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Abstract—The paradigm shift in energy generation towards
microgrid-based architectures is changing the landscape of the
energy control structure heavily in distribution systems. More
specifically, distributed generation is deployed in the network
demanding decentralised control mechanisms to ensure reliable
power system operations. In this work, a Multi-Agent Rein-
forcement Learning approach is proposed to deliver an agent-
based solution to implement load frequency control without the
need of a centralised authority. Multi-Agent Deep Deterministic
Policy Gradient is used to approximate the frequency control at
the primary and the secondary levels. Each generation unit is
represented as an agent that is modelled by a Recurrent Neural
Network. Agents learn the optimal way of acting and interacting
with the environment to maximise their long term performance
and to balance generation and load, thus restoring frequency. In
this paper we prove using three test systems, with two, four and
eight generators, that our Multi-Agent Reinforcement Learning
approach can efficiently be used to perform frequency control in
a decentralised way.

Index Terms—Reinforcement Learning, MADDPG, Droop
Control, ACG, Load Frequency Control.

I. INTRODUCTION

The power systems paradigm is shifting from large elec-
tromechanical generators driven by heat engines towards dis-
tributed generation systems. In this landscape, new challenges
should be addressed and tackled, crucially how generators
coordinate to maintain generation and load balanced [2].
This objective is met through a hierarchical control system:
i.e., primary, secondary and tertiary frequency control. The
last two control systems are usually based on centralised
methodologies. However, the dynamics of power electronics
systems are far too different from traditional systems. When
dealing with power electronics systems, the problem of solving
this frequency control in a central way is infeasible [3]. In
addition, the deployment of distributed renewable generation,
e.g., photovoltaic (PV) rooftops, requires new decentralised
control designs that ensure frequency restoration in an efficient
way.

Several decentralised control strategies have been proposed
to efficiently decide on the generation set points to meet the
load [4]. The most common approach is to attempt to im-
plement the traditional hierarchical control in a decentralised
manner (see, e.g., [5], [6]).

In this paper we investigate Multi-Agent Reinforcement
Learning (MARL) as computational models for decentralised

load frequency control, and show that they offer an im-
plementable solution to this problem. MARL is an area of
Machine Learning that plays with the idea of having different
software agents interacting with the world and each other in
order to learn optimal policies by negotiating, cooperating,
and/or competing [7]. Following this philosophy, the engineer-
ing problem has been formulated as a framework where the
agents learn to modify the energy supply to keep generation
and load balanced only using local information.

In this work: i) we formalise the frequency control problem
as a MARL problem; ii) we use Multi-Agent Deep Determinis-
tic Policy Gradient (MADDPG) as an actor-critic architecture
that is able to deal with continuous states and actions in a
multi-agent problem; and iii) we demonstrate that the proposed
framework can solve the control problem in a decentralised
way through numerical studies.

The rest of the paper is structured as follows: in Section II
the hierarchical frequency control system is formulated. In
Section III we define our approach to solve the problem.
In Section IV results are presented. We finish with some
conclusions in Section V.

II. PRELIMINAIRIES

The balance of supply and demand can be judged through
the system frequency. If the frequency of the system is higher
than the nominal set point, the total amount of power generated
exceeds the total load. On the other hand, if the frequency
of the system is below the nominal set point, more power is
needed to supply the demand. Thus, a common approach to
keep generation and load balanced is to control the frequency
of the system [8]. This control is implemented hierarchically
and consists of three different layers: primary, secondary and
tertiary control.

The idea behind primary control is to rapidly balance
generation and demand. Generators share the load and move
the power output in the direction that stabilises the frequency
around the nominal set point. This is accomplished through
a decentralised proportional control mechanism called droop
control [9].

The secondary control layer acts over the primary control
layer to compensate the steady state error that cannot be
eliminated by a proportional controller. The main solution used
to implement the secondary control is an integral control called



Automatic Generation Control (AGC) [10]. In order to work,
AGC needs to gather information from the generation units of
the system in a central way.

