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ABSTRACT [206 words; Max 250] 
 

In instances of asymmetric peripheral vision loss (e.g., glaucoma), binocular performance on 1 

simple psychophysical tasks (e.g., static threshold perimetry) is well-predicted by the better seeing 2 

eye alone. This suggests that peripheral vision is largely ‘better-eye limited’. In the present study, 3 

we examine whether this also holds true for real-world tasks, or whether even a degraded fellow 4 

eye contributes important information for tasks of daily living. Twelve normally-sighted adults 5 

performed an everyday visually-guided action (finding a mobile phone) in a virtual-reality 6 

domestic environment, while levels of peripheral vision loss were independently manipulated in 7 

each eye (gaze-contingent blur). The results showed that even when vision in the better eye was 8 

held constant, participants were significantly slower to locate the target, and made significantly 9 

more head- and eye-movements, as peripheral vision loss in the worse eye increased. A purely 10 

unilateral impairment increased response times by up to 25%, although the effect of bilateral 11 

vision loss was much greater (> 200%). These findings indicate that even a degraded fellow eye 12 

still contributes important information for performing everyday visually-guided actions. This may 13 

have clinical implications for how patients with visual field loss are managed or prioritized, and 14 

for our understanding of how visual information in the periphery is integrated. 15 

KEY WORDS: Peripheral Vision, Psychophysics, Visual Field Loss, Virtual Reality, Eye-tracking, 

Binocular Vision 
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1. INTRODUCTION [Total manuscript length: ~5000 words; Max 6000] 16 

Many common eye-diseases, such as glaucoma and diabetic retinopathy, disproportionately affect 17 

peripheral vision. Often, the resultant vision loss is asymmetric, with one eye more badly affected 18 

than the other1. Since in everyday life we tend to view the world binocularly, the better eye may be 19 

able to ‘compensate’ to some degree for the poorer one. Previous data from psychophysical tasks 20 

suggest that this compensation is near-total: with binocular perimetric performance almost 21 

perfectly predicted by the better eye alone2,3. This implies that peripheral vision is ‘better-eye 22 

limited’: a belief which can have important implications for how patients with asymmetric 23 

peripheral vision loss are managed. It is also implicit in common practices, such as the way in which 24 

data from monocular eye tests are combined to estimate binocular vision (Integrated Visual 25 

Fields)4,5. In general, however, psychophysical measures tend to be poor predictors of real-world 26 

performance on vision-related activities of daily living6–8. And it is unclear to what degree this 27 

previous finding --- that peripheral vision is ‘better eye limited’ --- translates from synthetic, 28 

psychophysical tasks, to real world judgments involving complex stimuli. In the present study we 29 

addressed this question empirically, by asking normally-sighted observers to perform a typical, 30 

everyday task (finding a mobile phone in a cluttered domestic scene), while levels of simulated 31 

peripheral vision loss were independently manipulated in each eye. 32 

1.1. Background Literature 33 

Evidence for the hypothesis that peripheral vision is ‘better-eye limited’ comes primarily from 34 

psychophysical studies using static threshold perimetry: a common clinical test in which the eye 35 

and head is fixed, and detection thresholds are measured for small (~0.5 deg), transient (~200 36 

msec) spots of light, as a function of retinal location. For example, Nelson-Quigg and colleagues 37 

(2000)2 asked glaucoma patients to perform static threshold perimetry three times: once 38 

binocularly, and once with each eye monocularly. They found that at any given location in the visual 39 

field, binocular detection thresholds were well predicted by the maximum of the two 40 

corresponding monocular thresholds, and that this simple ‘best location’ method was not 41 

significantly less accurate at predicting binocular performance than more complex models in which 42 

data from both eyes were summed together (e.g., linear or quadratically9). It is possible that some 43 

limited binocular summation may have occurred at locations where the sensitivities of the two eyes 44 

were very closely matched (relevant analyses not reported). Overall, however, the results indicated 45 

that in cases of asymmetric visual field loss, peripheral vision is primarily a function of the better 46 

seeing eye alone. Wood and colleagues (1992)3 performed a similar experiment in healthy 47 

observers. They found that for foveal targets, binocular sensitivities were approximately √2 better 48 
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than monocular sensitivities (quadratic summation), but that this 'binocular benefit' diminished 49 

as a function of eccentricity: becoming near-negligible by 15-30 degrees eccentricity. Older studies 50 

from as early as 1931 likewise observed that "there is no summation under conditions of 51 

peripheral retinal stimulation when the stimulated area is relatively small"10. 52 

In short, the psychophysical evidence is clear: when it comes to detecting small spots of low-53 

contrast energy, peripheral vision is primarily limited by the better seeing eye, and this is true both 54 

in normally sighted people and those with vision loss (glaucoma). Crucially, however, while highly 55 

constrained psychophysical paradigms such as static threshold perimetry are ideal for assessing 56 

function – and for detecting dysfunction – at the level of the retina, their findings may not generalize 57 

to real world tasks, or to higher-order visual judgments. Indeed, even simply increasing the size of 58 

a light-spot stimulus has been found to cause rates of binocular integration in the periphery to 59 

increase3. Likewise, binocular integration has been found to increase when the stimulus is held 60 

constant but the perceptual judgment made more complex (e.g., grating orientation discrimination 61 

vs. grating detection)11. It is unknown at present whether the benefits of binocular peripheral 62 

vision continue to increase if we move away from synthetic stimuli altogether, and consider the 63 

sorts of everyday perceptual judgments that patients report difficulties with most often, such as 64 

