood ratios of the prosecution hypothesis Hp that K1, K2 and
K3 are the mixture contributors, against selected alternative scenarios Ha

that do not have the same contributors to the two traces. The ratios are
based on simultaneous analyses of both traces. The Ui (i = 1, . . . , 6) refer to
contributors whose profiles are not known.

MC18 MC15 Hp : Ha

K1K3U2 K1K3U1 2.86× 10−3

K1K2K3 K1K3U1 1.42× 10−3

U1U2U4 U1U2U3 3.93× 1021

U1U2U3 U4U5U6 1.51× 1040
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the individual mixture analyses, because the mixtures are independent given
the profiles of the three known persons. The final combination is really two
independent mixture analyses, and may be obtained from multiplying the
values in columns 2 and 3 of the final row of Table 5. (Compare this to
non-independent analysis value in the last row, column 4, of Table 5.) Only
for the third combination in Table 6, having a partial overlap of two common
unknown contributors to each mixture, is it not possible to find the likelihood
from the likelihoods of the single mixture analyses.

We also note that the only likely scenarios are those involving the de-
fendant K3 as a contributor to both mixtures. The two first combinations
in Table 6 are both more likely than Hp whereas the most likely scenario,
as seen from Table 5, still is that K1, K3, and an unknown individual has
contributed to both traces, the likelihood ratio in favour being 1.09 × 104

compared to the most likely in Table 6 with the two unknown contributors
being different.

4.5 Identification of artifacts

Recall that our PES does not impose at the outset that a particular peak
is or is not a stutter peak, or that a particular allele has dropped out, or
that a silent allele is present. Instead, it is possible to query the PES, after
entering the peak area information and profile information on known persons,
by examining the posterior marginal distributions of the variables making up
the network. It thus becomes possible to gauge the occurrence or otherwise
of the various artifacts. We illustrate this by some examples.

If we assume that mixture MC18 is made of DNA from the three known
persons, then on comparing the profiles in Table 2 to the peaks of mixture
MC18 in Table 3, we see that ten of the peaks have to be stutter peaks.
These are 22 (D2); 14,16(D3); 12,15 (D8); 13,15 (D18); 12 (D19); 25 (FGA);
and 17 (VWA). These peaks would arise from the allele one repeat number
higher stuttering. Table 7 shows the posterior distribution over a selection of
these the associated stutter nodes. Note the zero probability on 0% stutter
for the alleles that must stutter under the hypothesis Hp. In contrast allele
29 of marker D21 does not have to be explained as a stutter peak under Hp,
because K2 has genotype (29, 30). However the peak height of allele 30 is
about 8.5 times that of allele 29, so it could be suspected of giving rise to
29 as a stutter peak. Table 7 also shows the posterior probability for allele
23 (D2) to have stuttered in either mixture from a simultaneous analysis of
both traces. In the mixture MC15, the posterior probability of allele 23 not
stuttering is 1, which is consistent because there is no allele 22 (D2) peak in
MC15.
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Table 7: Posterior probabilities for alleles to have stuttered, for a small selec-
tion of alleles for the single trace analysis of MC18, and for the simultaneous
analysis of both traces, assuming in each case that the DNA in the mixtures
originates from the three known persons K1,K2 and K3.

Only MC18
Stutter amount

Allele (Marker) 0% 5% 10%
23(D2) 0 0.400 0.600
15(D3) 0 0.431 0.569
17(D3) 0 0.356 0.645

13(D19) 0 0.428 0.572
26(FGA) 0 0.367 0.633
18(VWA) 0 0.382 0.618

30(D21) 0.969 0.014 0.017
Simultaneous analysis

MC18 23(D2) 0 0.400 0.600
MC15 23(D2) 1 0 0

In the single mixture analysis of MC18, the posterior probability on the
proportion θ showed that K2 contributed the least amount of DNA, around
15% of the trace. This could make K2 more susceptible as a source of dropout
than the other contributors, although there is no overt allelic dropout in the
mixture if the three known persons contributed to the mixture. Examining
the posterior probabilities for marker D16 shown in Table 8 indicates that
covert dropout most probably occurred. It shows that for individual K1 both
maternal and paternal alleles were amplified with probability 0.844, but there
is approximately a 16% chance that one of two alleles dropped out. Similarly
for K3 it is most likely that both alleles were amplified. However, for K2