Following the classical model of representation we consider
a power system with n generators. We denote by ∆ω the
deviation of the center of inertia speed from the synchronous
speed. We denote the synchronous speed or nominal frequency
ωs; the set of n generators G = {G1, . . . , Gn}; the total
electrical power produced PG =

∑
i∈G Pi, where Pi is the

output of generator i; the total load PL; and the total AGC
command ZG =

∑
i∈G zi, where zi is the participation of each

generator i in AGC. Let σi denote the normalized participation
factor of bus load changes ∆PLi

with respect to total system
load change ∆PL, and Plosses the system losses, then ρ, which
denotes the sensitivity of the losses with respect to the system
load is defined as [5]:

ρ =
∑
i∈G

σi
∂Plosses

∂Pi
. (1)

The dynamic behaviour of the system can be expressed with
the following equations:

M
d∆ω

dt
= PG − (1 + ρ)PL −D∆ω, (2)

TG
dPG
dt

= −PG + ZG −
1

RD
∆ω, (3)

where M = 2H
ωs

, with H being the system inertia constant; D
is the load damping; RD is the droop; and TG is some time
constant (see, e.g., [9]).

The tertiary control layer has to do with the economic
aspect of power system operations. This layer establishes the
load sharing between the sources so that the operational costs
are minimised [11]. Tertiary control is implemented through
the economic dispatch, which calculates the optimal operating
point in an offline process.

III. REINFORCEMENT LEARNING FOR LOAD FREQUENCY
CONTROL

In this section we formulate the load frequency control as a
MARL problem, determine the reward function and choose the
appropriate architecture that deals with continuous state and
action spaces and involves the interaction of multiple agents.

A. Formalizing the problem as a Markov Decision Process

MARL is used to propose a fully decentralised solution
to implement the frequency control system. Its main focus
is how an agent or a collection of agents interact with a
given environment in order to optimise their performance. In
our approach, each generation unit has been designed as one
agent, and the frequency control problem is mathematically
formalised as a Markov Decision Process (MDP) [13], which
is the framework to parse any context into a structure that
MARL techniques can operate on. A MDP is defined as the
tuple 〈S,A, P,R〉, where each term is:
• S or state space: the set of all possible states. It defines

where the agent is in the world. In the frequency control

problem, there are two continuous states: the deviation of
the center of inertia speed from the synchronous speed
denoted by ∆ω and the current control action zi of each
generator i. The first state informs the agent about how
large the gap between demand and supply is. The second
one gives the agent a notion of how much they are
contributing with.

• A or action space: the set of all possible actions to take in
each state. The actions may be the same for all the states
in the state space or each state can have its own actions
to take. In the context studied here, the action that each
agent can perform is to increase or decrease the control
action zi. This will directly affect the state of the world.

• P or transition function: it defines how the environment
transits between states. This is a set of equations that are
derived from the dynamics of the environment stated in
(2) and (3), namely:

M
d∆ωnew

dt
= PGold − (1 + ρ)PL −D∆ωold, (4)

TG
dPGnew

dt
= −PGold + ZGnew −

1

RD
∆ωold, (5)

ZGnew =
∑
i∈G

zinew , (6)

zinew = ziold + ∆zi, (7)

∆ωnew = ∆ωold +
d∆ωnew

dt
∆t, (8)

PGnew = PGold +
dPGnew

dt
∆t, (9)

where ∆t is the time ellapsed between steps, the sub-
scripts new and old denote the value in previous and
current state and ∆zi is the increase or decrease in power
generation by each unit i in G estimated by each agent.
∆zi is determined by the Multi-Agent Deep Deterministic
Policy Gradient, as described in Section III-B. When
an agent decides to increase or decrease zi, this set of
equations expresses in which way the environment will
change.

• R or reward function: it defines a numerical signal or
reward expressing how “good” being in a state and
performing an action is. The reward function tells the
agent to maintain the deviation of the center of inertia
speed from synchronous ∆ω as close to zero as possible.

The goal of MARL is to find an optimal policy π that
maximises the cumulative reward obtained in the long run.
However, the reward does not say anything about the global
performance of the agent. Thus, there is a need for a mech-
anism to measure how good in the long run being in a state
can be. The concept of an action-value function Qπ describes
the expected long-term reward we can obtain from being in a
given state, taking an action and following a policy π. Using
Bellman’s equation the action-value function can be formalised
as:

Qπ(st, at) = E [Rt|st, at] = E

[ ∞∑
k=0

γkrt+k+1|st, at

]
, (10)



where st and at are the state and action at time t respectively,
E[·] is the expectation operator, γ is the discount factor, a pa-
rameter that weights how much we trust long term estimations
of the future rewards achievable from a given state, Rt is the
cumulative reward achievable in the long run, and rt is the
reward at time t.

