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Abstract

One of the main objectives of this dissertation is to understand the nonlinear effects in

optical fibres caused by stimulated Brillouin scattering (SBS). SBS is a nonlinear process,

where, a sound wave is generated due to electrostriction effect that creates a travelling Bragg

gratings and prevents delivery of high optical power beyond the SBS threshold. An improved

full-vectorial numerically efficient Finite Element Method (FEM) based computer code is

developed to study complex light-sound interaction in optical waveguides. An improved polar

meshing technique is used to efficiently discretised the computational domain consisting of

circular boundaries such as optical fibres. The existing structural symmetry of the optical

waveguide is also exploited in both optical and acoustic modal solutions and only a half or

quarter structure is simulated, as needed. This allows a more efficient element distribution

on a smaller region compared to full structure with similar computational resources that

result in the improved modal solution accuracy and reduced modal degeneration. The

existence of spurious (non-physical) modes in full-vectorial acoustic modal solution and their

elimination using the penalty method is also proposed and tested in this thesis. Penalty term

consisting of the curl-curl section of the acoustic formulation enforces the acoustic field to

suppress the rotational energy of the propagating acoustic wave. As a result of the penalty

method, a significant improvement in the solution accuracy and quality of acoustic modes is

demonstrated in both low and high index contrast optical waveguides.

A standard single mode Germanium doped Silica fibre is used to study light sound

interaction, and overlap of 93 % between fundamental optical and acoustic modes has been
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calculated. This acoustic-optic overlap is directly related to the calculation of the SBS

threshold. A lower SBS overlap results in an increased SBS threshold and allows more

power to be transferred in the optical fibre. Through rigorous numerical simulations, the

fibre geometry and refractive index profile are modified, and a layer of a high acoustic index

is introduced in the cladding such that the acoustic mode propagates in the cladding. The

optical refractive indices of core and cladding are kept same while the acoustic index of

2nd layer is increased by doping it with Boron and Germanium (3.394% B2O3 + 2% GeO2).

The acoustic mode completely shifts in the 2nd layer and as a result of this technique, an

extremely low overlap of 2.5 % is calculated between optical and acoustic modes.

Another objective of this research was to reduce the nonlinear effects in optical fibres is

the use of large mode area (LMA) fibres such as few mode and multimode fibres. LMA fibres

provide large effective area resulting in less nonlinear effects for a given power compared

to single mode fibres. However, the existence of more than one mode may result in the

inter-mode mixing and energy may transfer from one mode to its neighbouring propagating

mode. Higher order modes of a MMF has twofold advantage as these modes provide a large

effective area and also exhibit a weaker coupling with other modes. To mitigate this, we have

proposed two novel techniques to increase the modal stability between higher order modes

of a multimode step-index fibre. The modal stability is directly related to the effective index

difference (∆ne f f ) between a given mode of propagation and its neighbouring antisymmetric

modes. One of the technique involves the use of strategically located low or high index

doped strips along the circumference of MMF such that the modal stability between LP0,n,

a higher order mode and its neighbouring antisymmetric LP1,n−1 and LP1,n+1 modes can

be increased. We have shown that the modal stability of LP09 mode and its neighbouring

antisymmetric LP18 and LP19 modes increases more than 35 % from its original value. In

the second technique, we have used an array of strategically located air-holes to increase the

modal stability of LP06 mode and its neighbouring antisymmetric LP15 and LP16 modes up to
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54 %. Similarly, an air-hole array is also used to increase the modal stability of a few-mode

fibre. The ∆ne f f between first four (LP01, LP11, LP21 and LP02) modes of a four-mode fibre

is increased more than 30 %. In both the methods we have shown the effect on the effective

index difference due to change in the strips width or central location and holes width or

central location, respectively. Moreover, it is also shown that both proposed techniques are

scalable and can be used to increase the modal stability of other higher order modes.
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Chapter 1

Introduction

The unprecedented increase in the growth and popularity of Internet applications and services

is becoming a constant challenge for optical networks. Due to this rapid growth and demand

for higher bandwidth and better quality services, the current infrastructure is under pressure.

The number of devices per user is increasing, and it is predicted that by the year 2020

these devices can be three times the world population [1]. Back in the 1980s, when the

optical fibres were deployed, it was considered that optical fibres have unlimited transmission

bandwidth, at least for any foreseeable data rate requirement. However, after thirty years,

optical fibre transmission experiments have shown clear signs of saturation. This saturation

is mainly due to the nonlinear effects that limit reliable data transmission. This data rate

exhaust, also known as capacity crunch, has been the main argument underpinning research

efforts on optical fibre transmission systems in recent years [2, 3].

High power lasers and amplifiers are also an integral part of optical communication along

with the many other industrial applications. Since the first demonstration of fibre lasers

in 1964 by Snitzer [4], there is a considerable volume of research and development work

for the improvement of fibre lasers. Optical fibre based lasers have received significant

attention that generates high optical power with excellent flexibility and high beam quality

[5, 6]. The rapid development of high power pump laser diodes (LD) and use of rare-earth
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materials in the development of fibre lasers have significantly increased their penetration in

different industrial applications [7–9]. Compared to other types of lasers, the long lengths of

fibre lasers make them attractive as they provide large single pass gain for effective power

scaling. Over the past few years, the performance of fibre lasers has improved significantly

with the development of the latest fibre materials, high-brightness pumping diodes and

improved drawing techniques. Compared to solid-state lasers, fibre lasers are also more

compact, lightweight, flexible and provide immunity to electromagnetic interference [10, 11].

However, due to the fibre geometry, high-intensity light travels under tight confinement for

considerably a longer distance that results in increased nonlinear effects [12, 13].

Among the other nonlinear effects, stimulated Brillouin scattering (SBS) have a lower

threshold and often considered as one of the main limitations for high power transmission

applications [14, 15]. To overcome this limitation the SBS threshold level is required to be

increased, which can be achieved by using different techniques, such as the modification

of the fibre geometry in order to push the acoustic modes into cladding [16], use of a

large mode area fibre such as multimode fibres [17, 18], or doping fibre with anti-acoustic

material to suppress SBS [19]. On the other hand, SBS can be exploited for many useful

applications such as temperature, pressure and strain sensors. Most recently, the SBS is

being exploited for several innovative applications, such as slow and fast light and Brillouin

cooling [20–24]. Transverse mode instability (TMI) is also considered as one of the main

limitations in power scaling in large mode area fibres or multimode fibres. TMI is a result

of refractive index grating formation due to transverse mode beating and coupling between

the amplified fundamental mode and higher order modes [25]. Above a certain threshold,

TMI deteriorates the output beam quality rapidly. For a single fundamental-mode excitation,

large content and strong competition with higher order mode such as LP11 is take place after

a certain threshold [5]. However, in single mode fibres where light is confined in a small
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area, stimulated Brillouin scattering (SBS) is considered as one of the main limitations for

high power transmission applications.

Various approaches have been presented to reduce or mitigate these non-linear effects in

optical fibres. One of the methods is to reduce the numerical aperture (NA) while increasing

the core diameter and maintaining single mode operation [26]. Recently some of the research

demonstrated a lower value of NA with a diameter ranging from 35 µm to 52 µm [27, 28]

and NA ∼ 0.04, where, the transmission of three KW power is demonstrated [29]. However,

lowering NA value weakens the guidance of fundamental mode and make it more sensitive

to bending or other mechanical perturbations [14]. Similarly, photonic crystal fibres (PCF)

also falls into a similar category that consists of a solid silica-based core surrounded by

periodically arranged air-holes in the cladding. Introduction of air-holes reduces the number

of modes effectively, supported by PCF fibre as the higher order modes leak away through

the gaps between the air-holes and the modal filtering is an endless single-mode (ESM) PCF

is controlled by the geometry [30]. Initially, photonic crystal fibres were proposed with a

smaller core size but later on large mode area, photonic crystal fibres are also developed for

fibre laser applications [31].

One of the approaches to reduce the nonlinear effects is to use large mode area fibres

such as multimode fibres. Multimode fibres (MMF) provides a much higher effective area,

but the existence of many modes may result in the random mode mixing and energy may

transfer from a desired mode of propagation to its neighbouring modes. The identification

and excitation of a selective mode are very important in multimode fibres for lasers and

amplifiers related applications. There are different techniques proposed for the efficient

excitation of a particular higher order mode, such as the use of the self-imaging property of

multimode interference, prism-coupling and use of Single mode-Multimode-Multimode fibre

structure etc. [32–34]. Recently, higher order modes (HOM) of MMF are used for high power

fibre lasers as they can provide a more stable single mode operation along with the natural
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resistance to area reduction due to bending as compared with fundamental mode [35]. Higher

order modes of MMF are also more resistant to the mode coupling as the modal stability

between HOMs of a given MMF increases with the increase in modal order (m). However,

external perturbations such as bending or fabrication imperfections can cause energy transfer

from a desired higher order LP0m mode to its neighbouring antisymmetric LP1,m±1 modes

[36, 17]. Here, the term modal stability is used to describe the effective index difference

(∆ne f f ) between a desired mode of propagation and its neighbouring antisymmetric modes.

The larger fibre dimensions allow fundamental mode along with other higher order modes to

propagate with different effective indices (ne f f ). A lower value of ∆ne f f between the adjacent

modes may result in the inter-mode mixing and can cause interference effects. However,

increasing the ∆ne f f between these modes can significantly reduce this inter-mode mixing

and any possible interference effects between them.

1.1 Aim and objectives

The aim of the research is to develop a full-vectorial finite element method (FEM) based

numerical method to study optical and acoustic modes and their interaction in optical waveg-

uides. The acoustic-optic interaction is directly related to the understanding of stimulated

Brillouin scattering, a well known nonlinear effect in optical waveguides. The fibre geometry

is modified in order to decrease the SBS overlap that increases the SBS threshold and allow

more power scaling. Similarly, fibre geometry is also modified to increase the SBS overlap

that can be exploited for different sensing applications. Large mode area (LMA) fibres such

as few-mode fibres (FMF) and multimode fibres (MMF) provides a higher effective area

that also reduces the nonlinear effects. Another aim of the research is to study these optical

modes in FMF & MMF and increase the effective index difference between these modes to

reduce modal coupling.

These aims and objectives are listed below,
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• To study the primary parameters that are associated with optical and acoustic wave

propagation and understand the spatial variations and identify different optical and

acoustic mode patterns.

• To study the physical properties linked with acoustic wave propagation such as stress,

strain, elasticity, particle displacement and acoustic velocity etc.

• Development of a full-vectorial finite element method based computer simulation code

for rigorous characterisation and study of the fundamental and higher-order acoustic

modes in both low and high index contrast optical waveguides.

• Introduction of penalty term to remove the spurious modes in acoustic modal solution

and exploit the symmetry boundary conditions to improve the modal solution accuracy

and remove the modal degeneration.

• To investigate the acoustic-optic overlap in a single mode fibre and modifying fibre

geometry to reduce the SBS overlap for increased power transmission and to increase

the SBS overlap for sensing applications.

• Study of large mode area fibres such as multimode fibres and few-mode fibres as an

alternative approach to reduce the nonlinear effects.

• To increase the modal stability between the higher order modes of a MMF by increasing

the effective index difference between the mode of propagation and neighbouring

antisymmetric modes using low and high index contrast doped strips.

• Introduction of air-holes along the radius of MMF such that the resultant effective

index difference is enhanced between the modes of FMF and higher order modes of

MMF.
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1.2 Structure of the Thesis

This thesis comprises of eight chapters, including the current introduction chapter and two

appendices. The chapter contents are briefly described as follows,

• Chapter 2:

Chapter 2, presents the fundamentals of optical waveguides and basic principle of

optical fibre guidance. The basic concepts related to optical fibre such as phase & group

velocity and dispersion are discussed in the chapter. Nonlinearity is an important effect

in the optical waveguides that occur due to refractive index changes in the material or

scattering process. These nonlinear effects such as self-phase modulation, cross-phase

modulation and four-wave mixing due to refractive index changes are discussed in the

chapter. Similarly, nonlinear effects such as Raman scattering and Brillouin scattering

that occurs due to nonlinear scattering in the material are also discussed. Chapter

2 also presents a brief description of different computational methods such as the

finite element method, finite difference time domain method and frequency difference

frequency domain method for the solution of electromagnetic waveguides.

• Chapter 3:

Chapter 3 discusses the basics of light scattering, primarily focusing on the Brillouin

scattering. Basic concepts of Brillouin scattering and its different applications such as

radio over fibre technology, optical sensing, slow light and optical delay lines etc. are

discussed. Chapter 3 also discusses the propagation of the acoustic wave through the

optical medium by displacement of particles that depends on the density and elasticity

of the material. Detail discussion of the physical quantities related to the acoustic wave

propagation is provided. Later in Chapter 3, the propagation of acoustic modes in a 2D

acoustic waveguide is also discussed.

• Chapter 4:
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Chapter 4, explain the variational approach based finite element method (FEM) in

details. A step by step process of computational domain discretisation, selection of

interpolation function and formation of a global sparse matrix to obtain the modal

solution is discussed. Chapter 4, also discusses the newly introduced polar meshing

in the FEM code that results in a more accurate solution for circular waveguides.

Implementation of full-vectorial FEM in both optical and acoustic modal analysis and

introduction of symmetry boundary conditions to avoid the modal degeneration and to

improve modal accuracy are discussed.

• Chapter 5:

Chapter 5, discusses the light sound interaction in a standard single mode fibre. Mode

profiles of the fundamental optical and acoustic (longitudinal and shear) modes are

presented. Effect of penalty term to remove the spurious modes in the acoustic

formulation is also discussed in chapter 5. The basic acoustic-optic overlap is calculated

without any modification in the optical and acoustic index. Later on, two techniques

are suggested to increase the acoustic-optic overlap for fibre optic based sensing

applications and to reduce the overlap to increase the SBS threshold for high power

transmission applications are presented. Moreover, effect of the penalty method on

modal solution is shown in both low and high index contrast acoustic waveguides.

• Chapter 6:

Chapter 6 discusses the modal stability enhancement in higher order modes of multi-

mode fibre using doped strips. Multimode fibres provide a higher effective area that

reduces the nonlinear effects, however, the existence of many modes may result in the

inter mode mixing. A newly proposed technique using high and low index doped strips

to increase the effective index difference between the higher order modes is proposed

in chapter 6. Numerical results presented have shown significant improvement in the
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modal stability of LP09 mode and its neighbouring antisymmetric LP18 and LP19 modes.

Moreover, in order to show the scalability of the proposed technique the modal stability

between LP08 mode and it’s neighbouring antisymmetric LP17 and LP18 modes are also

shown. In addition to this, chapter 6 also discusses the possible fabrication tolerances

that may occur due to the change in the strip width and strip location from a central

position.

• Chapter 7:

Chapter 7 discusses the modal stability enhancement in higher order modes of MMF

using air-holes. These air-holes are introduced on specified locations along the cir-

cumference of the MMF such that the resultant effective index difference between the

mode of propagation and its neighbouring antisymmetric modes is increased. With the

introduction of air-holes, the effective index of modes decreases and the magnitude of

decrease depends on the field magnitude at that particular location.

The similar technique is applied to increase the effective index difference between the

modes of a few-mode fibre that is useful for the transmission capacity enhancement

using mode division multiplexing technique. The enhanced mode spacing reduces the

cross talk between the propagating modes and reduces the complexity caused due to

MIMO based methods. Chapter 7 also discusses the bending effect in a few-mode fibre

before and after the introduction of air-holes.

• Chapter 8:

This chapter summarises the importance of the full-vectorial FEM formulation for

the optical and acoustic modal solution. The summary of the stimulated Brillouin

scattering and its applications along with some possible future work is also presented

in this chapter. Similarly, the modal stability techniques proposed in chapter 6 and
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chapter 7 are also summarised and some possible future work in order to enhance the

modal stability of higher order modes are also suggested.





Chapter 2

Fundamentals of Optical Waveguides

2.1 Fundamentals of fibre optics

Fast transmission of information from one place to another place was considered a challenging

task until 1966 when Kao et al. presented glass optical fibre as a potential waveguide for

optical communication [37]. Since then properties of optical fibre were explored that included

power handling, power losses, number of modes and fabrication process both theoretically

and experimentally. The light guiding principle in optical fibre was quite promising for

future optical communication but the high loss of available materials at that time was the

main limitation. However, after few years Kapron, et al. invented a process of chemical

vapour deposition that facilitated the fabrication of single mode fibre with the attenuation

of 16 dB/km at 633 nm wavelength [38]. Within next 10 years, a significant improvement

was noticed and optical fibre loss was reduced to a remarkably low value of 0.2 dB/km

at 1550 nm along with the ability to be spliced and connect [39, 40]. Later on, with the

further improvements in optical fibres together with the invention of lasers and optical fibres,

telecommunication industry witnessed revolutionary advancements and optical fibres became

the physical layer of today’s fast Internet. Besides being the foundation of fast Internet,
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optical fibres have also become a core part of many other technologies ranging from sensing,

high power industrial applications, biomedical imaging and fibre lasers.

2.1.1 Basic principles of optical fibre guidance

Optical fibres are transparent, flexible and thin like human hair size fibres made by drawing

glass (silica) or plastic. Optical fibres mainly consist of a high refractive index core sur-

rounded by a low refractive index cladding. Light propagates inside optical fibre through the

phenomenon of total internal reflection as shown in Fig. 2.1.

Fig. 2.1 Transmission of optical wave inside a step-index single mode fibre based on total
internal reflection (TIR) [41].

Here, n1 and n2 are the core and cladding refractive indices where, n1 > n2 and the

refractive index difference is often very small: (n1 −n2)/n1 << 1. Generally, optical fibres

are made of fused silica (SiO2), and the core refractive index is increased by chemical doping.

However, in traditional submarine cables, this can also be achieved by doping cladding with

Fluorine which reduces the cladding refractive index resulting core index being higher than

that of the cladding [42]. According to Snell’s law, the incidence angle required for total

internal reflection is calculated as α > αmin = sin−1(n2/n1). The acceptance cone is shown

in Fig. 2.1 is the acceptable angle for incidence wave to follow the TIR principle and for

light to propagate inside optical fibre the incident angle should be inside the acceptance cone.

Outside of the acceptance cone, the light follows the refraction principle and it escapes into
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the cladding. Using Snell’s law, the numerical aperture (NA) that is the sine of the maximum

angle of the incident optical wave with respect to the fibre axis can be calculated as,

NA = nsin
(

π

2 −αmin

)
=

√(
n2

1 −n2
2

)
(2.1)

Here, n is the refractive index of outside medium such as air. From the above description

and Fig. 2.1 it can be assumed that any incident ray inside the acceptance cone defined by NA

can be propagated inside the optical fibre. However, considering the interference effects, only

a discrete number of incident rays can be transmitted through the optical fibre at the same

time, where each ray corresponds to a mode. Figure 2.2 (a) shows a multimode step-index

fibre where more than one mode can propagate at the same time and core diameter varies from

50 µm to 200 µm. Multimode fibres are used for relatively short distance communication

because the modes tend to disperse over long lengths. Figure 2.2 (b) shows schematic of

a multimode graded index fibre, where the refractive index continuously decreases from

the centre of the core to the cladding. The multimode graded index fibre has considerably

less dispersion compared to multimode step index fibre. In contrast to multimode fibre

(MMF), single mode fibres (SMF) have a smaller core diameter (8-12 µm) and allow only

one mode of propagation as shown in Fig. 2.2. The existence of single mode reduces the

light reflections and results in lower attenuation which makes SMF more appropriate for long

distance communication.

2.1.2 Mode theory of cylindrical waveguides

In order to understand the light propagation along the main axis (z-axis) of the fibre, an

important parameter propagation constant β is to be considered. Propagation constant is used

to determine the change in the amplitude and phase of a propagating light along the z-axis.

In a lossless medium, the propagation constant is purely imaginary and considered as an
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Fig. 2.2 Refractive index profiles, typical dimensions and rays paths in (a) multimode step-
index fibre, (b) multimode graded-index fibre and (c) monomode step-index fibre [41].

axial component of wavevector k⃗. The magnitude of wavevector is given by |⃗k|= k = 2π/λ ,

where, λ is the wavelength.

There are different kinds of modes that propagate inside optical fibres. The guided modes

are trapped in the core and have different electric field patterns along the cross-section of the

fibre. The cladding modes originate when the light is transmitted on an angle outside of the

acceptance cone and it gets trapped in cladding after refraction. The leaky modes partially

confine in the core and tend to attenuate more than the guided modes with the propagation.

Leaky and guided modes are differentiated by the cutoff condition.

n2k < β < n1k (2.2)

Equation 2.2 shows the condition for a mode to remain guided in the fibre core. Whereas,

if β < n2k, the mode is leaky and this corresponds to TIR limit, explained earlier. The maxi-

mum value of propagation constant (β ) as a projection of n1⃗k on z-axis is n1k. The maximum
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angle to allow TIR is calculated by Snell’s law (sin(α) = n2/n1) and correspondingly the

minimum value of propagation constant is β = n2k.

Equation 2.3 represents the V number or the normalised frequency that is a dimensionless

parameter used to determine the number of modes in an optical fibre depending on the

refractive index contrast and core radius (a).

V =
2πa
λ

NA =
2πa
λ

√
(n2

1 −n2
2) (2.3)

The cutoff condition for the optical modes is β = n2k and depending on the modes it occurs

on different value of V [43]. For a value of V ≤ 2.405, the fibre has just one mode of

propagation and fibre is monomode. For a large V, the number of modes M in a multimode

fibre can be calculated as,

M ≈ V 2

2
(2.4)

2.2 Characteristics of optical fibres

In this section, we will discuss the important properties that characterise optical fibres. The

main focus of our discussion is on single mode fibres (SMF) and multimode fibres (MMF) as

per the scope of the work presented in later chapters.

2.2.1 Phase and group velocity

In electromagnetic waves, there are points that are in a constant phase that forms a surface

also known as a wavefront. For a monochromatic lightwave travelling in the z-direction these

constant phase points travel at a phase velocity vp that can be written as,

vp = ω/β (2.5)
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Where, ω is the angular frequency of the wave and β is the propagation constant. In

practice producing a perfectly monochromatic lightwave is impossible and light energy is

composed of a sum of plane wave components of different frequencies. There are situations

where a group of waves propagating with frequencies close to each other resulting in the form

of a wave packet. This wave packet travels with a speed of velocity called group velocity vg

given in Eq. 2.6 rather than the individual wave velocity.

vg = δω/δβ (2.6)

In the understanding of transmission characteristics of optical fibres, the group velocity is

very important as it relates to the propagation characteristics of light packets. The propagation

constant of lightwave travelling in an infinite medium of refractive index n1 can be written

as,

β = n1
2π

λ
=

n1ω

c
(2.7)

Using Eq. 2.5 and Eq. 2.7, following relationship for phase velocity can be written as,

vp =
c
n1

(2.8)

Similarly, employing Eq. 2.6, where in the limit δω/δβ becomes dω/dβ , the group

velocity can be written as,

vg =
dλ

dβ

dω

dλ
=

d
dλ

(
n1

2π

λ

)−1(
−ω

λ

)

=
−ω

2πλ

(
1
λ

dn1
dλ

− n1
λ 2

)−1
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=
c(

n1 −λ
dn1
dλ

) =
c

Ng
(2.9)

In Eq. 2.9 the parameter Ng is known as the group index of the waveguide.

2.2.2 Dispersion

Single mode fibres provide higher bandwidth and enable data transmission over longer

distances. However, when a light pulse propagates inside an optical fibre, its shape gets

distorted with time and the spreading of the pulse is known as dispersion [44]. The broadening

of optical pulses creates interference effect with other optical pulses and this interference

limits the power carrying capability of fibres. In optical fibres, the dispersion can be of three

types, modal dispersion, material dispersion and waveguide dispersion.

1. Modal Dispersion:

Modal dispersion or intermodal dispersion mainly occurs in multimode fibres where

transmitted light containing different modes follow different paths inside the optical

fibre and consequently arrives at different times. In a multimode fibre, number of these

optical modes can be in thousands that travel inside fibre depending on the intensity of

light ray and properties. Some of these light rays take a shorter path such as travelling

straight through the optical fibre also known as fundamental modes and some of the

rays takes the longer path as a result of reflections at the core-cladding interface known

as higher order modes. As a result of these different paths taken by these modes, the

transmitted light spreads in time and result in the spreading of transmitted pulses.

Figure 2.3 provides an illustration of slow and fast travelling modes resulting in modal

dispersion. In order to reduce the modal dispersion, a smaller diameter core can be

used that will allow fewer modes of propagation. Moreover, a graded-index fibre
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Fig. 2.3 Slow and fast modes travelling at different paths resulting in the modal dispersion.

allows light travelling on longer paths to travel faster and arrive at nearly the same time

as rays travelling on shorter paths.

2. Chromatic Dispersion:

Sir Isaac Newton firstly observed chromatic dispersion when he passed sunlight through

a prism and saw it diverging into a spectrum of different colours. Optical fibres com-

prise of core and cladding with different refractive indices causing some wavelengths

of light travel slower or faster than others. This result in asynchronous arrival of the

optical pulses at the receiving end. For long-haul communication, chromatic dispersion

is considered as a serious challenge. Initially, sharped binary pulses (1s and 0s) are

affected by the chromatic dispersion and degradation makes more difficult to differen-

tiate these pulses from each other at the far end. This result in the bit error rate (BER)

and limits the capacity and effective transmission of the optical systems.

However, there are techniques used to compensate for the effect of chromatic dispersion

such as the use of dispersion compensating fibre (DCF) at receiving end. Another

method is to pre-compensate the optical signal to an expected chromatic dispersion

in the optical link. Chromatic dispersion is caused by the dispersive properties of the

waveguide material known as material dispersion and guidance effects due to fibre

structure known as waveguide dispersion.

• Material dispersion
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An optical pulse consists of various spectral components that travel with different

group velocities and result in material dispersion or pulse broadening. As the refractive

index of material depends on the wavelength of light being transmitted, hence, each

frequency component travels at a slightly different speed.

The pulse spread due to material dispersion can be calculated by considering group

delay τg that is reciprocal of group velocity vg defined in Eqs. 2.6 and 2.9.

Hence, group delay τg can be written as,

τg =
dβ

dω
=

1
c

(
n1 −λ

dn1
dλ

)
(2.10)

where, n1 is refractive index of core. Due to material dispersion the pulse delay τm for

fibre length (L) can be written as,

τm =
L
c

(
n1 −λ

dn1
dλ

)
(2.11)

The rms pulse broadening due to material dispersion σm can be written in the form of

Taylor series about λ

σm = σλ

dτm

dλ
+σλ

2d2τm

dλ 2 + ... (2.12)

Where, σλ is the source rms spectral width and mean wavelength λ . In Eq. 2.12,

first term is dominant especially for sources varying 0.8 to 0.9 µm wavelength range,

hence:

σm = σλ

dτm

dλ
(2.13)

From Eq. 2.11 the pulse spread can be calculated by considering τm on λ
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dτm

dλ
=

L
c

[
dn1
dλ

− λd2n1
dλ 2 − dn1

dλ

]

=
−Lλ

c
d2n1

dλ 2 (2.14)

Substituting Eq. 2.14 into Eq. 2.13, the rms pulse broadening can be written as,

σm ⋍
σλ L

c

∣∣∣∣λ d2n1
dλ 2

∣∣∣∣ (2.15)

The pulse broadening due to material dispersion can be written in the form of material

dispersion parameter M having units psnm−1km−1 is defined as [45],

M =
1
L

dτm

dλ
=

λ

c

∣∣∣∣d2n1
dλ 2

∣∣∣∣ (2.16)

• Waveguide Dispersion

Waveguide dispersion is also responsible for chromatic dispersion that occurs

due to the variation in group velocity with wavelength for a particular mode.

Waveguide dispersion is very important in waveguides with small effective mode

areas such as photonic crystal fibres and single-mode fibres used in optical fibre

communication. To understand the waveguide dispersion ray theory can be

considered where the transmission time for the rays varies depending on the angle

between the transmitted ray and the fibre axis varying with wavelength. For a

single mode with propagation constant β , the fibre shows waveguide dispersion

when d2β/dλ 2 ̸= 0. Waveguide dispersion can be minimised using dispersion

shifted fibres and using large mode area fibres [46].
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2.3 Nonlinear effects in optical waveguides

Any dielectric medium behaves like nonlinear when undergoes high-intensity electromagnetic

field. In optical fibres, light is confined in a small region and nonlinear effects may arise

due to the intensity dependence of the refractive index in medium or inelastic scattering

phenomenon. As a result, even a moderate optical power may create substantial effects

particularly in case of fibre amplifier and while transmitting short pulses.

Nonlinearity arises due to the an-harmonic motion of bound electrons under the influence

of the applied field. Due to these an-harmonic movements, the polarization P induced

by electric dipoles does not follow a linear relation instead satisfies the below-mentioned

relation,

P = ε0χ
(1)E + ε0χ

(2)E2 + ε0χ
(3)E3 + ... (2.17)

where, ε0 is the permittivity of free space, χ(k) is the kth order susceptibility.

The significant contribution to the total polarization comes from linear susceptibility

χ(1) and the second order susceptibility χ(2) is responsible for sum-frequency and second

harmonic generation. For a medium having a symmetrical molecular structure such as

silica, second-order susceptibility is zero. The third order χ(3) is mainly responsible for the

nonlinear effects in the optical fibres [44].

The Kerr effect or Kerr nonlinearity is one of the common and simple nonlinear effect

that occurs due to the power dependence of the refractive index.

∆n = n2I (2.18)

Here, ∆n is the change in the refractive index of the medium, I is the optical intensity and

n2 is the nonlinear refractive index. Based on the input signal, the Kerr-non linearity can

cause different effects such as self-phase modulation (SPM), cross-phase modulation (CPM)

and four-wave mixing (FWM). Moreover, with the increase in optical intensity, the inelastic



22 Fundamentals of Optical Waveguides

scattering process can induce stimulating effects such as stimulated Raman scattering (SRS)

and stimulated Brillouin scattering (SBS). Figure 2.4 shows the summarised form of nonlinear

effects in optical fibres.

Fig. 2.4 Nonlinear effects in optical fibres

Nonlinear effects except SPM and CPM provides gain to some channel through power

depletion from other channels. However, SPM and CPM affect the phase of the signal

and result in the spectral broadening that leads to increased dispersion. These nonlinear

phenomenons are explained below,

2.3.1 Self-phase modulation (SPM)

Self-phase modulation is a type of non-scattering nonlinearity which is related with the

3rd order susceptibility χ(3). SPM results from the change in the refractive index of the

medium due to the propagation of high-intensity optical wave. Due to the optical Kerr effect,

light wave creates a variation in the refractive index that results in the phase change of the

propagating pulse. As a result of the phase change, the propagating pulse broadens in the

frequency domain. This spectral broadening in of transmitted pulse can be calculated by

taking the time-dependent derivative of the nonlinear phase shift as,

∆ω0(z, t) =−
∂Φ(NL)(z)

∂ t
=−n2

dIp(t)
dt

k0 z (2.19)
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Here, ∆ω0 is the change in the angular frequency, Ip is the optical intensity and k0 is

the wavenumber. Different parts of transmitted pulse undergo different phase shift due to

intensity dependence of phase fluctuations that result in frequency chirping. As a result of

the rising and trailing edges of the pulse experience frequency shift in upper and lower sides,

respectively. The chirping effect increases with the increase in the transmitted power resulting

in more pronounced SPM effect. SPM is different than dispersion as SPM creates spectral

broadening while temporal distribution is unchanged. However, SPM is often exploited for

two important applications such as solitons and pulse compression.