there is a posterior probability of 0.342 that his allele 12 was not amplified:
indeed from the table the probability is only 0.316 that both of K2’s alleles
were amplified, and thus a probability of 0.684 that one or both of the alleles
dropped out. Most of the other markers show similar covert dropout for K2,
and to a lesser extent for K1 and K3. For example for the marker TH0,
the posterior probability that one of K2’s 9 alleles dropped out is 0.91, with
a probability of 0.09 that neither dropped out. In contrast, the posterior
probability that one of K1’s alleles dropped out is less than 10−7.

Similar results regarding stutter and dropout were obtained for the mix-
ture MC15, on the assumption that K1, K2 and K3 were the contributors,
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with the additional result that overt allelic dropouts are picked out with
posterior probabilities of unity. In a joint mixture analysis, a probability
of 0.486 was found that one of K2’s 24 (D2) alleles was not amplified from
mixture MC15, and 0.380 that both were not amplified. For mixture MC18
the corresponding probabilities are 0.516 and 0.313.

Table 8: Posterior probabilities of genotypic contribution to the amplifica-
tion of mixture MC18 for marker D16, assuming K1, K2 and K3 are the
contributors. D indicates an allele (paternal or maternal) that has dropped
out.

K1 K2 K3

12, 12 0.844 11, D 0.342 11, 13 0.832
12, D 0.156 11, 12 0.316 13, D 0.168
D,D 3.6×10−7 D,D 0.207

12, D 0.136

These few examples are illustrative of the information about artifacts that
may be obtained from examining the posterior probabilities on nodes in the
network.

4.6 A separation analysis

Our analysis of § 4.4 suggests it is much more likely that both mixtures
consist of contributions from K1, K3 and an unknown individual U . Under
this hypothesis, in contrast to Hp, it is no longer definite that the MC18 peak
of allele 22 (D2) arises as a stutter peak from allele 23; it could be that the
unknown person has one or both alleles. Using methods described in Cowell
et al. (2007b), it is possible to use the same network for the separation of
DNA profiles, and so give an estimate of the most likely DNA profile of
the third contributor conditional on the peak height values and the DNA
profiles of K1 and K3. Such a simultaneous analysis of both mixtures yields
the following posterior probability distribution that allele 23 (D2) in MC18
stutters: 0.565 (at None), 0.176 (at 5%), and 0.259 (at 10%). This should be
contrasted with the values in Table 7 for Hp. The interpretation is that it is
more probable that allele 22 is in the genotype of the unknown individual,
rather than arising as a stutter peak.

Tables 9 and 10 show the predictions for U ’s genotype across all mark-
ers from separation analyses of the two mixtures individually, and Table 11
shows the predictions of a simultaneous separation analysis of both mixtures.
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In all analyses the unknown individual is predicted, with a posterior prob-
ability of more than 0.97, to be the minor contributor, contributing 10% of
the total DNA to the each mixture. For K1 the predicted contribution is
70%, and for K3 the predicted contribution is 20%, in both mixtures.

We consider first the individual mixture analyses. In column 2 of Tables 9
and 10 the most probable selections of alleles (gtamp) from the genotype (gt)
of the unknown person that are amplified from each mixture, and in column
3 its marginal posterior probability. An allelic dropout is denoted by D. Note
that the gtamp value of person pi is logically determined by the set of values
of his/her nampia nodes in Figure 2; indeed for each person a node gtampi could
be added to Figure 2, with gtampi a common child of the nampia nodes of person
pi.

The mixture MC15 appears to have significant dropout from the un-
known person, with complete dropout on markers D2, D16 and TH0, and
partial dropout on markers D3, D19, D21 and FGA. Less dropout is indi-
cated for MC18, with only the marker D16 suggesting as most probable the
total dropout of both maternal and paternal alleles. Such a high level of
dropout in each mixture is consistent with the low amount of DNA that
the unknown contributor to each mixture is predicted to have contributed.
There is agreement on some markers on the most probable genotype of the
unknown person (column 4 of both tables), but also some disagreements.
Only for marker VWA do both analyses predict the same genotype (16, 17)
with high probability.