“finding something on a crowded shelf”, or “noticing an object off to the side”12. 65 

To date, the primary source of evidence regarding everyday perceptual judgments are patient self-66 

reports. Their findings, however, are inconclusive. For example, if peripheral vision is better-eye 67 

limited, then scores on vision-related quality of life [VRQoL] questionnaires should be independent 68 

of visual field loss severity in the worse eye. However, while visual field loss in the better eye tends 69 

to be more strongly correlated with VRQoL13–25, visual field loss in the worse eye is also correlated 70 

with VRQoL15,25, and the difference in explained variance between the two eyes is typically small 71 

(i.e., R2 ≈  0.113). Furthermore, some studies have failed to replicate even this small difference26 72 

(see also ref~[27]). Taken as a whole, these results suggest that peripheral vision is not solely a 73 

function of the better seeing eye alone, and that the worse eye may also contribute important 74 

information. However, it is difficult to draw any firm conclusions from patient self-reports. These 75 

studies are not typically intended to examine subtle variations in binocular summation, which may 76 

be masked by the intrinsic measurement error of patient self-reports28. Furthermore, vision loss in 77 

the better and worse eye is often correlated29,30. Correlations with VRQoL alone also provide only 78 

limited insights regarding effect size: how much harder is it, for example, to “find something on a 79 

crowded shelf” as vision in the worse eye varies?  80 
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1.2. Present Study 81 

To quantitatively assess the ‘real-world’ importance of a worse eye, the present study measured 82 

people’s ability to perform a common, everyday visually-guided action (locating a mobile phone in 83 

a domestic household scene), while systematically manipulating the level of peripheral vision loss 84 

in each eye independently. Instead of examining real patients, gaze-contingent impairments of 85 

varying magnitude were digitally simulated in normally-sighted observers. The use of simulations 86 

allowed the size, shape and severity of the impairment to be controlled and manipulated precisely 87 

in each eye independently. It also meant that each observer could experience every combination of 88 

impairments (fully within-subjects design): enabling us to derive a ‘pure’ measure of how vision 89 

loss affects performance, independent of individual differences in age, motivation, cognitive 90 

function, or overall health. Contrary to the belief that peripheral vision is ‘better-eye-limited’, we 91 

hypothesized that performance on a real-world task would diminish (i.e., response times would 92 

increase) as peripheral vision loss in the worse eye increased. We also analyzed eye- and head-93 

movements to examine whether degrading peripheral vision in one or both eyes caused systematic 94 

changes in search behaviors.  95 
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2. METHODS 96 

2.1. Task Overview 97 

Participants performed a visual search task in which they attempted to locate a known target (a 98 

mobile phone) in various domestic environments, simulated in virtual reality. Levels of peripheral 99 

vision loss (blur) were independently manipulated in each eye, trial-by-trial. The question was 100 

whether performance (response time, total length of head- and eye-movements) declined as 101 

peripheral loss in the worse eye increased. 102 

2.2. Participants 103 

Participants were twelve healthy adults (20 – 35 years, M = 26.2, SD = 5.03), with normal vision. 104 

Normal vision was defined as monocular letter acuity ≤ 0.3 logMAR, and no self-reported visual 105 

impairments. Written informed consent was obtained prior to testing. The study was approved by 106 

host institution’s ethics committee (UCL Psychology #11495/001) and was conducted in 107 

accordance with the Declaration of Helsinki. Participants received £20 compensation for their time. 108 

2.3. Hardware 109 

Stimuli were displayed on a FOVE0 Eye-Tracking VR headset (FOVE Inc., San Mateo, CA, United 110 

States). This contains a 2560 X 1440 WQHD OLED panel (1280 x 1440 pixels per eye), with a refresh 111 

rate of 70Hz and a binocular field of view of approximately 100 degrees. The headset contained 112 

two integrated near-infrared eye-trackers (1 per eye) for independently monitoring gaze in each 113 

eye, with a single-frame precision of approximately 1 deg, and a refresh rate of 120 Hz.  The headset 114 

also contained inertial sensors (gyroscope, accelerometer) for monitoring head-pose. There was 115 

no crosstalk31 between the two eyes, as stimuli --- and simulated impairments --- were presented 116 

dichoptically. The software was controlled by a HP OMEN laptop (Hewlett-Packard Company, Palo 117 

Alto, CA, United States) containing a NVIDIA GTX 1050Ti graphics card (NVIDIA Corp, Santa Clara, 118 

CA, United States).  119 

2.4. Stimuli 120 

The search target was always a black smartphone (Figure 1A, yellow box). The search 121 

environments consisted of 15 household rooms (bedrooms, bathrooms, kitchen, etc.), configured 122 

into a complete ‘suburban’ house (see Fig 1A for examples). Depending on the observer’s location, 123 

it was often possible to see into other rooms, connecting hallways, and the outdoor environ 124 

(garden, porch, neighboring houses, etc.). The whole scene was rendered using Unity3D v5.5.2 125 

(Unity Technologies ApS, San Francisco, CA, United States), and displayed stereoscopically. 126 
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 127 