2.3.2 Cross-phase modulation (CPM)

As discussed above that SPM is a major nonlinear limitation in single channel systems.

However, the intensity dependence of the refractive index also gives rise to cross-phase

modulation (CPM) when two or more optical pulses propagate simultaneously. CPM also

accompany with the SPM as the nonlinear refractive index seen by the optical beam not only

depends on the intensity of the beam itself but also the co-propagating beams [47]. The total

electric field of co-propagating beams can be written as,s,

E(x,y, t) = 1/2[E1e− jω01t +E2e− jω02t ]+ c.c (2.20)

here, E1 and E2 are the electric fields of first and second optical signals, respectively. ω01

and ω02 are the angular frequencies of first and second copropagating signals, respectively.

The nonlinear phase change can be written as,

Φ
ω01
NL (z) = γ[|E1|2 +2|E2|2] (2.21)

In Eq. 2.21 the first term on the right-hand side comes from SPM while the second term

is due to CPM. The strength of CPM increases with the increase in the number of channels
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and further enhances when the channel spacing is less. There is no energy transfer between

the channels due to CPM, which distinguishes it from the crosstalk process. Although,

the strength of spectral broadening caused by CPM is twice that of SPM as shown in Eq.

2.21. The strength of CPM also depends on the interaction length of the fibre. The longer

interaction length of the fibre result in a stronger CPM effect. Cross-phase modulation can

be used in different applications such as optical switching and pulse compression.

2.3.3 Four-wave mixing (FWM)

Four-wave mixing (FWM) also originates due to the nonlinear response of bound electrons

with the applied optical field. Like SPM, FWM also originates from third-order nonlinear

susceptibility (χ(3)). When three optical fields with carrier frequencies ω1, ω2 and ω3

copropagate simultaneously inside an optical fibre, a fourth field with frequency ω4 gets

generated. The relation between these three frequencies (ω1, ω2 and ω3) and newly generated

(ω4) can be written as ω4 = ω1 ±ω2 ±ω3. In a multichannel system when signals are in

phase with each other four-wave mixing can accumulate over long transmission distance

and become a prominent effect. Some common applications of four-wave mixing include

wavelength conversion, where data and probe signal are inserted in a nonlinear medium, and

as a result of FWM, the incoming signal is converted to another wavelength.

Table 2.1 shows the comparison of nonlinear effects such as SPM, CPM and FWM on

different characteristics in optical fibre.

2.4 Nonlinear scattering effects

Nonlinear scattering occurs due to inelastic scattering of a photon to a lower energy photon.

The scattered optical power transfers from one mode to the same or other modes at a different

frequency either in forward or backward direction. Nonlinear scattering depends critically
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Table 2.1 Comparison of nonlinear effects in optical fibres [48]

Characteristics
Nonlinear Phenomenon

SPM CPM FWM
1. Bit-rate Dependent Dependent Independent

2. Origin
Nonlinear

susceptibility
χ(3)

Nonlinear
susceptibility

χ(3)

Nonlinear
susceptibility

χ(3)

3. Effects of χ(3) Phase shift due to
pulse itself only

Phase shift is alone
due to copropagating

signals

New waves are
generated

4. Shape of broadening Symmetrical May be a symmetrical -

5. Energy transfer between
medium and optical pulse

No No No

6. Channel Spacing No effect
Increases on

decreasing the
spacing

Increases on
decreasing the

spacing

on the intensity of transmitted light and becomes significant above a certain threshold

level. Stimulated Raman scattering (SRS) and stimulated Brillouin scattering (SBS) are two

common types of nonlinear scattering effects described below,

2.4.1 Stimulated Raman Scattering (SRS)

Stimulated Raman scattering (SRS) is a nonlinear scattering process originates because of

a slight modulation of material’s refractive index due to incident light [49]. As a result of

SRS, one pump photon is converted into a lower energy photon and a new phonon having the

difference of energies is generated. The energy difference between pump photon (h̄ωP) and

slightly reduced energy photon (h̄ωS) and resultant optical phonon (h̄ωV ) can be written as,

h̄ωS = h̄ωP − h̄ωV (2.22)
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Spontaneous Raman scattering occurs at low illumination levels, where material’s

molecules are vibrating independently, and the scattered light is non-directional. How-

ever, when the intensity of incident light is increased the molecules of material can be

considered as an array of vibrating oscillators, and the generated photons are coherent in

phase. This result in a stronger stimulated Raman scattering process. Raman spectroscopy is

an important application of Raman scattering being applied in the life sciences, molecular

imaging of cells & tissues and medical diagnosis etc [50]. Raman scattering is also being

used for distributed temperature sensing [51]. Moreover, SRS gain can be found at a largely

shifted wavelength of the pump (13 THz of 100 nm at 1550 nm in silica); hence, it can

also be used for wavelength conversion [52]. Typically SBS has gain bandwidth in GHz

compared to SRS that has gain in THz. Agrawal, reported SBS gain spectrum of 40 THz over

a large range of frequencies with a broad peak gain near 13 THz [53]. However, Brillouin

gain spectrum of 12 GHz with three peaks at 10.0, 10.50, and 11.11 GHz is reported in [54].

2.4.2 Brillouin Scattering

Interaction of light and acoustic phonons is named after Leon Brillouin, who theoretically

predicted inelastic scattering of light in 1922 [55]. Brillouin Scattering is an important optical

effect that is caused by the nonlinearity of material, specifically related to acoustic phonons.

Due to electrostriction, incident light wave when travelling through a medium produces

mechanical vibrations in the medium and converts into scattered light and phonons [56].

Scattered light propagates in both forward and backward direction of the fibre, however,

forward Brillouin scattering is very weak in comparison with the backward scattering also

known as Stokes wave. The scattered light is down-shifted in frequency which is typical of

low intensity. However, due to the geometry of fibre, where light can travel tens of kilometres

without any significant attenuation, light scattering becomes an unavoidable effect. Detail

discussion of Brillouin scattering is presented in Chapter 3.
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2.5 Computational electromagnetics

With the development of optical fibres in the late 1960s, several methods were proposed to

analyse the propagation of electromagnetic waves in optical waveguides. The propagation of

EM waves can be mathematically described using Maxwell’s equations that form a system of

coupled first-order partial differential equations.

James Clerk Maxwell [1831-1879] was a Scottish physicist who first published the unified

theory of electricity and magnetism. It was the first time that he determined the speed of

electromagnetic (EM) waves propagation inside a vacuum and found that these waves travel

at the speed of 3.00×108 m/s. Maxwell put together the experimental laws (Ampere’s law,

Faraday’s law) into the form of four equations that are mentioned below. These equations can

be represented as both integral or differential form. Differential form of equations is mostly

used for solving analytical and numerical problem whereas, the integral form of Maxwell’s

equation describes the underlying physics laws. Differential form of Maxwell’s equation for

time-varying electromagnetic fields are:

∇ ·D = ρ (2.23)

∇ ·B = 0 (2.24)

∇×E =−∂B
∂ t

(2.25)

∇×H =
∂D
∂ t

+J (2.26)

where,

D = electric flux density (Cm−2)

B = magnetic flux density (Wbm−1)
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E = electric field intensity (V m−1)

H = magnetic field intensity (Am−1)

J = electric current density (Am−2)

ρ = electric charge density (Cm−3)

Equation 2.23 is the Gauss’s law of electrostatics and Eq. 2.24 is the Gauss’s law of

magnetostatics that are the result of Maxwell’s curl equation. Similarly, Eq. 2.25 and Eq.

2.26 are known as the Faraday’s law and Ampere’s law, respectively.

These Maxwell’s equation can be written in a system of four first-order differential

equations, a pair of coupled second order differential equations or a fourth order single

differential equation by a careful elimination of field components. In 1973, Dil and Blok

[57] introduced accurate numerical methods to solve the differential equation that is further

expanded by Vassell [58] a year later. With the development of fast digital computers,

numerical simulation and modelling have become an essential tool for understanding photonic

devices. Based on different numerical methods such as finite-element method [59], finite

difference frequency domain method [60], frequency difference time domain method and

integral-equation methods different software and in house codes are developed. Some of the

well-known numerical methods used to solve the electromagnetic waveguides are:

2.5.1 Finite Element Method (FEM)

Finite element method provides an approximate solution by the discretisation of a larger

problem into smaller sub-domain elements. In FEM, instead of solving a large domain in

one go, it is divided into sub-domains in a simplistic manner and solution for each element

is expressed in terms of values at elements nodes. Then these individual element solution

results in the global form of the original domain. A detailed discussion of FEM process is

given in Chapter 4.
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2.5.2 Finite Difference Frequency Domain (FDFD) Method

The FDFD is a useful numerical method to determine the steady-state time-harmonic solution

at a single frequency, as it does not need any time stepping like in case of the FDTD method.

FDFD method is beneficial for the waveguide and resonating problems that are associated

with the single frequency solution. However, to find out the frequency response with the

FDFD method, multiple simulations are required, one for each frequency. Hence, it limits

the resolution of spectral response to the limited number of computer simulations.

2.5.3 Finite Difference Time Domain (FDTD)

The FDTD is considered a simple numerical method, both conceptually and in terms of

implementation as the derivation of differential equations is considered as straight forward

[61]. The FDTD can solve the complicated problem, but it needs more computational

resources and memory. In terms of advantages, FDTD needs short development time, it

has ease of comprehension due to simple discretisation procedure, and no linear algebra of

matrix inversion is needed. However, on the disadvantages side, due to the orthogonal grid

structure of the FDTD accuracy is reduced on the curve boundaries.

2.6 Summary

In this chapter, the basic principles of optical fibre guidance and mode theory of cylindrical

waveguides are discussed. Some of the characteristics of optical fibres are also presented

that includes phase & group velocity and different types of dispersion effects. Moreover, the

nonlinear effects due to refractive index change such as self-phase modulation, cross-phase

modulation and four-wave mixing are discussed. A short description of two important

nonlinear scattering effects Raman scattering and Brillouin scattering is also provided.

Later in the chapter, some computational methods such as the finite element method, finite
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difference frequency domain method and frequency difference time domain method to solve

the electromagnetic wave propagation in optical waveguides are also discussed.



Chapter 3

Light Scattering and Acoustic Wave

Theory

3.1 Introduction

In nature, the light we see through our eyes is emitting directly from the source or just a

reflection. For example, light from the moon is only a reflected light emitted by the sun

and blue sky above us is the scattering of light due to molecules in the atmosphere. Light

scattering is also considered as an important phenomenon in optical waveguides that is mainly

due to density fluctuations, impurities and thermal particles motion in optical medium [62].

Light scattering can be of two types, linear or nonlinear scattering.

• Linear Scattering, where incident optical wave does not affect the medium’s optical

properties. Linear scattering can be categorised as elastic and inelastic scattering.

During elastic scattering such as Rayleigh scattering, the transmitted photon keeps

its energy, and no optical frequency shift occurs. In inelastic scattering, an energy

exchange occurs between incident optical wave and the material that results in a change
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in the frequency of the scattered wave. Raman scattering and spontaneous Brillouin

scattering are examples of inelastic linear scattering.

• Nonlinear Scattering, When dielectric materials are exposed to an external electric

field, a slight displacement in the ions of crystal lattice occurs known as electrostriction.

In nonlinear scattering, the properties of the material also change along with the

incident optical wave. Stimulated Brillouin scattering is an example of nonlinear

scattering that occurs due to electrostriction. Moreover, stimulated Raman scattering

is also an example of nonlinear scattering that occurs when molecules of medium

absorb pump photon, and as a result, it induces some vibrations or rotational states in

it. This result in the emission of a photon having frequency shifted from the molecule

frequency.

3.2 Brillouin Scattering

Brillouin scattering can occur even when the intensity of incident light is low, and medium

undergoes thermally induced fluctuations known as spontaneous Brillouin scattering [63].

These mechanical vibrations create variation in the medium’s density and modulate its

refractive index. Effectively, propagating light in medium creates an index grating that

scatters light in the backward and forward direction [64]. Above a specific input power the

Brillouin scattering process becomes stimulated and optical field generates a substantial

amount of phonons through two different mechanisms [65]. One is due to electrostriction, in

which medium density increases due to the presence of high optical intensity. The second

mechanism is absorption, in which heat is generated and the material expands in the presence

of high optical intensity.

SBS is a non-linear process which is directly linked to the input power. Two-way

interaction of electromagnetic and mechanical wave results in the generation of the acoustic
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wave in the guided material. The input optical power at which the back reflected (Stokes wave)

power increases rapidly or became comparable with input power is called the stimulated

Brillouin scattering threshold (SBST).

Fig. 3.1 Spontaneous and stimulated Brillouin scattering [66]

Figure 3.1 explains the spontaneous and stimulated Brillouin scattering phenomenon.

As it can be seen that, the back-scattered light (shown in blue) interferes with the forward

propagating light (pump) wave (shown in black) and creates an interference pattern along the

medium length, which is shown in red colour. This back reflected Stokes wave constructively

add up with the already back-reflected wave that had started the process of acoustic phonons

generation. This process continues until Stokes and acoustic wave gain significant amplitude.

Stimulated Brillouin scattering is a more efficient process compared to spontaneous Brillouin

scattering and can be exploited for many potential applications.

The physical process of SBS is schematically illustrated in Fig. 3.2. Where the blue arrow

shows the forward propagation of pump light and acoustic wave and backward propagation

is shown by the red arrow. The amplitudes of incident pump wave, scattered Stokes wave

and acoustic vibration are represented by Ep, Es and U respectively. The law of energy and
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(a) (b)

Fig. 3.2 Schematic representation of SBS process showing (a) pump light, probe light and (b)
acoustic wave.

momentum conversation must be followed, which results in the relation between angular

frequencies of pump photon (ωp), stokes photon (ωs) and the acoustic phonon (Ω).

ωs = ωp −Ω (3.1)

Similarly, for the corresponding wave vectors β⃗p, β⃗s and B⃗, the momentum conservation is

required.

β⃗s = β⃗p − B⃗ (3.2)

The respective wavelengths are obtained by

β⃗p =
2πn
λp

β⃗s =
2πn
λs

B⃗ =
2π

λB
=

Ω

Va
(3.3)

Fig. 3.3 Vector relation between Pump and Stokes waves
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From Fig. 3.3 the conservation of momentum with angle φ between the pump and the

Stokes wave can be written as

|B⃗|= |β⃗p|+ |β⃗s|−2|β⃗p||β⃗s|cosφ (3.4)

From Eqs. 3.3 and 3.4, the relations for the Brillouin frequency shift can be derived as

Ω =
2nVa

λp
sin(

φ

2
) (3.5)

where λp =
c

ωp
and Eq. 3.5 can be written as,

Ω = 2Va
ωpn

c
sin

φ

2
(3.6)

Here, βs ≈ βp = (ωpn)/c, approximation is used because of the small relative frequency

shift of the scattered phonon Ω ≪ ωp,s. As mentioned earlier that the Brillouin frequency

shift is highly dependent on the scattering angle φ . Hence, from Eq. 3.6 it can be stated

that when the angle φ = π , Brillouin shift has the maximum value and scattering is in the

backward direction. Similarly, when φ = 0, Brillouin shift approaches to zero (Ω → 0) and

has forward propagation direction.

SBS can occur in all states of matter like solids, liquids, gases and plasma. Different

factors play an important role in the selection of optimum material for SBS such as acoustic

frequency, Brillouin gain coefficient, acoustic wave decay time etc. [67]. Some other factors

such as phonon’s lifetime light absorption in the medium and pulse duration are also kept in

mind for the material selection.
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3.2.1 Applications of Brillouin Scattering

SBS is considered an important limitation in the power delivery for amplification and long-

haul propagation of optical signals in the fibres. Different methods are used to increase the

Brillouin threshold in optical fibres to increase the transmission power. These techniques

include reducing the fibre length, doping the fibre with different material that results in

Brillouin shift and exploitation of longitudinally varying temperature in high power active

devices [68]. Some attempts to reduce the overlap between optical and acoustic wave, or to

attenuate the acoustic wave by introducing propagation losses are also presented. However,

SBS can be exploited for some key applications such as Brillouin gain amplifiers, fibre ring

lasers, temperature and pressure sensors.

3.2.2 Radio-over-Fibre technology

Radio over fibre (RoF) is the transmission of radio signals over an optical fibre, where,

data can be transmitted over a longer distance without significant degradation. However,

higher transmission power is required for the access networks in which data is usually

distributed to many subscribers. Services such as 3G/4G cellular communication, wireless

data transmission in WiMAX (Worldwide interoperability for microwave access) or WLAN

(Wireless local area network) are becoming high bandwidth demanding applications [69].

Such distributed RoF systems are based on passive optical networks (PON) with many optical

splitting ratios (32x to 128x). This large splitting ratio needs high input power such that each

subscriber get the optimum power at the receiver end. However, SBS has a significant impact

on the optical power enhancement, and it deteriorates the transmitted signal, resulting in a

low quality of the received signal. Introduction of high SBS threshold fibre is very beneficial

in improving the performance and the cost of the fibre to the home (FTTH) access networks

[70, 71]. Error vector magnitude (EVM) is used to check the performance of radio over fibre

links. EVM is improved as we increase the input power in an optical link. However, after
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a certain level SBS starts to deteriorate the quality of the signal. A significantly improved

EVM has been discussed in [66], by using high SBST fibre in a network having 32x splitting

ratio and 20 km length with a maximum achieved transmission power of +17 dBm.

3.2.3 SBS based fibre optic sensors

Stimulated Brillouin is a light scattering process that occurs due to the sound waves generated

by propagating pressure inside optical fibre also known as density waves [72]. Sound waves

have properties of mechanical waves and sensitive to temperature and strain, hence, SBS

can be used to design fibre based sensors for the measurement of temperature and strain.

The SBS based sensors can work as point sensor, quasi-distributed sensors [73]. Figure

3.4, shows a general configuration of fibre based sensors. The point sensors are used where

Fig. 3.4 Schematic diagram of SBS-based sensing setup

the point of interest is at one location. To form a point sensor, two similar optical pulses

having frequency difference equals to the Brillouin resonance are transmitted in the opposite

direction in a fibre. The overlapping regions of both pulses form a transient Brillouin grating

(TBG) which depends on the length of pulse. The lifetime of the transient Brillouin grating is

very small similar to the phonon lifetime (10 ns). The spectrum of the grating is the resultant

of convolution between Brillouin gain spectrum and pulse spectrum. The Brillouin grating

can be probed using a 3rd pulse transmitted orthogonal to the fibre axis. The drawback with

single point sensors is that it is hard to acquire a series of information. In contrast, distributed

sensing provides the measurement along the entire length of the fibre. Distributed sensing

using fibre optic is a unique technique compared with other electrical cables because of
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flexibility, ruggedness and can be read through time domain reflectometer. Similarly, a single

optical fibre is used to measure at many points replacing thousands of single point sensors

which reduces calibration and maintenance cost and reduction in installations. Distributed

sensing technique involves the analysis of backscattered light signal created at different

points along the fibre length. Distributed sensing in the entire fibre is achieved by varying

the relative delay between two pump pulses. This result in a large frequency shift having

an order of 40-50 GHz that increases the measurement accuracy of strain and temperature

compared with the Brillouin gain measurement technique.

Sensing fibre is integrated with the installations (like pipelines, structures or cables). One

of the example using SBS based distributed fibre sensors is the monitoring of temperature in

a large dam in Switzerland. The distributed sensing fibre was installed during the concrete

pouring process [74]. Temperature variations during the chemical process can be used to find

out the microcracks and concrete density.

3.2.4 SBS in Raman-Pumped fibres

Raman amplifiers use optical fibre as an active medium and widely used in the communication

systems. The distributed nature of the Raman amplifier has a high signal to noise ratio

and transmission bandwidth compared with erbium-doped fibre amplifiers (EDFA) [75].

Stimulated Raman scattering (SRS) has a similar phenomenon as of stimulated Brillouin

scattering. In Brillouin scattering light interacts with acoustic phonons whereas in Raman

scattering, light interacts with photons. It is due to the oscillation frequency of neighbouring

crystal planes that lies in the infrared region. In Raman scattering process dispersion curve of

the optical photons is flat near the centre [66]. There is a slight dependence of angle between

the input wave vector and the scattered light wave vector. Whereas, in the SBS process

Brillouin gain has a high dependence on the angle between the pump and scattered light

wave. This allows Raman scattering to be equally efficient in both forward and backward
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direction. However, the frequency offset of Raman scattering is much higher compared

with the Brillouin scattering. A much higher gain (20dB) can be achieved in the Raman

amplification process. But the amplified signal can approach to the SBS threshold especially

in forward Raman amplification. In Silica fibres, Brillouin gain has intrinsic bandwidth of

typically 50-100 MHz and Brillouin frequency shift of 10-20 GHz. The Raman amplifier

has a much higher bandwidth compared with the Brillouin frequency shift. This result

in the amplification of not only the pump signal but also the Stokes signal. Therefore,

the input signal will experience amplification from both stimulated Raman scattering and

SBS. Hence gain of Raman amplification become saturated due to SBS threshold [76].

Different techniques are proposed to minimise the effect of SBS on Raman gain. Multimode

semiconductor lasers with a linewidth of a few hundred megahertz can be used to reduce the

Brillouin gain. The problem with this technique is that semiconductor lasers have limited

output power which limits the maximum achievable Raman gain. Another approach could be

the use of ultrashort pump pulses in the backward configuration [77]. This will suppress SBS

if the pulse duration is much shorter than the inverse Brillouin linewidth. But the problem

with this technique is that Raman gain is dependent on the average pump power and pulsed

pump mode of operation results in the reduced laser power.

3.2.5 Slow light or optical delay lines using SBS

SBS is one of the important techniques to generate slow light or optical delay lines, that is a

major research interest in recent years. Group refractive index of the medium is increased

ng ≫ 1 by the modification in the dispersion of optical waveguide. This result in the group

velocity of the propagating light to be significantly lower than the phase velocity. Narrow

Spectral resonance of medium caused by the SBS process modifies the refractive index of the

medium. These narrow spectral resonances are responsible for changing the group velocity
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of the pulse signal. Equation 3.7 shows the pulse delay ∆Tm due to the mth acoustic mode

resonance,

∆Tm =
γmPpL
2πωm

(3.7)

Here, a pulse is delayed relative to its propagation time when (γm) is positive (gain) and

∆Tm > 0 for Stokes pulse. Similarly, for anti-Stokes pulse above γm < 0, fast light is realised

and the pulse is attenuated. The resonant caused by SBS process has the advantage of

controlling the pulse duration over other pulse delaying techniques like coherent population

oscillation or electromagnetically induced transparency.

Slow light or delay lines using SBS have important applications in telecommunication

equipment and moderate pump power sources because of its standard telecom operating

windows and room temperature operation [78]. Similarly, optical delay lines can be used

for signal processing and synchronisation, jitter compensation and microwave applications.

SBS based delay lines that can control pump signal were demonstrated in 2005, where a 2

ns pulses at (λ = 1.55 µm) was stored for up to 12 ns using a highly non-linear fibre [79].

To introduce the optical delay in an optical signal, a counter-propagating pump signal with

a different wavelength is transmitted inside the optical fibre. If the wavelength difference

between the pump signal is equal to SBS acoustic frequency, variation in the refractive index

is obtained that slows the transmitted light. However, due to SBS gain, the signal strength

also gets increased. Later on, many techniques were proposed that includes direct modulation

of pump laser with the noise signal that results in the uniform SBS gain spectrum of 325

MHz [80]. Similarly, in [81], SBS spectrum of 12 GHz was achieved through which higher

transmission data rate signal (∼10 Gbps) can be delayed. Overall, significant improvements

are demonstrated that resulted in an error-free optical delay in high data rate transmission

systems.
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3.3 Acoustic wave theory

To understand stimulated Brillouin scattering in detail, understanding of acoustic waves is

essential. This section provides some theoretical background of acoustic wave propagation

and some literature review.

Sound waves are mechanical waves that are generated by the periodic vibrations in the

medium. These mechanical vibrations transfer energy from one end to another end of the

medium. In a medium, acoustic waves are generated by the time-varying displacement of

atoms or particles from their equilibrium position. This change produces a restoring force

that introduces the oscillatory motion in the medium. Acoustic waves propagate in a medium

by the displacement of particles along the transverse or longitudinal direction.

Acoustic modes in waveguides are of different nature that includes shear, longitudinal,

bending, torsional and flexural modes [82]. A waveguide can support these different modes

by ensuring one of the velocities either longitudinal or shear in the cladding is higher than

that in the core. Acoustic waves undergo different material properties that are defined as

elasticity, density, Poisson’s ratio and Young’s modulus [83]. Acoustic wave propagation is

expressed in terms of tensors or their interrelation. As the geometry of most of the solids is

not purely symmetric; hence the formulation to represent the acoustic waves get complicated.

However, for the sake of simplicity, it can be considered that the acoustic waves are either

pure shear or longitudinal type and their corresponding tensor quantities such as stress, strain,

elasticity particle velocity and particle displacement can be expressed in one-dimensional

form. One dimensional representation of acoustic wave propagation is discussed in this

chapter. However, later on, 2D formulation in a uniform waveguide is also presented. It

should be noted that the guided wave solutions are assumed to have a dependence on exp− jkz,

where z is the direction of wave propagation and k is considered as acoustic propagation

constant.
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3.4 Acoustic waves in nonpizoelectric materials

Piezoelectric materials have the ability to generate an electric current in response to applied

mechanical stress. In order to avoid the current due to stress and strain in the material,

nonpiezoelctric materials are used for the study of acoustic wave propagation. Shear and

longitudinal are among the most important types of acoustic waves [84]. In the case of

shear waves, the motion of the particles is perpendicular (transverse) to the direction of

wave propagation as shown in Fig. 3.5 (a). Similarly, in the case of longitudinal waves,

the direction of medium particles is in the direction of wave propagation. This motion of

particles results in the medium’s expansion and contraction in the z-direction. Figure 3.5

(a)

(b)

Fig. 3.5 (a) Shear and (b) Longitudinal waves propagation [85]

(b) shows the rarefaction or compression that occurs due to the longitudinal waves. For the

shear waves, the particles do not displace equally along the cross-section as in longitudinal
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waves, and this results in the density variation in the transverse plane. However, for the sake

of simplicity, the density variation in the shear wave propagation is neglected, and it can be

considered that there is no density or volume variation.

Generally, an acoustic wave consists of both shear and longitudinal waves while propa-

gating in a medium. Here, propagation is considered only along one axis and formulation for

longitudinal waves is derived. Similarly, the formulation for shear waves will have similar

results.

3.4.1 One dimensional stress

Stress and strain are highly related to the propagation of acoustic waves. Stress (T) is the

applied force per unit area whereas, the strain is the response or the change in the medium

with the application of stress. Stress causes medium to deform, and the strain is known as the

amount of deformation caused by the applied stress divided by the original dimensions of

the medium. In the perspective of acoustic wave propagation, the strain and its effects are

considered in the one dimension which can be either in the form of compression or rarefaction.

For longitudinal waves in the material of length, L and direction of wave propagation z plane,

applied stress on the left-hand side is taken as negative and on the right-hand side it is taken

as positive as shown in Fig. 3.6 (a). Similarly, for the transverse wave, the applied stress is

taken as positive in the +y direction or +x direction as shown in Fig. 3.6 (b). The change

in the length on each side of the slab when the external stress is applied is taken as L(∂T
∂ z ).

Hence, the force required to move a unit volume of the mass is defined as ∂T
∂ z .

3.4.2 One dimensional displacement and strain

Due to applied force in the z-plane as shown in Fig. 3.5 (b) the longitudinal stress introduces

a change in the z-direction by an amount of u and in some other direction z’ after a distance

L, the displacement is change to u+δ u. Using Taylor expansion, the first order change in the
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(a) (b)

Fig. 3.6 (a) Stress in the longitudinal direction and (b) stress in the transverse direction for a
slab of infinite length L [86]

u in a unit length of L can be expressed as

δu = L
∂u
∂ z

= LS (3.8)

and the fractional extension also known as strain which can be defined as,

S =
∂u
∂ z

(3.9)

Here, u is the displacement, and it is a function of z. If the material undergoes in a constant

displacement u throughout all material then it is known as the bulk translation that is out of

the discussion. Similarly, for the transverse displacement, Eq. 3.9 will remain same but u is

the transverse displacement (x or y-direction). From the Fig. 3.6 (b) it can be seen that there

is no area change occur due to the shear motion of medium particles. Whereas, in case of

longitudinal motion shown in Fig. 3.6 (a) the volume change is A∂u where, A is the area of

x, y face. Hence, the relative volume change can be written as ∂
∨∨ = A∂u

LA = ∂u
L = S. From
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the Hook’s law, a one-dimensional form of stress and strain relation can be written as,

T =CS (3.10)

Equation 3.10 represents the one dimensional model for shear and longitudinal wave propa-

gation. Here C is the material elastic constant, T and S are the stress and strain, respectively.

3.4.3 Equation of motion

From the Newton’s second law of motion, force applied per unit area of the material L(∂T
∂ z )

can be written as,

F = ma = ρ
∨

v̇

⇒ F∨ = ρ v̇

⇒ F
∂x∂y∂ z

= ρ v̇ (3.11)

⇒ T
∂ z

= ρ v̇ [as T =
F

∂x∂y
]

there f ore
∂T
∂ z

= ρ v̇ = ρ ü

Here, v is the velocity, u is the displacement,
∨

is the volume, m is the mass, ρ is the

density, and a is the acceleration and (·) denotes time derivative.
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3.5 Tensor notation and constitutive relations

One dimensional shear and longitudinal wave interaction is discussed in this section, where,

the wave propagation is considered along a symmetry axis of a crystal. For quantitative

calculations, Hook’s law, equation of motion and the elastic parameters of the crystal needed

to be explained and then reduce them to one-dimensional term. In the subsection, a tensor

notation is introduced, and for the simplification of the equations, a reduced subscript notation

is also introduced.