The prediction of a (17, x) genotype on marker D2 for MC15 may appear
puzzling, given that it is most probable that both alleles dropped out. Note
though that the associated probability of 0.191 is quite low. (Here the x
designation in the predicted genotype for marker D2 indicates an allele of
unspecified type other than of any peaks appearing in the mixture.) The
explanation is found by looking beyond the most probable values of gtamp

and gt; Table 12 shows the six most probable values of these quantities for
marker D2. We see that the second most probable genotype is (x, x) with
a probability only slightly less than for (17, x). It is also worth remarking
that allele 17 has the highest population frequency of 0.182. A similar story
applies to marker D16 in both mixtures, in which it is most probable that
neither of the alleles is amplified in either mixture. Nevertheless, the (11, 12)
genotype is predicted by both mixtures separately. The allele frequencies
of 11 and 12 are 0.321 and 0.326 respectively, the two highest amongst the
alleles of D16.

We now turn to the simultaneous mixture analysis. For both mixtures
the predicted proportion of DNA contributed by the unknown person is 10%,
with probabilities 0.99 (MC15) and 0.98 (MC18). We see that the pattern
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Table 9: Separation analysis of mixture MC15, to predict the most probable
profile of the unknown contributor U , assuming that the mixture is made up
of DNA from K1, K3 and U . For each marker, the second column (gtamp)
shows the most likely combination of maternal and paternal alleles that were
amplified, with an allelic dropout denoted by D. The posterior probability
for the amplified genotype is shown in the third column. The fourth and fifth
columns show the most probable genotype (gt) and its posterior probability.

Alleles amplified from U Predicted profile of U
Marker gtamp Posterior gt Posterior

D2 D,D 0.580 17, x 0.191
D3 14, D 0.600 14, 15 0.248
D8 12, 14 0.412 12, 14 0.426
D16 D,D 0.457 11, 12 0.236
D18 13, 15 0.636 13, 15 0.673
D19 12, D 0.551 12, 14 0.322
D21 29, D 0.681 29, 30 0.301
FGA 21, D 0.782 21, 24 0.174
TH0 D,D 0.592 7, 9.3 0.178
VWA 16, 17 0.879 16, 17 0.902

Table 10: Separation analysis of mixture MC18, to predict the most probable
profile of the unknown contributor U , assuming that the mixture is made up
of DNA from K1, K3 and U . The format of the table is the same as Table 9.

Alleles amplified from U Predicted profile of U
Marker gtamp Posterior gt Posterior

D2 22, D 0.515 22, x 0.268
D3 14, 16 0.550 14, 16 0.581
D8 12, 14 0.621 12, 14 0.636
D16 D,D 0.421 11, 12 0.252
D18 13, 15 0.651 13, 15 0.689
D19 12, 16.2 0.601 12, 16.2 0.624
D21 29, D 0.704 29, 30 0.309
FGA 21, 22 0.873 21, 22 0.880
TH0 9, D 0.701 9, 9.3 0.462
VWA 16, 17 0.882 16, 17 0.906
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Table 11: Separation profile analyses for the unknown contributor, from a
simultaneous analysis of the two traces. The table shows the most probable
combination of alleles (gtamp) from the genotype amplified, together with the
associated probability. An allele not amplified is denoted by D. Also shown
is the predicted genotype (gt) and its posterior probability. See main text
for more details.