Fig 1: Stimuli and Apparatus. (A) Examples of the 15 search environments, and the target (yellow square). See the Supplemental 128 

Material for a video depicting additional scenes. (B) The FOVE0 head-mounted display, containing independent screens for each 129 

eye, and near-infrared eye-tracking. (C) The five simulated impairment levels (Level 0 = no blur). The Macula was always spared, by 130 

constraining the simulated impairment such that no blur was ever applied to a circular region of radius ±9° (white arrow), centered 131 

on the current gaze location (red crosshairs: shown here for illustration only). Note that the observer’s gaze was unconstrained 132 

(free viewing), and was tracked in near-real-time using the headset’s near-infrared sensor. 133 

 134 

Fig 2: Experimental conditions and hypotheses. (A) A 5 x 5 matrix showing the 25 possible combinations of peripheral vision loss. 135 

The intensity of the green shaded regions indicates the magnitude of peripheral loss (blur) in each eye (see Fig 1 for graphical 136 

illustrations of each blur level). (B) Three alternative hypotheses, showing the expected pattern of results if the worse eye: has no 137 

impact on performance (H1); partially impacts performance (H2), or fully determines performance (H3).  138 
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2.5. Simulating vision loss 139 

As shown in Fig 1C, the simulated vision loss consisted of a gaze-contingent ‘tunnel’ of peripheral 140 

blur. The retinal location and spatial extent of the blur did not vary, but its magnitude varied trial-141 

by-trial depending on the test condition (see 2.5. Test Conditions). A central circular region (± 9° in 142 

radius, corresponding to the approximate extent of the Macula Lutea), was always spared, meaning 143 

that central vision was never impaired. 144 

The location of the impairment on the screen was updated in near-real-time based on the 145 

participants current gaze location (gaze-contingent presentation), and so remained near-static on 146 

the observer’s retinae. To make this possible, a rapid blurring algorithm was implemented, which 147 

allowed the impairment to be updated well within the screen's refresh rate of 70 Hz without any 148 

loss of frames (see below). Inevitably, however, there was a small amount of lag before any changes 149 

in gaze could be registered. The lag from the hardware was on the order of ~20 msec, and was 150 

composed primarily of the Eye Camera exposure time (8 msec), the eye-tracker transmission time 151 

(8 msec), and the eye-tracker processing time (4 msec). If we further factor in the refresh rate of 152 

the screen (70 Hz) and 3D rendering time, the total expected lag was approximately 30–40 msec. 153 

To minimize any effects of eye-tracker calibration drift (i.e., which would cause the location of the 154 

simulated field loss to shift over time), the eye-tracker was regularly recalibrated throughout the 155 

experiment, as detailed below (2.7. Procedure). 156 

Blurring was performed in near-real-time using a custom OpenGL fragment shader, which we have 157 

made freely available online as part of a general-purpose 'sight loss simulator' toolbox <methods 158 

manuscript under review, TO BE UPDATED>. In short, prior to each screen refresh, a 'pyramid' of 159 

progressively more blurred images was created by a repeated process of decimation (box-filtering 160 

and downsampling the source image by a power of two). When drawing the image to the screen, 161 

pixels were sampled either from the original source image (regions of no blur), and/or were 162 

upsampled from this pyramid of decimated images (regions of blur), using trilinear texture filtering 163 

to interpolate between pyramid levels as required. This process is generally referred to as 164 

mipmapping, and has been detailed previously in the context of simulating visual field loss by Perry 165 

and Geisler32 (for further technical specifics on the present implementation, see also Ref~[33]). The 166 

key advantage of this method is its computational efficiency, allowing the screen-location of the 167 

gaze-contingent blur to be updated with minimal delay (before every screen refresh).  168 

The type of blur created by this process is qualitatively similar to a gaussian low-pass filter and 169 

would not, for example, have completely removed all higher frequency information. Note also, that 170 

this approach is intended primarily as a crude model of retinal loss, such as glaucoma, and was 171 
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applied as a 'post-processing' effect to the final rasterized image. If attempting to simulate vision 172 

loss due to optical defocus, it would also be important to incorporate phase-reversals34,35, and to 173 

take into account the distance of each object in the visual scene. The present approach also assumes 174 

that observers had negligible refractive error in their periphery, which might otherwise mask the 175 

effects of the blur36. This was thought reasonable as a first approximation for our cohort of young, 176 

normally-sighted adults. However, even young adults with no foveal refractive error can display 177 

large degrees of peripheral astigmatism, with substantial variability between observers37. This 178 

assumption may therefore have introduced a degree of noise (or bias) into the present results: 179 

error which could be corrected for in future by adjusting analyses to take into account the unique 180 

optical characteristics of each observer. 181 

Note that blur (low-pass filtering) provided a convenient way to parametrically manipulate the 182 

level of vision loss in each eye, and is grossly concordant with the self-reports of glaucoma patients 183 

with moderate or advanced field loss: who often describe their vision loss in terms of regions of 184 

‘blurry’ vision38. The use of blur was not intended as a comprehensive simulation of real glaucoma, 185 

however. Visual impairments are highly heterogeneous, and often involve other symptoms, 186 

including metamorphopsia, a loss of lower frequency contrast, and regions of the field becoming 187 

jumbled, missing, or elided39. Likewise, note that the shape of the visual impairment (an extreme 188 