3.5.1 Displacement and strain relation

The displacement vector u consists of three ux, uy and uz components. At a given position,

these three components may be function of Cartesian components x, y, z. Hence, Strain (S) is

a tensor that consist of nine components with the variation of ui, where, i is the Cartesian

coordinate. For example,

Sxx =
∂ux

∂x
(3.12)

and

Sxy =
1
2

[
∂ux
∂y +

∂uy
∂x

]
(3.13)

where, Sxy = Syx due to symmetry notation and similar forms can be written for Sxx, Sxy, Sxz,

Syx, Syz, Szx, Szy and Szz. Moreover, just one component Sxx or Szz to represent longitudinal

strain and for the shear strain Sxy is sufficient.

3.5.2 Stress in a rectangular cube

Shear Stress : Tzx =
Fx

δxδy
(3.14)
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Fig. 3.7 Stress components in a rectangular cube [83].

Shear Stress : Tzy =
Fy

δxδy
(3.15)

and,

Longitudinal Stress : Tzz =
Fz

δxδy
(3.16)

In above tensor T, the first subscript shows the coordinate axis perpendicular to the

shaded plain and the second subscript shows the axis parallel to the traction force. There

are total nine stress components in which three components Txx, Tyy and Tzz are related to

longitudinal stress and other six components Txy = Tyx, Txz = Tzx and Tyz = Tzy are related to

shear stress. These shear stress components are shown in equal in pairs because the internal

stresses in the cube does not raise any net rotation. This result in the reduction of nine

components into six components as mentioned below,
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T =


Txx Txy Txz

Tyx Tyy Tyz

Tzx Tzy Tzz

=


T1 T6 T5

T6 T2 T4

T5 T4 T3

=



T1

T2

T3

T4

T5

T6


(3.17)

The net resultant force per unit volume in the z-direction of an infinitesimal cube can be

written as,

fz =
∂Tzx

∂x
+

∂Tzy

∂y
+

∂Tzz

∂ z
(3.18)

Using equation of motion described in Section 3.4.3, Eq. 3.18 can be written as,

ρ üz = ρ v̇z =
∂Tzx

∂x
+

∂Tzy

∂y
+

∂Tzz

∂ z
(3.19)

Similarly, equations for other components of u and v can be calculated. The full tensor

form of Eq. 3.19 in the z-direction can be written as

ρ
∂ 2uz

∂ t2 =
∂Tzx

∂x
+

∂Tzy

∂y
+

∂Tzz

∂ z
(3.20)

and in the form of reduced notation Eq. 3.20 can be written as,

ρ
∂ 2uz

∂ t2 =
∂T5

∂x
+

∂T4

∂y
+

∂T3

∂ z
(3.21)

In a similar way, the relations of equation of motions in the x and y-direction can be

derived. Moreover, an often used symbolic notation is also expressed below,
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∇ ·T = x̂
(

∂Txx
∂x +

∂Txy
∂y + ∂Txz

∂ z

)
+ ŷ
(

∂Tyx
∂x +

∂Tyy
∂y +

∂Tyz
∂ z

)
+ ẑ
(

∂Tzx
∂x +

∂Tzy
∂y + ∂Tzz

∂ z

)
(3.22)

and in a compact form Eq. 3.22 can be written as,

(∇ ·T)i = ∑
i

∂Ti j

∂u j
i, j = x,y,z. (3.23)

and using Cartesian coordinates, the translation equation of motion can be written as,

∂Ti j

∂u j
= ρ

∂ 2ui

∂ t2 −Fi (3.24)

where, Fi is the applied external force, which is considered zero for this case.

3.5.3 Elasticity coefficients and Hook’s law

Hooks’s law states that the stress and strain are proportional to each other when there is a small

distortion or displacement occurs. Hook’s law states that the stress and strain are proportional

to each other when there is a small distortion or displacement occurs and material remains in

elastic regime. General representation of Hook’s law for a two dimensional structure can be

written as,

Ti j =Ci jklSkl (3.25)

Here, Ti j and Skl are the stress, and strain tensors and both have nine elements each. Whereas,

the Ci jkl is the stiffness matrix and consist of 81 (9x9) elements. When symmetry conditions

are applied, the above mentioned stiffness matrix can be reduced to 36 elements. Similarly,

the independent elements of stress and strain matrix can be reduced to 6 each after exploiting

the symmetry conditions. By applying symmetry conditions Equation 3.25 can be expressed
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as,

[T ] = [C][S] (3.26)

the subscripts i and j used in Equation 3.25 represents one of the three axes of interest

in tensor elements. Whereas, k and l are floating subscripts. Stress Ti j, and strain Skl are

symmetric in nature that also reflects in the stiffness tensor, Ci jkl and results in a symmetric

matrix. Stiffness tensor satisfies the two symmetry conditions that are mentioned below,

Reciprocity : Ci jkl =Ckli j (3.27)

Lack of rotation : Ci jkl =C jikl =Ci jlk =C jilk (3.28)

These symmetry conditions result in the reduction of 81 independent elements in the fourth

order of anisotropic crystal to only 21 independent elements. Similarly, exploiting this

symmetry condition, independent constants can be reduced to only 2 in an isotropic crystal.

These two independent elements are the Lame constants (λ and µ) [87].

3.5.4 Reduced subscript representation

The reduced subscript notation is used to represent the stress, strain and stiffness notations.

The longer notations like Skl and Ti j are replaced with the SR and TR respectively. Table 3.1

shows the reduced notation used for stress and strain tensor elements.

Similarly, Table 3.2 shows the reduced subscript notation used for stiffness tensor ele-

ments.

Based on the reduced stress and strain tensor notation from Table 3.1 and reduced stiffness

notation from Table 3.2, Eq. 3.25 can be written as,

TR =CIJSR (3.29)
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Table 3.1 Reduced subscript notation for stress and strain tensor elements [85]

Tensor Element All Elements Connotations
Stress: TR T1 (where R=1 = Txx) Longitudinal stress in the x-direction

T2 (where R=2 = Tyy) Longitudinal stress in the y-direction
T3 (where R=3 = Tzz) Longitudinal stress in the z-direction
T4 (where R=4 = Tyz) Transverse stress about the x-axis
T5 (where R=5 = Tzx) Transverse stress about the y-axis
T6 (where R=6 = Txy) Transverse stress about the z-axis

Strain: SR S1 (where R=1 = Sxx) Longitudinal strain in the x-direction
S2 (where R=2 = Syy) Longitudinal strain in the y-direction
S3 (where R=3 = Szz) Longitudinal strain in the z-direction

S4 (where R=4 = 2Syz)
Transverse strain: motion about x-axis,

shear in the y and z-direction

S5 (where R=5 = 2Szx)
Transverse strain: motion about y-axis,

shear in the x and z-direction

S6 (where R=6 = 2Sxy)
Transverse strain: motion about z-axis,

shear in the x and y-direction

Table 3.2 Reduced subscript notation for stiffness tensor elements [85]

Standard
notation

Reduced
notation Connotations

Ci jkl CIJ
The ratio of the Ith stress component

to the Jth strain component

C1111 C11
The longitudinal elastic constant relating longitudinal

stress and strain elements in the x-direction

C2323 C44
The shear elastic constant relating shear stress and

strain elements in the 4-direction (motion about x-axis)
C1122 =C2211 C12 =C21 CIJ =CJI
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Similarly, the matrix representation of Equation 3.29 can be written as,



T1

T2

T3

T4

T5

T6


=



C11 C12 C13 C14 C15 C16

C21 C22 C23 C24 C25 C26

C31 C32 C33 C34 C35 C36

C41 C42 C43 C44 C45 C46

C51 C52 C53 C54 C55 C56

C61 C62 C63 C64 C65 C66





S1

S2

S3

S4

S5

S6


(3.30)

By using reduced subscript notation in Equation 3.30 the original stiffness matrix having

dimension of 9x9 elements is reduced to 6x6 matrix. Similarly, it can be seen that all elements

of stiffness matrix are not independent as, CIJ =CJI . This results in only 21 independent

elements of [C] matrix. Moreover, due to presence of symmetry in many crystals, we can

further reduce independent elements. For example a cubic symmetry crystal have following

relationships between its elements in matrix [C],

C11 =C22 =C33

C12 =C21 =C13 =C31 =C23 =C32

C14 =C15 =C16 = 0

C24 =C25 =C26 = 0

C34 =C35 =C36 = 0

(3.31)

From the set of equations shown in Equation 3.31, it can be observed that the tensor

matrix for a cubic symmetry crystal only has three independent components that are C11,

C12 and C44. The resultant relation between these independent components for an isotropic

material is shown in Equation 3.32.

C11 −C12 = 2C44 (3.32)
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3.5.5 Relation between wave velocity and Lame constant in isotropic

material

From the Equation 3.32, it can be seen that the number of independent elements in isotropic

material are reduced to two. These two elements are known as λ and µ or together as Lame

constants. Lame constants are used to determine the total energy stored in a system and can

also be related [88] to the elastic constants as,

C11 =C22 =C33 = λ +µ (3.33)

C12 =C21 =C13 =C31 =C23 =C32 = λ (3.34)

C44 =C55 =C66 = µ =
C11 −C12

2
(3.35)

As the other terms in stiffness matrix are zero, so the updated stiffness matrix in terms of

lame constants can be written as,



λ +2µ λ λ 0 0 0

λ λ +2µ λ 0 0 0

λ λ λ +2µ 0 0 0

0 0 0 µ 0 0

0 0 0 0 µ 0

0 0 0 0 0 µ


(3.36)

Generally, the elastic coefficients and wave velocity have the following relation,

V =

√
Ci j

ρ
(3.37)

here Ci j, ρ and V are the material elastic constant, material density and velocity of sound in

the material, respectively. Equation 3.37 can have different forms depending upon the type
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of wave velocity is to be determined. The relationship between the longitudinal and shear

velocities with the lame constants and the elastic coefficients in a medium is written as,

VL

VS
=

√
C11

C44
=

√
2+

λ

µ
(3.38)

for longitudinal velocity,

VL =

√
C11

ρ
(3.39)

similarly for shear velocity,

VS =

√
C44

ρ
(3.40)

Poisson’s ratio and Young modulus are used to calculate the longitudinal velocity in a material.

Similarly, for the transverse wave velocity shear modulus is used. But for the convenience

one can use the lame constants to find these velocities.

• Poisson’s ratio (v):

Poisson’s ratio is a dimensionless quantity. It is a ratio between shear or radial strain to

longitudinal or axial strain.

• Young’s modulus (E):

Young’s modulus is the measurements of stiffness in an isotropic material. Also known

as elastic modulus, Young’s modulus gives the relation between the applied stress and

corresponding strain in the material. Its unit is Pascal.

• Bulk modulus (K): The bulk modulus is the measure of incompressibility of a material

under the applied external pressure. Its unit is also Pascal.



3.6 Modes of acoustic wave propagation 55

3.6 Modes of acoustic wave propagation

As discussed earlier that the acoustic wave travels due to the compression and rarefaction of

air molecules. However, in solids, the particles can move in other directions as well. Hence,

depending on the particle movements the acoustic waves can be classified in different types.

These propagation modes are often described as “wave modes”. There are four different

types of wave modes that solid medium can support. These acoustic modes are transverse

(shear), longitudinal, surface waves and the fourth one is in thin materials called plate waves.

The most important for our study are the shear waves or transverse waves and longitudinal

waves.

Fig. 3.8 Particles motion and direction for longitudinal and shear waves propagation [85]

The surface waves also known as Rayleigh waves travel along the surface of the thick

solid material with a penetration depth of one wavelength [89]. Surface waves are generated

by the combination of the shear and longitudinal waves. The movement of surface waves

is like elliptical orbit motion, where the major elliptical axis is along the perpendicular

to the solid surface. Surface waves are generated when the longitudinal waves intersect a

surface around the second critical angle having velocity around 0.87 to 0.95 of the transverse
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waves [89]. Surface waves gain importance due to their sensitivity to the surface features

and defects. This feature of surface ways results in their use in many applications like

ultrasonography that inspects the areas that other waves can not reach. Plate waves are quite

similar to a surface wave. The significant difference between plate waves and surface waves

is that plate waves can be generated in materials that have a thickness of a few wavelengths.

Plate waves are divided into two more types, Lamb and Love waves. Lamb waves propagate

parallel to the surface waves throughout the material thickness. Whereas, Love waves have

transverse motion (movement is in perpendicular to the direction of travel. As Lamb waves

can travel several meters inside the material, so they can be used to scan wires, tubes and

plates etc.

3.7 Two dimensional (2D) acoustic waveguide

The main objective is to analyse acoustic-optical interaction in two-dimensional waveguides.

This section provides acoustic wave propagation in a two-dimensional optical waveguide.

As mentioned earlier, that the propagation of acoustic waves inside a waveguide is pretty

complex. The acoustic wave propagation properties can be characterised by the density of

the material, Poisson’s ratio, elasticity and Young’s modulus. During the propagation of an

acoustic wave, the material particles displace either in the transverse or in the longitudinal

plane, as shown in Fig. 3.8. To guide the acoustic wave in a waveguide at least one of the

longitudinal or shear velocities in the cladding must be higher than the core.

In the case of a two-dimensional waveguide, two materials having different acoustic

velocities are used in core and cladding. To guide the acoustic wave inside the core it must

have a higher acoustic index (lower velocity) in the core than the cladding so that the acoustic

wave can be guided. This can be achieved by doping another material such as Germanium

oxide (GeO2) in silica that increases the acoustic index of the core and also ensuring that the
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optical refractive index of the core also remains higher. Figure 3.9 shows two different 2D

waveguides, where the direction of wave propagation is in the z-direction.

(a) (b)

Fig. 3.9 (a) Circular and (b) rectangular two dimensional optical waveguides with the direction
of propagation along z-axis

The acoustic wave propagation along the z-direction is associated with the molecular

displacement, and for a time-harmonic acoustic wave the displacement field, Ui (in i=x, y

and z directions) may be written as in Eq. (3.41) [90];

Ui = u(ux,uy, juz)exp j(ωat−kaz) (3.41)

Here, ωa, is the angular acoustic frequency, ka, is the acoustic propagation constant and ux,

uy, uz are particle displacement vectors along the x, y and z directions, respectively. Similarly,

the deformation in an acoustically vibrating body is described by the strain field, S, which is

related to the partial derivative of the particle displacements, u and can be written as in Eq.

(3.42) [83];

S = ∇u (3.42)

The elastic restoring force can be written in terms of stress field and in a freely vibrating

medium the inertial elastic restoring forces are related to translation equation of motion and

given as [91, 83];
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∇ ·T = ρ
∂ 2u
∂ t2 (3.43)

here, ρ is the material density. Solution of the aforementioned equation depends on the

accurate implication of the boundary condition,

u · n̂ = 0; n̂ is the unit vector (3.44)

and a constraint equation which describes that the rotational energy of the propagating wave

is zero.

∇×u = 0 (3.45)

Strain and stress are linearly proportional according to Hooke’s Law and can be written as;

Ti j = ci jklSkl; i, j,k, l = x,y,z (3.46)

Here, ci jkl are the microscopic spring constants and termed as elastic stiffness constants.

The matrix form of the stiffness tensors can be written as

[T ] = [c][S] (3.47)

In finite element method (FEM) [92], a solid structure having displacement field, u, can

be written with the help of vector nodal values of the displacement field U and interpolation

shape function [N], and it gives ease to carry out integration and derivation over the elements.

This results,

u = [N]U (3.48)

here [N] is the interpolation matrix of shape function
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u =


ux

uy

juz

=


N1 0 0 N2 0 0 N3 0 0

0 N1 0 0 N2 0 0 N3 0

0 0 N1 0 0 N2 0 0 N3





ux1

uy1

juz1

ux2

uy2

juz2

ux3

uy3

juz3



(3.49)

The general system of equation that is associated with the wave propagation can be written

as,

([A]−ω
2[B])U = F (3.50)

Where [A] and [B] are the stiffness matrix related to strain energy and mass matrix

associated with the kinetic energy respectively, these matrices are usually generated for a

given propagation constant, k. Similarly, nodal values of the applied forces are represented

by the column vectors F. The solution of the above generalised equation results in the

eigenvalue as ω2, where ω is the acoustic angular frequency. Similarly, eigenvector U is

the displacement vector. For a given value of propagation constant, k, and its corresponding

output, ω , the phase velocity of the acoustic wave velocity can be calculated by using Eq.

3.51.

v = ω/k (3.51)

Using above theoretical study, a numerically efficient computer code has been developed by

using the sparse matrix solver along with the versatile mesh generation, that can be used to

obtain the acoustic modal solution for the optical waveguides. To implement the FEM for the
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two-dimensional analysis, the waveguide is meshed using the first order triangular element.

Then the magnetic and acoustics field components of each element are calculated. Chapter 4

discusses the detail implementation of acoustic modal solution using finite element method.

3.8 Summary

In this chapter, the study of Brillouin scattering and its applications are discussed. Basic

acoustic theory and reduced form of stress and strain notations are also presented that are

used for the governing equations of the acoustic wave propagation. Basic concepts of the

acoustically vibrating body like Hook’s law and equation of motion are also presented in this

chapter. These basic concepts are used to find the governing wave equation, how the particle

displacement occurs in a two-dimensional waveguide. Similarly, different types of acoustic

waves, mainly, shear and longitudinal waves and their propagation in the waveguides are also

discussed.



Chapter 4

Finite Element Method and Variational

Approach

4.1 Introduction

Modelling of photonic devices reduces the time and cost in the process of designing, fabrica-

tion, testing and possible redesigning. With the availability of advanced computer resources,

many computer-based programmes for the modelling of complex photonic devices are being

developed. These methods can be classified based on their complexity, processing time and

efficiency. However, every method has some pros and cons, and some compromises and

assumptions are needed [93].

The Finite Element Method (FEM) is one the most important and accurate numerical

methods to solve Maxwell’s equation for an electromagnetic wave propagating in photonic

devices. A significant advantage of the FEM over other numerical techniques is its ability to

solve any complex geometrical shape domain. The finite element method is a step-by-step

process that is briefly listed below,
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• Discretisation of the domain: A large complex domain can be considered as the

integration of small and simple sub-domains of different shapes like rectangles and

triangles named as finite elements.

• Interpolation function: After dividing the large domain into small sub-domains,

nodes are assigned to each triangle and the interpolation functions are selected to

describe the field variable’s variation over the elements.

• Finding the properties of element: After the selection of the element shape and the

polynomial order for the interpolation function, a system of equations in the matrix

form is generated from the individual elements. This results in a global sparse matrix

which is further solved to obtain the modal solution.

4.1.1 Discretisation of computational domain

A large computational domain where FEM needs to be applied is subdivided into the smaller

domains also known as elements. These elements are chosen such that together they closely

match the shape of the entire computational domain. The elements size and shape can be the

same or different depending on the structure shape and variation of the electromagnetic field.

These elements together construct the mesh that can be regular or irregular as shown in Fig.

4.1.

Irregular mesh has much better accuracy and efficiency in domain discretisation compared

to regular mesh as the element size and shape varies in the structure. Moreover, for better

utilisation of computational resources, finer elements can be used in the area of interest

such as where field changes rapidly, thin and narrow pointed areas and coarse elements in

rest of the domain such as far away from the core. Mesh elements can be of different type

such as commonly used straight edge, curvilinear elements, infinite and edge elements. The

straight edge elements consist of triangles, rectangular and quadrilaterals that are suitable
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for geometries having straight boundaries. Curvilinear or iso-parametric elements are more

suitable for the geometries having curved surfaces as the elements can match the curved

surfaces perfectly as elements have curvature on the edges. Infinite mesh elements are useful

for an unbounded or open space problem. In the edge elements, the field is continuous along

the edges compared to the nodes in other types of elements.

(a)

(b)

Fig. 4.1 (a) Regular and (b) irregular mesh used for the discretisation of computational
domain [94].
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4.1.2 Interpolation or shape function

The interpolation or shape function is used to approximate the unknown field values in the

element through its values at the vertices of these elements. Polynomial functions are used

as shape functions as they are much easier to solve both algebraically and computationally.

Moreover, also a continuous function over the computational domain can also be approx-

imated by polynomial functions. However, the selected polynomial function must have a

continuity not only within but also across the boundaries of each element. Otherwise, the

polynomial functions cannot be used for variational formulation and electromagnetic field

cannot be calculated by the addition of individual element contribution. The shape function

of an element must have the same number of terms as the number of nodes in an element.

This can also be graphically visualised in Fig. 4.2 by using Pascal triangular structure. The

figure shows the relationship between the number of terms and number of nodes in a 2D

meshing systems.

Fig. 4.2 Relation between number of polynomial terms and number of nodes for a shape
function in an element represented by Pascal triangle [95]

Lagrange interpolation polynomials are used to construct the polynomial functions for

the elements having different shape and size. For a linear 2D triangular element the Lagrange
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polynomials Le
i are given by Eq. 4.1

Le
i =

1
2Ae [a

e
i +be

i x+ ce
i y] (4.1)

Here, Ae is the area of a 2D triangular element, ae
i , be

i and ce
i are the constants coefficients

and subscript i is used to represent the element number.

Fig. 4.3 An arbitrary Q point having coordinates (x,y) taken inside the linear triangular
element for a two dimensional domain discretisation.

Figure 4.3 shows an arbitrary Q point having coordinates (x,y) inside a 2D triangular

element. The Q point divides the triangular element further into three more triangles each

having area of A1, A2 and A3

The area of sub triangle A1 is defined by the points Q(x,y) and node 1 and node 2.

A1 =
1
2

∣∣∣∣∣∣∣∣∣∣
1 x y

1 x2 y2

1 x3 y3

∣∣∣∣∣∣∣∣∣∣
=

1
2
[(x2y3 − x3y2)+ x(y3 − y2)+ y(x3 − x2)] (4.2)
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
Le

1

Le
2

Le
3

=
1
Ae


A1

A2

A3

=
1

2Ae


ae

1 be
1 ce

1

ae
2 be

2 ce
2

ae
3 be

3 ce
3




1

x

y

 (4.3)

Here A1, A2 and A3 is the area of three sub triangular elements as shown in Fig. 4.3. To

formulate the shape function, each node of the triangular element is numbered. Figure 4.4

shows the three digits numbering of (a) linear and (b) quadratic 2D element. The number

of digits to represent an element depends on the number of Lagrange functions required to

define elements. In case of 2D triangular elements, there are three area coordinates, thus the

nodes 1, 2 and 3 are represented as (1,0,0), (0,1,0) and (0,0,1), respectively.

(a) (b)

Fig. 4.4 (a) Linear and (b) quadratic 2D elements with the node numbering scheme.

The resultant shape function (Ne
i ) for a node (i) can be written as [96]

Ne
i = Q(1)

p Le
1.Q

(1)
q Le

2.Q
(1)
r Le

3 here (p+q+ r) = n (4.4)

Here, p, q and r are the digits for the element node number and corresponding element

order is denoted by n. The element order of (n=1) can be calculated for the digits (1,0,0),

(0,1,0) and (0,0,1) of nodes shown in Fig. 4.4 (a).

The generalised form of Eq. 4.4 can be written as
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Q(1)
x=p,q,rLe

1 =
1
x!

x−1

∏
m=1

(Le
1 −m) when p > 0 (4.5)

Here, Q(1)
0 is considered as 1 and the relation between shape functions and the Lagrange

polynomials for linear triangular elements can be formed using Eqs. 4.4 and 4.5 can be

written as 

Ne
1 = Q(1)

p=1Le
1.Q

(1)
q=0Le

2.Q
(1)
r=0Le

3 = Le
1

Ne
2 = Q(1)

p=0Le
1.Q

(1)
q=1Le

2.Q
(1)
r=0Le

3 = Le
2

Ne
3 = Q(1)

p=0Le
1.Q

(1)
q=0Le

2.Q
(1)
r=1Le

3 = Le
3

(4.6)

Similarly, for 2D quadratic element shown in Fig. 4.4 (b) the shape functions can be

written as



Ne
1 = Q(2)

p=2Le
1.Q

(2)
q=0Le

2.Q
(2)
r=0Le

3 = Le
1(2Le

1 −1)

Ne
2 = Q(2)

p=0Le
1.Q

(2)
q=2Le

2.Q
(2)
r=0Le

3 = Le
2(2Le

2 −1)

Ne
3 = Q(2)

p=0Le
1.Q

(2)
q=0Le

2.Q
(2)
r=2Le

3 = Le
3(2Le

3 −1)

Ne
4 = Q(2)

p=1Le
1.Q

(2)
q=1Le

2.Q
(2)
r=0Le

3 = 4Le
1Le

2

Ne
5 = Q(2)

p=0Le
1.Q

(2)
q=1Le

2.Q
(2)
r=1Le

3 = 4Le
2Le

3

Ne
6 = Q(2)

p=1Le
1.Q

(2)
q=0Le

2.Q
(2)
r=1Le

3 = 4Le
3Le

1

(4.7)

After the domain discretisation, the unknown ζ function can be approximated at individ-

ual nodes in terms of constant coefficients and node coordinates.

ζ
e
i (x,y) = ae

i +be
i xi + ce

i yi where i = 1,2 and 3 (4.8)
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After solving the shape function and constant coefficients (ae
i , be

i , and ce
i ) for a specific

element, the unknown function (ζ e) can be interpolated as

ζ
e =

n

∑
i

Ne
i ζ

e
i (4.9)

4.2 Polar Mesh discretisation in circular waveguides

The accuracy of the modal solution is highly linked with the density of the mesh being used.

However, increasing mesh density requires more computer resources and more simulation

time. Regular mesh discussed in Section 4.1.1 is a good option for the waveguides having

rectangular or square boundaries. However, for a circular waveguide, the regular triangular

mesh may not be a suitable option as the triangular mesh elements do not entirely overlap

the circular boundaries.

Fig. 4.5 Traditional triangular mesh elements distribution for circular fibre.
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In Fig. 4.5 it can be seen that on the circular boundaries, the elements with the yellow

colour are partially in core and partly in the cladding. This introduces inaccuracy in the modal

solution because the elements are discretized partially in core and partly in the cladding.

This error can be minimised by increasing the mesh density, however, as a result, more

computational resources and simulation time is needed to obtain an accurate solution.

However, polar mesh distribution may be a good approach to address this problem. In

polar mesh, elements are created with the azimuthal angle along the radius of the circle.

This gives an accurate distribution of elements at the boundaries of circular waveguides with

almost no error due to meshing. Figure 4.6 shows the polar mesh for a circular structure with

a two-fold symmetry. Here, na is the total azimuthal divisions along the circumference of a

circle and da is the azimuthal element resolution given as (da = π

2∗na ).

Fig. 4.6 Polar mesh elements distribution for a circular fibre.
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Most of the work presented in this thesis is based on the single mode or multimode fibres

having a circular structure. Hence, we have used polar mesh distribution for optical and

acoustic modal analysis for circular waveguides.

4.3 Variational formulation

The FEM method is based on either a variational or weighted residual approach. The Galerkin

method [97] in weighted residual is a more straightforward approach to approximate the

solution of an electromagnetic waveguide. However, the variational approach is considered

as one of the most powerful methods to solve the electromagnetic field problems where, only

one global parameter, propagation constant is required to solve the solution. In this thesis,

the variational formulation using FEM is considered. Hence the rest of the discussion will be

about the variational approach. Different types of variational approaches have been developed

depending on the structural nature of the waveguides [98]. Scalar formulation [91] is known

as the simplest variational approach, where the field can be described as predominantly

either as Transverse Electric (TE) or Transverse Magnetic (TM). Scalar type formulation is

used in solving open boundary problems, homogeneous waveguide problems, analysis of

lossy waveguides and anisotropic waveguides [99]. The single scalar formulation provides

an approximation for the hybrid mode situation of a two-dimensional in-homogeneous

cross-section waveguide problems.

For more accurate modal solution, vector formulation with at least two field components

is used. In 1956, Berk proposed different vectorial formulations involving different electro-

magnetic field components such as E⃗-field, H⃗-field or the combinations Ez +Hz and E⃗ + H⃗

field [100]. Among the above electromagnetic field components, H⃗-field formulation is more

useful as all the H⃗-field components are continuous over the material interfaces and external

boundary conditions are not required. Vector H⃗-field formulation has been extensively used

for the solution of many optical and microwave waveguides. The H⃗-field formulation is
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more suitable for the dielectric waveguide problem where the magnetic field is continuous

across the dielectric interface and the natural boundary conditions are the electric wall. Also,

inhomogeneous or anisotropic mediums are also easily solvable. The H⃗-formulation is given

in [100] for the electromagnetic waveguides can be written as,

ω
2 =

∫
A
(⃗∇× H⃗)∗. ε̂−1. (⃗∇× H⃗) dA∫

A
H⃗∗. µ̂ . H⃗ dA

(4.10)

where ε and µ are the permittivity and permeability of the lossless medium, respectively.

The formulation given in Eq. 4.10 is itself forcing electric wall. Hence, forcing of boundary

conditions is not required. Using expressions ko = ω/c, µ = µ0µr, ε = ε0εr and ε0µ0 = 1/c2,

Eq. 4.10 can be modified as

k2
o =

∫
A
(⃗∇× H⃗)∗. ε̂r

−1. (⃗∇× H⃗) dA∫
A

H⃗∗. µ̂r . H⃗ dA
(4.11)

here, µr is the relative permeability and εr is the permittivity of the medium. ko is the

wavenumber of the propagating wave, c is the velocity of light in free space and dA is the

area integration (dA = dxdy). Equations 4.10 and 4.11 represent the variational formulations

used for the analysis of 2D optical waveguides.

4.4 Implementation of Full-Vectorial FEM for optical modal

analysis

For 2D full-vectorial formulation, all three H⃗ field components Hx, Hy and Hz are considered.

Equation 4.12 shows the H⃗ field continuous function of x,y.
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H⃗(x,y) =


Hx(x,y)

Hy(x,y)

Hz(x,y)

 (4.12)

To calculate the unknown H⃗ field distribution in a computational domain, an interpolation

equation is required to set up for the approximation of H⃗ field components in an element.