However, there are two distinctive characteristics of the
problem here analysed that will directly affect what MARL
algorithms we can use: first, the state and action spaces are
continuous – this is critical since most Reinforcement Learning
(RL) algorithms can only deal with discrete state and action
spaces; second, the system involves the interaction of multiple
agents at the same time, which makes learning the optimal
policy more complicated than in a single agent scenario.

Several approaches have been proposed in the literature to
extend RL to multi-agent scenarios, most based on the applica-
tion of game theory to the solution of the Q-learning problem,
such as Nash Q-learning for mixed cooperative/competitive
tasks or minimax Q-learning for fully competitive scenar-
ios [16]. For the load frequency control problem, we have
adopted Multi-Agent Deep Deterministic Policy Gradient
(MADDPG) [17], since it applies to multi-agent systems and
does so in continuous state and action spaces.

B. Multi-Agent Deep Deterministic Policy Gradient

MADDPG is a MARL actor-critic algorithm that deals
with continuous state and action spaces. MADDPG proposes
centralising the training operation, where the critics use all
available information to embed into the actors the dynamics
of the environment and the dynamics of the rest of the agents
as well. Then, during the operational phase only the actors are
used. Actors only use local information. Each generation unit
is defined by an actor and a critic. Each actor i estimates a
change in action ∆zi given the state of the environment ∆ω
and its current secondary control action zi. The critic takes
the current state of the environment and the action estimated
by all the actors of the system. It estimates the Qπ value of
the state-action pair that is used to train each actor, see Fig. 1,
where we denote by ∆z−i (∆z−j) the action predicted by all
other actors besides i (j) and z−i (z−j) the control action state
of all other actors besides i (j).

Each actor and each critic are implemented by a deep
Recurrent Neural Network, specifically by a Long Short-Term
Memory Network (LSTM) [18]. MDPs rely on the Markov
assumption, according to which the next state only depends
on the current state so that past history must be embedded
in the current state. However, when dynamics show complex
behaviour, the Markov assumption may not hold. LSTMs
implement memory gates to ensure that previous history is
stored and acted upon if and when necessary [19].

The actor depicted in Fig. 2a is characterised as a network
with a two-neuron input layer and a one-neuron output layer:
it inputs ∆ω and zi and computes ∆zi directly. Then, the first
hidden layer is a 100-neuron LSTM that acts as a memory de-
vice, and that is followed by three more fully-connected hidden
layers composed of 1000, 100 and 50 neurons respectively.

actor 

actor i

j

∆ω, zi

∆ω, zj

∆ω, zi,∆zi, z−i,∆z−i

∆ω, zj ,∆zj , z−j ,∆z−j

r

∆zi

∆zj

Qπ(∆ω,∆zi)

Qπ(∆ω,∆zj)

...

critic i

critic 

...

...

j

environment 

Fig. 1: MADDPG schema in a frequency control scenario.
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(a) Architecture of the MADDPG actor.
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(b) Architecture of the MADDPG critic.

Fig. 2: Architectures of the MADDPG function approximators.

The input to the critic depicted in Fig. 2b is the frequency
state of the network ∆ω, the secondary control action zi, the
change in the action predicted by the actor associated to that
critic ∆zi, the secondary control actions z−i and the changes
in the action predicted by all other actors ∆z−i. Again, after
the input layer, there are a 100-neuron LSTM and three 1000-
neuron, 100-neuron and 50-neuron hidden layers. The output
layer only has one neuron that computes the Qπ(·) value of
the state-action pair estimated by the actor associated to that
critic.



Nominal frequency fnom = 50 Hz
Initial operating point (two agents) Pi = 1.5pu, i = 1, 2
Initial operating point (four agents) Pi = 0.75pu, i = 1, ..., 4
Initial operating point (eight agents) Pi = 0.375pu, i = 1, ..., 8

Inertia parameter M = 0.1pu
Droop RD = 0.1pu

Load damping D = 0.0160pu
Generator dynamics time constant TG = 30s

TABLE I: System data; pu refers to 100 MVA base power
reference.