‘tunnel vision’ effect) meant that all regions of peripheral vision were degraded. This is not 189 

representative of real glaucoma, which is often irregular and includes regions of spared vision. In 190 

future, it may be instructive to explore how covarying the shape of the visual field loss also affects 191 

performance. However, this was outside of the scope of the present work. 192 

2.6. Test Conditions 193 

The shape and location of the simulated vision loss was constant. The only free parameter was the 194 

magnitude of blur, which on each trial took one of five levels 〈0,1,…,4〉, corresponding to a nominal 195 

source image widths of 1280 pixels (level 0 – no blur), 640 (level 1), 380 (level 2), 240 (level 3), 20 196 

(level 4). To put these values in context, level 4 was sufficiently great that, had it been applied 197 

uniformly across the whole visual field of both eyes, the task would be impossible (see 198 

Supplemental Material D). The level of blur was independently manipulated in each eye, giving a 199 

total of 25 (5 x 5) test conditions (see Fig 2A). Each of these 25 test conditions was presented 10 200 

times in random order, for a total of 250 trials. 201 

2.7. Procedure 202 

Participants were instructed to “find the phone as quickly as possible”. On each trial, one of fifteen 203 

rooms was randomly selected, and the target was randomly placed at one of twenty locations 204 
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within the room: predefined separately for each room. The location and starting orientation of the 205 

participant was also randomized, constrained so that the participant was never directly facing the 206 

target at trial onset. 207 

Throughout the trial, gaze and head-pose were tracked continuously, using the headset’s internal 208 

near-infrared and gyroscopic sensors, respectively. Participants indicated when they had located 209 

the target by pressing a key on a response pad. To avoid errant data from misclicks, a response was 210 

confirmed as correct only if the participant’s gaze fell within 45° of the target at the time when they 211 

pressed the response button. Participants were also monitored by the experimenter throughout 212 

via an external computer screen, to ensure they were performing the task correctly. For safety, 213 

participants were seated on a rotating office chair, but were free to rotate their head, body, and eyes 214 

when searching for the target. 215 

The trial ended either when the participant indicated they found the target (by pressing a response 216 

button), or after a maximum of 45 seconds had elapsed. The 45-seconds time limit was intended to 217 

keep participants motivated throughout testing, and resulted in 104 trials being aborted (~3%). 218 

Data from aborted trials are not reported. 219 

Each participant completed 250 test trials: 10 trials for each of the 25 test conditions (see 2E. Test 220 

Conditions). Participants were encouraged to take a short break every 25 trials (eyes closed with 221 

the headset on), and mandatory breaks were given after each 75 trials, during which participants 222 

removed the headset. The total testing time, including breaks, was approximately 90 minutes. 223 

Before the start of the experiment, and after every break (i.e., a maximum of 75 trials), the eye-224 

tracker was calibrated using the manufacturer-supplied procedure. Each time, the calibration was 225 

validated, both by the software’s own internal algorithms, and by an informal process of inspection 226 

in which the experimenter manually manipulated the location of a target (a red dot), and observed 227 

the participant’s estimated gaze location. If the headset reported poor calibration, or if the 228 

experimenter was not completely satisfied with its accuracy, the calibration was re-run. This 229 

happened on ~1% of occasions, generally if the participant physically adjusted the position/straps 230 

of the head-mounted display during calibration. During testing, estimated gaze was also visualized 231 

on a separate screen, overlaid onto the visual scene. The experimenter monitored this screen for 232 

any unusual gaze behavior, and could manually trigger a recalibration. In practice, however, no 233 

interventions were required. 234 
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Before testing participants completed a practice block of 10 trials, designed to familiarize them 235 

with the target, the task, and the various impairment levels. All participants completed these trials 236 

without difficulty (minimum 9 out of 10 correct responses within the time limit). 237 

2.8. Statistical Analysis 238 

The primary question was whether performance varied as vision loss in the worse eye increased 239 

(i.e., after adjusting for individual variability, and for the level of vision in the better eye). To test 240 

this statistically, data were entered into a Linear Mixed-Effects [LME] model, specified, in Wilkinson 241 

(LME) notation40, as: 242 

, 
(Eq 1a) 

where WORSEEYE was the level of visual impairment (blur) in the worse eye (0 – 100%), BETTEREYE 243 

was the level of visual impairment in the better eye (0 – 100%), and PARTID was the participant ID 244 

(1 – 12). The dependent variable, y, was computed for each trial, and variously took the form: (i) 245 

log10 Response Time, in seconds; (ii) log10 Total Scan-path Length, in degrees visual angle; (iii) log10 246 

Total Head-turn Length, in degrees; and (iv) answer correct (0 or 1). A significant main effect of 247 

WORSEEYE would mean that a given outcome measure, y, varied as peripheral blur in the worse eye 248 

increased. 249 

In practice, the LME model in Eq (1a) was fitted by the MATLAB function “fitlme” (maximum 250 

likelihood method), and the significance of WORSEEYE predictor variable was formally evaluated 251 

using Simulated Likelihood Ratio Tests41. Note also that this same model can also be specified in 252 

standard mathematical notation as: 253 

, 
(Eq 1b) 

where β0 is the mean intercept, β1 and β2 are the predictor variables (Worse/Better Eye), and b0 is 254 

a random intercept variable which was allowed to vary across the m participants. 255 