The unknown (Hx, Hy and Hz) field components associated with triangular shape functions

(N1, N2 and N3) can be written as

He
x (x,y) =

[
N1 N2 N3

]
Hx1

Hx2

Hx3


e

(4.13)

He
y (x,y) =

[
N1 N2 N3

]
Hy1

Hy2

Hy3


e

(4.14)

He
z (x,y) =

[
N1 N2 N3

]
Hz1

Hz2

Hz3


e

(4.15)

Here, letter e in both subscript and superscript represent that the above field components are

calculated for particular one triangular element having three shape functions, three nodes

and corresponding nine (Hxi, Hyi, and Hzi; where i = 1,2,3) field values. From the above

mentioned equations the magnetic field vector [H⃗e] can be written as
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[
H⃗

]
e
=


Hx(x,y)

Hy(x,y)

Hz(x,y)

=


N1 N2 N3 0 0 0 0 0 0

0 0 0 N1 N2 N3 0 0 0

0 0 0 0 0 0 jN1 jN2 jN3





Hx1

Hx2

Hx3

Hy1

Hy2

Hy3

Hz1

Hz2

Hz3


e

(4.16)

The imaginary term j in the shape function is considered for a lossless medium where the

Hz field component is 90◦ out of phase with the transverse components Hx and Hy. Equation

4.16 can be simplified as [
H⃗

]
e
=

[
N

]{
H⃗

}
e

(4.17)

Here, [H⃗]e is magnetic field component, [N] matrix represents the shape function and H⃗e

is the column vector of nodal fields (Hxi, Hyi, and Hzi ; where i = 1,2,3) in the triangular

element. Substituting Eq. 4.17 in Eq. 4.11 results in the following expression

k2
o =

∫
A
(⃗∇× [N]{H⃗}e)

∗. ε̂r
−1. (⃗∇× [N]{H⃗}e) dA∫

A
([N]{H⃗}e)∗. µ̂r . [N]{H⃗}e dA

(4.18)

The cross product (⃗∇× H⃗) can be written as
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(
∇⃗× H⃗

)
=

(
∇⃗× [N]{H⃗}e

)
=


0 − ∂

∂ z
∂

∂y

∂

∂ z 0 − ∂

∂x

− ∂

∂y
∂

∂x 0

 [N]{H⃗}e =

[
Q

]{
H⃗e

}
(4.19)

For simplicity, the product of [∇×] and shape function matrix [N] is represented by

[Q] matrix. This matrix multiplication has been carried out, and its elements are given in

Appendix A. Hence, considering [Q] matrix, Eq. 4.18 can be simplified as

k2
o =

∫
A
([Q]{H⃗}e)

∗. ε̂r
−1.([Q]{H⃗}e)dA∫

A
([N]{H⃗}e)∗. µ̂r . [N]{H⃗}e dA

(4.20)

The above equation can be simplified by considering the conjugate transpose properties

given as

(
[Q]{H⃗}e

)∗
=

(
{H⃗}∗e [Q]∗

)
(4.21)

(
[N]{H⃗}e

)∗
=

(
{H⃗}∗e [N]∗

)
(4.22)

Using conjugate transpose properties described in Eqs. 4.21 and 4.22, Eq. 4.20 can be

written as

k2
o =

∫
A
{H⃗}∗e [Q]∗ · ε̂r

−1 · ([Q]{H⃗}e) dA∫
A
{H⃗}∗e [N]∗ · µ̂r · [N]{H⃗}e dA

(4.23)

Assuming H⃗e and element shape function ([N]) as a real matrix, Eq. 4.23 can be simplified

as
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Fe(H⃗) =

∫
A

{H⃗}T
e [Q]∗ · ε̂

−1
r · [Q]{H⃗}e dA− k2

o

∫
A

{H⃗}T
e [N]T · µ̂r · [N]{H⃗}e dA (4.24)

Here, T and * denote the transpose and complex conjugate and the Fe(H⃗) is the numerical

error that occurs due to the discretisation of the computational domain. To obtain a stationary

solution, minimisation of the variational functional by ∂

∂{H⃗}e
Fe(H⃗) = 0 is carried out

∂

∂{H⃗}e

[∫
A
{H⃗}T

e [Q]∗ · ε̂−1
r · [Q]{H⃗}e dA− k2

o

∫
A
{H⃗}T

e [N]T · µ̂r · [N]{H⃗}e dA

]
= 0

(4.25)

or,

∂

∂{H⃗}e

[
{H⃗}T

e

∫
A
[Q]∗ · ε̂−1

r · [Q]dA{H⃗}e − k2
o {H⃗}T

e

∫
A
{[N]T · µ̂r · [N]dA{H⃗}e

]
= 0

(4.26)

or,

∂

∂{H⃗}e

{H⃗}T
e

∫
A

[Q]∗ · ε̂−1
r · [Q]dA︸ ︷︷ ︸

[A]e

{H⃗}e − k2
o {H⃗}T

e

∫
A

{[N]T · µ̂r · [N]dA︸ ︷︷ ︸
[B]e

{H⃗}e

= 0

(4.27)

The integration parts of the above equation can be represented as two real symmetrical

matrix [A]e, [B]e

[A]e = ε̂
−1
r

∫
A

[Q]∗ · [Q]dA (4.28)
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[B]e = µ̂r

∫
A

[N]T · [N]dA (4.29)

Equation 4.27 can be simplified as

∂

∂{H⃗e}

[
{H⃗}T

e [A]e{H⃗}e − k2
o{H⃗}T

e [B]e{H⃗}e

]
= 0 (4.30)

As the computational domain is divided in a number of elements, hence, the summation of

vectorial variational formulation of individual elements result in total contribution and can

be expressed as

[A]{H⃗}− k2
o[B]{H⃗}= 0 (4.31)

Here, [A] and [B] are the global matrices derived by summing up all the individual

element [A]e and [B]e matrices. k2
o is the eigenvalue and {H⃗} is a column matrix representing

eigenvector of the corresponding eigenvalue k2
o global matrices [A] and [B] can be written as

[A] = ∑
e
[A]e = ∑

e
ε̂
−1
r

∫
A
[Q]∗ · [Q]dA (4.32)

and

[B] = ∑
e
[B]e = ∑

e
µ̂

∫
A
[N]T · [N]dA (4.33)

Detailed derivation of [A]e and [B]e matrix coefficients are shown in Appendix A.

4.5 Elimination of spurious modes

One of the drawbacks associated with the full-vectorial finite element method is the existence

of non-physical spurious solutions. The vector variational formulation is shown in Eq. 4.11

is based on Maxwell’s two curl equations shown in Eqs. 2.25 and 2.26. The Euler form of the

Eq. 4.11 satisfies the Helmholtz’s equation but does not automatically satisfy Maxwell’s two
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divergence equations. This is considered as the main cause of the existence of the spurious

modes. Rahman et al. proposed the new formulation by balancing the curl and divergence

part with a penalty function approach [101]. In the penalty method, a global weighing

factor (p) close to the value of 1/n2
e f f is considered such that the effect of div.B⃗ = 0 can be

incorporated. The value of (⃗∇ · H⃗) is calculated for each eigenvector over the cross-section of

waveguide and solution with low value of (⃗∇ · H⃗) is considered as real physical mode. This

resulted in a major improvement in the modal solution and also spurious modes were totally

eliminated. Hence, the new updated FEM equation can be written as,

k2
o =

∫
A
[(⃗∇× H⃗)∗ · ε̂−1

r (⃗∇× H⃗)dA + p
∫

A
(⃗∇ · H⃗)∗(⃗∇ · H⃗)]dA∫

A
H⃗∗ · µ̂r · H⃗ dA

(4.34)

The solution of Eq. 4.34 consist of eigenvalues and corresponding eigenvectors. With

the implementation of 2D full-vectorial FEM, several waveguides such as slot waveguides,

single and multimode fibres and nano-wires and plasmonic complex waveguides are designed

and optimised accurately. Results and mode profiles for optical waveguides using the

full-vectorial FEM are discussed in Chapters 5, 6 and 7.

4.6 Interfaces between two materials and boundary condi-

tions

Optical waveguides may have more than one materials and multiple interfaces between

different mediums. This requires continuity of electric and magnetic field across the material

interfaces for full-vectorial FEM based model solution. Boundary conditions have a key

role in the waveguide solution. The Maxwell’s equations cannot completely explain the

characteristics of the electromagnetic field as these equations don’t consider the boundaries
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between two material in an optical waveguide. Hence, boundary conditions are enforced on

these equations.

Fig. 4.7 Surface boundary between two different mediums

Figure 4.7 shows two dielectric materials in a waveguide separated by a boundary (S)

shown by the blue dashed line. The unit vector n⃗ is directed from the region 2 to region 1.

As the optical waveguides are made up of dielectric materials, the surface charges (ρ = 0)

and surface current (J⃗ = 0) can be considered not present; hence, the boundary conditions

can be written as

1. The tangential component of the electric field and magnetic field must be continuous

along the surface boundary (S). This means n̂× E⃗ and n̂× H⃗ must be continuous across

the interface.

n̂× (E⃗1 − E⃗2) = 0

E⃗t1 = E⃗t2

(4.35)
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n̂× (H⃗1 − H⃗2) = 0

H⃗t1 = H⃗t2

(4.36)

2. Similarly, the normal components of electric and magnetic flux densities must be

continuous across the interface.

n̂ · (D⃗1 − D⃗2) = 0

ε1E⃗n1 = ε2E⃗n2

(4.37)

Here, E⃗n1 ̸= E⃗n2 as the permittivity ε1 and ε2 for medium 1 and 2 are not equal at

material boundary, ε1 ̸= ε2.

n̂ · (B⃗1 − B⃗2) = 0

µ1H⃗n1 = µ2H⃗n2

(4.38)

Hence, H⃗n1 = H⃗n2, as the µ1 and µ2 are the permeability of medium 1 and medium

2, respectively. Here, µ1 = µ2 = 1 is considered as most of the optical materials are

non-magnetic.

Apart from above electromagnetic boundary conditions, two types of boundary conditions

are commonly applied practically to optical problems. Perfect Electric Wall (PEW) or Perfect

Magnetic Wall (PMW), boundary conditions is achieved by the following conditions,

n̂× E⃗ = 0, or, n̂ · H⃗ = 0 (4.39)

In PEW boundary conditions shown in Eq. 4.39, magnetic field vector H⃗ is forced to

zero value, hence the electric field vector E⃗ remain continuous at the boundary. Similarly,
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boundary conditions for perfect magnetic wall or perfect magnetic conductor (PMC) are

given as,

n̂× H⃗ = 0, or, n̂ · E⃗ = 0 (4.40)

Here, electric field component, E⃗ is forced to zero and magnetic field component, H⃗ remains

continuous across the boundary. These boundary conditions are beneficial while exploiting

the half or quarter symmetry of the structure.

4.7 Implementation of Full-Vectorial FEM for acoustic modal

analysis

The advantage of FEM technique is to solve the complex differential equations into simpler

eigenvalue equation matrix, that can be further solved for the required solution using standard

methods. In the previous sections, the fundamentals of FEM and its implementation for the

modal solution of optical waveguides is discussed. However, to study the acoustic wave

propagation, a uniform waveguide having an infinite length in the direction of propagation is

considered. For simplicity, the complex problem is reduced to a two-dimensional problem

having a cross section in xy plane. An acoustic wave propagating in z-direction having

propagation constant k is guided through an optical waveguide. The displacement vector u

of the propagating acoustic wave can be expressed as,

u =


ux(x,y)

uy(x,y)

uz(x,y)

e j(ωt−kz) (4.41)

The problem can be solved by using first order triangular elements and considering

specific phase relationship between the nodes of the end surfaces. The acoustic wave
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propagation is along the z-direction but the solution can be obtained using bi-dimensional

mesh and then reconstitute the entire solution. The standard eigenvalue problem through the

FEM given in Eq. 3.50 can be written as

[A][U ] = ω
2[B][U ] (4.42)

Where, [A] and [B] are the stiffness matrix and mass matrix, respectively. The nodal

values of externally applied forces are considered to be zero, hence, the resultant modal

solution provides U and ω2 as the displacement eigenvector and eigenvalues, respectively.

4.7.1 FEM acoustic wave formulation

The cross-section of the acoustic waveguide is discretised into several triangular elements,

and the unknown displacement vector ue for each element can be approximated by the

following Eq. 4.43

ue =
q

∑
i=1

NiUe
i (4.43)

Here, q shows the number of nodes of an element, Ni is a set of interpolation function

and Ue
i is the displacement vector at each element node.

For individual element Eq. 3.49 can be written in the matrix form as,

ue = [N][U ]e (4.44)

Similarly, Eq. 4.44 can be represented in the form x, y and z components of displacement

vector as,
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ue =


N1 0 0 N2 0 0 jN3 0 0

0 N1 0 0 N2 0 0 jN3 0

0 0 N1 0 0 N2 0 0 jN3





Ux1

Uy1

Uz1

Ux2

Uy2

Uz2

Ux3

Uy3

Uz3



(4.45)

Here, nodal displacements along the x, y and z direction are represented by Ux, Uy and

Uz, respectively. The second subscript (1, 2 and 3) in the nodal displacements indicates the

node numbers of element. Whereas, the term j in Eq. 4.45 is used for lossless medium where

Uz components are 90◦ out of phase to the corresponding transverse components. Based

on the Hook’s law stated in Chapter 3, the stress and strain for small displacements can be

related as given in Eq. 3.46. Utilizing this information we can write as,

∇ ·T = ∇ · (CS) (4.46)

Here, T and S represents the stress and strain, respectively and elastic stiffness coefficient

is represented by C. Detailed discussion of elastic stiffness coefficients is presented in sections

3.5.3, 3.5.4, and 3.5.5 of Chapter 3.

The stiffness matrix incorporating strain tensor can be written as [83],
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

S1

S2

S3

S4

S5

S6


=



∂Ux
∂x

∂Uy
∂y

∂Uz
∂ z

∂Uy
∂ z + ∂Uz

∂y

∂Ux
∂ z + ∂Uz

∂x

∂Ux
∂y +

∂Uy
∂x


=



∂

∂x 0 0

0 ∂

∂y 0

0 0 ∂

∂ z

0 ∂

∂ z
∂

∂y

∂

∂ z 0 ∂

∂x

∂

∂y
∂

∂x 0




ue

x

ue
y

ue
z

 (4.47)

The element’s nodal displacement vectors in the x, y and z directions are represented by

ue
x, ue

y and ue
z , respectively. Equation 4.47 can be written as,

Si = ∇i jue
j (4.48)

The strain displacement relation can also be written in the symbolic notation as [83],

S = ∇sue, where, subscript s symbol stands for symmetric. The symmetric gradient operator

∇i j = ∇s in shown in Eq. 4.48 has a matrix form of,

∇s ⇒ ∇i j =



∂

∂x 0 0

0 ∂

∂y 0

0 0 ∂

∂ z

0 ∂

∂ z
∂

∂y

∂

∂ z 0 ∂

∂x

∂

∂y
∂

∂x 0


= [D] (4.49)

For simplicity the symmetric gradient matrix is represented by [D]. The updated Eq. 4.49

can be written as,

S = [D]ue

⇒ S = [D][N][U ]e (4.50)
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In Chapter 3, the elastic restoring forces are defined in terms of stress field, T(u j, t). As

discussed earlier in Section 3.7 the elastic and inertial restoring forces are related through the

translational equation of motion shown in Eq. 3.43. Similarly, the stress matrix is considered

symmetric as shown in Eq. 3.17, hence, the spatial variation of stress T, can be determined

by the divergence of T, as,

∇ ·T=


∂

∂xTxx +
∂

∂yTxy +
∂

∂ zTxz

∂

∂xTyx +
∂

∂yTyy +
∂

∂ zTyz

∂

∂xTzx +
∂

∂yTzy +
∂

∂ zTzz

=


∂

∂x 0 0 0 ∂

∂ z
∂

∂y

0 ∂

∂y 0 ∂

∂ z 0 ∂

∂x

0 0 ∂

∂ z
∂

∂y
∂

∂x 0





T1

T2

T3

T4

T5

T6


= [D]T



T1

T2

T3

T4

T5

T6


(4.51)

For simplicity, the transpose of symmetric gradient matrix is shown by [D]T in above

equation. Using Equations 4.46, 4.50, 4.51 and 3.43 divergence of T can be written as,

∇ ·T = [D]T [C][D][N][U ]e = ρ( jω)2[N][U ]e (4.52)

Conjugate transpose of nodal displacement vector of element [N][U ]e is multiplied on

both sides of Eq. 4.52 and integrated over whole domain of element, Ωe. Using Equations

4.46, 4.50, 4.51 and 3.43 the above mentioned Eq. 4.52 can be written as,

−
∫ ∫

e
[N]∗[U ]∗e [D]T [C][D][N][U ]edΩe −ω

2
∫ ∫

e
ρ[N∗][U ]∗e [N][U ]edΩe = 0 (4.53)
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here ∗ shows the conjugate transpose of the matrix. After applying variational principle

the generalised form of Eq. 4.53 can be written as,

∫ ∫
e

(
−[N]∗[U ]∗e [D]T [C][D][N][U ]e −ω2ρ[N∗][U ]∗e [N][U ]e

)
dΩe = 0 (4.54)

Similar to full-vectorial formulation based on the minimisation of H-field for optical

modes shown in Eq. 4.10, the fundamental FEM based variational expression used in acoustic

modal solution can be written as [102];

ω
2 =

∫ ∫
[(∇ ·U)∗ · [C] (∇ ·U)]dΩe∫ ∫

U∗ ·ρ UdΩe
(4.55)

Here, ω is the acoustic angular frequency, U is the displacement eigenvector, ρ and [C] are

the density of the material and elastic stiffness tensor, respectively.

For a standard eigenvalue problem, Eq. 4.54 can be rearranged and rewritten in the matrix

form as,

[A][U ]−ω
2[B][U ] = 0 (4.56)

here, [U] is the eigenvector, ω2 is the eigenvalue, [A] is a real symmetric matrix also

known as stiffness matrix related to strain whereas, [B] is known as mass matrix that is

related to kinetic energy. Both [A] and [B] matrices can be defined as,

[A] =−
∫ ∫

e

(
[Q]∗[C][Q]

)
dΩe (4.57)

[B] = ρ

∫ ∫
e
[N]∗[N]dΩe (4.58)

For simplicity, [Q] matrix is used to replace the multiplication of [D][N] matrices and ρ

is known as material density.
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These [A] and [B] matrices can be generated for a given value of acoustic propagation

constant k. The eigenvalue ω2 can be calculated by solving the generalised eigenvalue system

equation shown in Eq. 4.56 that results in ω , acoustic angular frequency and eigenvector, [U]

as the displacement vector. The acoustic velocity v of acoustic modes can be calculated for a

given value of acoustic propagation constant, k and generated acoustic frequency ω using Eq.

3.51.

4.8 Summary

This chapter briefly discusses some of the common numerical methods used to find the

modal solution for electromagnetic waveguides. Among various available methods, FEM is

considered more accurate and provides flexibility to solve the irregular shape structure by

dividing a large domain into subdomains (elements). These elements can be of triangular and

rectangular shape depending upon the choice. Later on, the individual element solution based

on the interpolation function and boundary equations is combined to form a global matrix

that results in the modal solution. Variational formulation with the effect of the penalty

term is also discussed in this chapter. An improved polar meshing technique is proposed for

structures such as SMF and MMF that provides more accurate solution of the waveguides

that have curvilinear boundaries.



Chapter 5

Light Sound Interaction in Standard

Single Mode Fibre

5.1 Introduction

Light sound interaction also known as stimulated Brillouin scattering (SBS) in optical

waveguides attracted considerable large interest over the past years [103, 104]. SBS is a

non-linear process, where sound wave is generated due to electrostriction effect that creates

a travelling Bragg gratings and prevents delivery of high optical power. Among other non-

linear effects like Self Phase Modulation (SPM) or Cross Phase Modulation (CPM), SBS has

gained significant attention due to its low threshold that limits the power scaling in photonic

devices [105, 52].

Since early 2000’s, a large number of research outputs have been reported describing

reduction or increase in the overlap between optical and acoustic modes for higher power

transmission or for the sensing applications, respectively. These are achieved by incorporating

different materials to alter the acoustic properties of the fibre or altering the fibre structure.

The SBS gain peaks in a Brillouin spectrum of optical fibre is also calculated by considering

the overlap between the acoustic and optical modes. Dasgupta et al.[54], used a Finite
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Element Method (FEM) based commercially available software, COMSOL Multiphysics®,

to investigate the SBS spectrum in a step index Ge-doped fibre where three significant

peaks were recorded in the Brillouin spectrum from 9.4 GHz to 11.6 GHz. These SBS gain

peaks are the result of high overlap recorded between fundamental optical and dominant

longitudinal acoustic LP01, LP02 and LP03 modes. Shibata et al. investigated the effect of

different germanium doping concentration in the core of fibres and cladding consisted of

either Fluorine or pure Silica for two different fibre designs [106]. For the first design, the

acoustic velocity of the cladding was made lower than that in the core of the fibre resulting

in an acoustic anti-guide design. Similarly, for a second fibre design where core was doped

with germanium and cladding with pure silica, waveguide acts as an acoustic guide and three

peaks were reported in Brillouin spectra.

Multimode fibres (MMF) have a higher effective area which results in a high SBS threshold

and provides flexibility to enhance maximum transmission power in the fibres. Dragic et al.

reported the existence of higher order acoustic modes in an acoustic anti-guide by adding an

acoustic guide layer around core [107]. They reported two peaks in the Brillouin spectrum

of a MMF that has a high acoustic index fluorine doped cladding. A comparison of SBS

threshold between SMF and MMF is reported by Iezzi et al. [108]. It is demonstrated that

due to large mode area of MMF, the pump power threshold is increased to 105 mW from

the previously calculated 15 mW threshold power that is useful for high power applications.

However, the existence of more than one mode in MMF may introduce the inter-modal

interference that is further discussed in chapter 6.

However, to fully understand the complex light-sound interaction, an accurate analysis of

both optical and acoustic modes is required. Various theoretical methods have been reported

which can be used for modelling of optical [109] and acoustic [110, 54] waveguides by

solving relevant optical and acoustic wave equations. The Finite Element Method (FEM)

is a powerful numerical approach, capable of developing modal solutions for both types of
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waveguides. With the considerable progress in the field of photonics, optical waveguides are

now more intricate or exotic and mostly need a full-vectorial treatment. A scalar formulation

may be a simpler approach, but the vector formulations are more accurate. In 1984, it was

reported that the vector based FEM formulations are affected by the existence of spurious

modes [101]. It was identified that as the proposed H-field vector formulation considered only

two curl equations but did not consider the divergence-free nature of the field, which allowed

spurious modes to appear. As these spurious solutions introduce difficulties to identify

physical modes and also deteriorate eigenvector quality, therefore different techniques have

been considered to eliminate them. On the other hand, the classification of acoustic modes

is even more complex than that of optical modes. There can be different types of acoustic

modes, such as longitudinal, transverse, bending, torsional or flexural modes. For a high

index contrast waveguide, these acoustic modes are hybrid in nature and need a full vectorial

treatment. However, the existence of the spurious solutions associated with vector approaches

makes it challenging to recognise the real modes of our interest. Therefore, it is very important

to address the appearance of spurious solutions and also to find a way to eliminate them.

We have proposed a penalty term based full-vectorial FEM to eliminate the spurious

acoustic modes in both low and high index contrast acoustic waveguides. The introduction

of penalty term resulted in not only improved quality of acoustic modes but also eliminated

spurious modes without deteriorating the eigenvalues of the desired modes. The proposed

penalty approach is tested for both low and high index contrast acoustic waveguides.

5.2 Suppression of spurious modes in full-vectorial models

The FEM is a powerful and versatile numerical method used for solving the electromagnetic

field problems in optical waveguides. The existence of spurious solutions in FEM based

vector formulations is often considered as a shortcoming of these formulations. These

spurious modes are only numerically generated solutions and have no physical significance
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and simply considered as wrong solutions [111]. Although the existence of spurious solutions

in electromagnetic field problems was identified but little research was carried out in order

to eliminate these solutions. Konrad [112] first suggested that rigorous boundary condition

can be imposed to eliminate these spurious modes, however, the results were not satisfactory.

Rahman and Davies proposed a penalty method [101], used with the full-vectorial H-field

formulation to eliminate the spurious modes in the optical modal analysis explained in

Chapter 4.

This approach has been successful and significant improvement was observed in the

quality of optical modes. However, in order to observe the light-sound interaction, the quality

of acoustic mode is also very important. In acoustic modal solution, these spurious solutions

behave differently and also depends on the type of modes and index contrast. In order to

study acoustic wave propagation in liquid, Winkler and Davies proposed an approach similar

to Rahman and Davies, where noticeable reduction of the spurious modes was noted [102].

They proposed to restrict the flexibility of the problem by constraining it. Some improvement

in the eigenvectors of the physical modes along the reduction of spurious modes were noted.

However, a very small mesh size, limited to only 24 triangular elements, was considered.

Besides that, no study was presented to observe the effect of penalty value on the modes in

acoustic waveguides.

5.3 Introduction of penalty term in acoustic modal solu-

tion

The fundamental FEM based variational expression used in acoustic modal solution can be

obtained using strain displacement relation, equation of motion and stress strain relation, as

given in Eqs. (3.42)-(3.47), and can be written as [102];



5.3 Introduction of penalty term in acoustic modal solution 91

ω
2
a =

∫ ∫
[(∇ ·U)∗ · [C] (∇ ·U)]dxdy∫ ∫

U∗ ·ρ Udxdy
(5.1)

Here, ωa is the acoustic angular frequency, U is the displacement eigenvector, ρ and [C] are

the density of the material and elastic stiffness tensor, respectively. The above mentioned

acoustic wave equation can be reduced to a general eigenvalue equation [91]:

[A]U−ω
2
a [B]U = 0 (5.2)

The [A] matrix is known as the stiffness matrix, related to the strain energy and [B] matrix is

the mass matrix related to the kinetic energy. Here, ω2
a is the eigenvalue and the eigenvector

U are the unknown values of nodal displacements vectors.

The formulation given by Eq. (5.1) is considered to be sufficient for modelling of acoustic

modes in waveguides. However, this formulation also generates spurious solutions which not

only effect the desired mode quality but also introduce difficulty in recognising the physical

modes. To eliminate these spurious modes, Eq. (5.1) can be modified by adding the two curl

equations as a penalty term. The augmented full-vectorial FEM based acoustic formulation is

given by Eq. (5.3). Here, the ∇×U = 0 constraint on the displacement vector is introduced

in a least squares manner by a weighting factor, the penalty term, α , and this is used to

control the elimination of spurious solutions.

ω
2
a =

∫ ∫
[(∇ ·U)∗ · [C](∇ ·U)+α (∇×U)∗ · (∇×U)]dxdy∫ ∫

U∗ ·ρ Udxdy
(5.3)

The curl-curl section of the augmented formulation enforces the acoustic field to suppress the

rotational energy of the propagating acoustic wave. An increasingly large penalty term makes

the Eq. (5.3) overpower to the shear modes. Therefore, the corresponding eigenvectors

move towards the longitudinal mode and results in the spurious free longitudinal modes.

This formulation can make a considerable improvement in the acoustic modal solutions by

reducing or even eliminating spurious modes along with a significant improvement in the
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eigenvector quality, as shown in the following sections. The calculations of penalty term

[α(∇×U)∗ · (∇×U)] in acoustic modal solution is presented in Appendix B.

5.4 Effect of penalty term in low index contrast acoustic

waveguides

5.4.1 Elimination of spurious modes

In order to study the effect of penalty term, first we have considered a low-index contrast

single mode fibre (SMF) with a core radius of 4.1 µm. The core consists of 6.24 %wt of

GeO2 and 93.76 %wt of SiO2, whereas, cladding is taken as pure SiO2. The shear and

longitudinal acoustic velocities of the core are taken as 3644.85 m/s and 5794.626 m/s,

respectively. Similarly for cladding, shear and longitudinal velocities are taken as 3760 m/s

and 5970 m/s, respectively [113]. The material density of core and cladding are considered

as 2291.25 kg/m3 and 2201 kg/m3, respectively. The refractive index and acoustic velocities

of 6.24 % GeO2 doped core are calculated using relation given in reference [114] where the

change in the refractive index and acoustic velocities with respect to change in the percentage

weight doping of different materials in Silica is provided. For simulations, an equivalent

step-index fibre refractive index profile is used where the individual refractive index inside

core and cladding are considered smooth without any fluctuations. Table 5.1 summarises the

material properties of core and cladding as used for our simulations.

Table 5.1 Core and cladding acoustic velocities and elastic coefficients [114].

SMF
Materials

(%wt)
Acoustic Velocities

(m/s)
Density (ρ)

(kg/m3)
Elastic Coefficients

SiO2 GeO2 Shear Longitudinal C11 C12 C44

Core 93.76 6.24 3644.85 5794.62 2291.25 76.93488 16.05668 30.43910

Cladding 100 0 3760 5970 2201 78.44562 16.21191 31.11686
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Elastic coefficients used in stiffness matrix are derived using shear, longitudinal velocities

and material density as given in Eq. 5.4

VL =

√
C11

ρ
; VS =

√
C44

ρ
; C11 −C12 = 2C44 (5.4)

The SBS threshold where the input pump power in optical fibre becomes equal to the

back reflected power is considered as a limiting factor and it varies according to relation

given in Eq. 5.5

Pth ∝
KAe f f α j

G(vmax,L)Γi j
(5.5)

where K is the polarization factor, Ae f f is the optical effective area and G(vmax,L) is the

Brillouin gain at the peak frequency for a fibre of length L [16]. α j is the acoustic attenuation

coefficient for the acoustic mode of order j. The acoustic attenuation coefficient is calculated

using phonon lifetime, TB, and for Silica TB = 4.57 ns [115]. Equation 5.6 is used to calculate

the acoustic attenuation coefficient for a given acoustic mode having velocity v.

TB =
1

α jv
(5.6)

The normalised overlap Γi j, between the jth acoustic mode and ith optical mode can be

calculated by the Eq. 5.7.

Γi j =
(
∫
|Him|2 u jndxdy)2∫

|Him|4 dxdy
∫ ∣∣u jn

∣∣2 dxdy
; m,n = x,y,z (5.7)

Here, Him is the mth magnetic field component (where, m may be x, y or z) of the ith optical

mode and u jn is the nth component of the acoustic displacement profile (where, n may be x, y

or z) of the jth acoustic mode [116]. From the SBS threshold equation given in Eq. 5.5, it is

understood that the SBS threshold can be increased either by increasing the Ae f f or reducing

the acoustic-optic overlap Γi j.
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In order to calculate the overlap between optical and acoustic modes, both optical and

acoustic modal analysis are carried out. For optical modal analysis the refractive indices of

core and cladding are taken as ncore= 1.44905 and nclad=1.444, respectively at the operating

wavelength, λ = 1.55 µm. The full-vectorial formulation describe in Chapter 4 for the

optical modes based on the minimisation of the H-field energy functional is used for our

modal solution.
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Fig. 5.1 The non-dominant (a) Hx, (b) Hz field profiles of the fundamental optical mode LP01,
(c) shows contour field profile of dominant Hy component and (d) shows the Hy field value of
the quasi-TE mode along the radius of fibre where the propagation constant is βop = 5.86205
rad/µm.