Marker MC15 MC18 Predicted profile
gtamp Posterior gtamp Posterior gt Posterior

D2 D,D 0.634 22, D 0.432 22, x 0.170
D3 14, D 0.919 14, 16 0.854 14, 16 0.903
D8 12, 14 0.610 12, 14 0.615 12, 14 0.630
D16 D,D 0.432 D,D 0.397 11, 12 0.269
D18 13, 15 0.928 13, 15 0.926 13, 15 0.981
D19 12, D 0.941 12, 16.2 0.937 12, 16.2 0.973
D21 29, D 0.719 29, D 0.729 29, 30 0.318
FGA 21, D 0.992 21, 22 0.922 21, 22 0.929
TH0 D,D 0.748 9, D 0.683 9, 9.3 0.503
VWA 16, 17 0.970 16, 17 0.969 16, 17 0.995

Table 12: The six most probable combinations of alleles amplified (gtamp),
and the six most probable genotypes (gt), for the unknown contributor on
marker D2 obtained from an analysis of MC15.

gtamp Posterior gt Posterior
D,D 0.580 17, x 0.191
17, D 0.143 x, x 0.169
24, D 0.097 24, x 0.129
23, D 0.079 23, x 0.116
16, D 0.049 17, 24 0.072
17, 24 0.011 17, 23 0.065
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of most probable allelic selection or dropout exhibited in Table 11 is the
same on each marker as for the individual mixture analyses in Table 9 and
Table 10. However the posterior probabilities are markedly higher across all
markers when compared against the individual mixture analyses. In addi-
tion, for five of the markers D3, D18, D19, FGA and VWA, the probabilities
for the genotype prediction are greater than 0.9. The genotypes on the re-
maining markers, for which dropout is quite likely, have lower probabilities.
However, some useful partial information is still available from the marginal
distribution over the genotype (not tabulated here). For D2, the posterior
probability that one of the alleles is a 22 is 0.586. For D16, allele 11 has a
probability of 0.754 of being in the genotype; for D21, allele 29 has a proba-
bility of 0.998; and for TH0, allele 9 has a probability of almost 1 of being in
the genotype. For marker D8, for which the most probable genotype (12, 14)
has a probability of 0.630, the second most probable genotype is (14, 15) with
a probability of 0.355; taken together these two genotypes account for 98.5%
of the posterior probability on the genotypic possibilities for this marker. The
usefulness of such partial information for investigative purposes in a database
search is clearly apparent.

5 Discussion

We have presented an extension of the model in Cowell et al. (2007a) which
incorporates the possible presence of silent alleles, stutter peaks, and dropout.
We have applied this model to the analysis of two complex mixtures found
at a crime scene and calculated likelihood ratios necessary for an evidential
analysis of the traces, both individually as well as in combination. The net-
works also give the posterior probabilities for the specific artifacts to have
occurred at particular alleles. The present paper concentrated on evidential
analyses, however an example of separation, i.e. predicting the DNA pro-
files of unknown contributors by separating the mixture into its individual
components, was also presented in § 4.6.

We have assumed the prior stutter probability and the probability of silent
alleles to be common for all loci, but there is a known dependence on marker
and allele (Butler 2005; Clayton et al. 2004). This experimentally observed
dependence could be incorporated into the model. Additionally, the amount
of stuttering tends to increase as the total amount of DNA decreases. Again
such dependence could be incorporated into our model, but we have not done
so here. The prevalence of silent alleles can also be made marker dependent;
in our exposition we have assumed a common prior probability for an allele
to be silent.

22



Furthermore, if a sensitivity and robustness analysis is desired, the same
PES can be used to do so by varying the parameters involved, for exam-
ple along the lines of Green and Mortera (2009) who analyse sensitivity to
assumptions about founder genes.

An important concern is the computational complexity of our Bayesian
networks. For analysing two person mixtures the computations are quite
fast, a matter of a few seconds. Increasing the number of contributors to
three people in a single mixture significantly increases the computation and
memory requirements: typically between 2-3Gb of memory and around 1-2
hours of computation time was required to find each likelihood in Table 5.
Unfortunately, we were unable to complete any analyses involving four people
with the dropout model due to hardware constraints. A simple measure of
the computational complexity involved is to look at the total size of the state
space of tables in the junction tree for the Bayesian network (Cowell et al.
1999). For two-person two-trace networks, state spaces are typically of the
order of 106 in size. For the three-person two-mixture networks examined
in Table 5, the state space sizes were of the order of 109. For a four person
two-trace network, the state space grows to 1011 or more. We believe that
some of these difficulties will be addressed in future work.

Finally we emphasize that threshold generated dropout should eventually
be incorporated as should issues concerning trace contamination.
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