For all figures and descriptive statistics, data are reported in linear units, using non-parametric 256 

statistics (e.g., medians), and 95% confidence intervals were computed using bootstrapping (N = 257 

20,000; bias-corrected and accelerated method).  258 
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3. RESULTS 259 

3.1. Response Time 260 

 261 

Fig 3. Response time: median time taken to locate the target on each trial, in seconds. (A) Heatmap showing median response time 262 

for each condition (see Fig 2A for details regarding conditions). (B) Median response time [± 1 S.E.M.], as a function of peripheral 263 

loss in the worse eye. Each panel shows a different level of vision loss in the better eye. Each bar shows a different level of vision 264 

loss in the worse eye (median-averaged across the two corresponding values; i.e., when the left or right eye was the worse eye). For 265 

example, the black square in the first panel is the average response time when peripheral blur in the better eye was Level 0 (no 266 

blur), and peripheral blur in the worse eye was Level 2 (moderate blur in either the left or right eye). As illustrated previously in see 267 

Fig 2B, if the worse eye had no effect on performance then all of the bars within a given panel should fall along the horizontal pink 268 

line. 269 

Figure 3 shows how response time varied as the magnitude of peripheral loss in each eye was 270 

manipulated independently. For any given magnitude of loss, performance was degraded more 271 

when the vision loss was bilateral symmetric (i.e., the positive diagonal of Fig 3A), than when it was 272 

applied to one eye only (the bottom row and leftmost column of Fig 3A). For example, when the 273 

impairment was maximal in both eyes (top right point of Fig 3A), grand-median search times across 274 

all participant increased by over 200% (4.9 to 16.0 seconds; Wilcoxon Signed-Rank test; P < 0.001). 275 

Varying vision loss in the worse eye only (and holding the better eye constant) had a smaller, but 276 

still measurable effect: causing median response times to increase by up to 25% (4.9 vs 6.2 secs; 277 

(Fig 3B). The significance of this effect was confirmed by fitting the LME model in Eq 1a, and 278 

examining the effect of WORSEEYE (t = 2.77, P = 0.006). Taken together, these results indicate that 279 

performance is partially determined by the amount of peripheral vision loss in the worse eye 280 

(hypothesis H2 in Fig 2). The fact that the worse eye had some effect, but only partially determined 281 

performance, can also be seen intuitively by looking left/right along the bottom row of Fig 3A, and 282 

comparing the pattern of results to the three hypotheses in Fig 2B. 283 

Using simple linear regression, it was observed that variations in peripheral vision loss in the worse 284 

eye explained ~2% of the variability in response times (F = 33.67, P ≪ 0.001, R2 = 0.017), versus 285 
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~7% for the better eye (F = 139.9, P ≪ 0.001, R2 = 0.067). This confirms that the better eye is the 286 

single greatest predictor of performance, though it is worth noting that vision-loss alone left the 287 

majority of performance-variability unexplained (see also Supplemental Material A for further 288 

analysis).  289 

By inspection of Figure 3B, it can be seen that there was a possible interaction between the two 290 

eyes: increasing vision loss in the worse eye affected search times most when vision loss in the 291 

better eye was relatively small. To explore this further, post-hoc tests were performed in which the 292 

LME model (Eq 1a) was fitted independently to the data in each of the 4 panels of Figure 3B. The 293 

main effect of WORSEEYE was significant (both P < 0.05) in the left two panels (when vision loss in 294 

the better eye was minimal), but was not significant (both P > 0.05) in the right two panels (when 295 

vision loss in the better eye was moderate or severe). This indicates that vision loss in the worse 296 

eye may be an important factor only when the better eye is relatively healthy. 297 

3.2. Eye- and Head-Movements 298 

The amount that participants moved their eyes (Fig 4) and head (Fig 5) when searching for the 299 

target exhibited the same pattern of results as the response time data (Fig 2B). Thus, participants 300 

made more searching movements as vision loss in the worse eye increased, and this effect was 301 

statistically significant for both eye-movements (t = 2.1, P = 0.016) and head-movements (t = 2.8, P 302 

= 0.005). Again, there was also an interaction between the two eyes, with post-hoc tests indicated 303 

that the effect of WORSEEYE was significant only when vision loss in the better eye was minimal (the 304 

first two panels of Fig 4A/5A; all P < 0.05). Overall, these results provide convergent evidence that 305 

peripheral loss in the worse eye substantively affects task performance, particularly when the 306 

fellow (better) eye is relatively healthy. 307 

 308 

Fig 4. Median scanpath length (amount of eye-movements) on each trial, in degrees. Same format as Figure 3. 309 
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 310 

Fig 5. Median head-turn length (amount of head-movements) on each trial, in degrees. Same format as Figure 3. 311 

3.3. Response Accuracy 312 

Response accuracy (percent correct responses) did not change across any of the visual impairment 313 

conditions, and was close to 100% throughout (M = 96%; see Supplemental Material B). Thus, there 314 

was no effect of WORSEEYE when the mixed-effects analysis was run (t = -0.07, P = 0.944), and in fact 315 

a one-way ANOVA found no significant difference in percent-correct responses between any of the 316 