Figure 5.1 shows the contours of dominant Hy and non-dominant Hx and Hz fields of the

fundamental optical LP01 mode. The propagation constant and effective refractive index are
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calculated as βop = 5.86205 (rad/µm) and ne f f = 1.4461163 at the operating wavelength of

1.55 µm. Figures 5.1 (a) and (b) are non-dominant Hx and Hz field profiles of LP01 mode,

respectively. Figure 5.1 (c) shows the dominant Hy field profile and Fig. 5.1 (d) shows

Hy field variation along the radius of the fibre. From the dominant Hy field profile of LP01

mode it can be observed that the field is more confined in the core and decreases away from

the centre. Whereas, the field profile of non-dominant Hx component is distributed on four

quadrants and has zero field at the fibre centre. Similarly, the field profile of non-dominant

Hy component is distributed in two upper and lower quadrants as shown in Fig. 5.1 (b). In

order to improve the solution accuracy, only a quarter structure is simulated. This allows a

much better mesh refinement with given computer resources and also avoid degeneration

of modes which have similar eigenvalues [117, 118]. Besides, we have used polar mesh

which is more efficient in the distribution of discretized triangular elements along the curved

interfaces of a circular waveguide as explained in Section 4.2.

However, in order to observe light sound interaction, the following phase matching

condition between optical and acoustic modes should be satisfied.

ka = 2βop (5.8)

Here, ka is the wave vector of interacting acoustic mode and, βop is the propagation constant

of the optical mode.

A new full-vectorial FEM based computer program for acoustic modal analysis based

on the formulation given in Eq. 5.3 has been developed. Similar to optical modal analysis,

we have exploited the available two-fold symmetry and only a quarter of the waveguide

is simulated. Considering the phase matching condition given in Eq. 5.8 the acoustic

propagation constant or wave vector is calculated as ka=11.7241 rad/µm. Although, this

fibre supports only a single mode for either quasi-TE or quasi-TM polarization, however can

guide several acoustic modes depending on the acoustic wavenumber. The phase matching
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condition can be fulfilled by multiple acoustic modes having different acoustic velocities

and frequencies. This results in the interaction of the LP01 optical mode with not only the

fundamental acoustic mode but also with other higher order acoustic modes. The phase-

matched fundamental longitudinal (LP01) mode with dominant Uz vector is found at frequency

10.824 GHz with its corresponding acoustic velocity of 5800.8391 m/s. However, when

a computer code using Eq. 5.1 is considered, in addition to this fundamental longitudinal

acoustic mode, unfortunately, many other non-physical acoustic modes were also observed in

the modal solutions. The existence of these spurious modes resulted in difficulty to identify a

particular mode of interest and multiple iterations were carried out in order to find a correct

mode. In addition to this, the original mode quality was also significantly affected by the

existence of spurious modes when no penalty term is used. Figure 5.2 shows the presence

of a single physical LP01 mode shown by a square and many other non-physical spurious

modes by crosses, respectively. In each simulation run maximum five eigenvalues were

obtained. It can be observed that when α = 0, there are four spurious modes (shown by

crosses) in the vicinity along with only one physical mode (green square), which is the

fundamental longitudinal (LP01) acoustic mode in this case. However, when the value of

α is more than 1×105, the spurious modes vanish completely and the mode quality also

improves significantly. Moreover, it can also be observed that the frequency of fundamental

longitudinal mode at α = 1×105 remains almost the same as that is obtained when α = 0.

5.4.2 Improvement in the mode quality

Figure 5.3 shows the dominant and non-dominant vector displacement profiles of the fun-

damental longitudinal acoustic LP01 mode when no penalty term was used (α = 0). The

dominant Uz displacement vector of the LP01 mode is slightly affected by the presence of

spurious solutions, as shown in Figs. 5.3 (c) and (d), but where a close inspection shows

small ripples in the contour lines and displacement vector variation along radius of the fibre,
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Fig. 5.2 Reduction of spurious solutions with penalty (α) term for the Uz dominant LP01
acoustic mode in a SMF.

respectively. However, the non-dominant displacement vectors Ux and Uy profiles shown

in Fig. 5.3 (a) and (b), respectively, are more noisy than the dominant Uz vector profile.

As in this case, the magnitude of non-dominant displacement vectors Ux and Uy were 40

times smaller than that of the dominant Uz vector, so the smaller non-dominant displacement

vectors were more affected by the noise and are of significantly poor quality. As the available

two-fold symmetry of the fibre is exploited here, so only a quarter of the structure is shown

in Fig. 5.3.

The Gaussian-like displacement vector profile of the dominant Uz vector has the peak

value at the centre of the core and monotonically decreases along the radius of the fibre.

However, the non-dominant Ux displacement vector has maxima on the x-axis and zero value

along the y-axis as shown in Fig. 5.3 (a). Similarly, the non-dominant Uy displacement

vector has maxima value along the y-axis and zero along the x-axis as shown in Fig. 5.3 (b).

However, quality of these non-dominant components shown here is very poor.
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Fig. 5.3 Dominant and non-dominant displacement vector profiles of the fundamental longi-
tudinal LP01 acoustic mode for α = 0 where, (a) Ux, (b) Uy and (c) Uz contours, respectively.
(d) shows the variation of Uz displacement vector along the radius of fibre without penalty
term.

The possible reason for noise in the vector displacement profiles of longitudinal acoustic

modes is that, for a lower or zero value of α , the spurious modes with eigenvalues close to

the desired physical modes, which in this case is LP01 mode, perturbed the truly physical

mode. When two eigenvalues are close then their eigenvectors can easily get mixed up during

numerical simulations. However, after the introduction of the penalty term and choosing

α = 1×105, the eigenvalues of spurious modes are pushed away from the physical mode

and results in a clean mode profile, as shown in Fig. 5.4.
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Fig. 5.4 Dominant and non-dominant displacement vector profiles of the fundamental longitu-
dinal LP01 acoustic mode for α = 105, where, (a) Ux, (b) Uy and (c) Uz contours, respectively.
(d) shows the variation of Uz displacement vector along the radius of fibre after the penalty
term is used, α= 105.

It can be observed that the non-dominant Ux and Uy displacement vector of LP01 mode

shown in Figs. 5.4 (a), (b), respectively, have significantly improved mode profiles compared

to the mode profiles shown in Fig. 5.3, without the use of a penalty term. Figures 5.4

(c) the contour plot and (d) variation of displacement vector along the radius of fibre also

shows significant improvement in eigenvalues for Uz displacement vector. This significant

improvement in the mode quality not only provides a more accurate modal solution but also

allows us to understand the full-vectorial nature of these modes and if possible to exploit
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them. It also helps to utilise computer resources more efficiently by reducing the multiple

iterations often needed to refine individual modes.

5.4.3 Effect of penalty and mesh density on modal solution

It is well known that the solution accuracy of FEM based modal solution is strongly dependent

on the discretized mesh elements. Hence, in our simulations, polar mesh is used and mesh

density was varied with different values of α . For our analyses we have used three different

mesh densities as low, medium, and high with 119800, 479600, and 1439400 first-order

triangular elements, respectively, to see the impact on the frequency shift with the penalty

factor. The frequency of the fundamental longitudinal mode is calculated as 10.823 GHz,

10.824 GHz, and 10.829 GHz for a low, medium and high mesh densities, respectively, at

α = 105. Although, the variation in the frequency is little, however, we have used a moderate

value of α to avoid spurious modes along with a finer mesh for our subsequent simulations

to achieve a maximum accuracy.

Figure 5.5 shows the effect on frequency when the penalty term, α increases from 1×106

to a very higher value in the order of 1×1011. It can be noted that the acoustic frequency did

not change significantly for penalty value up to 1×106 and so not shown here. However,

when the penalty factor is increased more to observe its behaviour on the frequency, it can

be noticed that the acoustic frequency increases. This increase in frequency is also strongly

related to the density of mesh distribution used. When a more dense mesh is used, the

increase is less as compared to a relatively coarse mesh division. This is due to the fact that a

higher mesh distribution is more accurate than a lower mesh. For this reason, we have used a

much refined mesh distribution for our modal solutions to achieve a higher accuracy.
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Fig. 5.5 Variation of frequency with respect to change in the value of penalty (α) for the Uz
dominant LP01 acoustic mode.

(a) (b)

Fig. 5.6 Dominant Uz displacement vector contours of higher order longitudinal acoustic
modes with α = 0. The variation of Uz displacement vector along the radius (x-axis) of fibre
is shown as insets.

Figures 5.6 (a) and (b) show the dominant Uz vector profiles of two higher order LP02 and

LP41 longitudinal acoustic modes, respectively for α = 0. Variation of displacement vector

profile of these modes along the fibre radius are also shown as insets. The ripples in contour



102 Light Sound Interaction in Standard Single Mode Fibre

(a) (b)

Fig. 5.7 Dominant Uz displacement vector contours of higher order longitudinal acoustic
modes with α = 105. The variation of Uz displacement vector along the radius (x-axis) of
fibre is shown as insets.

plots of the displacement vector clearly show that the higher order mode profiles are also

considerably affected by the presence of spurious modes. The quality of their non-dominant

displacement vector profiles was even worse than that of LP01 mode and not shown here.

However, the introduction of penalty term in acoustic formulation resulted in much smooth

contour plots of these two higher order LP02 and LP41 modes and these are as shown in Fig.

5.7. Variations of their displacement vectors along the radius of the fibre are also shown as

the insets in Fig. 5.7.

Table 5.2 shows the frequency shift and longitudinal velocities of fundamental and higher

order longitudinal modes for α = 0 and α = 105. It can be observed that there is only a small

change in these values which indicate the accuracy of the modal solutions are not affected

when the penalty term is introduced.
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Table 5.2 Effect of α on frequency shift and longitudinal velocities of the fundamental and
higher order longitudinal acoustic modes.

Mode
Without penalty (α=0) With Penalty (α=105)

Frequency
shift

(GHz)

Longitudinal
velocity

(m/s)

Frequency
shift

(GHz)

Longitudinal
velocity

(m/s)
LP01 10.824 5800.8391 10.824 5800.8257
LP02 10.873 5827.1568 10.873 5827.059
LP41 10.926 5855.7582 10.927 5856.277
LP03 10.959 5873.2883 10.959 5873.1817

5.5 Effect of penalty term in high index contrast acoustic

waveguide

Recently, SBS based nanowire structures are also being considered for many exotic pho-

tonic devices, such as microwave photonic filters [119], resonators [120] and on-chip high-

performance optical signal processing [121, 122]. Acoustic modes in high index contrast

waveguides are even more complex. The magnitudes of their non-dominant displacement

vectors are higher and displacement vector profiles often have stronger spatial variations.

(a) (b)

Fig. 5.8 (a) The dominant Uz vector displacement of a highly hybrid mode and (b) is the
variation along the x-axis, when α = 0.
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(a) (b)

(c)

Fig. 5.9 (a) The non-dominant Ux vector displacement profile of a highly hybrid longitudinal
mode (b) the variation of Ux displacement vector along the x-axis when α = 0, and (c) when
α = 100.

In order to observe the effect of penalty term in such nano-structures, we have considered a

high index contrast air-clad silicon nanowire for modal solutions. Here, we have considered a

suspended silicon nanowire with its width and height being 450 nm and 230 nm, respectively.

The acoustic shear and longitudinal velocities of silicon are chosen as Vs = 5840 m/s,

Vl = 8433 m/s, respectively. Similarly, the longitudinal velocity of air is chosen as 340

m/s while the shear velocity is zero. The material densities of silicon and air are taken as
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ρsi=2331 kg/m3 and ρair=1.29 kg/m3, respectively. Moreover, the phase matched acoustic

propagation constant is calculated as ka = 18.477.

The contour plot of the dominant Uz displacement vector of a highly hybrid mode at

f = 24.801 GHz and V = 8433.3184 m/s, is shown in Fig. 5.8 (a) and its variation along

the x-axis is shown in Fig. 5.8 (b). The dominant Uz displacement vector profile of this

longitudinal acoustic mode has a reasonably clean profile without the penalty term. However,

still poor quality contour lines can be clearly observed outside the core as shown in Fig. 5.8

(a). From the dominant Uz vector displacement profile along the x-axis, shown in Fig. 5.8

(b), it can be observed that the amplitude increases from the centre of the waveguides along

the x-axis towards outer edges of the core and reduces rapidly to zero value with damping

oscillations at the core and cladding interfaces.

However, the non-dominant Ux and Uy vector displacement profiles with their small

magnitudes are more susceptible to the existence of the spurious modes. Figure 5.9 (a) shows

the contour plot of the non-dominant Ux vector displacement profile of this highly hybrid

mode without the use of a penalty term. The non-dominant Ux vector has almost constant

magnitude along the y-axis, but with two positive and two negative peaks along the x-axis.

Its variation along the x-axis is shown in Fig. 5.9 (b). Two positive and two negative peaks

are visible but very noisy oscillations outside the core is also clearly visible in Fig. 5.9 (b)

when no penalty term is used. However, with the introduction of penalty value (α = 100),

the vector displacement profiles is improved significantly and damped oscillations at the two

interfaces are clearly visible, as shown in Fig. 5.9 (c). It can be noted that for this high-index

contrast waveguide, non-dominant vectors are relatively large (about 10%) compared to a

low index contrast SMF (about 2.5 %), shown earlier. The magnitude of the optimum value

of penalty term is related to the waveguide design, however, as the accuracy of the eigenvalue

does not depend much on its value, so its selection is not so critical.
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Fig. 5.10 Reduction of spurious modes when tracking a Uz dominant of highly hybrid
longitudinal acoustic mode in an air-clad Si nanowire.

In order to observe the effect of α , on the spurious modes and frequency of the desired

mode for a high index contrast waveguide numerical simulations were carried out and results

are shown in Fig. 5.10. As the α value is increased from zero to higher values, the number

of spurious modes start reducing. At α = 100, or beyond (not shown here) no spurious mode

was observed near the physical eigenvalues and resultant improved quality dominant and

non-dominant vector displacement vectors were presented in Fig. 5.9. The spurious modes

are shown by the blue dash (-) and the physical modes are shown by the red cross in Fig.

5.10.

It can be noted that for both the structures, the penalty value has a very little effect on

the mode’s frequency and velocity of propagation. However, the quality of eigenvectors is

significantly improved as demonstrated here.
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5.6 Acoustic-optic overlap for single mode fibre

The optical and acoustic modal solution of a low index contrast waveguide such as SMF

is explained earlier in section 5.4. The propagation constant and effective index of the Hy

dominant fundamental optical LP01 mode are calculated as βop = 5.86205 rad/µm and

ne f f = 1.446116, respectively, at the operating wavelength of 1.55 µm. Similarly, the fre-

quency and the velocity of phase matched fundamental longitudinal acoustic displacement

vector is calculated as 10.824 GHz and 5800.828 m/s, respectively. The resultant overlap of

94.0 % is calculated using Eq. 5.7 between the dominant magnetic field (Hy) of the funda-

mental optical mode and dominant displacement vector (Uz) of the fundamental longitudinal

acoustic mode.

The phase matching condition given in Eq. 5.8 can be satisfied by multiple acoustic

modes. For example for a phase matched acoustic wave vector, fundamental and higher order

modes exist that have the different frequency shift and propagation velocities. Figure 5.11

shows the dominant displacement vector profiles of the higher order longitudinal acoustic

LP21, LP02 and LP03 modes. Displacement vector variation of higher order longitudinal

modes along the fibre radius are also shown in the respective insets of the Fig. 5.11.

The normalised Hy optical field profile of the fundamental LP01 optical mode, and Uz

vector profiles of the fundamental and higher order longitudinal acoustic modes along the

r-axis are shown in Fig. 5.12. It can be observed that the fundamental longitudinal acoustic

mode have the similar mode profile as of the fundamental optical mode. However, the

acoustic modes are more confined in the core compared to the fundamental optical mode.

Using Eq. 5.7 overlap values of fundamental and higher order longitudinal modes with

the fundamental optical mode are calculated. As the displacement vector profile of the

dominant Uz of the longitudinal mode and dominant Hy field of optical modes have identical

nature hence, an overlap value of 94% is calculated between them. Similar, overlap has been

reported in [123], where, the rectangular waveguide of similar dimensions is considered.
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(a) (b)

(c)

Fig. 5.11 Dominant vector displacement profile Uz of higher order longitudinal modes (a)
LP21 (b) LP02 and (c) LP03 phase matched at 10.865 GHz, 10.873 GHz and 10.959 GHz,
respectively. The variation of Uz displacement vectors along the radius (x-axis) of fibre are
also shown as insets.
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Fig. 5.12 Normalised Hy optical field and Uz longitudinal displacement vector profiles of
dominant LP01, LP02, LP03 acoustic modes, along the r-axis

Moreover, the overlap between the higher order (LP21, LP02, LP03) modes and the dominant

Hy field of the fundamental optical mode are calculated as 0%, 0.91%, 0.77%, respectively.

The reason for the 0% overlap between LP21 and optical mode is due to the odd symmetrical

nature of dominant Uz displacement vector profile of the acoustic mode. However, the overlap

between non-dominant Ux and Uy have considerable overlap due to their even symmetry and

found as 35.31% and 35.233% respectively.

5.7 Fibre design for sensing applications

5.7.1 Al2O3 doped core

Designing an acoustic co- or anti-guide is highly dependent on the choice of the doping

materials. The Uz profile for the LP01 acoustic mode shows it is more confined in the core

than the Hy field profile of the LP01 optical mode, as index contrast for the acoustic mode

was higher. This index contrast can be adjusted by co-doping an optical fibre by using
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two or more dopants. Table 5.3 shows the effect of some commonly used materials for

changing the optical and acoustic indices. This table shows the percentage change in the

optical refractive index (∆n%), shear (∆VS%) and longitudinal (∆VL%) velocities with the

percentage weight of dopant. Increase in the acoustic index results in the reduction of shear

and longitudinal velocities. As discussed earlier that the acoustic modes are more confined

in the core compared with the optical modes. Hence, in order to increase the optical and

acoustic overlap, different %wt doping of Al2O3 are calculated keeping the optical refractive

index ncore=1.44905 unchanged. This results in the slightly reduced confinement of the

acoustic modes in the core and thus increased overlap with the optical modes.

Table 5.3 Percentage weight change contribution to the optical refractive index and acoustic
velocities for different dopants [124, 125].

Doping material ∆n%
Wt%

∆VL%
Wt%

∆VS%
Wt%

GeO2 +0.056 -0.47 -0.49

P2O5 +0.02 -0.31 -0.41

F -0.31 -3.6 -3.1

TiO2 +0.23 -0.59 -0.45

Al2O3 +0.063 +0.42 +0.21

B2O3 -0.033 -1.23 -1.18

The effect of Al2O3 on the fundamental acoustic mode spot-size and overlap percentage

are shown in Table 5.4. The doping concentration of SiO2, GeO2 and Al2O3 in the core is

chosen in way that the optical refractive index remain same as ncore = 1.44905 and only the

acoustic index is modified. The shear and longitudinal velocities for the core are calculated

by the relation shown in Table 5.3. It is observed that as the percentage of Al2O3 is increased

the spot-size or the effective area of the fundamental longitudinal LP01 acoustic mode starts

increasing. Overlap of 99.76 % is achieved when the core is co-doped with 2.71 %wt of

Al2O3, 3.20 %wt of GeO2 and 94.09 %wt of SiO2. Moreover, Table 5.4 also shows the effect

on the spot size (σx) of LP01 acoustic mode as %wt of Al2O3 is increased further. It can be
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Table 5.4 Effect of Al2O3 doping on the core longitudinal velocity and acoustic-optic overlap

Materials
(%wt)

Fundamental Mode
LP01

Spot size
σx

Acoustic-optic
overlap

(%)
SiO2 GeO2 Al2O3

Longitudinal
velocity

(m/s)

Frequency
shift

(GHz)
93.76 6.24 0 5800.8286 10.824 3.208 94.0

93.95 4.5 1.55 5888.4942 10.987 3.341 96.98

94.06 3.5 2.44 5938.2274 11.080 3.546 99.16

94.09 3.2 2.71 5952.8299 11.107 3.751 99.76

94.11 3.0 2.89 5962.2220 11.125 4.059 98.16

94.13 2.90 2.97 5966.5666 11.133 4.396 92.12

94.14 2.85 3.01 5968.4700 11.136 5.087 80.56

observed that as the Al2O3 doping is increased from 2.71%wt to higher value, the overlap

start reducing as the acoustic power start spreading to a larger effective mode area.

5.7.2 B2O3 layer in the inner cladding

Another technique to increase acoustic-optic overlap could be by introducing a high acoustic

index layer in cladding. To achieve this, a 4 µm wide annular region layer doped with B2O3

is used as shown as region 2 in Fig. 5.13. Figure 5.13 (a) show the schematic of the core,

clad and high acoustic index 2nd layer. Whereas, Figs. 5.13 (b) and 5.13 (c) show the optical

and acoustic index profiles along the radius, respectively. This high acoustic index layer in

the cladding is used to reduce the confinement of the acoustic mode in the core that results in

large acoustic mode area.
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Fig. 5.13 Effect of 2nd layer doping on the optical refractive index and the acoustic index of
SMF.

Boron increases the acoustic index in the cladding layer resulting in the acoustic modes

shifting towards cladding. The percentage weight doping of B2O3 is considered very carefully.

If the doping percentage is increased more, the acoustic modes completely shifts in cladding

that results the acoustic mode to approach its cutoff. Moreover, due to B2O3 doping in the

cladding optical refractive index get reduced which is compensated by the addition of GeO2

doping. The acoustic-optic overlap of 99.69% is achieved with the original core (without

Al2O3) and high acoustic index cladding layer with doping concentration of (1.697%wt of

B2O3 + 1%wt of GeO2 + 97.303%wt of SiO2).

5.8 Acoustic anti-guide core: for high power transmission

As discussed in the introduction that the SBS is considered as a limiting factor in order to

scale the power in the optical fibre lasers and amplifiers. Backward scattering in SBS process

reduces the capability of the optical transmission systems by limiting maximum transmission

power and introducing the high bit error rate [126]. Many techniques have been proposed

in order to reduce the effect of SBS by reducing the acoustic and optical modes overlap

[127, 128].
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Here, we have proposed a novel idea of the acoustic anti-guide in the core that results in a

very low overlap between optical and acoustic modes. The SBS threshold is highly related to

the overlap between acoustic and optical modes as mentioned in Eq. 5.7. Hence, increasing

the SBS threshold results in the increased optical transmission power and improved data rate

performance. For our design, we have introduced a high acoustic index annular layer in the

inner cladding named here as a 2nd layer which was used for increasing overlap as discussed

in Subsection 5.7.2. However, the difference between high and reduced overlap depends on

the doping concentration of B2O3 in 2nd layer. Here, we have observed two cases for the

doping percentage and the resultant overlap. In first case, where we kept the acoustic and

optical properties of the core unchanged and only doped the 2nd layer of cladding with the

(3.394%wt of B2O3 + 2%wt of GeO2). The resultant overlap with the fundamental optical

mode is observed to be 3.5% with the acoustic mode in 2nd layer. The acoustic mode in the

2nd layer in cladding has the frequency shift and velocity of 10.587 GHz and 5674.08 m/s,

respectively. However, it is observed that the fundamental acoustic mode in the core still

exists at frequency 10.81768 GHz with velocity 5797.3904 m/s.

(a) (b)

Fig. 5.14 Dominant Uz displacement vector profile of the fundamental longitudinal LP01
modes (a) in the core at f=10.817 GHz and (b) in cladding 2nd layer at f=10.587 GHz. The
variation of Uz displacement vectors along the radius (x-axis) of fibre is shown as insets.
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Figure 5.14 (a) shows both the acoustic modes in the core at f=10.817 GHz, and in the

cladding at f=10.587 GHz. With only B2O3 doping in the 2nd layer of cladding and without

changing acoustic index in the core it was not possible to make the waveguide completely

anti-guide. In order to make the core completely anti-guide, the core is also doped with

the aluminium (3.061%wt of Al2O3 + 2.8 %wt of GeO2) to reduce its acoustic index along

with the 2nd layer doping to increase its acoustic index as mentioned in the first case. This

resulted in the complete shift of acoustic mode in cladding as shown in 5.14 (b) Here we

have observed the acoustic-optic overlap of 2.7% for the dominant field of the fundamental

optical and longitudinal acoustic modes.

Figure 5.15 (a) shows the contour plot of the dominant (UZ) vector of the fundamental

longitudinal mode (LP01) in the proposed acoustic anti-guide design. Displacement vector

profile along the radius of the fibre is also shown in inset of the Fig. 5.15. It can be seen

that acoustic mode is shifted outside the core into cladding, however the optical modes

still propagates inside the core as the optical refractive index of core and cladding were

unchanged. Figures 5.15 (b) and (c) show the contour plots of the dominant Uz displacement

vector of LP02 and LP03 modes, respectively. Higher order longitudinal modes also shifted in

the cladding resulting in a very low overlap with the optical mode.

Similarly, Fig. 5.16 shows the field profile of fundamental optical mode, and Uz displace-

ment vector profile of the fundamental and higher order acoustic modes along the radius. It

can be observed that the optical mode field is confined in the core while the acoustic modes

have shifted towards cladding region resulting in a low overlap. Hence, the proposed design

gives a high SBS threshold and it will be very useful for the long haul fibre communication,

fibre lasers and amplifiers applications.
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(a) (b)

(c)

Fig. 5.15 Dominant Uz vector displacement profile of (a) fundamental longitudinal modes
LP01 mode and higher order (b) LP02 mode and (c) LP03 mode at f=10.588 GHz, f=10.645
GHz and f=10.737 GHz, respectively. The variation of Uz displacement vectors along the
radius (x-axis) of fibre is shown as insets.
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Fig. 5.16 Normalised Hy field of the LP01 optical mode and Uz displacement vector profiles
of the LP01,LP02, LP03 acoustic modes along the r-axis

5.9 Summary

A new full-vectorial finite element method based formulation is proposed to analyse the

light-sound interaction in acoustic waveguides. The FEM based vector formulation is not

only more accurate but essential to study high index contrast waveguides. However, the

existence of spurious solutions often deteriorates the quality of physical modes. A penalty

function, incorporating additional curl equations is used in order to eliminate these unwanted

spurious modes. By introducing penalty term in full-vectorial acoustic formulation the

spurious modes are suppressed significantly for both low and high index contrast acoustic

waveguides. The proposed penalty method results in improving the mode quality by the

elimination of spurious modes without introducing any significant error in the acoustic

frequency and velocity of the real modes and thus will be useful to study complex light-

sound interaction in optical waveguides for many potential applications and optimise their

performances. The proposed full-vectorial acoustic modal solution is also used to analyse

the complex light-sound interaction in a SMF. Two designs are proposed, where light-sound
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interaction is either increased or reduced for fibre optic sensing or high power transmission

applications, respectively. The acoustic-optic overlap is strongly related to the optical and

acoustic mode profiles and in this case, it is observed that the acoustic mode is more confined

in the core than the optical mode. However, through rigorous numerical simulations, we have

identified that, if the percentage (in weight) doping of Al2O3 (2.7%) and GeO2 (3.2%) in the

core are chosen then the core optical refractive index remains same as 1.44905 but its acoustic

index is reduced. In this case, the acoustic mode profile becomes much closer to the optical

mode profile and the overlap increases to 99.7%. On the other hand, an acoustic anti-guide

fibre for high-power transmission applications is also designed, where the overlap between

acoustic and optical modes is reduced. Here, we have shown that with the aluminium doping

in the core and introducing a high acoustic index layer in the cladding (3.394% B2O3 +2%

GeO2) results in a very low overlap of 2.7%. This high acoustic index layer in cladding force

acoustic modes to completely shifts in the cladding from the core, allowing much high SBS

threshold that enables high power delivery through this SMF.





Chapter 6

Mode stability enhancement in

multimode fibres using doped strips

Multimode fibres (MMF) offer large effective mode areas (Ae f f ) and can be useful for high

power lasers and amplifiers. However, a large mode area (LMA) results in an increased

number of modes which can be more susceptible to mode coupling. This chapter discusses

an innovative method to increase the modal spacing between higher order modes of a MMF

such that the mode mixing due to external perturbations can be reduced.

6.1 Introduction

The performance of fibre lasers in terms of high beam quality, high efficiency and high

average powers are directly linked with the characteristics of the rare-earth-doped fibre. One

of the challenges in increasing the output power of fibre lasers especially for the pulsed fibre

lasers is to mitigate non-linear effects such as Brillouin and Raman scattering, Four-wave

mixing (FWM) and Self-phase modulation [129, 130]. The possible approaches to reduce

the non-linear effects in fibre lasers is to reduce the fibre lengths or increase the effective

mode field area. Optical fibres such as few-mode fibres or multimode fibres with larger core
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size provide a higher effective area (Ae f f ) compared to smaller core fibres such as single

mode fibres. Larger Ae f f enables power scaling in fibre lasers as the non-linearity decreases

with the increase in effective area. Therefore, much of the recent research focuses on large

mode area fibres for the high-power fibre lasers [131]. However, there is a limit to increase

the core radius while maintaining the single mode operation in LMA fibres. Figure 6.1 shows

numerical aperture (NA) as a function of fibre core diameter for the wavelength of 1060 nm.

The red line shows the regions for single mode or multimode operation with the change in

core diameter. It can be observed that with the increase in the core radius, the NA value

needs to be decreased in order to maintain single mode operation while achieving large mode

area. However, due to fabrication limitations and increased bending loss, the value of NA is

often restricted to 0.06 [132].
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Fig. 6.1 Numerical aperture (NA) as a function of fibre core diameter for the cutoff wavelength
of 1060 nm of step-index design [133].

Multimode fibres (MMF) offer large mode areas and high beam quality M2 [134]. Zervas

and Codemard have shown the variation in beam quality with a function of normalised

frequency (V number) for different modes of a step-index fibre as shown in Fig. 6.2 [5].

It can be observed that the fundamental LP01 mode departs to higher value of M2 > 1 as it

approaches cutoff condition for V < 1.5. This is due to increased evanescent field extended
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into the cladding which deviates from the ideal Gaussian profile. The similar behaviour

is observed for other higher order modes as they approach cutoff condition and their field

extends to the cladding. Higher order modes LPm1 with high orbital momentum, show

considerably lower M2 which grows at a much slower rate compared to other LPmn.

Fig. 6.2 Beam quality (M2) as a function of V number for fundamental and higher order
modes of step-index fibre [5].

A MMF with a larger core has a fundamental mode and multiple Higher order modes

(HOM) depending on the core size and V number. Recent research shows that higher order

modes (HOM) can provide more stable operation because the signal stability increases with

an increase in the modal order [135, 136]. Several approaches have been presented in recent

years to use HOM for high power fibre lasers and amplifiers. One of the methods involves

the coupling of light from the fundamental mode to a single desired HOM using fibre Bragg

gratings and then to propagate light in the higher order mode amplifying fibre [36]. These

techniques provide considerably larger modal areas as well as more stable operation as

described above. Moreover, for a given effective area, HOMs are also less sensitive to area

reduction than the fundamental mode when bending [35, 137]. At the same time, compared

to the fundamental mode, higher order modes are less prone to mode coupling as with the
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increase in the modal order (m) the difference in effective index (∆ne f f ) between a given

higher mode LP0,m and its nearest antisymmetric mode LP1,m+1 and LP1,m−1 also increases

[17].