The reward function must be based on the frequency state
of the environment. This is straightforward since we can set a
higher reward for smaller frequency deviations ∆ω. We may
formulate a general form reward function as the following
exponential function:

r = ab|∆ω|, (11)

where a is the maximum achievable reward and b ∈ (0, 1) is
a parameter that controls the rate of decayment of the reward;
this condition ensures that r will reward actions that help in
frequency restoration. The closer ∆ω is to zero, the higher the
reward.

IV. NUMERICAL RESULTS

In this section, we validate the proposed approach with three
test systems. We formulate the reward function and present
the results of the training period. Next we demonstrate that
the generators are able to restore the system frequency back
to nominal when a change of load occurs in a decentralised
way.

The test cases comprise of a group of generation units or
agents that interact with a load. More precisely, the proposed
solution has been tested with two, four and eight generators-
agents interacting with a load. The parameters of the environ-
ment can be found in Table I. In each training episode, the load
varies around a nominal set point randomly. The modification
is indicated by PL ± ∆PL = 3 ± β pu, where β follows a
uniform distribution. The reward function has been derived
following (11). We set a = 10, b = 0.5pu. Thus we have:

r = 10(0.1|∆ω|). (12)

During operation, only the actors interact with the environ-
ment. They only observe local information about the frequency
of the system and the control action that they are executing.
As a consequence of the training phase, they know how to act
according to the states of the environment in order to keep
load and generation balanced. The validation of the training
is tested by changing the load by 0.15pu and seeing how the
generators modify their output.

A. Training period

In Fig. 3 the cumulative reward obtained by the agents
during training can be seen. The maximum achievable return
obtained in one episode is 1, 000. The maximum reward per
step is 10 and the number of steps per episode is 100. The

Fig. 3: Cumulative reward 95% confidence.

Fig. 4: Frequency after change in load by 0.15pu.

performance of the agents shows an ascending trend oscillating
around 900. This means that the agents are learning and have
discovered how to obtain higher rewards.

B. Operational period

In order to validate the training we change the load by
0.15pu and see how the frequency changes as well as the
total system power. In Fig. 4 we can see that frequency is
restored around the nominal set point and demand generation
balance is rapidly achieved in all test cases. This result shows
that actors learn what to do when load increases without the
need of centralising any information. This is achieved since
primary and secondary layers are embedded inside the agents
as a consequence of them learning during training that keeping
∆ω close to 0 is associated with high rewards.

As it can be seen in Fig. 5, the agents find valid policies to
solve the problem. However, the behavior may be unrealistic,
e.g., some agents don’t produce energy at all and just one or
two agents are in charge of balancing generation and load.
Introducing information about the generation cost of each
unit should help the agents inferring how much they have to
produce exactly, which is part of future work.

V. CONCLUDING REMARKS

In this paper, we developed a framework to perform load
frequency control in a decentralised way. In this regard, we



(a) Two-agents system.

(b) Four-agents system.

(c) Eight-agents system.

Fig. 5: Output after change in load by 0.15pu.

presented the basics of load frequency control, i.e. primary,
secondary and tertiary control. Next, we casted the problem
in a MARL setting, specified the reward function, and the
actor-critic architecture that was suitable for implementing
MADDPG in the load frequency control problem. We defined
the reward function that ensures frequency restoration. We
validated the proposed approach through numerical results in
a small-scale test system. More specifically, the results showed
that MADDPG performed efficiently when implementing pri-

mary and secondary control, i.e., frequency restoration, in a
two-, four- and eight-agents system. The advantage of the
proposed approach is that it offers a completely decentralised
solution for the frequency control problem.

For future work, we mainly plan working on adding the
tertiary control layer to the proposed solution, i.e., take op-
erational costs into account. The applicability and scalability
of these techniques in more complex scenarios also needs to
be investigated. It would be interesting as well to check the
validity of MADDPG to deal with different types of generation
plants and to estimate to what extent MARL could be applied
in this kind of contexts.
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