25 impairment conditions (F = 0.04, P = 0.340). This indicates that while peripheral vision loss 317 

caused participants to be slower in locating the target, they were no more likely to mistake the 318 

target for another object. This is to be expected, given that central vision in both eyes was spared.  319 
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4. DISCUSSION 320 

The results showed that participants were slower to find an everyday object in a cluttered domestic 321 

scene --- and made more head and eye movements when searching --- as simulated peripheral 322 

vision loss in the worse eye increased: even when vision in the better eye remained constant. This 323 

indicates that for everyday visually-guided tasks, peripheral vision is not 'better-eye limited', and 324 

that the worse eye also provides important information for daily living. The benefit of the worse 325 

eye was greatest when vision in the better eye was relatively healthy, suggesting that the 326 

preservation of fellow-eye vision may be most important in early-to-moderate cases of field loss. 327 

Substantial trial-by-trial variability in performance was apparent, as indicated by the large error 328 

bars in Figures 3–5, and by the relatively small amount of response variability explained by sight 329 

loss alone. This is to be expected given the relatively uncontrolled task: No concerted attempt was 330 

made to match search-environments/target-locations for difficulty, and it is highly likely that the 331 

phone was objectively easier to locate on some trials (e.g., because some rooms contained fewer 332 

likely locations, or because the visual dissimilarity of target vs background was greater). The fact 333 

that there was a clear and consistent overall pattern to the data, despite this lack of complete 334 

stimulus/experimental control, we take as particularly good evidence that the reported effect is 335 

genuine and has substantive real-world implications. Notably, it is possible to contrive stimuli for 336 

which the present effects are greater and more consistent than those observed here. For example, 337 

we report in Supplemental Material C a variant of the present task in which the target and 338 

environments were random textures, and where the effect of degrading the worse eye was much 339 

greater. Such task-variants could be of interest for people looking to adapt the present paradigm 340 

to detect or quantify visual impairment. 341 

4.1. Comparison with Previous Literature 342 

The present data stand in contrast to previous findings using more basic psychophysical tasks 343 

(static threshold perimetry), on which binocular sensitivity in the periphery is largely predicted 344 

by the better eye alone2,3. This mismatch highlights that basic psychophysical tasks do not always 345 

provide a perfect model of an individual’s ability to perform ‘real world’ perceptual judgments: a 346 

fact which has also been widely reported previously, particularly in the context of visual acuity6–8 347 

and visual field loss42–44. The present findings are, however, broadly consistent with qualitative 348 

clinical data. For example, several studies have reported reductions in visual disability and 349 

symptoms following second-eye cataract surgery, despite often minimal changes in acuity45,46. One 350 

corollary of this is that we may in future need to move away from purely ‘synthetic’ stimuli, such 351 
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as light-spots, gratings, or isolated optotypes, if we wish to fully characterize the functional impact 352 

of sight loss. 353 

The fact that eye-movements increased with increasing peripheral loss is consistent with a number 354 

of previous studies examining the natural eye-movements of glaucoma patients1,47–49. To our 355 

knowledge, only one study by Dive et al. (2016)49 has examined head movements in glaucoma 356 

patients. They likewise reported elevated levels when performing ‘real world’ tasks, although no 357 

quantitative data were reported. The present study confirms these observations by providing 358 

direct, simultaneous measurements of head- and eye-movement under conditions of simulated 359 

peripheral vision loss. It is interesting to note that in the present study, the observed changes in 360 

head-movements were at least as great as the changes in eye-movements. This suggests that head-361 

movements might provide a possible biomarker for the detection of eye-disease --- as has been 362 

suggested previously for eye-movements1. The next important step will be to test this possibility 363 

empirically. The present study also demonstrates the sorts of new insights that can be achieved by 364 

moving away from ‘traditional’ visual assessments in which the eye and/or head is constrained by 365 

fixation targets and chinrests.  366 

4.2. Limitations 367 

The present study employed simulated impairments, rather than real patients. This was necessary, 368 

as it allowed us to systematically manipulate the impairment and to control for individual 369 

differences. It does, however, mean that we have to interpret the results with caution. To the extent 370 

that real eye-disease may cause not just high frequency loss (blur), but also a range of other 371 

disturbances (low frequency loss, spatial distortions, chromatic anomalies, crowding, infilling, 372 

etc.), the worse eye may play an even greater or smaller role than was observed here. Notably, the 373 

simulator used in the present study is also capable of incorporating many of these other effects, 374 

and these effects can be linked to empirical data from real patients33. It would therefore be possible 375 

in future to conduct a more comprehensive assessment of how different forms of vision loss affect 376 

everyday visually-guided actions, or a detailed analysis of how a particular individual’s visual 377 

profile affects daily living. These would be non-trivial undertakings, but the code for the present 378 

simulations has been made freely available online for anybody interested in pursuing this line of 379 

inquiry <methods manuscript under review, TO BE UPDATED>. It likewise remains an open question 380 

whether performance would change over time as the individual learns to adapt to their impairment 381 