In this chapter, a novel approach to increase the ∆ne f f is discussed that result in resilience

to mode-mixing and provides a more stable signal propagation with the advantage of sig-

nificantly larger effective mode area (Ae f f ) by using HOMs. Annular rings with doping of

increased or reduced refractive index are used at particular radial locations inside the core

as shown in Fig. 6.3, such that the effective refractive index (ne f f ) of a desired mode is

increased or reduced [138]. To demonstrate the proposed concept, a MMF of numerical

aperture (NA=0.22) with core radius (Rcore=25 µm) and refractive index (ncore=1.457) is

considered. Similarly, cladding radius and refractive index are taken as (Rclad=62.5 µm) and

(nclad=1.4403), respectively. For this study the central operating wavelength of (λ=1.05 µm)

is chosen.

Fig. 6.3 Ring doping schematic of a MMF with the change in the refractive index along
r-axis.
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6.2 Theory

6.2.1 Modal solutions

Use of the higher order mode (HOM) of a multimode fibre (MMF) shows several advantages

which includes mode area scaling to control laser high power and dispersion management

for ultra-short pulses. Modal instabilities in HOMs are a common problem arising due to

external perturbations, such as bending and fabrication imperfections. According to the

symmetry rule, bend perturbation is odd in nature and direct coupling arises between even

and odd order modes. Among the many modes guided by a MMF, sometimes a desired

dominant mode (LP0m) may transfer its energy to its nearest anti-symmetric (LP1(m+1) and

LP1(m−1)) modes [17]. A low effective index difference (∆ne f f ) between adjacent modes

enhances the modal energy transfer which results in actual modal energy loss along with the

interference effects. This could result in inter-mode mixing in a MMF. Although a lower

order (lower value of m) mode may be easier to excite, however, a higher value of m gives

larger modal separation (∆ne f f ) values, so a compromise is needed. However, for a given

value of m, if the modal separation to the nearest anti-symmetric modes can be increased,

this would be a more preferable design. Here, a novel MMF design with concentric material

strips at strategically located positions is proposed to increase the ∆ne f f =(n0m
e f f −n1m

e f f ) in

desired modes, such as, LP18, LP09 and LP19 modes. Instead of using a perturbation approach,

we have used a rigorous full vectorial H-field based finite element method (FEM) to find

the modal solutions of our proposed MMF design. The FEM is one of the most numerically

efficient and accurate approaches to obtain the modal solutions of an optical waveguide, to

calculate the propagation constant (β ), effective index (ne f f =β/ko, where wavenumber ko is

given by 2π/λ ) and Ae f f .

In order to increase the modal solution accuracy, the available two-fold symmetry of the

fibre is exploited and only one-quarter of the structure is simulated [117, 118]. This allows
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a more dense mesh distribution in the quarter structure of the fibre instead of distributing

the same mesh over the whole structure. The polar mesh [139] discretisation is also used,

which can accommodate the discretized elements more efficiently at the circular boundaries,

which can provide more accurate results compared to the mesh distribution based on the

Cartesian coordinate system [140]. It is well known that the simulation accuracy of the FEM

is highly dependent on the number of discretized elements used. Variation of the effective

index (ne f f ) with the number of mesh elements (N) is shown in Fig. 6.4 by a solid black line

for the higher order LP09 mode. It can be observed that initially as mesh density increases

Fig. 6.4 Variation of ne f f of the LP09 mode with the mesh number (N) and convergence
realised with the Aitken extrapolation technique.

the ne f f also increases rapidly and then asymptotically settles to a constant value. It should

be noted that accuracy is up to the 3rd decimal place when the number of elements used

is, N = 7×104 and it increases to the 5th decimal place when N = 5×105. Here N, is the

number of triangular elements used to represent a quarter of the MMF. A powerful Aitken’s

extrapolation technique is used to test the convergence of the modal solutions [141, 142].

Three successive ne f f values for corresponding mesh divisions with a geometric ratio are
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used in the Eq. (6.1).

n∞
eff = neff(r+1)−

[neff(r+1)−neff(r)]
2

neff(r+1)−2neff(r)+neff(r−1)
(6.1)

Using Eq. 6.1 the extrapolated values of n∞
e f f are shown in the Fig. 6.4 by the red-dashed

line. Aitken’s values are calculated for the mesh values N = 7.66× 104, 3.07× 105, and

1.23×106 increased in fixed geometric ratio yielding the ne f f values 1.4460355, 1.4461157,

and 1.4461358, respectively. It should be noted that in each solution the mesh density is two

times (no. of the elements is four times) that of the previous and thus the geometrical mesh

ratio is kept constant. From these values a more accurate extrapolated value of 1.4461398 is

obtained. Similarly, Fig. 6.4 clearly shows the convergence of the extrapolated results and

raw FEM results. As the trend of ne f f with increasing N for different modes is similar, so the

accuracy of ∆ne f f between two modes with increasing N is rather better.

Fig. 6.5 Variations of Hy fields of the LP18, LP09, and LP19 modes along the r-axis of MMF,
contour field profiles in inset and the key points of interest are also shown.
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6.2.2 Mode stability

As previously discussed, higher order modes provide the unique benefit of increased stability

due to a greater mode spacing (∆ne f f ) compared with that of the fundamental modes (LP01)

[143]. The proposed technique can reduce mode mixing between the higher order LP18, LP09

and LP19 modes, that could alternatively only be possible by considering a much higher

modal order. For our design, we used LP09 as the central propagation mode and modified the

refractive index profile of the fibre such that the mode stability between symmetric (LP09)

and the two nearest antisymmetric (LP18 and LP19) modes is increased. A measure of the

modal stability can be defined using the effective index differences as, S1=∆ne f f (LP18−LP09)

and S2=∆ne f f (LP09 −LP19). However, if required any other HOM of interest can also be

selected and using the same concept its mode stability can be enhanced. For this structure,

the effective indices of the LP18, LP09, and LP19 are calculated as 1.447317, 1.4461104,

and 1.4448554, respectively, yielding S1=0.0012066 and S2=0.001255. The variation of the

dominant Hy field profile of the LP18, LP09 and LP19 modes is shown in Fig. 6.5 by red, black

and blue lines, respectively. Hy field contours of the LP18, LP09 and LP19 modes are also

shown Fig. 6.5 as insets. It can be observed that the field profile of LP09 mode shown by a

black line, has the highest magnitude at the centre (r=0) of the fibre and eight zero values

along the radial direction. The antisymmetric LP18 and LP19 modes shown with red and blue

lines, respectively, have zero field values at the centre (r = 0) of the fibre. The dominant

Hy fields of the LP18 and LP19 modes have eight and nine zero field values along the radial

direction, respectively. Table 6.1 shows all the radial locations where these modes have zero

field values. For example, LP18 mode has its first three zero field locations at r=0, 3.78 and

6.966 µm. Using these zero crossings we have identified multiple locations that are suitable

for doping such that the mode stability (S1 and S2) can be increased.

Some specific points, A, B, C, D, E and F are selected as shown in Fig. 6.5, where either

LP18 or LP19 has zero crossing. The reason for choosing these points is that we want to have
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Table 6.1 Zero crossing locations of field profiles of the LP18, LP09 and LP19 modes along
r-axis (µm).

Mode Location of zero crossings along r-axis (µm)

LP18 0 3.78 6.966 10.138 13.279 16.315 19.557 22.684

LP09 2.16 5.16 8.125 11.078 13.99 16.89 19.9 22.79

LP19 0 3.36 6.193 9.058 11.867 14.577 17.472 20.252

less effect on one of the mode and have more effect on the other two modes using strips

of different doping. The modal field values at these points are also given in Table 6.2. For

Table 6.2 Field values of LP18, LP09 and LP19 at A, B, C, D, E and F points.

Mode A=6.193 B=6.966 C=9.058 D=10.138 E=11.867 F=13.279

LP18 0.06507 0 0.06741 0 0.6606 0

LP09 0.08321 0.08328 0.06493 0.06218 0.05022 0.04658

LP19 0 0.058 0 0.06267 0 0.05879

example at point A, the Hy field value of LP19 is zero, whereas, the field values of LP18 and

LP09 modes are 0.06507 and 0.08321, respectively. As a result any change of refractive index

doping at point A will have an almost negligible effect on the LP19 mode and comparatively

more effect on the LP09 than the LP18 mode. However, at point F, where the Hy field value

of LP18 mode is zero and these values for LP09 and LP19 modes are 0.04658 and 0.05879,

respectively. Hence, at point F, doping will have no effect on the LP18 but will influence

more effect on LP19 than the LP09 mode. This will result in an increase in the effective

index of both modes while keeping the effective index of the LP18 mode unchanged, and a

suitable selection can result in an increase in the modal stability. In order to increase the

∆ne f f between these modes an annular strip of 0.3 µm wide is considered that can have an

increased or reduced refractive index by ∆n. Here, we have taken ∆n = 0.0167, which is also

the difference between the core and cladding refractive indices. However, different values of

∆n in these strips can be chosen according to the required level of stability between modes.
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6.3 Numerical results

Table 6.3 shows the effect of doping a single individual annular section at the above mentioned

six positions along the r-axis. The second column of Table 6.3 shows the original ∆ne f f

between the modes without any doping. It can be noted that the ∆ne f f between LP09 and

LP19 modes is slightly higher than the ∆ne f f between LP18 and LP09 modes. The values of

+∆n or −∆n on particular points are chosen such that the effect on the central mode, in our

case LP09 modes, is negligible or can be compensated with another doping layer where ∆n

is chosen with an opposite sign to the first point. For example, in layer A (at r=6.193 µm),

+∆n is chosen to increase the stability, S1 between LP09 and LP19 modes, but unfortunately

this reduces the stability, S2 between LP18 and LP09 modes. On the other hand a reduction of

refractive index in layer B increases modal separation S2, but reduces that of S1. However,

an increase of refractive index in layer E and reduction in layer F enhances both the S1 and

S2 modal stabilities. The same doping approach is considered at all six positions with either

+∆n or −∆n as shown in Table 6.3. Here, two approaches can be considered;

1. Using a single layer doping to increase the stability between modes.

2. Using the combination of two or more layers to increase the stability.

Table 6.3 Individual strip doping effect on ∆ne f f at points A, B, C, D, E, and F.

∆ne f f
Without

doping

A B C D E F

+∆n -∆n +∆n -∆n +∆n -∆n

S1 =LP18-LP09 0.0012066 0.0010515 0.0015574 0.0012192 0.0014932 0.0013553 0.0014033

S2 =LP09-LP19 0.001255 0.0015544 0.0010634 0.0015037 0.0012711 0.0014385 0.0014217

In Table 6.4 the above described approaches are shown with the percentage increase in

∆ne f f (S1 and S2). The percentage increase is calculated with respect to the original ∆ne f f

between the modes as shown in column two. Here, three different options are suggested

depending upon the required increase in the ∆ne f f . It can be seen that with a single layer
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of −∆n doping at point F, S1 and S2 are increased by 16% and 14%, respectively. However,

using two layers (at E & F points) the stabilities S1 and S2 between modes can be increased

by 20% and 23%, respectively. It should be noted that the ∆n doping at points E and F are

taken as positive and negative, respectively. For further enhancement, three layers can be

doped simultaneously at points C, D, and E which results in an increase of 35% and 38%

for ∆ne f f (LP18 −LP09) and ∆ne f f (LP09 −LP19), respectively. Hence, our proposed design

results in increased modal spacing between the higher order LP18, LP09 and LP19 modes, thus

providing more stable and mode-mixing resistant operation.

Table 6.4 Percentage increase in the ∆ne f f using individual and combination approach.

∆ne f f
Without

doping

F only E & F C, D & E

∆ne f f % Increase ∆ne f f % Increase ∆ne f f % Increase

S1 =LP18-LP09 0.0012066 0.0014033 16 0.0014551 20 0.0016254 35

S2 =LP09-LP19 0.001255 0.0014217 14 0.0015318 23 0.0017357 38

Fig. 6.6 Refractive index profile of the modified MMF along r-axis with ±∆n at C, D and E
points.

Figure 6.6 shows the refractive index profile for three layer doping at C, D and E points.

Here, ∆n at points C and E are taken as positive such that it increases the local refractive

index from 1.457 to 1.4737. Whereas, at point D, ∆n is taken as negative resulting in the

local refractive index being equal to that of the cladding. The combination is chosen such

that ∆ne f f (LP18 −LP09) and ∆ne f f (LP09 −LP19) have an almost equal increase. Here, all
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three annular strips are centred at points C, D and E and have an equal width of 0.3 µm.

The LP09 mode is considered as a central propagation mode in our design. Hence next, the

effect of three layers of doping at points C, D, and E points on the field profile of LP09 is

studied. Figure 6.7 shows the Hy field profile of the LP09 mode before and after doping. The

black line shows the undoped field profile whereas the dotted blue line represents the field

profile of LP09 after doping these three layers at C, D, and E. It can be observed that until the

appearance of the doped strips the field profile was almost unchanged, however beyond these

strips, the field value is reduced compared to that of the original undoped fibre.
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Fig. 6.7 Variations in the Hy fields of LP09 modes along the r-axis of the undoped fibre and
the fibre with C, D, and E layers doped. The contour field profiles are also shown inset.

The ∆n=0.0167 value used for the annular strips C, D, and E is equivalent to the refractive

index difference between core and cladding of the fibre but if necessary other ∆n values or

even unequal values can be used for a particular design. To observe the effect of increased or

reduced value of ∆n, we have halved the refractive index difference as, ±∆n=0.00835 and

found that the modal stabilities S1 and S2 reduces to 18% and 19%, respectively. However,

when refractive index difference is increased to double; as ±∆n=0.0334, the modal stabilities

S2 increases to 74% but S1 increased only slightly to 41%, as field profiles were distorted

significantly. However, it can be stated that a significant enhancement in the modal stability

can be achieved by this approach.
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6.3.1 Scalability of proposed technique

Although in earlier section, we have focused on the enhancement of mode spacing between

LP09 and its neighbouring antisymmetric LP18 and LP19 modes, however, the proposed

technique is scalable and can be applied for other higher order modes. In order to show

the scalability of proposed method, the enhancement of mode spacing of LP08 mode and its

neighbouring antisymmetric LP17 and LP18 modes, we have carried out additional simulations

after introducing the similar annular rings method. Six zero crossing points, A
′
to F

′
for LP17

or LP18 are identified as A
′
=6.928, B

′
=7.856, C

′
=10.138, D

′
=11.518, E

′
=13.279, F

′
=15.098

(in µm). Numerical simulations were carried out with 0.3 µm wide annular strips with

±∆n=0.0167 introduced at these points. Table 6.5 shows the increase in ∆ne f f (LP17 −LP08)

and ∆ne f f (LP08 −LP18) with single layer (F
′
) or multiple layers (E

′
,F

′
and (C

′
,D

′
,E

′
) with

perturbed annular strips. It can be observed that the stability is increased to 46% for the LP08

mode when three annular layers at (C
′
,D

′
,E

′
) points are used.

Table 6.5 Percentage increase in the ∆ne f f of LP08 mode and its neighbouring antisymmetric
modes using individual and combination of two or three strips doping.

∆ne f f
Without
doping

F
′ only E

′
& F

′
C

′
,D

′
& E

′

∆ne f f % Increase ∆ne f f % Increase ∆ne f f % Increase
LP17-LP08 0.0010746 0.0012218 14 0.0013424 25 0.0015759 47

LP08-LP18 0.0011146 0.0013136 18 0.0015187 36 0.0016256 46

Similarly, the enhancement in the modal stability of a lower order LP05 mode is also

achieved by increasing its effective index difference (∆ne f f ) with its neighbouring antisym-

metric LP14 and LP15 modes. As discussed earlier that the ∆ne f f between the modes increases

with the increase in the modal order (m), hence, change in the ∆ne f f in lower order modes

comparatively higher.

Figure 6.8 shows the variation of the dominant normalised Hy field profiles of the LP05

and two adjacent antisymmetric LP14 and LP15 modes. The Hy contour field profiles of these

modes are also shown in Fig. 6.8 as insets. The LP05 mode has the peak value at r = 0 and
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Fig. 6.8 Variations of Hy fields of the LP14, LP05, and LP15 modes along the r-axis of the
MMF, contour field profiles are given as insets and the key locations of interest are also
shown.

it crosses zero values at four different locations along the fibre radius. Similarly, the LP14

and LP15 modes have zero field values at the centre (r = 0) and have three and four zero

crossings along the radius of the fibre as shown in Table 6.6, respectively. Four strategically

located places (A, B, C and D) are chosen where either LP14 or LP15 mode has zero field

values. An annular strip with width 0.4 µm and ±∆n = 0.0167 is introduced at the above

mentioned points and corresponding S1 = ∆ne f f (LP14 −LP05) and S2 = ∆ne f f (LP05 −LP15)

are calculated. Here, for strip doping we have taken the ∆n = 0.0167, equal to the difference

between core and cladding refractive indices of the MMF. The effective indices of the modes

increases or decreases for ∆n positive or negative, respectively, and its value depends on the

field value of the corresponding modes at that particular location.

Table 6.6 Zero crossing locations along the radius of multimode fibre where the Hy field
values of LP14, LP05 and LP15 modes are zero.

Higher order
optical modes

Effective index
(neff)

Zero crossing locations along r-axis (µm)

LP14 1.45443491 0 7.357 13.525 19.60 31.529

LP05 1.45378140 4.08 9.488 14.875 20.275 31.88

LP15 1.45308231 0 5.94 10.916 15.839 20.757
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Here, we report percentage increase in the modal stabilities using single or a combination

of annular strips as shown in the Table 6.7. When a single strip of −∆n = 0.0167 is

introduced at point B = 13.252 µm the modal stabilities S1 and S2 are increased by 38% and

34%, respectively. It should be noted here that at point B, the field value of LP14 mode is

zero hence, any strip doping has very little effect on the effective index of the LP14 mode.

However, the effective index of the LP05 and LP15 modes are reduced depending on their

modal field values as shown in Fig. 6.8. Similar approach is conducted with two −∆n

doped strips at points B and D and the resultant modal stabilities increased to S1 = 45% and

S2 = 57% as shown in Table 6.7. Moreover, with the combination of three strip dopings at

points (A=+∆n), (B=−∆n) and (C=+∆n) the modal stabilities S1 and S2 are increased to

103% and 83%, respectively. This confirms that the concept presented here can be applied to

any higher order modes, as required.

Table 6.7 Percentage increase in the ∆ne f f (LP14 −LP05) and ∆ne f f (LP05 −LP15) by individ-
ual and combination of doped strips.

Modal stability
Without

doping

B− layer only B− & D− layers A+, B− & C+ layers

∆neff % Increase ∆neff % Increase ∆neff % Increase

S1 =LP14-LP05 0.00065351 0.00090188 38 0.00094974 45 0.00132629 103

S2 =LP05-LP15 0.00069908 0.00093364 34 0.00109850 57 0.00127630 83

6.3.2 Fabrication tolerance of strip width

Here, we demonstrate the effect of possible variations in doped strips that can occur during

the fabrication process. As for the LP09 mode, the combined doping of the three layers at

points C, D, and E could be more sensitive to fabrication tolerances than the two or single

layer doping so we will consider the three layers (C, D and E) case for further investigation.

The effect of a change in the layer width (w) from 0.3 µm to a higher or lower value is

shown in Fig. 6.9. As discussed earlier, with w=0.3 µm the stabilities S1 and S2 between
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Fig. 6.9 Effect on ∆ne f f of a change in width of doped layers at points C, D, and E for LP09
mode.

the modes are 35% and 38%, respectively. With an increase in the width from w=0.3 µm to

w=0.4 µm, the stabilities S1 and S2 further increase to 38% and 51%, respectively. This is

because the area of the doped layer is increased when the width is changed from 0.3 µm to

0.4 µm thus increasing its overall effect. However, as the width deceases to w=0.20 µm, the

stability improvement reduces but still it remains above 25%.

Similarly, Fig. 6.10 shows the change in ∆ne f f of LP05 mode with the variation in a single

doped strip introduced at the position B = 13.252 µm. Here, the doped strip width is varied

from 0.20 µm to 0.60 µm and resultant ∆ne f f is calculated. When the strip width is selected

0.20 µm the resultant modal stabilities S1 and S2 for LP05 mode are calculated as 0.00078596

and 0.00082062, and in terms of percentage 20% and 17%, respectively. Similarly, when

the strip width is changed to 0.6 µm the resultant modal stabilities S1 = 0.000995229 and

S2 = 0.001038969 and percentage improvements of S1 = 52% and S1 = 49% are calculated.

This shows that wider strips increases the modal stability in this case.
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Fig. 6.10 Effect on ∆ne f f of a change in width of single doped layer at position B for LP05
mode.

6.3.3 Fabrication tolerance of strips centre location

For the modal stability of LP09 mode, the proposed design with three layers are centred at

positions C=9.058 µm, D=10.138 µm and E=11.867 µm and during fibre drawing these

positions may change. Figure 6.11 shows the effect of a change in the location of the doped

layer’s centre points. It can be seen that the stability is highly dependent on the specified

locations in Fig. 6.5.

When there is no shift in the location of the doped strips centres, the stability improvement

is larger than 35%. With a tolerance of ±0.05 µm the stability improvement still remains

above 27% but as the shift is increased to 0.1 µm the S1 improvement drops to 20% while

S2 improvement is increased to 51%. Moreover, when the annular strips shift is -0.1 µm,

the modal stability S1 improvement increases to 46% but that of S2 decreases to 27%. For

comparison the spacing between the modes before introduction of the C, D and E layers is

also shown by two horizontal lines.

Similarly, Fig. 6.12 shows the change in the ∆ne f f for LP05 mode when the location of

doped strip introduced at position B = 13.252 µm is shifted ±0.1 µm. It is noted that, for
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Fig. 6.11 Effect on the ∆ne f f of a variation in the position of C, D, and E layers from centre
location for LP09 mode.

Fig. 6.12 Effect on the ∆ne f f of a variation in the strip position from central point B for LP05
mode.
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the strip shift of ±0.1 µm from centre point B the modal stability improvements for LP05

mode and its neighbouring antisymmetric LP14 and LP15 modes remains above 30%.

6.3.4 Fabrication tolerance of wavelength change

The above analysis is carried out at the centre wavelength of λ=1.05 µm. However, when the

operating wavelength changes from this value the stability between modes can also change.

To observe the impact of wavelength change on the stability between the modes, we varied

the operating wavelengths and this is shown in Fig. 6.13. It can be observed that the stability

between the LP18, LP09 and LP19 modes increases with an increase in the wavelength. It

should be noted that the refractive index of a material is also dependent on the wavelength.

In our analyses we have used the core and clad refractive index values as ncore=1.457 and

nclad=1.4403 respectively at λ=1.05 µm. It should be noted that without doping at the C,

Fig. 6.13 Effect on the ∆ne f f with the change in wavelength (λ ) for LP09 mode and its
neighbouring LP18 and LP19 modes

D, and E layers, the stability increases almost linearly with an increase in the wavelength.

The increased wavelength reduces mode confinement and effective index values, and this

also increases the separation between the modal index values. A similar effect is noticed
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after the introduction of doping at layers C, D and E layers. When the centre wavelength

is λ=1.05 µm, the modal stability values are S1=0.0016254 and S2=0.0017357, which are

improvements of 35% and 38% from their undoped values, respectively. However, it can

be noted that with a change in the wavelength from λ=1.05 µm to λ=0.85 µm the stability

difference after doping shows a similar trend to the undoped case. The modal stability values

at λ=0.85 µm reduced to S1=0.0010095 and S2=0.0014572, however this reflects a 25% and

74%, improvement from the standard fibre. Similar behaviour is observed when the centre

wavelength is increased to λ=1.25 µm and modal stability increases to S1=0.002199 and

S2=0.0019263, and these reflect improvements 35% and 25% increase from the standard

fibre. The modal stability still remains 25% higher for the wavelength range from λ=0.85

µm to λ=1.25 µm, and hence the proposed design results in a sufficiently improved stability

between the competing modes.

6.4 Summary

A novel design approach is discussed in chapter 6, which has been validated by rigorous

numerical analysis, to improve the stability between the modes significantly. Increasing

the ∆ne f f between modes results in a more stable and mode-mixing resistant operation and

thus allows scalability of power in laser applications. It is shown that using a single or

combination of multiple doped strips having ±∆n refractive index the modal stability of LP09

mode and its neighbouring LP18 and LP19 mode can be increased more than 35 %. Moreover,

it is shown that the proposed technique is scalable and can be applied to increase the modal

stability of other higher order modes of a MMF. This is shown by increasing the modal

stability of LP08 mode and its neighbouring antisymmetric LP17 and LP18 modes more than

46 %. Similarly, in the case of LP05 mode and it’s neighbouring antisymmetric LP14 and LP15

mode, the modal stability is increased more than 83 %. It is also shown here that the design
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is reasonably stable to possible fabrication tolerance such as the position and width of the

doped annular strips.





Chapter 7

Mode stability enhancement in

multimode and few-mode fibres using

air-holes

As discussed in Chapter 6 that the modal stability or effective index difference (∆ne f f )

between higher order modes of multimode fibres can be increased by introducing strategically

located high, low or combination of both high and low index annular strips along the radius

of MMF. In this chapter, we have proposed a novel approach to increase the ∆ne f f between

a higher order mode of a MMF and its neighbouring antisymmetric modes using air-holes.

The second section of this chapter discusses similar technique applied to increase the ∆ne f f

between the modes of a few-mode fibre (FMF) to reduce the inter-modal coupling and

interference for the mode division multiplexing.
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7.1 Modal stability enhancement in MMF

7.1.1 Introduction

As discussed earlier that the multimode fibres (MMF) provides a large effective area that is

useful for high power delivery but the existence of many modes may result in the random

mode mixing and energy may transfer from a desired mode of propagation to its neighbouring

modes. The identification and excitation of a selective mode are essential in multimode fibres

for lasers and amplifiers related applications.

The larger fibre dimensions allow fundamental mode along with other higher order modes

to propagate with different effective indices (ne f f ). A lower value of ∆ne f f between the

adjacent modes may result in the inter-mode mixing and can cause interference effects.

However, increasing the ∆ne f f between these modes can significantly reduce this inter-

mode mixing and any possible interference effects between them. In previous chapter, a

combination of low and high index contrast doped strips is used to increase the ∆ne f f values

between LP09 mode and its neighbouring antisymmetric LP18 and LP19 modes [138]. These

small sub-micron width strips can introduce a smaller change in the effective indices resulting

in increased modal stability.

This section discusses the enhancement of ∆ne f f between a higher order mode of MMF

and its neighbouring antisymmetric modes. The proposed method uses strategically located

small air-holes that can be easily fabricated by adopting a similar approach that is used for

the fabrication of Photonic Crystal Fibres (PCF) [144, 145]. For our simulations, we have

used a similar step-index multimode fibre with a core diameter of 50 µm as discussed in

Chapter 6. The numerical aperture of the fibre is calculated as NA = 0.22 with the Ge-doped

core and pure Silica cladding having refractive indices of ncore= 1.457 and nclad= 1.4403,

respectively. The operating wavelength of λ = 1.05 µm is considered for our simulations.
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For a given MMF, the modal stability between higher order modes increases with the

increase in modal order, m. This means that the ∆ne f f of a higher order LP09 mode with

its neighbouring antisymmetric LP18 and LP19 modes have a higher value compared to a

lower order mode, say LP03 mode with its adjacent modes. However, exciting a higher order

mode may involve more complexity as the power profile of the incident light is required to

match the profile of a desired higher order mode to avoid any back reflection or coupling of

other modes. Moreover, for given fibre dimensions the effective area of higher order modes

also decreases with the increase in the mode order (m). So, it may be useful to enhance

the modal stability for a specific higher order mode. Here, for our modal analyses, we

have used LP06 mode and aimed to increase the effective index difference between LP15 and

LP16 modes. Without any air-holes the effective indices of LP15, LP06, and LP16 modes are

calculated as 1.4530823, 1.4522882 and 1.4514477, respectively. From these values, the

resultant effective index differences S1=∆ne f f (LP15 −LP06) and S2=∆ne f f (LP06 −LP16) are

calculated as 0.000794095 and 0.000840509, respectively.

Fig. 7.1 Schematic cross-section design with annular air-holes array and refractive index
profile along the radius of a MMF.



144 Mode stability enhancement in multimode and few-mode fibres using air-holes

To increase the ∆ne f f between LP06 mode and its neighbouring antisymmetric LP15 and

LP16 modes, a circular array of air-holes is introduced along the circumference of a MMF.

Figure 7.1 shows the schematic view of the proposed MMF design that includes a circular

array of air-holes at a particular distance from the centre inside the core of MMF. The

refractive index profile along the radius of the MMF is also shown in Fig. 7.1 where the

refractive index of the holes having diameter Hd is considered as nhole=1.0.
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Fig. 7.2 Variations of Hy fields of the LP15, LP06, and LP16 modes along the r-axis of MMF,
contour field profiles in inset and the key points of interest are also shown.

For a given mode, the reduction of its effective index depends on the magnitude of its

modal field at the location of air-holes. Figure 7.2 shows the dominant Hy field variation

of LP15, LP06 and LP16 modes along the radius of given MMF. It can be observed that LP06

mode has a maximum amplitude at the centre of fibre core (r = 0 µm), whereas, LP15 and

LP16 modes have zero fields at the centre of the fibre core. The contour field profiles of these

modes are also shown in Fig. 7.2 as insets. The zero crossing locations where the field value

of these modes is zero are calculated and given in Table 7.1. Furthermore, zero crossing

positions of LP15 mode are also highlighted with letters A, B, C, and D in Fig. 7.2 to assist

further discussions.
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Table 7.1 Zero crossing locations of field profiles of the LP15, LP06 and LP16 modes along
r-axis (µm).

Mode Zero crossing locations along r-axis (µm)

LP15 0 5.999 10.985 15.925 20.855 -

LP06 3.376 7.855 12.335 16.819 31.305 -

LP16 0 5.041 9.225 13.38 17.523 21.66

7.1.2 Results and discussion

To increase the ∆ne f f between the LP06 and its neighbouring antisymmetric LP15 and LP16

modes, one approach would be to increase the effective index of LP15 mode and reduce the

effective index of LP16 mode while keeping the effective index of LP06 unchanged using high

and low index doped strips proposed earlier [146]. The alternative technique proposed here

is to include an array of air-holes that decreases the effective indices of LP06 and LP16 modes

while keeping the LP15 mode effective index unchanged.

Table 7.2 Normalised field values of LP06 and LP16 modes at the zero crossings A, B, C and
D points of LP15 mode.