– a consideration which may be particularly relevant to diseases such as glaucoma, where sight loss 382 

is often gradual and progressive. The question of adaptation could be explored in future empirically 383 
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– for example through the use of Augmented Reality simulations, which in principle can be worn 384 

for days or weeks at a time. 385 

The present data demonstrated that peripheral sight loss affects binocular performance on 386 

everyday visual-guided tasks, even when the loss is unilateral. However, they do not tell us how or 387 

by what means the worse eye contributes task-relevant information. One possibility is that the 388 

change in performance was due primarily to an overall loss of (contrast) sensitivity. Normal vision 389 

is comprised of a central binocular field, and two uniocular flankers50. By adding blur to the 390 

periphery of one eye, the binocular field is shrunken/decreased, limiting opportunities for 391 

binocular summation, while one of the flanking regions is lost altogether, effectively narrowing the 392 

total field of view. The result is a narrower, shorter 'hill of vision'. In addition to overall changes in 393 

sensitivity, however, disrupting binocular vision through the addition of monocular blur can also 394 

have secondary consequences, including aberrant motion processing51 and a loss of (high-395 

frequency) stereopsis52. The latter is particularly significant for the present task (Visual Search), 396 

since stereopsis is known to be important for `breaking camouflage'53, while the former may have 397 

similar consequences by removing another important depth cue: motion parallax. From the 398 

present study, it is not possible to determine which, if any, of these factors are important for 399 

explaining the pattern of results observed. In future, however, such questions could be explored 400 

experimentally by modifying the present paradigm. For example, instead of applying blur one could 401 

selectively remove binocular disparity from the periphery of both eyes. Alternatively, participants 402 

could view a 2D plane instead of a 3D environment, to further remove motion parallax cues. To the 403 

extent that the same pattern of results continued to hold, it would indicate that it is these secondary 404 

depth cues, rather than a loss of sensitivity, that are primarily responsible for changes in 405 

performance observed. 406 

A further limitation of the present study is that the central macula region of ± 9° was always spared. 407 

We are therefore unable to infer what the effect of unilateral loss would be if this ‘healthy’ region 408 

were reduced. The benefits of binocular summation in central vision are, however, well-409 

established, with previous studies showing that observers are better at detecting faint objects54, 410 

resolving fine spatial detail55,56, or performing delicate visuomotor actions57, when fixating with 411 

two foveae versus just one. We therefore predict that the preservation of the fellow-eye would be 412 

at least as beneficial in instances of central or paracentral vision loss. Consistent with this, the same 413 

qualitative pattern of results as reported here was observed in a small cohort of observers when 414 

the blur was applied uniformly across the whole visual field (see Supplemental Material D).  415 
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4.3. Implications & Future Work 416 

The present study indicates that there may be a real-world cost to unilateral peripheral vision loss 417 

that is not captured by traditional psychophysical measures, such as static threshold perimetry. 418 

Such deficits could have particular implications for time-critical tasks, such as driving. Thus, if we 419 

consider the conditions involving a purely unilateral impairment (the leftmost panel of Figures 3–420 

5B): such individuals would be expected to score near-perfectly on a standard binocular visual 421 

field assessment2,3,10. They would therefore be considered legally fit to drive in most countries, 422 

even professionally58. In contrast, such individuals were 1 second (25%) slower, on average, to 423 

locate the target object (and on some trials much slower). To put this in context, when driving at 424 

~30 mph (~50 km/h), an additional 1 second delay in braking is enough to increase stopping 425 

distance by 40%59, and double the likelihood of severely injuring a pedestrian three car-lengths in 426 

front60. This is particularly concerning given that individuals with unilateral glaucoma are no more 427 

likely than their normally-sighted peers to cease driving61. At present, we can of course only 428 

speculate precisely how the present results would translate to other real-world scenarios, such as 429 

driving. It may be, for example, that some drivers can compensate for their vision loss through 430 

increased vigilance62 (though see ref~[63]). Notably, the technologies developed for the present 431 

work are compatible with all modern software and hardware devices. It would therefore be 432 

possible to apply the same simulated impairments to existing driving simulators, and to observe 433 

empirically their effects on performance. 434 

More generally, the present work highlights the importance of measuring not only response 435 

accuracy, but also response speed and effort, when characterizing a visual impairment. Thus, 436 

compared to healthy vision, even an intense, bilateral simulated impairment caused no significant 437 

change in response accuracy, which was close to 100% throughout. It did, however, cause response 438 

times to be significantly slower (by over 200%, in the bilateral-symmetric case), and compelled 439 

participants to make substantially more head- and eye-movements. These findings echo a recent 440 

report by Barsingerhorn and colleagues64, who observed that children with ocular dysfunction 441 

were slower at performing a simple spatial judgment (landolt-C orientation-identification) than 442 

their normal-sighted peers, even after the stimuli were matched in size for relative acuity. Taken 443 

together, such findings suggest that when characterizing vision loss, it may be prudent to move 444 

beyond simple functional measures of accuracy. It may, for example, be desirable to consider a 445 

treatment effective if it makes visual judgments faster or less tiring, even if there is no substantive 446 

change in the size or contrast of the smallest identifiable object. It is interesting to note that this is 447 

already an established principle in the auditory community, where fatigue, effort and stress are 448 



The worse eye revisited        Page 19 of 26 

considered when evaluating hearing impairment65. Such constructs are difficult to quantify using 449 

traditional ‘pen and paper’ vision tests, but can be more easily probed using the sorts of digital 450 

technologies reported here. 451 

Finally then, the present study highlights the potential utility of Virtual- and Augmented-Reality 452 

simulations for assessing the real-world impact of visual impairments. As discussed previously, 453 

traditional measures of visual function, such as acuity and visual field loss, typically explain only a 454 

minority (10 – 30%42–44) of the variability in self-reported vision related quality of life. In contrast, 455 

functional evaluations in real-life scenarios such as driving are difficult to obtain, and sometimes 456 

even dangerous. VR technologies such as those presented here may provide a novel platform with 457 

which to observe directly a person’s ability to perform key everyday tasks, and to do so in a way 458 

that is controlled, quantifiable, replicable, and safe. Notably, however, substantial hardware 459 

development is still required before VR technology will be suitable for most patients. This includes 460 

the development of lighter, more comfortable headsets, and the ability to integrate appropriate 461 

refractive correction across a wide range of prescriptions. 462 

4.4. Summary and Conclusions 463 

1. Varying degrees of simulated peripheral vision loss (blur) were applied to one or both eyes 464 

of twelve normally-sighted adults. 465 

2. Participants were slower to find an everyday object in a cluttered domestic scene --- and 466 

made more head- and eye-movements when searching --- as peripheral vision loss in the 467 

worse eye increased. This suggests that peripheral vision is not entirely ‘better-eye limited’, 468 

and that even the worse eye contributes important information for performing activities of 469 

daily living. 470 

3. More generally, the data suggest that simple synthetic tasks may not always be sufficient to 471 

fully-characterize visual impairments, and that VR technologies might in future provide a 472 

productive tool with which to observe and quantify the everyday impact of vision loss. 473 
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Supplemental Material [This section will be reformatted as a separate document if/as required] 651 

A. Supplemental Analysis: The relative importance of the better vs worse eye 652 

To determine whether performance was closer to H1 (entirely better eye, BE, driven) or H3 (entirely 653 

worse eye, WE, driven) the following simple analysis was performed. Consider responses times, RT, 654 

in the extreme unilateral case 〈WE: Lvl 4, BE: Lvl 0〉, the extreme bilateral case 〈WE: Lvl 4, BE: Lvl 655 

4〉, and the no impairment case 〈WE: Lvl 0, BE: Lvl 0〉. The relative weight given to the worse eye, 656 

WE, should be given by: 657 

 

(Eq S1) 

If WE = 1 (i.e., no difference in RT between unilateral and bilateral impairment) then it implies that 658 

performance was entirely determined by the worse eye. If WE = 0 then performance was entirely 659 

determined by the better eye. If WE = 0.5 then both eyes were equally important. In practice, WE 660 

= 0.11, which indicates that the better eye was the greatest single predictor of performance. 661 

B. Supplemental Analysis: Effect of peripheral loss on response accuracy (percent correct) 662 

As shown in Fig S1, response accuracy (percent correct responses) did not vary systematically 663 

across any of the peripheral impairment conditions. See main manuscript for statistical analysis. 664 

 665 
Fig S1. Response accuracy: percent correct responses as a function of left eye impairment level (abscissa) and right eye impairment 666 

level (ordinate). 667 

C. Supplemental Experiment: Texture-in-texture search task 668 

Figures S2 and S3 shows data from five new participants, who performed a variant of the main 669 

task, in which the target was convex textured hemisphere, presented against a concave textured 670 

background (see Fig S2 for depiction of the stimuli). In that case, the overall pattern of results was 671 

the same as in the present study, but the effects were larger in absolute terms (note the different 672 

y-axis scale in Fig S3 compared Figures 3–5 of the main manuscript) and were apparent even in a 673 

small cohort of participants (N=5). That such stimuli elicit a greater and more consistent ‘worse 674 

eye’ effect is to be expected, given that the target included a strong stereoscopic depth cue, and all 675 

non-perceptual confounds were removed. This task-variant could therefore be of interest for 676 

people looking to adapt the present paradigm to detect or quantify visual impairment. 677 

 678 
Fig S2. Example stimuli (left-eye/right-eye) for a pilot ‘texture search’ variant of the main task, in which the target and search 679 

environment were replaced with patterns of random noise. Impairments are not shown, but consisted of variable blur similar to 680 

that illustrated in Fig 1 of the main manuscript. The target (convex textured hemisphere) is circled in yellow for visualization 681 

purpose. 682 
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 683 

Fig S3. Response time data for a pilot ‘texture search’ variant of the main task (see Fig S2 for stimuli). These data are analogous to 684 

the those shown previously in Figure 3 (main manuscript), and exhibit a similar overall pattern. In this case, however, data are from 685 

5 participants only, and the size of the main effect (parameter WORSEEYE in Eq 1) was even more clearly significant: t = 8.72, P ≪ 686 

0.001 [P = 1e-17]. 687 

D. Supplemental Experiment: Uniform blur condition 688 

Figures S4 shows data from five new participants, who performed the exact same task to the main 689 

study, but with uniform blur (no central spared region). Compared with the peripheral-only blur 690 

(Figure 3A of Main Manuscript), the data showed a qualitatively similar pattern of results, although 691 

--- unsurprisingly --- the blur had an even greater detrimental effect on performance at all 692 

magnitudes. Furthermore, in the highest blur level, the task became impossible when the blur was 693 

bilateral symmetric (top right of Fig S4). 694 

 695 

Fig S4. Response time data for a “uniform blur” variant of the main experiment. These data are analogous to the those shown 696 

previously in Figure 3A (Main Manuscript).  697 