Optical

Modes

A

5.999

B

10.985

C

15.925

D

20.855

LP06 0.3922 0.24435 0.147 0.067695

LP16 0.4258 0.46145 0.3693 0.19815

Field values difference

(LP16-LP06)
0.0336 0.2171 0.2223 0.130455

Table 7.2 shows the normalised field values of LP06 and LP16 modes at different zero

crossing location of the LP15 mode. An air-holes array introduced at the zero crossing

locations of LP15 mode would decrease the effective indices of LP06 and LP16 modes, but

this decrement will depend on the amplitude of their field values. For example, at the

point, A = 5.999 µm, the field value of LP15 mode is zero, but the normalised field values
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of LP06 and LP16 modes are calculated as 0.3922 and 0.4258, respectively, resulting in a

field difference of 0.0336. However, at point B = 10.985 µm, the field value difference is

calculated as 0.2171, which is higher than the value calculated at Point A. Similarly, at point

C the field value difference is calculated as 0.2223. Depending on the field value difference,

the position of air-holes array can be selected to achieve a comparable increase in ∆ne f f

between LP06 and its neighbouring LP15 and LP16 modes.

Here, an array of two hundred air-holes at the zero crossing positions A, B, C, and D of

LP15 mode is introduced with each air-hole diameter taken as Hd = 120 nm. Table 7.3 shows

the absolute change and the percentage change in ∆ne f f , which is calculated with respect to

previous value as shown in Eq. 7.1.

%Change =
with holes ∆ne f f −without holes ∆ne f f

without holes ∆ne f f
∗100 (7.1)

Table 7.3 Change in ∆ne f f with the introduction of air-holes array at the zero crossings of
LP15 mode.

neff

Without

holes

A=5.999 µm B=10.985 µm C=15.925 µm D=20.855 µm

Hd=120nm %change Hd=120nm %change Hd=120nm %change Hd=120nm %change

S1=(LP15-LP06) 0.00079409 0.001874673 136 ⇑ 0.001471349 85 ⇑ 0.00102064 29 ↑ 0.000843914 6 ↑

S2=(LP06-LP16) 0.00084050 0.000163878 -81 ⇓ 0.001003126 19 ↑ 0.001187816 41 ⇑ 0.00094461 12 ⇑

From Table 7.3, it can be observed that with the introduction of air-holes at A to D

positions, the modal stability S1 has increased. However, unfortunately, a noticeable reduction

in the modal stability S2 is observed because ∆ne f f between LP06 and LP16 modes reduce

when air-holes are introduced at position A. This significant reduction around 81% in the

∆ne f f is due to small field value difference as the reduction in the effective index of LP06

mode is much higher as compared to the LP16 mode. However, at position B, the normalised

field value difference between LP06 and LP16 modes is calculated as 0.2171 that resulted in

85% increase in S1 and also 19% increase in S2. Similarly, further away from the core centre
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these modes have reduced field values and the normalised field difference at position C is

calculated as 0.2223.

With the introduction of an array of 200 air-holes at C position the modal stabilities

S1 and S2 increase to 29% and 41%, respectively. Similarly, at point D increase in modal

stabilities are calculated as S1 = 6% and S2 = 12%.
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Fig. 7.3 Change in the ∆ne f f with the location change of air-holes array along the radius of
the fibre from point B and fixed 200 air-holes each having diameter of 120 nm.

The ∆ne f f between the LP06 mode and its neighbouring antisymmetric LP15 and LP16

modes has increased significantly with the introduction of air-holes array at B and C positions.

However, this increase in effective index difference S1 and S2 is not of similar magnitude as

in case of position B this was calculated as 85% and 19%, respectively. To have a similar or

comparable increase in the ∆ne f f , the position of the air-holes array can be adjusted from its

original location, B = 10.985 µm. Variation in the ∆ne f f and the percentage change in the

∆ne f f is shown in Fig. 7.3 by solid blue and dashed red lines, respectively, when the air-holes

array is shifted from position B = 10.985 µm. As the air-holes array is moved towards the

centre of the fibre core from position B = 10.985 µm, the modal stability S1 further increases

and S2 decreases, which may not be desirable. When the air-holes array is shifted 0.085
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µm towards the core centre at 10.9 µm, the percentage increase in the modal stabilities

S1 and S2 are calculated as 99.6% and 0.5%, respectively, but not shown here. However,

when the air-holes array is moved away from the core centre towards fibre cladding, the

percentage modal stability S1 starts reducing but S2 starts increasing. As shown in Fig. 7.3

the percentage increase in the effective index difference S1 and S2 are nearly equal at position

B
′
= 11.27 µm. At position B

′
, the ∆ne f f between LP15 and LP06 modes is calculated as

0.00123656 and between LP06 and LP16 modes as 0.00129738. The percentage increase in

S1 and S2 are calculated as 56% and 54%, respectively as shown in Fig. 7.3 with red dashed

lines.

The same trend continues when the air-holes array is shifted further towards the cladding.

It should be noted that as the location of air-holes is moved away from the exact zero crossings

of the LP15 mode, its effective index will also reduce slightly, but a better control can be

achieved by balancing S1 and S2. Hence, for our further analyses, we have used B
′
= 11.27

µm as the new central position for the air-holes array.
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Fig. 7.4 Variations of Hy fields of the LP15, LP06, and LP16 modes along the r-axis of MMF
with the introduction of 200 air-holes array each having Hd = 120 nm, contour field profiles
are also in inset.
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Figure 7.4 shows the variation of Hy field profiles of LP15, LP06 and LP16 modes along

the radius of the MMF after the introduction of air-holes. Here, 200 hundred air-holes having

Hd = 120 nm are introduced at B
′
position along the circumference of MMF. Following the

introduction of air-holes, the effective indices of LP15, LP06 and LP16 modes are reduced,

and new values are calculated as 1.45303814, 1.451801579, and 1.45050419, respectively.

Moreover, the normalised field values at position B
′
after the introduction of air-holes are

also reduced, and these new values are calculated as 0.107, 0.098 and 0.3427 for the LP15,

LP06 and LP16 modes, respectively. From the Hy field variations of these modes shown in Fig.

7.4, it can be observed that the field profiles modify after the B
′
position due to the presence

of these air-holes. The contour plots of LP15, LP06 and LP16 modes after the introduction of

air-holes are also shown in Fig. 7.4 as insets.

7.1.3 Fabrication tolerance

The drill-and-draw or extrusion technique can be used for the fabrication of such microstruc-

tured fibres consisting of air-holes [147]. However, for a large number of air-holes individual

cylindrical glass rods, tubes, capillaries can be stacked according to predefined design. The

resultant preform then drawn into optical fibres until the desired structure with required

dimensions is not achieved [148]. However, with the smaller air-holes, the fabrication process

can become more challenging as due to drilling in the preform or during the drawing process,

air-holes diameter or their position can slightly change. To observe variation in the ∆ne f f

due to change in the air-holes diameter (from 120 nm) or change in the position, further

numerical simulations were carried out.

Figure 7.5 shows the change in the effective index differences S1 and S2 with the change

in the diameter of air-holes introduced at B
′

radial position. It can be observed that with

the reduction in the air-holes diameter from 120 nm to a lower value, the effective index

difference S1 and S2 also decrease linearly. When 200 air-holes having a diameter of 80 nm
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Fig. 7.5 Change in the absolute and percentage effective index difference S1 and S2 with the
variation in the holes diameter with fixed 200 hundred holes.

are introduced at the B
′

position, the percentage increase in the effective index difference

decreased and calculated as S1 = 30.3% and S2 = 30.5%. The respective absolute ∆ne f f

values are also shown by blue lines in Fig. 7.5. However, when the air-holes diameter is

increased to more than 120 nm, the percentage increase in the ∆ne f f also increases, as shown

by red dashed line and for a diameter of 160 nm the percentage increase in the effective index

difference is calculated as S1 = 74% and S2 = 71%. The above analysis also shows that even

with the change of ± 40 nm in air-holes diameter, the percentage increase in modal stability

remains above 30%.

One of the fabrication related issues may arise if the air-holes array is shifted from

its central position, as for the above case, from B
′
= 11.27 µm. Figure 7.6 shows the

change in the ∆ne f f and percentage ∆ne f f with the shift in the air-holes array position.

When 200 air-holes having Hd = 120 nm are introduced at 11.15 µm (shift of -0.12 µm

from B
′

position) the effective index difference S1 and S2 are calculated as 0.001343699

and 0.001182876, respectively yielding the percentage as 69.2% and 40.7% for S1 and S2,

respectively. Similarly, when the air-holes array is shifted to 11.39 µm position which is



7.1 Modal stability enhancement in MMF 151

-0.15 -0.10 -0.05 0.00 0.05 0.10 0.15
0.00110

0.00115

0.00120

0.00125

0.00130

0.00135

0.00140

 n
eff

 (LP
15

- LP
06

)
 n

eff
 (LP

06
- LP

16
)

 % n
eff

 (LP
15

- LP
06

)
 % n

eff
 (LP

06
- LP

16
)

Holes shift ( m)

n ef
f

30

40

50

60

70

80

 %
 

n ef
f

Fig. 7.6 Change in the real and percentage effective index difference S1 and S2 with the shift
of air-holes array from central location Hloc=11.27 µm.

+ 0.12 µm shift from B
′
position, the resultant effective index differences of S1 and S2 are

calculated as 0.001122553 and 0.001390885, respectively. Here, it should be noted that the

percentage improvement in ∆ne f f remains above 40% even with the shift of ± 0.12 µm from

the central B
′
position.

In Fig. 7.5, it was shown that the percentage of ∆ne f f was increased up to 56% with 200

air-holes having 120 nm air-holes diameter. However, considering B
′
a central position for

air-holes, we carried out further simulations to achieve similar effective index difference with

less number of air-holes, which may be easier to fabricate.

Table 7.4 summarises different combinations of air-holes size and resulting increase in

the ∆ne f f between LP15, LP06 and LP16 modes. When 100 air-holes with 176 nm diameter

are introduced at B
′

position the resultant percentage increase in S1 = 57% and S2 = 53%

are nearly equal to the initially proposed design with 200 air-holes having Hd = 120 nm.

Similarly, when the number of air-holes is further reduced to 50 and air-holes diameter

increased to Hd = 286 nm, the respective percentage increase in ∆ne f f is calculated as

S1 = 57% and S2 = 53%. Moreover, the number of air-holes can be further reduced along
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with the increased Hd (e.g. 25 air-holes having diameter Hd = 580 nm) to achieve a similar

increase in the ∆ne f f . This shows that the proposed technique is flexible in terms of the

number of air-holes and also their dimensions that can be useful for a specific fabrication

technique considered.

Table 7.4 Multiple combinations of air-holes diameter and their number to achieve similar
increase in effective index difference.

∆ne f f

Without

air-holes

200 air-holes array 100 air-holes array 50 air-holes array

Hd=120nm % Increase Hd=176nm % Increase Hd=286nm % Increase

S1=LP15 −LP05 0.000794095 0.00123656 56 0.001246015 57 0.001243745 57

S2=LP05 −LP16 0.000840509 0.001297389 54 0.001286119 53 0.001287225 53

7.1.4 Scalability of proposed technique

Furthermore, we have used a similar approach to enhance the effective index difference

between LP08 mode and its neighbouring antisymmetric LP17 and LP18 modes. Figure 7.7

shows the Hy field variation of LP17, LP08, and LP18 modes along the radius of the MMF.

The contour field profiles of these modes are also shown in Fig. 7.7 as insets. Unlike

LP15 mode, the LP17 mode has more zero crossing locations labelled as positions A to F

in Fig. 7.7. These zero crossing positions of LP17, LP08, and LP18 modes are also given

in Table 7.5. The effective indices of LP17 and LP08, and LP18 modes are calculated as

1.4495339, 1.4484630, and 1.4473461, respectively. Without introduction of air-holes,

the modal stabilities S
′
1 = ∆ne f f (LP17 −LP08) and S

′
2 = ∆ne f f (LP08 −LP18) between these

modes are calculated as 0.001070831, and 0.001116877, respectively. As discussed in the

introduction that the modal stability increases with the increase in the modal order (m), hence

the original ∆ne f f values for LP08 mode is higher than that of the LP06 mode.

Using the similar approach as discussed earlier, an array of 200 air-holes with diameter

Hd = 120 nm are introduced at the zero crossing locations of LP17 mode and the resultant
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Fig. 7.7 Variations of Hy fields of the LP17, LP08, and LP18 modes along the r-axis of MMF,
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Table 7.5 Zero crossing locations of field profiles of the LP17, LP08 and LP18 modes along
r-axis (µm).

Mode Location of zero crossings along r-axis (µm)

LP17 0 4.30 7.90 11.50 15.10 18.60 22.20

LP08 2.40 5.80 9.10 12.40 15.80 19.10 22.40

LP18 0 3.80 7.00 10.10 13.20 16.40 19.50

increase in the modal stabilities S
′
1 and S

′
2 are calculated. The effective index differences due

to air-holes at point D = 15.10 µm are calculated as S
′
1 = 0.00137816 and S

′
2 = 0.00154139

which represents 29% and 38% increase in the percentage modal stabilities, respectively.

For an identical increase in the percentage modal stabilities S
′
1 and S

′
2, the location of

air-holes array is adjusted from D = 15.10 µm to D
′
= 15.0 µm. The resultant increase in

the modal stabilities with the combination of different air-holes size and quantity are given

in Table 7.6. The percentage increase in the modal stability of S
′
1 = 34% and S

′
2 = 36%

are achieved with the 200 air-holes with Hd = 120 nm. A similar percentage increase is

calculated when 100 air-holes with Hd = 180 nm and 50 air-holes with Hd = 300 nm are
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introduced at the position D
′

along the radius of MMF, as given in Table 7.6. This shows

that the proposed technique is scalable and can be used for a given higher order mode

as required and its neighbouring modes in a MMF. Moreover, a different combination of

air-holes numbers and their size can also be chosen depending on the fabrication facilities

available to achieve a similar increase in the ∆ne f f .

Table 7.6 Different combinations of air-holes diameter and quantity to increase the ∆ne f f
between LP08 mode and its neighbouring antisymmetric LP17 and LP18 modes.

∆ne f f
Without

air-holes

200 air-holes array 100 air-holes array 50 air-holes array

Hd=120nm % Increase Hd=180nm % Increase Hd=300nm % Increase

S1=LP17 −LP08 0.001070831 0.001437158 34 0.001437728 34 0.00143702 34

S2=LP08 −LP18 0.001116877 0.001515669 36 0.00151080 35 0.001504782 35
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7.2 Modal stability enhancement in few-mode fibre

Recent studies show that the capacity limitation of a single mode optical fibre (SMF) is

rapidly approaching the fundamental Shannon limit [149, 150]. Space division multiplexing

(SDM) is considered to be an important approach to overcome the capacity limitation of

single core based transmission systems. A multi-core fibre (MCF) or multimode fibre (MMF)

has the advantage of boosting the transmission capacity without increasing the fibre count

[151]. A few-mode fibre (FMF) has a core radius slightly larger than a conventional SMF,

which not only enables more guided modes but also results in a larger effective area. This

larger effective area of MMF or FMF enhances the power transmission capabilities that

may result in long-distance communication and also less sensitive to area reduction due

to the external perturbation like bending in fibre [35, 137]. However, an important issue

arises in FMF transmission system that is the crosstalk or mode coupling between the modes

of propagation [152, 153]. The mode division multiplexing in a three-mode fibre using

multiple-input-multiple-output (MIMO) processing have shown significant transmission

capacity improvements over the long distance communication [154]. MIMO based processing

techniques are considered necessary to reduce the crosstalk and to reproduce the input signal.

However, MIMO introduces latency in the system that further increases with the increased

number of modes and also increases the overall complexity of the networks significantly

[155, 156]. The cross-coupling between the modes is inversely proportional to the effective

index difference between these modes and it is more severe between the neighbouring modes.

A low effective index difference ∆ne f f between the modes may result in energy transfer due

to inter-mode mixing or energy loss because of the interference between the adjacent modes.

An elliptical core-based MIMO free three-mode fibre design was also proposed to suppress

the inter-modal coupling by increasing the effective index difference between LP01, LP11a

and LP11b modes [157]. Alexander and Michalis proposed a four-mode fibre with asymmetric

refractive index profile that focuses on the enhancement of mode spacing between the LP21
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and LP02 modes, which resulted in a significant increase in mode spacing between LP21 and

LP02 modes, however, the initial mode spacing between the LP01, LP11 and LP21 modes was

noticeably reduced [158].

In order to increase the effective index difference (∆ne f f ) between the modes of FMF, a

similar approach is used that is described in Section 7.1. An array of air-holes is introduced to

increase the effective index difference between four guided LP01, LP11, LP21 and LP02 modes

in two different few-mode fibre designs. We have shown significant improvement in the

∆ne f f and the effect of any possible fabrication tolerances are also discussed. Furthermore,

we have also shown that the proposed FMF designs are less susceptible to the bending loss

compared to a standard SMF.

7.2.1 Stability enhancement in four-mode fibre

First, a four-mode fibre (FMF) design is considered with a core radius of 7.5 µm and

cladding radius of 62.5 µm. The proposed FMF has a Germanium-doped Silica core and

Silica cladding with refractive indices of ncore = 1.450 and nclad = 1.4403, respectively.

These fibre parameters are considered such that the FMF can allow only four guided modes.

The V number using Eq. 2.3 is calculated as 5.1, where, a is the core radius and λ is the

operating wavelength, taken here as 1.55 µm. The V number of 5.1 ensures robustness, good

separation between the four modes, and cutting off the next higher order modes [159].

This fibre supports only four guided modes as expected and Fig. 7.8 shows the normalised

dominant Hy field variation of these four LP01, LP11, LP21 and LP02 modes along the radial

axis. For an accurate modal solution, the existing symmetry conditions of the fibre are

exploited and only a quarter of the structure is simulated [117]. The complete Hy field

contours of these modes are also shown as insets in Fig. 7.8. It can be observed that the

field profiles of LP01 and LP02 shown by red and green lines, respectively, has a maximum

amplitude at the centre (r = 0) of the fibre core. While, the LP11 and LP21 modes have zero
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Fig. 7.8 Normalised Hy field variation of LP01, LP11, LP21 and LP02 modes along the radius
of a step index few-mode fibre, contour field profiles are also shown as insets.

amplitude at the centre of the fibre core with peak amplitudes at 5.0 µm and 5.2 µm away

from the centre, respectively.

The initial mode spacing or effective index differences (∆ne f f ) between the modes

are calculated as S1 = ∆ne f f (LP01 − LP11) = 2.253 × 10−3, S2 = ∆ne f f (LP11 − LP21) =

2.850×10−3 and S3 = ∆ne f f (LP21 −LP02) = 0.821×10−3. It can be observed that ∆ne f f

between LP21 and LP02 modes is nearly 3.5 times smaller than the ∆ne f f between LP11 and

LP21 modes. This very low effective index difference makes these modes highly prone to

mode coupling compared with the other modes with a larger effective index difference.

From Fig. 7.8, it can be observed that the normalised fields of all four modes beyond

the core-clad interface decay exponentially. To increase the ∆ne f f between these modes, we

have proposed an array of air-holes along the circumference at a particular distance from the

core centre. The location of the air-holes array is directly related to the relative amplitudes

of these modes. For instance, the normalised amplitudes of the LP01, LP11, LP21 and LP02

modes at r = 7.4 µm are calculated as 0.235, 0.496, 0.664 and -0.344, respectively. Here, at

location r = 7.4 µm, any positive or negative change in the refractive index would increase

or decrease the effective index of these modes, however, the magnitude of change would
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depend on their relative field values at this location. Figure 7.9 shows the schematic view of

1 2 3

r

n 1- Core
2- Holes 

3- Cladding

r

Fig. 7.9 A schematic illustration showing air-holes in FMF and change in the refractive index
profile along the radius of fibre.

a quarter structure of a FMF with the introduction of air-holes array. The refractive index

profile along the radius of fibre is also shown in Fig. 7.9.

Figure 7.10 shows that the ∆ne f f between four modes increases with the increase in the

size of 200 air-holes introduced at rloc = 7.4 µm from the centre of the fibre. For better

understanding, the percentage increase in the ∆ne f f is also calculated with the change in the

air-holes size and shown in Fig. 7.11. Here, the percentage increase in the stability related

to the increase in the effective index difference is calculated by using in Eq. 7.1. It can

be noted that with the increase in the size of air-holes, the ∆ne f f increases nearly linearly.

This is because following the introduction of the air-hole array, the effective indices of these

modes decrease unequally depending on the relative amplitude of the field at r = 7.4 µm.

The modal stability improvement between the modes is observed to be around 26 %, when

200 air-holes each having 55 nm radius are introduced at r = 7.4 µm along the circumference

of fibre. However, with the hole radius greater than 60 nm, the LP02 mode approaches its

cut-off, resulting in the reduction in stability improvement for ∆ne f f (LP21 −LP02).
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Fig. 7.10 Effect on the ∆ne f f with a change in the air-holes radius at Hloc = 7.4 µm along
the fibre radius.
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Fig. 7.11 Effect on the percentage ∆ne f f with a change in the air-holes radius at Hloc = 7.4
µm along the fibre radius.

In case, a three-mode fibre design may be considered, the modal stabilities between

the first three modes can be increased even more by increasing the radius of air-holes or

increasing the number of holes. Moreover, to obtain similar ∆ne f f one can also increase the

air-holes diameter while reducing the number of air-holes in the array such that the resultant

total air-holes area remains the same.
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Fig. 7.12 Effect on ∆ne f f with the change in the hole’s array location along the radius of
fibre. An array of two hundred air-holes with fixed radius of 40 nm is considered.
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Fig. 7.13 Effect on the percentage ∆ne f f with the change in the hole’s array location along the
radius of fibre. An array of two hundred air-holes with fixed radius of 40 nm is considered.
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To select optimum position (r = 7.4 µm in the above case) we have introduced an array

of the same number of holes with fixed radius but at the different locations along the fibre

radii. Figure 7.12 shows that the modal stability improvement of the modes depends on the

location of the introduced air-holes. It is observed that when the air-holes array is introduced

near the boundary of core and cladding, the modal stability enhancement between four modes

increases nearly equal. As the air hole’s location is moved from 11 µm to 7.5 µm, the ∆ne f f

values increase continuously, except ∆ne f f (LP21 −LP02), which shows a saturation. This is

due to LP02 mode approaching to cut-off, and its effective index change becomes small.

The percentage stability improvement for this study is shown in the Fig. 7.13. Here,

two hundred air-holes with a fix radius of 40 nm are introduced at different locations along

the radii of this four-mode fibre. The modal stability improvement increases as the holes

array is moved from the rloc = 11.0 µm towards the core radius r = 7.5 µm. The percentage

improvement in the modal stabilities S1 = 15%, S2 = 14%, S3 = 17% can be noted when the

hole’s having radius of 40 nm are introduced at 7.6 µm. Here, the location and radius of the

air-holes are optimised such that the percentage increase between the four modes remains

similar. However, in order to achieve a different percentage improvement or to increase the

∆ne f f between a particular set of modes a similar approach can be adopted.

Fig. 7.14 Normalized Hy fields variations of LP01, LP11, LP21 and LP02 modes along the
radius of modified four-mode fibre, field profile contours are also given as insets.
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The introduction of the air-hole array also slightly changes the field profiles of these

modes, as shown in Fig. 7.14. The contour field profiles of four modes are also shown

as insets. This small field change can be observed at r = 7.4 µm along the radius of fibre

when an array of two hundred air-holes each having radius of 40 nm is inserted in the fibre.

The introduction of air-holes affects the magnitude of the field profiles and the normalised

amplitudes of LP01, LP11, LP21 and LP02 modes at r = 7.4 µm are calculated as 0.107,

0.243, 0.338 and -0.216, respectively. The resultant mode spacing between these modes

are calculated as S1 = 2.6851× 10−3, S2 = 3.362061× 10−3, S3 = 0.93006× 10−3 and

these represent 19%, 18% and 13% increases, respectively. Additionally, an even higher

percentage increase in the effective index difference can be achieved when the radius of holes

is increased.

Figure 7.15 shows the changes in the effective mode areas of the first four modes with the

change in the hole radius. Equation 7.2 is used to calculate the effective area optical modes

of FMF [133].

Ae f f =
[
∫
|−→E |2dxdy]2∫
|−→E |4dxdy

(7.2)

Here,
−→
E is the electric field of optical modes and without any air-holes the effective areas of

the LP01, LP11, LP21 and LP02 modes are calculated as 124 µm2, 177 µm2, 199 µm2 and 127

µm2, respectively. However, the introduction of air-holes reduces the optical field near the

air-holes due to the presence of low refractive index (nair = 1) resulting in the reduction of

effective mode area. However, it can be noted that the reduction of the mode area is less than

the modal stability enhancement.

The introduction of air-holes also reduces the field intensity beyond the location of the

air-holes array. With the fixed number of air-holes at r = 7.4 µm, the effective area of the

first three modes continue to decrease, but the effective area of LP02 increases when the

air-hole size is increased more than 55 nm as this mode approaches its cut-off. However,

with the small decrease in the effective area of these modes, the resultant modal stability
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Fig. 7.15 Effect on the effective mode areas of a change in the hole’s size introduced at
Hloc = 7.4 µm along the radius of modified few-mode fibre.

improvement of more than 26% is achieved, and this can be increased further between the

first three modes. The resultant effective areas of first three LP01, LP11 and LP21 modes are

calculated as 95.7 µm2, 132.9 µm2, and 149.7 µm2, respectively. Moreover, as the LP02

mode approaches to cut-off condition for the air-hole size of 60 nm and its effective area

is increased to 188.49 µm2. Reduced mode area may limit the power handling capability

but these mode area values are still significantly larger than that of a SMF along with the

increased mode separation, which will reduce mode coupling appreciably.

7.2.2 Reduction of five modes to four modes for improved mode spac-

ing

For the four-mode fibre design presented above, although it would have been possible to

enhance further the ∆ne f f between the first three modes, however, the ∆ne f f (LP21 −LP02)

reaches to its saturation. In case we would like to enhance the ∆ne f f between all the four

modes further, a fibre which can guide five modes can be considered. In order to achieve

higher mode effective index difference, next to a fibre with a larger core size is considered,
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which can guide five modes. The core radius for the second fibre design is increased from 7.5

µm to 8.5 µm while keeping the core and cladding refractive indices same as the first fibre.
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Fig. 7.16 Effect on the percentage stability improvement of a change in the location of
air-holes array along the radius (Hr = 50 nm) the second fibre design.

The V number for the second fibre is calculated as 5.77 at the same operating wavelength

of 1.55 µm. This fibre guides five, LP01, LP11, LP21, LP02 and LP31 modes. The ∆ne f f

between these modes are calculated as ∆ne f f (LP01 −LP11) = 1.842×10−3, ∆ne f f (LP11 −

LP21) = 2.360×10−3, ∆ne f f (LP21−LP02) = 0.7396×10−3, ∆ne f f (LP02−LP31) = 2.050×

10−3.

In order to increase the effective index difference between the first four modes, an

array of two hundred air-holes (rair = 50 nm) is introduced at different locations along

the radii of the second fibre. Figures 7.16 and 7.17 show the percentage increase in the

modal stability between the first four modes as the air-hole array reaches to the core. The

stability improvements between all four modes have similar increase near the core and

cladding interface. However, when the air-holes array is moved further inside the core the

stability between first three modes keep on increasing, but the fourth LP02 mode approaches

to cut-off when r < 8.0 µm. Similarly, as the array of air-hole is moved away from the core

and towards cladding, the modal stability improvement reduces as a linear fashion. The
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Fig. 7.17 Effect on the percentage stability improvement of a change in the air-holes size
introduced at Hloc = 8.4 µm for the second fibre design.

increase in the effective index differences S1, S2 and S3 is calculated as 2.225428× 10−3,

2.838742×10−3, 0.91042×10−3, respectively, for the second fibre when the two hundred

air-holes each having 50 nm radius are introduced at a distance 8.4 µm from the centre.

The resulting percentage increases are calculated as S1 = 21%, S2 = 20% and S3 = 23%

as shown in Fig. 7.16. Moreover, percentage improvement in the ∆ne f f between four

modes improves with the increase in air-hole radius as shown in Fig. 7.17. As the air-holes

size is increased the effective indices of these modes decreases depending on their relative

field amplitudes near the air-holes. When the air-holes radius is increased to 70 nm, the

modal stabilities S1, S2 and S3 are calculated as 2.387×10−3, 3.041×10−3 and 1.02×10−3,

respectively. Corresponding percentage increase are noted as S1 = 30%, S2 = 29% and

S3 = 38%, respectively.

The effective areas of the first four modes in the second fibre design also increase due to

the larger core size compared to the first fibre design. The effective areas of LP01, LP11, LP21

and LP02 modes are calculated as 151.92 µm2, 213.77 µm2, 230.45 µm2 and 137.00 µm2

for the second fibre design, respectively. Figure 7.18 shows the effect on the effective area of

the first four modes as the air-holes size is increased. It can be observed that as the air-holes
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Fig. 7.18 Effect on the effective mode areas of a change in the hole’s size at Hloc = 8.4 µm
along the radius of second fibre design.

size is increased the effective areas of the modes reduces. When the radius of air-holes

is increased to 70 nm the resultant effective area of LP01, LP11, LP21 and LP02 modes are

calculated as 118.85 µm2, 162.55 µm2, 171.57 µm2 and 101.09 µm2, respectively. Table 7.7

summarizes the effective index differences between LP01, LP11, LP21 and LP02 modes and

effective areas when 200 air-holes are introduced in our proposed designs.

For a four-mode fibre, the LP02 mode is closer to cut-off value (refractive index of

cladding) as compared to five mode fibre design where the LP31 mode is near to the cut-off

value. Hence, adding air-holes in a four modes fibre the effective area of LP02 mode start

increasing due to approaching its cut-off as shown in Fig. 7.15. On the other hand, for a

five-mode fibre, the effective area of LP02 mode shows a linear decrease as being further away

from the cut-off and does not approach to cut-off value as shown in Fig. 7.18. Moreover,

compared with the SMF transmission systems FMF design proposed here have significantly

higher effective area and have the advantage of multiple modes to increase the transmission

capacity.
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Table 7.7 Summary of the effective index differences between LP01, LP11, LP21 and LP02
modes and their effective areas after the introduction of air-holes in the proposed fibre
designs.

Fiber Design
200 air-holes

radius (nm)

Effective index difference (∆ne f f ) Effective area (um2)

S1 %S1 S2 %S2 S3 %S3 LP01 LP11 LP21 LP02

Four mode fibre 55 0.002902017 29 0.003634979 28 0.00103236 26 97.57 136.36 154.53 136

Five mode fibre 70 0.002387145 30 0.003041579 29 0.00102063 38 118.85 162.55 171.57 101.09

7.2.3 Bending effect

Further simulations are carried out to study the effect of bending in our proposed FMF and

compare that with a standard SMF. Higher order modes of a FMF are more resilient to bend

distortion because they have larger effective index difference as compared to a fundamental

mode for a given fibre. Moreover, effective area reduction of the fundamental mode is

significantly larger compared to other higher order modes of a FMF [35][160]. Hence, the

bending loss and area reduction of only the fundamental mode in our proposed FMF is

compared with a standard SMF. In order to compare these results, we considered a SMF with

core radius 4.1 µm and cladding radius 35 µm. The refractive indices of core and cladding

are taken as 1.44905 and 1.444, respectively.
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(a) (b) (c)

Fig. 7.19 Intensity profiles of LP01 mode without the introduction of air-holes along the
circumference of second FMF with different bending (a) Rbend = 30 mm, (b) Rbend = 6 mm,
(c) Rbend = 2 mm radii.

Figure 7.19 shows the intensity profiles of LP01 mode with three different bending radii

(a) 30 mm (b) 6 mm and (c) 2 mm without any air-holes introduced in the FMF. It can be

observed that with the decrease in the bending radius the mode intensity shifts outside the

fibre core and the bending loss increases. The bending losses at Rbend = 30 mm, Rbend = 6

mm and Rbend = 2 mm are calculated as 7.04× 10−9, 1.01× 10−8 and 3.5× 10−1, dB/m

respectively.

(a) (b) (c)

Fig. 7.20 Intensity profiles of LP01 mode with the introduction of 200 air-holes having 70 nm
radius with different bending (a) Rbend = 30 mm, (b) Rbend = 6 mm, (c) Rbend = 2 mm radii.

With the introduction of 200 air-holes having radius of 70 nm, the bending loss of five

mode fibre reduces as shown in Fig. 7.20. The bending loss after the introduction of air-holes
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at different bending radii, Rbend = 30 mm, Rbend = 6 mm and Rbend = 2 mm is calculated as

1.76×10−8, 6.56×10−8 and 1.54×10−1 dB/m, respectively.
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Fig. 7.21 Bending loss of the LP01 mode in a few-mode fibre without air-holes (black line)
and with 200 air-holes (red line) with different bending radii. The bending loss of a SMF is
also shown by blue line.

Figure 7.21 shows the variation of the bending loss with the bending radius (Rbend) for a

standard SMF with a blue line. The bending losses of a five-mode fibre without air-holes

and with air-holes are also shown in Fig. 7.21 by black and red lines, respectively. The

bending loss of SMF at a Rbend of 5 mm is calculated as 9.97 dB/m and it increases as the

bending radius is decreased. At Rbend = 1 mm, the bending loss of SMF has increased to

a significantly higher value and calculated as 57.97 dB/m. However, the bending loss of a

five-mode fibre (without holes) at 5 mm and 1 mm are calculated as 7.28×10−7 dB/m and

7.72 dB/m, respectively. This shows a significant reduction in the bending loss using a FMF

compared to a standard SMF. Moreover, after introducing an array of 200 air-holes in our

proposed FMF design, the bending loss reduces even further, as shown by a red line in Fig.

7.21. At Rbend = 1 mm, the bending loss of five-mode fibre with air-holes is calculated as

3.59 dB/m which is nearly half of the value that was calculated without any air-holes. Figure
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Fig. 7.22 Effective area of the LP01 mode as a function of bending radius for FMF without
holes, with holes and a standard SMF.

7.22 shows the effect of bending on the effective area of a SMF and the fundamental mode

of the FMF with and without air-holes. Due to the smaller core radius (4.1 µm), the effective

area is calculated to be 78 µm2 without any bending. This value is comparatively lower than

the FMF with five modes, which is calculated as 151.92 µm2 without any bending. Moreover,

when the bending is introduced in SMF, the only guided mode quickly approaches to its

cut-off value and the Ae f f start increasing and calculated as 84.81 µm2 at Rbend = 10 mm.

As shown by a blue line in Fig. 7.22, the Ae f f of SMF continues to increase as the bending

radius is further decreased to 1 mm and calculated as 573.67 µm2.

However, compared to the SMF, the Ae f f of a FMF (no holes) reduces with the decrease

in Rbend and calculated as 139.92 µm2 at Rbend = 10 mm as shown by a black line in Fig.

7.22. When the Rbend approaches to 2 mm, the Ae f f of FMF (no holes) approaches to its

cut-off and with further decrease in Rbend , the effective area starts increasing. At Rbend = 1

mm, the Ae f f increases to 110.94 µm2. Similar trend is observed in our proposed FMF (70

nm holes) design where, the Ae f f is calculated as 113.76 µm2 at Rbend = 10 mm and it further

reduces as the Rbend is decreased. As shown by the red line in Fig. 7.22, the FMF with holes
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also approaches to its cut-off value at Rbend = 1.25 mm where the Ae f f is calculated as 67.98

µm2. This shows that our proposed FMF design with the air-holes suffers from significantly

less bending loss and also provides more stable modal operation compared to a conventional

SMF or a standard FMF.

7.3 Summary

A novel approach is proposed to increase the modal stability of higher order modes in

a multimode fibre and few-mode fibre using air-holes. Multimode fibres provide higher

effective area along with the increased modal stability in higher order modes. We have shown

that the effective index difference between LP06 mode and its neighbouring antisymmetric

LP15 and LP16 modes can be increased more than 54% by introducing air-holes along the

circumference of multimode fibre. The increased modal stability reduces the modal cross

talk and interference between HOMs of MMF and can improve the power capability of fibre

lasers. The proposed technique is also scalable, and we have shown that the percentage ∆ne f f

between LP08 mode and its neighbouring LP17 and LP18 modes can also be increased to more

than 34% by using the proposed method.

A similar technique is used to increase the modal spacing or effective index difference

between the different modes of a few-mode fibre. FMF not only provides a significantly

larger effective area compared to SMF, but they are also capable of transmitting more optical

power and can result in longer communication lengths. Our proposed technique involves the

use of uniform air-holes array along the radius of the fibre such that the effective indices

of the modes are decreased depending on their field profile at that particular location. We

have shown that for a four-mode fibre design, the modal stability between the modes can

be increased more than 26% without a significant reduction in the mode quality. Moreover,

we have also proposed another technique where a five-mode fibre is reduced to four modes

and results in even higher (above 30%) effective index difference and also larger mode
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area compared to the first design. It is also shown here that the bending loss of FMFs with

air-holes is the significantly smaller and modal area is more stable with the bending.



Chapter 8

Conclusions and future work

As a conclusive chapter, the strength of improved full-vectorial finite element method based

computer simulation code to analyse the acoustic wave propagation in the optical waveguide

is summarised here. The proposed penalty method eliminates the spurious modes in acoustic

modal solution resulting in improved and more accurate acoustic modes. The power limiting

effect of non-linearity in optical fibres and ways to reduce this effect by reducing stimulated

Brillouin scattering overlap between optical and acoustic modes and by using large mode

area fibres are also explained. Moreover, this chapter also paves the platform for future

research on stimulated Brillouin scattering and large mode area fibres.

8.1 Conclusions

The aim of the thesis was to study nonlinear effects in optical fibres. To mitigate these

nonlinear effects, two approaches are explored in the thesis. One of the approaches was to

study the stimulated Brillouin scattering (SBS) using a full-vectorial finite element method

based in-house code. The computer simulation code performs rigorous characterisation of

the acoustic wave in both low and high index contrast waveguides. The phase-matched

acoustic-optic interaction due to the SBS process was studied. A penalty term was introduced
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in the acoustic modal solution to remove the non-physical spurious modes and improve the

quality of the acoustic modes. The achievements of this approach are stepwise mentioned

below:

• An improved full-vectorial FEM based computer code is developed that uses eigenvalue

solver to find the acoustic modes in both low and high index contrast waveguides.

• The use of full-vectorial FEM increases the accuracy of the modal solution, but the

existence of spurious modes is often considered as an important challenge. An updated

acoustic modal solution is presented where a penalty term is introduced to eliminate

these spurious modes.

• The program can also exploit the symmetry boundary conditions of the waveguide and

only half or quarter of the structure can be simulated, enabling higher mesh distribution

for a more accurate solution.

• In order to study acoustic-optic overlap, two designs of SMF are proposed, where,

light-sound interactions is either increased or reduced for fibre optic sensing or high

power transmission applications, respectively. By lowering the SBS overlap, the SBS

threshold level increases that allows high power transmission.

The second approach to reducing the non-linearity in optical fibre was the use of large

mode area fibres. Due to lower optical intensities, large mode area fibres such as few mode

fibres and multimode fibres have effectively lower non-linearities. However, with the increase

in the core diameter, optical fibres become multimode and more than one mode exist, which

can be more susceptible to mode coupling. With the increase in the modal order, the effective

index difference (∆ne f f ) between the modes also increases, and these higher order modes

can be used for high power transmission applications such as fibre lasers and amplifiers.

To increase the modal stability between higher order modes, two proposed methods were

considered and that are listed below:
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• A novel design validated by rigorous numerical analysis was proposed, where, a

single or multiple annular strip(s) of low and high index contrast refractive index

are introduced at particular radial locations inside the core of MMF. According to

symmetry rule, bend perturbations is odd in nature, and direct coupling arises between

even and odd higher order modes. Annular strips were introduced at particular locations

along the fibre radius such that the effective index difference between a desired mode

of propagation remains unchanged but the effective indices of nearest antisymmetric

modes changes that result in the increased modal stability.

• In the second method, the air-holes array was used to increase the modal stability of

a desired mode of propagation. The introduction of air-holes at particular location

reduces the effective index of the modes. The radial location along the radius of the

fibre is chosen such that the effective index of desired (LP0,n) mode and its neighbouring

higher order antisymmetric LP1,n+1 mode reduces relative to their field intensities at

that location. The effective index change in a given lower order LP1,n−1 was negligible

when the air-holes array was introduced at the zero crossing location of this mode.

Hence, the strategic location of air-holes reduces the effective index of LP1,n+1 mode

more than the LP0,n mode while keeping the effective index of LP1,n−1 mode unchanged.

A similar method was used to increase the modal stability of few-mode fibre. Here, the

effective index difference between first four LP01, LP11, LP21 and LP02 modes of FMF

is increased more than 26% by using air-holes along the radius of the fibre. Moreover,

in a second design, the modal stability is increased above 30 % where a five-mode

fibre was reduced to a four-mode fibre. It was also shown here that the bending loss of

proposed FMF designs with air-holes is comparatively lower and modal area is more

stable with the bending.

Overall, the thesis discusses the non-linearity as a power limiting effect in optical fibres

and two possible ways to reduce its effect are discussed. The acoustic modal solution to
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study light-sound interaction is discussed where a penalty term is introduced to remove the

spurious modes to facilitate acoustic simulations. In one case, fibre geometry is modified

such that the overlap between optical and acoustic modes is reduced which would increase

the SBS threshold. In another approach, the large mode area fibres that provide a larger

effective area where light is distributed over a larger area were used to reduce the nonlinear

effects. However, the existence of more than one mode in large mode area fibres may result

in the inter-modal interference and energy can be transferred to a mode of propagation to

the nearest mode. Two techniques are proposed to increase the modal stability of a higher

order mode and its neighbouring antisymmetric modes. One of the methods involves the use

of low and high index doped annular strips along the circumference of fibre. The second

proposed technique involves the use of air-holes to increase modal stability. Both methods

have shown a significant increase in the effective index difference between the higher order

modes and thus reduces the modal coupling.

8.2 Future work

It is hard to explore and investigate all areas of nonlinear effects in optical waveguides in

such a short time. All results presented in this thesis are considered as a small contribution of

the on-going global research to minimise the nonlinear effects for high power transmission

or exploit these effects for fibre optic based sensing applications. The improved in-house

code to study light-sound interaction can be considered as a foundation and can be used for

further analysis of higher Brillouin gain using a different combination of materials and for

the study of stimulated Brillouin scattering in complex structures. SBS overlap is a necessary

parameter to calculate the SBS gain and SBS threshold and similarly for Brillouin gain

spectrum. In this thesis, we have shown the acoustic-optic overlap of the fundamental and

higher order acoustic modes with the fundamental optical mode. However, SBS spectrum

can be calculated by considering some other parameters such as Brillouin gain linewidth and
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elasto-optic coefficients etc. in the SBS gain formulations. In addition to above mentioned

future aspects, some other doped materials can be used to analyse stimulated Brillouin

scattering. In telecommunication fibres, where Fluorine is used to decrease the optical

refractive index of cladding, the SBS may play an important role. In contrast to B2O3 used to

increase the acoustic optic overlap other materials such as P2O5 in combination with Fluorine

can also be used to study the acoustic optic overlap. The refractive index profile of step index

fibre is considered smooth in our simulations. Real telecommunication step-index fibres

have a small variation in the core and cladding refractive indices during fabrication process.

Although there is very slight differences expected in the modal solution results. However, a

comparative study between real refractive index profile and ideal step index profile can be

considered as future work.

The acoustic-optic overlap in multimode fibres (MMF) can also be very useful for the

applications that required a large effective mode area. Mode spacing between higher order

modes of a MMF increases with the modal order, hence resulting in increased stability. These

higher order modes with more stability, higher effective area and a low SBS overlap can

be a good option for the high power fibre lasers. This gives a high SBS threshold and less

interference with the neighbouring modes. Similarly, the mode spacing with the neighbouring

anti-symmetric modes can also be increased by doping the core of the MMF on certain

locations such that it affects only antisymmetric modes while keeping the central propagation

mode unaffected. Moreover, the material density and radiation pressure variations were

neglected in the acoustic modal solution discussed in the thesis. These density and pressure

variations can also be accommodated in the code as future work, particularly for very small

waveguides. This addition will not only make the modal solution more realistic but also

make it useful for the analysis of nanoscale devices.
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Appendix A

2D FV-FEM: calculations of matrix

elements [161]

A.1 Evaluation of [Q] Matrix

Equation 4.19 shows that the [Q] is a product of [⃗∇×] and the shape function [N]. Hence,

[Q] =


0 − ∂

∂ z
∂

∂y

∂

∂ z 0 − ∂

∂x

− ∂

∂y
∂

∂x 0

 [N] (A.1)

where

[⃗∇×] =


0 − ∂

∂ z
∂

∂y

∂

∂ z 0 − ∂

∂x

− ∂

∂y
∂

∂x 0

 (A.2)



192 2D FV-FEM: calculations of matrix elements [161]

and, the shape function is

[N] =


N1 N2 N3 0 0 0 0 0 0

0 0 0 N1 N2 N3 0 0 0

0 0 0 0 0 0 jN1 jN2 jN3

 (A.3)

The j term in the shape function matrix is introduced for lossless cases where the Hz

component is 90◦ out of phase with the transverse components. Equation A.1 then becomes

[Q] =


0 − ∂

∂ z
∂

∂y

∂

∂ z 0 − ∂

∂x

− ∂

∂y
∂

∂x 0


3×3


N1 N2 N3 0 0 0 0 0 0

0 0 0 N1 N2 N3 0 0 0

0 0 0 0 0 0 jN1 jN2 jN3


3×9

(A.4)

or,

[Q] =


0 0 0 −∂N1

∂ z −∂N2
∂ z −∂N3

∂ z j ∂N1
∂y j ∂N2

∂y j ∂N3
∂y

∂N1
∂ z

∂N2
∂ z

∂N3
∂ z 0 0 0 − j ∂N1

∂x − j ∂N2
∂x − j ∂N3

∂x

−∂N1
∂y −∂N2

∂y −∂N3
∂y

∂N1
∂x

∂N2
∂x

∂N3
∂x 0 0 0


3×9
(A.5)

Assuming the wave propagation in z-direction, the operator ∂

∂ z can be replaced by − jβ in

Eq. A.5. Thus, the coefficients of [Q] matrix can be obtained as follows

[Q] =


0 0 0 jβN1 jβN2 jβN3 j ∂N1

∂y j ∂N2
∂y j ∂N3

∂y

− jβN1 − jβN2 − jβN3 0 0 0 − j ∂N1
∂x − j ∂N2

∂x − j ∂N3
∂x

−∂N1
∂y −∂N2

∂y −∂N3
∂y

∂N1
∂x

∂N2
∂x

∂N3
∂x 0 0 0


3×9

(A.6)
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Similarly, [Q]∗ can be obtained as:

[Q]∗ =



0 jβN1 −∂N1
∂y

0 jβN2 −∂N2
∂y

0 jβN3 −∂N3
∂y

− jβN1 0 ∂N1
∂x

− jβN2 0 ∂N2
∂x

− jβN3 0 ∂N3
∂x

− j ∂N1
∂y j ∂N1

∂x 0

− j ∂N2
∂y j ∂N2

∂x 0

− j ∂N3
∂y j ∂N3

∂x 0


9×3

(A.7)

where
∂ [N]

∂x
=

[
b1 b2 b3

]
(A.8)

and
∂ [N]

∂y
=

[
c1 c2 c3

]
(A.9)

These partial differentiations have been evaluated from Eqs. 4.3 and 4.6.
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A.2 Evaluation of [A]e and [B]e Matrix

[A]e element matrix from Eq. 4.28 can be evaluated based on [Q] and [Q]e as

[A]e = ε̂
−1
r

∫
A
[Q]∗ · [Q] dA (A.10)

= ε̂
−1
r

∫
A


β 2[N]T [N]+ ∂ [N]T

∂y
∂ [N]
∂y −∂ [N]T

∂y
∂ [N]
∂x β [N]T ∂ [N]

∂x

−∂ [N]T

∂x
∂ [N]
∂y β 2[N]T [N]+ ∂ [N]T

∂x
∂ [N]
∂x β [N]T ∂ [N]

∂y

β [N]∂ [N]T

∂x β [N]∂ [N]T

∂y
∂ [N]T

∂y
∂ [N]
∂y + ∂ [N]T

∂x
∂ [N]
∂x

 dA

(A.11)

here dA = dxdy defines the area integration over the surface.

[B]e element matrix based on [N] and [N]T (Eq. 4.29) can be obtained as

[B]e = µ̂r

∫
A
[N]T · [N] dA (A.12)

= µ̂r

∫
A


[N]T [N] [0] [0]

[0] [N]T [N] [0]

[0] [0] [N]T [N]

 dA (A.13)

(A.14)
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or,

[B]e = µ̂r

∫
A



N2
1 N1N2 N1N3 0 0 0 0 0 0

N2N1 N2
2 N2N3 0 0 0 0 0 0

N3N1 N3N2 N2
3 0 0 0 0 0 0

0 0 0 N2
1 N1N2 N1N3 0 0 0

0 0 0 N2N1 N2
2 N2N3 0 0 0

0 0 0 N3N1 N3N2 N2
3 0 0 0

0 0 0 0 0 0 N2
1 N1N2 N1N3

0 0 0 0 0 0 N2N1 N2
2 N2N3

0 0 0 0 0 0 N3N1 N3N2 N2
3



dA

(A.15)

As the linear triangular element has straight sides, a constant Jacobian, we can apply the

numerical Gaussian quadrature integration. The exact expression of numerical integration

for linear triangular element is

∫
A

Ni
1N j

2Nk
3 dA =

i! j!k!2!
(i+ j+ k+2)!

Ae (A.16)

here Ae signifies the area of the triangular element.

Therefore, the numerical integration of different forms can be obtained as

∫
A

N2
1 dA =

∫
A

N2
2 dA =

∫
A

N2
3 dA =

Ae

6
(A.17)∫

A
N1N2 dA =

∫
A

N2N3 dA =
∫

A
N1N3 dA =

Ae

12
(A.18)
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and

∫
A

dA = Ae (A.19)

Therefore, with the help of Eqs. A.8 and A.9, some of the matrix elements of [A]e (Eq.

A.11) matrix can be obtained as

[A1,1]e = ε̂
−1
∫

A

(
β

2N2
1 +

(
∂N1

∂y

)2
)

dA =
1
ε

[
β 2Ae

6
+ c2

1Ae

]
(A.20)

[A1,2]e = ε̂
−1
∫

A

(
β

2N1N2 +
∂N1

∂y
∂N2

∂y

)
dA =

1
ε

[
β 2Ae

12
+ c1c2Ae

]
(A.21)

[A1,3]e = ε̂
−1
∫

A

(
β

2N1N3 +
∂N1

∂y
∂N3

∂y

)
dA =

1
ε

[
β 2Ae

12
+ c1c3Ae

]
(A.22)

[A1,4]e = − ε̂
−1
∫

A

(
∂N1

∂x
∂N1

∂y

)
dA = − 1

ε
b1c1Ae (A.23)

[A1,5]e = − ε̂
−1
∫

A

(
∂N2

∂x
∂N1

∂y

)
dA = − 1

ε
b2c1Ae (A.24)

[A1,6]e = − ε̂
−1
∫

A

(
∂N3

∂x
∂N1

∂y

)
dA = − 1

ε
b3c1Ae (A.25)

and so on.
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In a similar fashion, the [B]e matrix shown in Eq. A.15 can be written as

[B]e = µ̂r



Ae
6

Ae
12

Ae
12 0 0 0 0 0 0

Ae
12

Ae
6

Ae
12 0 0 0 0 0 0

Ae
12

Ae
12

Ae
6 0 0 0 0 0 0

0 0 0 Ae
6

Ae
12

Ae
12 0 0 0

0 0 0 Ae
12

Ae
6

Ae
12 0 0 0

0 0 0 Ae
12

Ae
12

Ae
6 0 0 0

0 0 0 0 0 0 Ae
6

Ae
12

Ae
12

0 0 0 0 0 0 Ae
12

Ae
6

Ae
12

0 0 0 0 0 0 Ae
12

Ae
12

Ae
6



(A.26)





Appendix B

Calculations for penalty term in acoustic

modal solution

PenaltyTerm = α

∫
(∇×U)∗ · (∇×U)dA (B.1)

U⃗ = [N]{U}e
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U⃗ =


N1 0 0 N2 0 0 N3 0 0

0 N1 0 0 N2 0 0 N3 0

0 0 N3 0 0 N2 0 0 N3





Ux1

Uy1

Uz1

Ux2

Uy2

Uz2

Ux3

Uy3

Uz3


(⃗∇×U⃗) = ∇⃗× [N]{U}e (B.2)

(⃗∇×U⃗) =


0 − ∂

∂ z
∂

∂y

∂

∂ z 0 − ∂

∂x

− ∂

∂y
∂

∂x 0

 [N]{U}e

or

M =


0 − ∂

∂ z
∂

∂y

∂

∂ z 0 − ∂

∂x

− ∂

∂y
∂

∂x 0


and equation B.2 can be written as

(⃗∇×U⃗) = [M][N]{U}e (B.3)
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Now

[P] = [M][N]

[P] =


0 − ∂

∂ z
∂

∂y

∂

∂ z 0 − ∂

∂x

− ∂

∂y
∂

∂x 0




N1 0 0 N2 0 0 N3 0 0

0 N1 0 0 N2 0 0 N3 0

0 0 N3 0 0 N2 0 0 N3



[P] =


0 −∂N1

∂ z
∂N1
∂y 0 −∂N2

∂ z
∂N2
∂y 0 −∂N3

∂ z
∂N3
∂y

∂N1
∂ z 0 −∂N1

∂x
∂N2
∂ z 0 −∂N2

∂x
∂N3
∂ z 0 −∂N3

∂x

−∂N1
∂y

∂N1
∂x 0 −∂N2

∂y
∂N2
∂x 0 −∂N3

∂y
∂N3
∂x 0


Updated equation B.3 can be written as

(⃗∇×U⃗) = [P]{U}e (B.4)

Now taking transpose of equation B.4

(⃗∇×U⃗)
T
= ([P]{U}e)

T

(⃗∇×U⃗)
T
= ([P]{U}e)

T = {U}T
e [P]

T (B.5)

Now the main equation (B.1) can be written as,

∫
A
(⃗∇×U⃗)T .(⃗∇×U⃗)dA =

∫
A
{u}T

e [P]
T [P]{u}edA (B.6)
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here, for simplicity, [R] = [P]T [P] is considered

[R] = [P]T [P]

[R] =



0 ∂N1
∂ z −∂N1

∂y

−∂N1
∂ z 0 ∂N1

∂x

∂N1
∂y −∂N1

∂x 0

0 ∂N2
∂ z −∂N2

∂y

−∂N2
∂ z 0 ∂N2

∂x

∂N2
∂y −∂N2

∂x 0

0 ∂N3
∂ z −∂N3

∂y

−∂N3
∂ z 0 ∂N3

∂x

∂N3
∂y −∂N3

∂x 0




0 −∂N1

∂ z
∂N1
∂y 0 −∂N2

∂ z
∂N2
∂y 0 −∂N3

∂ z
∂N3
∂y

∂N1
∂ z 0 −∂N1

∂x
∂N2
∂ z 0 −∂N2

∂x
∂N3
∂ z 0 −∂N3

∂x

−∂N1
∂y

∂N1
∂x 0 −∂N2

∂y
∂N2
∂x 0 −∂N3

∂y
∂N3
∂x 0


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=
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Equation B.6 can be written as

∫
A
(⃗∇×U⃗)T .(⃗∇×U⃗)dA =

∫
A
{U}T

e [R]{U}edA (B.8)

N matrix equations

N1 = a1 +b1x+ c1y

N2 = a2 +b2x+ c2y

N3 = a3 +b3x+ c3y

(B.9)

∂

∂ z
(e−ikz) = ik (B.10)

Now solving the derivatives in [R] matrix by using equations (B.9) and (B.10)

[R] =



(−k2N2
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1) (−b1c1) (ikN1b1) (−k2N2N1 + c1c2) (−c1b2) (ikN1b2) (−k2N1N3 + c1c3) (−c1b3) (ikN1b3)

(−b1c1) (−k2N2
1 +b2

1) (ikN1c1) (−b1c2) (−k2N1N2 +b1b2) (ikN1c2) (−b1c3) (−k2N1N3 +b1b3) (ikN1c3)

(ikN1b1) (ikN1c1) (c2
1 +b2

1) (ikb1N2) (ikc1N2) (c1c2 +b1b2) (ikb1N3) (ikc2N3) (c1c3 +b1b3)

(−k2N2N1 + c1c2) (−b1c2) (ikb1N2) (−k2N2
2 + c2

2) (−c2b2) (ikN2b2) (−k2N2N3 + c2c3) (−c2b3) (ikb3N2)

(−c1b2) (−k2N1N2 +b1b2) (ikN2c1) (−c2b2) (−k2N2
2 +b2
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
(B.11)

Now, [R] matrix need to be converted into real matrix

[R]F = [L]∗[R][L] (B.12)
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Where [L] and [L]∗ are given bellow,

[L] =



1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

0 0 −i 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 −i 0 0 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 −i



[L]∗ =



1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

0 0 i 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 i 0 0 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 i


From (B.12) we will can find [R]1 which is [R]1 = [R][L]

[R]1 =



(−k2N2
1 + c2

1) (−b1c1) (kN1b1) (−k2N2N1 + c1c2) (−c1b2) (kN1b2) (−k2N1N3 + c1c3) (−c1b3) (kN1b3)

(−b1c1) (−k2N2
1 +b2

1) (kN1c1) (−b1c2) (−k2N1N2 +b1b2) (kN1c2) (−b1c3) (−k2N1N3 +b1b3) (kN1c3)

(ikN1b1) (ikN1c1) −i(c2
1 +b2

1) (ikN2b1) (ikN2c1) −i(c1c2 +b1b2) (ikN3b1) (ikN3c2) −i(c1c3 +b1b3)

(−k2N1N2 + c1c2) (−b1c2) (kN2b1) (−k2N2
2 + c2

2) (−c2b2) (kN2b2) (−k2N2N3 + c2c3) (−c2b3) (kN2b3)

(−c1b2) (−k2N1N2 +b1b2) (kN2c1) (−c2b2) (−k2N2
2 +b2

2) (kN2c2) (−b2c3) (−k2N2N3 +b2b3) (kN2c3)

(ikN1b2) (ikN1c2) −i(c1c2 +b1b2) (ikN2b2) (ikN2c2) −i(c2
2 +b2

2) (ikN3b2) (ikN3c2) −i(c2c3 +b1b3)

(−k2N1N3 + c1c3) (−b1c3) (kN3b1) (−k2N2N3 + c2c3) (−b2c3) (kN3b2) (−k2N2
3 + c2

3) (−c3b3) (kN3b3)

(−c1b3) (−k2N1N3 +b1b3) (kN3c2) (−c2b3) (−k2N2N3 +b2b3) (kN3c2) (−c3b2) (−k2N2
3 +b2

3) (kN3c3)

(ikN1b3) (ikN1c3) −i(c1c3 +b1b3) (ikN2b3) (ikN2c3) −i(c2c3 +b1b3) (−ikN3b3) (ikN3c3) −i(c2
3 +b2

3)



Now equation (B.12) can be written as

[R]F = [L]∗[R]1 (B.13)
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[R]F =



(−k2N2
1 + c2

1) (−b1c1) (kN1b1) (−k2N2N1 + c1c2) (−c1b2) (kN1b2) (−k2N1N3 + c1c3) (−c1b3) (kN1b3)

(−b1c1) (−k2N2
1 +b2

1) (kN1c1) (−b1c2) (−k2N1N2 +b1b2) (kN1c2) (−b1c3) (−k2N1N3 +b1b3) (kN1c3)

(kN1b1) (−kN1c1) (c2
1 +b2

1) (−kN2b1) (−kN2c1) (c1c2 +b1b2) (−kN3b1) (−kN3c2) (c1c3 +b1b3)

(−k2N1N2 + c1c2) (−b1c2) (kN2b1) (−k2N2
2 + c2

2) (−c2b2) (kN2b2) (−k2N2N3 + c2c3) (−c2b3) (kN2b3)

(−c1b2) (−k2N1N2 +b1b2) (kN2c1) (−c2b2) (−k2N2
2 +b2

2) (kN2c2) (−b2c3) (−k2N2N3 +b2b3) (kN2c3)

(kN1b2) (−kN1c2) (c1c2 +b1b2) (−kN2b2) (−kN2c2) (c2
2 +b2

2) (−kN3b2) (−kN3c2) (c2c3 +b1b3)

(−k2N1N3 + c1c3) (−b1c3) (kN3b1) (−k2N2N3 + c2c3) (−b2c3) (kN3b2) (−k2N2
3 + c2

3) (−c3b3) (kN3b3)

(−c1b3) (−k2N1N3 +b1b3) (kN3c2) (−c2b3) (−k2N2N3 +b2b3) (kN3c2) (−c3b2) (−k2N2
3 +b2

3) (kN3c3)

(kN1b3) (−kN1c3) (c1c3 +b1b3) (−kN2b3) (−kN2c3) −(c2c3 +b1b3) (kN3b3) (−kN3c3) (c2
3 +b2

3)


(B.14)

Now to obtain the integration following equation is used

∫ ∫
e
Nm

1 Nn
2 N p

3 dA = 2Ae
m!n!p!

(m+n+ p+2)!
(B.15)

this gives following results of [R]F elements

∫
A

N2
1 dA =

2!
(2+2)!

2A =
A
6∫

A
N1N2dA =

1!1!
(1+1+2)!

2A =
A
12∫

A
N1dA =

1!
(1+2)!

2A =
A
3
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